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UNIFORM RESOLVENT ESTIMATES
FOR A NON-DISSIPATIVE HELMHOLTZ EQUATION

by Julien Royer

Abstract. —We study the high frequency limit for a non-selfadjoint Helmholtz equa-
tion. This equation models the propagation of the electromagnetic field of a laser in an
inhomogeneus material medium with non-constant absorption index. In this paper the
absorption index can take negative values and we only use a damping condition on the
classical limit of the problem. In this setting we first prove the absence of eigenvalue on
the upper half-plane and close to an energy which satisfies this damping assumption.
Then we generalize the resolvent estimates of Robert-Tamura and prove the limiting
absorption principle. We finally study the semiclassical measures of the solution when
the source term concentrates on a bounded submanifold of Rn.

1. Introduction and statement of the main results

The purpose of this paper is to study on Rn, n > 1, the high frequency limit
for the Helmholtz equation in a non-dissipative setting. After rescaling, this
equation can be written

(1.1) (Hh − E)uh = fh, where Hh = −h2∆ + V1(x)− ihV2(x).

We recall that this equation models for instance the propagation of the electro-
magnetic field of a laser in an inhomogeneus material medium. In this setting
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592 J. ROYER

V1(x) − E is linked to the refraction index, V2(x) is the absorption index and
fh is the source term. The parameter h > 0 is proportional to the wavelength.
In this paper we are interested in the asymptotic behavior of the solution uh
when h goes to 0.

All along this paper, we assume that V1 and V2 are bounded and go to 0
at infinity. This implies in particular that the essential spectrum of Hh on the
Sobolev space H2(Rn) is R+, as for the free Laplacian. Our purpose is to study
the resolvent (Hh−z)−1, where h > 0 is small and z ∈ C+ = {z ∈ C : Im z > 0}
is close to E ∈ R∗+. We prove some estimates for this resolvent uniform in the
spectral parameter z, in order to obtain the limiting absorption principle and
then existence and uniqueness of an outgoing solution uh for (1.1). We also
control the dependence in h of these estimates, which gives an a priori estimate
for the size of uh when h goes to 0. Note that it is not clear that the resolvent is
well-defined. More precisely the operator Hh may have eigenvalues in a strip of
size O(h) around the real axis. Therefore we first have to prove that it cannot
happen where we study the resolvent.

Let δ > 1
2 . In the self-adjoint case (V2 = 0) it is known that there exist a

neighborhood I of E > 0, h0 > 0 and c > 0 such that

(1.2) ∀h ∈]0, h0], sup
Re z∈I
Im z 6=0

∥∥∥〈x〉−δ (Hh
1 − z)−1 〈x〉−δ

∥∥∥
L(L2(Rn))

6
c

h

if and only if the energy E is non-trapping (see (1.5) below). Here we de-
note by Hh

1 the self-adjoint Schrödinger operator −h2∆+V1(x), by L(L2(Rn))

the space of bounded operators on L2(Rn), and 〈x〉 =
(
1 + |x|

) 1
2 . D. Robert

and H. Tamura [23] proved that the non-trapping condition is sufficient and
X.P. Wang [31] proved its necessity. In fact, if the non-trapping condition is
not satisfied then the norm in (1.2) is at least of size |lnh| /h (see [4]).

For this result and all along this paper the potential V1 is assumed to be of
long range: it is smooth and there exist constants ρ > 0 and cα > 0 for α ∈ Nn
such that

(1.3) ∀α ∈ Nn,∀x ∈ Rn, |∂αV1(x)| 6 cα 〈x〉−ρ−|α| .

Let p : (x, ξ) 7→ ξ2 +V1(x) be the semiclassical symbol of Hh
1 on R2n ' T ∗Rn

and φt the corresponding Hamiltonian flow. For any w ∈ R2n, t 7→ φt(w) =(
X(t, w),Ξ(t, w)

)
is the solution of the system

(1.4)


∂tX(t, w) = 2Ξ(t, w),

∂tΞ(t, w) = −∇V1(X(t, w)),

φ0(w) = w.
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UNIFORM RESOLVENT ESTIMATES 593

We recall that E > 0 is said to be non-trapping if

(1.5) ∀w ∈ p−1({E}), |X(t, w)| −−−−→
t→±∞

+∞.

For I ⊂ R, we introduce the following subsets of p−1(I):

Ω±b (I) =

®
w ∈ p−1(I) : sup

t>0
|X(±t, w)| <∞

´
,

Ωb(I) = Ω−b (I) ∩ Ω+
b (I),

Ω±∞(I) =

ß
w ∈ p−1(I) : |X(±t, w)| −−−−→

t→+∞
+∞

™
.

In [26] we considered the dissipative case V2 > 0. We proved (1.2)
for Im z > 0 under a damping assumption on trapped trajectories:

(1.6) ∀w ∈ Ωb({E}),∃T ∈ R, V2

(
X(T,w)

)
> 0.

Notice that this generalizes the usual non-trapping condition: when V2 = 0

then (1.6) is equivalent to (1.5).

To prove this result we developed a dissipative version of Mourre’s the-
ory [20], which we applied to the dissipative Schrödinger operator. For this we
constructed an escape function as introduced by Ch. Gérard and A. Martinez
[14], using the damping assumption to allow trapped trajectories. Note that
L. Aloui and M. Khenissi also proved some resolvent estimates for a dissipa-
tive Schrödinger operator in [1]. They needed a similar assumption but used a
different approach (see below).

We know that assumption (1.6) is both sufficient and necessary in the dissi-
pative setting. Our purpose is now to relax the dissipative condition, allowing
negative values for the absorption index V2. In this case, the damping assump-
tion need reformulating. The condition we are going to use in this paper is the
following:

(1.7) ∀w ∈ Ωb({E}),∃T > 0,

∫ T

0

V2(X(t, w)) dt > 0.

This condition is in particular satisfied if V2 > 0 and (1.6) holds. From this point
of view, the results we are going to prove here are stronger than those given in
the dissipative setting. With Assumption (1.7) and compactness of Ωb({E}),
we can prove that for all w ∈ Ωb({E}) we have

lim inf
T→+∞

1

T

∫ T

0

V2(X(t, w)) dt > 0,
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594 J. ROYER

which means that we have a damping condition “on average in time” on bounded
trajectories. See Proposition 2.3 for a more precise statement. The relation be-
tween asymptotic spectral properties of the non-selfadjoint Helmholtz equation
and the average of the absorption index on classical trajectories has already
been studied on compact manifolds by J. Sjöstrand in [30].

In this setting we cannot use the dissipative version of Mourre’s commuta-
tors method. We use the same approach as in [1] instead. The idea is due to
G. Lebeau [19] and N. Burq [6]. It is a contradiction argument. We consider a
family of functions which denies the result, a semiclassical mesure associated
to this family and finally we prove that this measure is both zero and non-zero.
This idea was used in [6] for a general self-adjoint and compactly supported
perturbation of the Laplacian. In [17], Th. Jecko used the argument to give a
new proof of (1.2) with a real-valued potential. The motivation was to give a
proof which could be applied to matrix-valued operators. To allow long range
potentials, the author introduced a bounded “escape function” which we use
here. The method was then used in [8] for a potential with Coulomb singulari-
ties and in [18, 13, 10] for a matrix-valued operator.

Let us now state the main results about the resolvent. An important dif-
ference with the dissipative case is that we do not know if the resolvent is
well-defined, even on the upper half-plane C+. However, our operator Hh is a
relatively compact perturbation of the Laplacian, so according to Weyl’s The-
orem [21, §XIII.4], its essential spectrum is R+ and it can only have isolated
eigenvalues on C+. So in the results we state now, we first claim that Hh has
no eigenvalue in the considered region and then give an estimate for the re-
solvent. The first theorem is about spectral parameters whose imaginary parts
are bigger than βh for some β > 0:

Theorem 1.1. — Suppose V2 is smooth with bounded derivatives and
V2(x)→ 0 when |x| → +∞. Let E > 0 be an energy which satisfies the
damping assumption (1.7) and β > 0. Then there exist a neighborhood I of E,
h0 > 0 and c > 0 such that for h ∈]0, h0] and

z ∈ CI,hβ = {z ∈ C : Re z ∈ I, Im z > hβ}

the operator (Hh − z) : H2(Rn) → L2(Rn) has a bounded inverse on L2(Rn)

and ∥∥(Hh − z)−1
∥∥

L(L2(Rn))
6
c

h
.

Theorem 1.1 is obvious when Hh is self-adjoint or at least dissipative. We
can take c = β−1 in these cases. The statement remains easy in the non-
dissipative setting when β > ‖V2‖∞ (see (3.3)), and the point of the theorem is
to prove it for any β > 0. Notice that we can deduce an estimate of size O(h−3)

for (Hh − z)−1 as an operator in L(L2(Rn), H2(Rn)).
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In a second step we study the resolvent up to the real axis, generalizing (1.2).
Now V2 has to be of short range, which means that there exist ρ > 0 and
constants cα > 0 for α ∈ N such that

(1.8) ∀α ∈ Nn,∀x ∈ Rn, |∂αV2(x)| 6 cα 〈x〉−1−ρ−|α|
.

Theorem 1.2. — Assume that V2 is of short range. Let E > 0 satisfy the
damping assumption (1.7) and δ > 1

2 . Then there exist a neighborhood I of E,
h0 > 0 and c > 0 such that for h ∈]0, h0] and

z ∈ CI,+ = {z ∈ C : Re z ∈ I, Im z > 0}

the operator (Hh − z) has a bounded inverse on L2(Rn) and∥∥∥〈x〉−δ (Hh − z)−1 〈x〉−δ
∥∥∥

L(L2(Rn))
6
c

h
.

The proof of this theorem is inspired from [17]. In particular we use a
bounded escape function at infinity to prove that the semiclassical measure
we study is non-zero. But contrary to the selfadjoint case (this could also be
done in the dissipative case) we cannot use this escape function to prove that
this measure is supported in a compact subset of R2n. We use instead the es-
timate for the outgoing solution of the Helmholtz equation in the incoming
region proved in [24].

As in the dissipative case we have only given a result on the upper half-plane.
Here we have no assumption about the sign of V2, but there still is a damping
condition in (1.7). The difference with the dissipative context is that we recover
a symmetric situation under the stronger non-trapping condition (1.5), so that
the result we have proved for Im z > 0 now holds when Im z < 0:

Corollary 1.3. — Assume that V2 is of short range. Let E > 0 be a non-
trapping energy and δ > 1

2 . Then there exist a neighborhood I of E, h0 > 0 and
c > 0 such that for h ∈]0, h0], Re z ∈ I and Im z 6= 0 the operator (Hh− z) has
a bounded inverse on L2(Rn) and∥∥∥〈x〉−δ (Hh − z)−1 〈x〉−δ

∥∥∥
L(L2(Rn))

6
c

h
.

Once we have the uniform resolvent estimates, we can prove the limiting
absorption principle. This question has been studied for a long range self-
adjoint Schrödinger operator in [15] and [29]. It is proved that the equation
(H − E)u = f has a unique outgoing solution u ∈ H2

loc(Rn) ∩ L2,−δ(Rn) when
f ∈ L2,δ(Rn), and this solution is given by the limit in L2,−δ(Rn) of (H−z)−1f

when z ∈ C+ goes to E (we do not work in the semiclassical limit here, so we
only consider the case h = 1). Here we denote by L2,δ(Rn) the weighted space
L2
(
〈x〉2δ dx

)
. An outgoing solution is a solution which satisfies a radiation con-

dition of Sommerfeld type at infinity (see Definition 6.2). The strategy is to
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596 J. ROYER

prove first uniqueness of an outgoing solution. This is used to prove resolvent
estimates, and then we can get the limiting absorption principle.

The result has been extended to the non-selfadjoint case in [28]. Y. Saito
proves that when the potential has a short range imaginary part, the result
can be extended where we have uniqueness of the outgoing solution, which no
longer holds for any E > 0.

Here we use the fact that we already have uniform resolvent estimates to
obtain uniqueness of the outgoing solution and then the limiting absorption
principle. With Theorem 1.2 we obtain the following result:

Theorem 1.4. — Let V2, E and δ be as in Theorem 1.2. Then there exist
a neighborhood I of E and h0 > 0 such that for any h ∈]0, h0], λ ∈ I and
f ∈ L2,δ(Rn) the limit

lim
z→λ
z∈CI,+

(Hh − z)−1f

exists in L2,−δ(Rn) and defines the unique outgoing solution for the equation
(Hh − λ)u = f (see Definition 6.2).

Note that when the dissipative part V2 is non-negative we can prove directly
uniqueness of the outgoing solution and hence we can proceed as in the self-
adjoint case, and V2 can be of long range in this case (see Proposition 6.9).

Now that the outgoing solution

uh = (Hh − (E + i0))−1fh

is well-defined in L2,−δ(Rn) for any h ∈]0, h0] (h0 > 0 being given by Theo-
rem 1.4) and fh ∈ L2,δ(Rn), we can study its semiclassical measures when the
source term fh concentrates on a submanifold of Rn. We recall that a measure µ
on the phase space T ∗Rn ' R2n is said to be a semiclassical measure for the
family (uh)h∈]0,h0] if there exists a sequence (hm)m∈N ∈]0, h0]N such that

hm −−−−→
m→∞

0 and ∀q ∈ C∞0 (R2n),
〈
Opwhmuhm , uhm

〉
−−−−→
m→∞

∫
R2n

q dµ.

Here Opwh (q) denotes the Weyl h-quantization of the symbol q:

Opwh (q)u(x) =
1

(2πh)n

∫
Rn

∫
Rn
e
i
h 〈x−y,ξ〉q

(x+ y

2
, ξ
)
u(y) dy dξ.

We will also use the standard quantization:

Oph(q)u(x) =
1

(2πh)n

∫
Rn

∫
Rn
e
i
h 〈x−y,ξ〉q(x, ξ)u(y) dy dξ.

The first paper about this problem is [2], where fh is assumed to concentrate
on Γ = {0} as h goes to 0 (see also [7]). This was extended in [9, 33] to the
case where fh concentrates on an affine subspace Γ in Rn. J.-F. Bony gave
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UNIFORM RESOLVENT ESTIMATES 597

in [3] another proof for the case Γ = {0} using different assumptions and
above all a different approach. We used this point of view in [27] to deal with
the case where the absorption index is non-constant and Γ is any bounded
submanifold of dimension d ∈ [[0, n−1]] in Rn. Trapped trajectories of energy E
for the classical flow were allowed under assumption (1.6). Our purpose here
is to check that this result still holds –under Hypothesis (1.7)– when V2 takes
negative values. The proof is actually approximately the same. We will have
to prove the estimates in the incoming region in this non-dissipative setting
(see Theorem 4.1) and be careful with the fact that the semi-group generated
by Hh is no longer a contraction semi-group.

Throughout this paper we denote by C∞0 (Rn) the set of smooth and com-
pactly supported functions on Rn, C∞b (Rn) is the set of smooth functions whose
derivatives are bounded and S(Rn) is the Schwartz space of rapidly decaying
functions. For δ ∈ R, we denote by S

(
〈x〉δ

)
the set of symbols a ∈ C∞(R2n)

such that

∀α, β ∈ Nn,∃cα,β > 0,∀(x, ξ) ∈ R2n,
∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ 6 cα,β 〈x〉δ .

We also denote by Sδ(R2n) the set of symbols a ∈ C∞(R2n) such that

∀α, β ∈ Nn,∃cα,β > 0,∀(x, ξ) ∈ R2n,
∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ 6 cα,β 〈x〉δ−|α| .

For R > 0 we denote by BR the open ball of radius R in Rn, by BcR its com-
plement in Rn, and by SR the sphere of radius R, endowed with the Lebesgue
measure. We also set Bx(R) = {(x, ξ) : |x| < R} ⊂ R2n.

In Section 2 we recall some properties of the flow φt defined by (1.4) and
discuss assumption (1.7). Section 3 is devoted to the proof of Theorem 1.1.
Before giving a proof of Theorem 1.2 in Section 5, we state a non-dissipative
version for the estimate in the incoming region of the outgoing solution for the
Helmholtz equation (see Section 4). With the uniform resolvent estimates, we
prove the limiting absorption principle in Section 6. We finally show in Section 7
that the result known about the semiclassical measure for the outgoing solution
of (1.1) when the source term concentrates on a bounded submanifold of Rn
remains valid in our non-dissipative setting.

2. More about classical dynamics and the weak damping assumption

The good properties of the flow at infinity come from the fact that for any
ν > 0 there exists R > 0 such that

(2.1) ∀x ∈ Rn, |x| > R =⇒ |V1(x)|+ |x| |∇V1(x)| < ν.

This implies that far from the origin the refraction index has low influence on
the flow and hence classical trajectories behave as in the free case.
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598 J. ROYER

In particular for J = [E1, E2] ⊂ R∗+ and R so large that (2.1) holds for
some ν ∈

]
0, 2E1

3

[
, we have ∂2

t |X(t, w)|2 > 8E1 − 12ν > 0 if p(w) ∈ J and
|X(t, w)| > R. As a consequence a classical trajectory of energy E ∈ J which
leaves Bx( R) cannot come back and goes to infinity. This implies that

p−1(J) = Ω+
b (J) t Ω+

∞(J) = Ω−b (J) t Ω−∞(J) = Ωb(J) ∪ Ω+
∞(J) ∪ Ω−∞(J).

Moreover Ω±b (J) is closed in R2n and Ωb(J) ⊂ Bx( R) is compact. If B± is a
bounded subset of Ω±b (J), we choose R such that (2.1) holds for ν = E1

3 and
B± ⊂ Bx( R) to prove that the set{

φ±t(w), t > 0, w ∈ B±
}

is bounded in R2n.
For R > 0, d > 0 and σ ∈ [−1, 1] we denote by

Z±(R, d, σ) =
{

(x, ξ) ∈ R2n : |x| > R, |ξ| > d and ± 〈x, ξ〉 > ±σ |x| |ξ|
}

the incoming and outgoing regions. The proposition we prove now ensures that
a trajectory starting outside some incoming region and far enough from the
origin stays away from the influence of V1 and hence has a “nice” behavior:

Proposition 2.1. — Let E2 > E1 > 0, J ⊂ [E1, E2] and σ ∈ [0, 1[ be such
that σ2E2 < E1. Then there exist R > 0 and c0 > 0 such that

∀t > 0,∀(x, ξ) ∈ Z±( R, 0,∓σ) ∩ p−1(J), |X(±t, x, ξ)| > c0(t+ |x|).

Proof. — Let R̃ be such that (2.1) holds for ν ∈
]
0, 2E1

3

[
so small that

ν̃ := 1− σ2 E2 + ν

E1 − 3
2ν

> 0.

Let R be greater than R̃/
√
ν̃ and (x, ξ) ∈ Z±( R, 0,∓σ) ∩ p−1(J). Suppose

there exists t > 0 such that |X(±t, x, ξ)| < R̃ and let

t0 = inf
¶
t > 0, |X(±t, x, ξ)| < R̃

©
.

Let E3 = E1− 3
2ν > 0. For t ∈ [0, t0] we have ∂2

t |X(±t, x, ξ)|2 > 8E3 and hence

|X(±t, x, ξ)|2 > |x|2 − 4tσ |x| |ξ|+ 4E3t
2 > |x|2

Ç
1− σ2 |ξ|2

E3

å
> |x|2 ν̃ > R̃

2
.

This gives a contradiction when t = t0, and proves that these inequalities
actually hold for all t > 0. We also have

∀t > 2σ |x| |ξ|E3, |X(±t, x, ξ)|2 − |x|2 − 2E3t
2 > 2t(E3t− 2σ |x| |ξ|) > 0,

which concludes the proof.
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We now discuss assumption (1.7). We still denote by V2 the function
(x, ξ) 7→ V2(x) on R2n. We first remark that since (x, ξ) and (x,−ξ) are
simultaneously in Ωb({E}), Assumption (1.7) could be equivalently formulated
looking at trajectories in the past:

(2.2) (1.7) ⇐⇒ ∀w ∈ Ωb({E}),∃T ∈ R, V2

(
X(−T,w)

)
> 0.

Using compactness of Ωb([E/2, 2E]), we can also check that assumption (1.7)
is an open property:

Proposition 2.2. — If assumption (1.7) holds for some E > 0, then it also
holds for any λ in some neighborhood of E.

We now prove that assumption (1.7) ensures that the absorption is positive
on trapped trajectories “on average” in time, as mentioned in introduction.

Proposition 2.3. — Let J ⊂ R∗+ be such that assumption (1.7) holds for any
λ ∈ J . Then for all compact K ⊂ Ω±b (J) there exist c0 > 0 and C > 0 such
that

∀t > 0,∀w ∈ K,
∫ t

0

(V2 ◦ φ±s)(w) ds > c0t− C.

Remark 2.4. — This proposition implies that

∀w ∈ Ω±b (J), lim inf
t→+∞

1

t

∫ t

0

(V2 ◦ φ±s)(w) ds > 0.

The claim that the average in time of the absorption is positive on trapped
trajectories becomes clear on periodic trajectories. If w ∈ p−1(J) and T > 0

are such that φT (w) = w, then∫ T

0

(V2 ◦ φt)(w) dt > 0.

To prove this we only have to apply (1.7) to w0 = φt0(w) ∈ Ωb({E}), where
t0 ∈ [0, T ] is the time for which t 7→

∫ t
0
V2(X(s, w)) ds reaches its maximum.

Proof of Proposition 2.3. — 1. Since K is compact we can assume without loss
of generality that J is a compact subset of R∗+. Let w ∈ Ωb(J). By assumption
there exist T, γ > 0 such that∫ T

0

(V2 ◦ φ±s)(w) ds > 2γ.

Since the left-hand side is a continuous function of w, we can find a neighbor-
hood V w of w in R2n such that for all v ∈ V w we have∫ T

0

(V2 ◦ φ±s)(v) ds > γ.
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As Ωb(J) is compact, it is covered by a finite number of such sets V w. Hence
we can find T1, γ1 > 0 such that

∀w ∈ Ωb(J),∃t ∈ [0, T1],

∫ t

0

(V2 ◦ φ±s)(w) ds > γ1.

2. Let ν = 2+T1m−
γ1

and T2 = T1 (1 + ν), where m− := − infRn V2. Let w ∈ Ωb(J).
We set t0 = 0 and for all k ∈ N we consider by induction tk+1 ∈]tk, tk + T1]

such that ∫ tk+1

tk

(V2 ◦ φ±s)(w) ds > γ1.

We necessarily have tk+1 > tk + γ1/ ‖V2‖∞ for all k ∈ N, and hence tk → +∞
(if V2 = 0 the statement of the proposition is empty). In particular any t > 0

belongs to ]tk, tk + T1] for some k ∈ N. Let t > T2 and N ∈ N such that
t ∈]tN , tN + T1]. We have N > ν and hence∫ t

0

(V2 ◦ φ±s)(w) ds >
N−1∑
k=0

∫ tk+1

tk

(V2 ◦ φ±s)(w) ds+

∫ t

tN

(V2 ◦ φ±s)(w) ds

> νγ1 − T1m−.

This proves that

∀w ∈ Ωb(J),∀t > T2,

∫ t

0

(V2 ◦ φ±s)(w) ds > 2.

3. By continuity, there exists a neighborhood U of Ωb(J) such that

∀w ∈ U,
∫ T2

0

(V2 ◦ φ±s)(w) ds > 1.

4. Now let K be a compact subset of Ω±b (J). We prove by contradiction that
there exists TK > 0 such that φ±t(w) ∈ U for all w ∈ K and t > TK . If it is
not the case we can find sequences (tm)m∈N and (wm)m∈N with wm ∈ K and
tm → +∞ such that φ±tm(wm) /∈ U. Each term of the sequence (φ±tm(w))m∈N
belongs to the bounded set

⋃
t>0 φ

±t(K), so after extracting a subsequence if
necessary, we can assume that it converges to

w∞ ∈ Ω±b (J) \ U ⊂ Ω∓∞(R).

Let R be such that (2.1) holds for ν = (inf J)/3 > 0 and K ∪ {w∞} ⊂ Bx( R).
There exists T∞ > 0 such that |X(∓T∞, w∞)| > 2 R. By continuity and
properties of R, we can find a neighborhood V ⊂ Bx( R) of w∞ such that
|X(∓t, v)| > 2 R for all v ∈ V and t > T∞. Hence for large m we have
φ∓tm( V ) ∩ K = ∅, and in particular φ±tm(wm) /∈ V . This gives a contra-
diction.
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5. Let w ∈ K, t > TK and N be the integer part of t−TKT2
. We have∫ t

0

(V2 ◦ φ±s)(w) ds

>

∫ TK

0

(V2 ◦ φ±s)(w) ds+
N−1∑
k=0

∫ TK+(k+1)T2

TK+kT2

(V2 ◦ φ±s)(w) ds

+

∫ t

TK+NT2

(V2 ◦ φ±s)(w) ds

> −TKm− +N − T2m−

> −TKm− +
t− TK
T2

− 1− T2m−.

Since this integral is not less than −TKm− when t ∈ [0, TK ], this gives the
result with c0 = 1/T2 and C = 1 + (TK + T2)m− + TK/T2.

We are going to use in Section 7 a more precise result:

Proposition 2.5. — Let R > 0 and J ⊂ R∗+ such that assumption (1.7) holds
for any λ ∈ J . Then for any compact subset K̃ of p−1(J) there exist c0, C > 0

such that

∀t > 0,∀w ∈ K̃,
∫ t

0

(V2 ◦ φ±s)(w) ds > c0t− C or |X(±t, w)| > R.

If K ⊂ Ω±b (J) this comes from Proposition 2.3, and if K ⊂ Ω±∞(J), the
second conclusion holds for t large enough, uniformly in w ∈ K, and the first
conclusion is always true for finite times. The problem therefore comes from
the boundary between Ω±b (J) and Ω±∞(J).

Proof. — As above we may assume that J is compact. Since the conclusion is
stronger if R is taken larger, we may assume that (2.1) holds for ν = (inf J)/3.
Let K = K̃ ∩ Ω±b (J). K is a compact subset of Ω±b (J). We use the nota-
tion introduced in the proof of Proposition 2.3. We know that there exists
TK > 0 such that φ±t(w) ∈ U for all w ∈ K and t > TK . By continuity
of the Hamiltonian flow, there exists a neighborhood V of K in K̃ such that
φ±TK (w) ∈ U for all w ∈ V . We now prove that there exists TR > 0 such that
for all w ∈ V \K ⊂ Ω±∞(J) we can find τw > TK which satisfies:

(2.3) ∀t ∈ [TK , τw], φ±t(w) ∈ U and ∀t > τw + TR, |X(±t, w)| > R.

This means that even if we cannot say when a trajectory coming from V \K
will leave Bx( R), we control the time it can stay in Bx( R)\ U. Assume that we
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cannot find TR such that (2.3) holds. Then there exists a sequence (wm)m∈N
of elements in V \K and times tm > TK , θm > m for m ∈ N such that

φ±tm(wm) /∈ U and |X(±(tm + θm), wm)| 6 R.

After extracting a subsequence if necessary, we may assume that wm converges
to w∞ ∈ K̃. If w∞ ∈ Ω±∞(J) then there exist T∞ > 0 and a neighborhood W
of w∞ such that |X(±t, v)| > R for all t > T∞ and v ∈ W , which is impos-
sible. This means that the limit w∞ actually belongs to K. If the sequence
(tm)m∈N is bounded we can assume, after extraction, that tm → t∞ > TK ,
which cannot be true since we would have φ±tm(wm) → φ±t(w∞) ∈ U and
hence φ±tm(wm) ∈ U for m large enough. Extracting again a subsequence,
we can assume that tm → +∞. Let vm = φ±tm(wm). The sequence (vm)m∈N
is bounded so without loss of generality we can assume that it converges to
some v∞ ∈ p−1(J). Since tm, θm →∞ and the sequences (φ∓tm(vm))m∈N and
(φ±θm(vm))m∈N are bounded, we obtain as before that v∞ ∈ Ωb(J), which gives
a contradiction and hence proves (2.3). The complement K̃ \ V is a compact
subset of Ω±∞(J). Choosing TR larger if necessary, we can assume that

∀w ∈ K̃ \ V ,∀t > TR, |X(±t, w)| > R.

As a consequence, given w ∈ K̃ and t > 0 such that |X(±t, w)| 6 R, we
have φ±s(w) ∈ U for all s ∈ [TK , t − TR] and hence, as we did in the proof of
Proposition 2.3, we obtain∫ t

0

(V2 ◦ φ±s)(w) ds > −m−TK +
t− TK − TR

T2
− 1− T2m− − TRm−

and conclude the proof.

3. Resolvent at distance of order h from the real axis

In this section we give some general properties about the semiclassical mea-
sures we consider and prove Theorem 1.1.

Proposition 3.1. — Assume that V2 ∈ C∞b (Rn). Let (zm)m∈N ∈ CN and
(hm)m∈N ∈]0, 1]N be sequences such that

hm −−−−→
m→∞

0, λm := Re zm −−−−→
m→∞

E > 0 and βm := h−1
m Im zm −−−−→

m→∞
β ∈ R.

Consider δ > 0 and a sequence (vm)m∈N ∈ H2(Rn)N such that

‖vm‖L2,−δ(Rn) = 1, ‖(Hhm − zm)vm‖L2,δ(Rn) = o
m→∞

(hm),

and

(3.1) ∀q ∈ C∞0 (R2n),
〈
Opwhm(q)vm, vm

〉
L2(Rn)

−−−−→
m→∞

∫
R2n

q dµ
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for some (non-negative) measure µ on R2n. Then we have the following two
properties.

(i) If q ∈ S
(
〈x〉−2δ ) is supported outside p−1(J) for some neighborhood J

of E we have 〈
Opwhm(q)vm, vm

〉
L2(Rn)

−−−−→
m→∞

0.

In particular µ is supported on p−1({E}) and for χ ∈ C∞0 (Rn) we have

〈χvm, vm〉L2(Rn) −−−−→m→∞

∫
R2n

χ(x) dµ(x, ξ).

(ii) For q ∈ C∞0 (R2n) and t > 0 we have

(3.2)
∫
R2n

q dµ =

∫
R2n

(q ◦ φt) exp

Ç
−2

∫ t

0

(V2 + β) ◦ φt−s ds
å
dµ.

Proof. — (i) For m large enough (such that λm ∈ J̊) we set:

am(x, ξ) =
q(x, ξ) 〈x〉2δ

p(x, ξ)− zm
.

Since q vanishes on p−1(J), we have am ∈ S
(
〈ξ〉−2 ) uniformly in m. We can

write〈
Opwhm(q)vm, vm

〉
6
∥∥Opwhm(q)vm

∥∥
L2,δ(Rn)

6
∥∥Opwhm(am)(H1

hm − zm)vm
∥∥
L2,−δ(Rn)

+ o
m→∞

(hm)

6
∥∥Opwhm(am)(Hhm − zm)vm

∥∥
L2,−δ(Rn)

+ o
m→∞

(hm)

−−−−→
m→∞

0,

which proves the first assertion. Applied with q ∈ C∞0 (R2n), this proves that µ
is supported on p−1({E}). Now let χ ∈ C∞0 (Rn) and consider χ̃ ∈ C∞0 (Rn)

such that Rn × supp(1− χ̃) does not intersect p−1({E}). Then〈
Opwhm

(
χ(x)(1− χ̃(ξ))

)
vm, vm

〉
−−−−→
m→∞

0,

and hence

lim
m→∞

〈χ(x)vm, vm〉 = lim
m→∞

〈Opwh (χ(x)χ̃(ξ))vm, vm〉 =

∫
R2n

χ(x)χ̃(ξ) dµ(x, ξ)

=

∫
R2n

χ(x) dµ(x, ξ).

(ii) Let q ∈ C∞0 (R2n) and t > 0. For τ ∈ [0, t] and w ∈ R2n we set

q(τ, w) = q
(
φt−τ (w)

)
exp

Ç
−2

∫ t

τ

(V2 + β)
(
φs−τ (w)

)
ds

å
.
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Since
⋃
τ∈[0,t] supp(q ◦φt−τ ) is bounded in R2n we can use differentiation under

the integral sign:
d

dτ

∫
R2n

q(τ) dµ =

∫
R2n

d

dτ
q(τ) dµ =

∫
R2n

(
2(V2 + β)q(τ)− {p, q(τ)}

)
dµ

= lim
m→∞

〈
Opwhm

(
2(V2 + β)q(τ)− {p, q(τ)}

)
vm, vm

〉
= lim
m→∞

≠Å
2(V2 + βm)Opwhm(q(τ))− i

hm

[
H1
hm ,Opwhm(q(τ))

]ã
vm, vm

∑
= lim
m→∞

i

hm

〈(
Opwhm(q(τ))(Hhm − zm)− (Hhm − zm)∗Opwhm(q(τ))

)
vm, vm

〉
= 0.

This gives statement (ii). Here we do not have to worry about decay properties
of vm since we only work with compactly supported symbols.

We now turn to the proof of Theorem 1.1. We first remark that it is easy
when β > m− = − infRn V2 since

Hh − z =
(
Hh − ihm−

)
−
(
z − ihm−

)
and Hh − ihm− is maximal dissipative. This proves that if Im z > hm− the
resolvent (Hh − z)−1 is well-defined and

(3.3)
∥∥(Hh − z)−1

∥∥
L(L2(Rn))

6
1

Im z − hm−
.

As said in introduction we proceed by contradiction to prove the general case.
So we assume that we can find sequences (vm)m∈N ∈ H2(Rn)N, (zm)m∈N ∈ CN

and (hm)m∈N ∈]0, 1]N such that

hm → 0, λm := Re zm → E, βm := h−1
m Im zm > β, ‖vm‖L2(Rn) = 1

and
‖(Hhm − zm)vm‖L2(Rn) = o

m→∞
(hm).

We are going to prove that such a sequence (vm)m∈N cannot exist. First
considering a sequence of eigenvectors, this will prove that for h small enough,
Hh has no eigenvalue with real part close to E and imaginary part larger
than hβ. But the essential spectrum of Hh is R+, so if z ∈ C+ belongs to
the spectrum of Hh it must be an (isolated) eigenvalue. Thus, the resolvent
(Hh − z)−1 is well-defined as a bounded operator from L2(Rn) to H2(Rn)

when h is small enough, Im z > hβ and Re z is close to E. Applying again the
argument now gives the estimate of Theorem 1.1.

Since we already have the result for large β, the sequence (βm)m∈N is nec-
essarily bounded. After extracting a subsequence if necessary, we can assume
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that βm → β̃ > β. Since a bounded sequence in L2(Rn) always has a semiclas-
sical measure (see [5, 34]), we can assume after extracting another subsequence
that (3.1) holds for some nonnegative Radon measure µ on Rn. Our purpose is
now to prove that µ is both zero and non-zero to get a contradiction.

Proposition 3.2. — The measure µ is non-zero.

Proof. — As V2 goes to 0 at infinity, there exists R > 0 such that V2(x) > −β2
for all x ∈ BcR. We have∫

Rn
(V2(x) + βm) |vm(x)|2 dx = −h−1

m Im 〈(Hhm − zm)vm, vm〉L2(Rn) −−−−→m→∞
0

and hence, for χ ∈ C∞0 (Rn, [0, 1]) equal to 1 on BR,

β

2
=
β

2

∫
Rn

(1− χ(x)) |vm(x)|2 dx+
β

2

∫
Rn
χ(x) |vm(x)|2 dx

6

∫
Rn

(V2(x) + βm)(1− χ(x)) |vm(x)|2 dx+
β

2

∫
Rn
χ(x) |vm(x)|2 dx

6

∫
Rn

Å
β

2
− V2(x)− βm

ã
χ(x) |vm(x)|2 dx+ o

m→+∞
(1)

6
Å
β

2
+m−

ã ∫
Rn
χ(x) |vm(x)|2 dx+ o

m→+∞
(1).

This proves that∫
R2n

χ(x) dµ(x, ξ) = lim
m→∞

∫
Rn
χ(x) |vm(x)|2 dx 6= 0.

We now prove that µ is actually zero. Note that by Proposition 3.1 we
already know that µ is supported on p−1({E}).

Proposition 3.3. — The total measure of µ is finite.

Proof. — Let q ∈ C∞0 (R2n, [0, 1]). We have

‖Opwh (q)‖ L(L2(Rn)) 6 C ‖q‖L∞(R2n) + O
m→∞

(√
hm
)

where C only depends on the dimension n (see for instance Theorem 5.1 in [34]),
and hence:∫

R2n

q dµ = lim
m→∞

〈
Opwhm(q)vm, vm

〉
6 lim sup

m→∞
C ‖q‖L∞(R2n) ‖vm‖

2
L2(Rn) 6 C.

Considering qk equal to 1 on the ball BR2n(k) of radius k ∈ N in R2n proves
that µ(BR2n(k)) 6 C for all k ∈ N.

Proposition 3.4. — µ = 0 on Ω−∞({E}).
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Proof. — Let q ∈ C∞0 (R2n, [0, 1]) supported in Ω−∞(R∗+). There exists T > 0

such that for w ∈ supp q and s > T we have V2(X(−s, w)) + β > β
2 . Put

C = sup
supp q

exp

Ç
−2

∫ T

0

(V2 + β) ◦ φ−s ds
å
.

According to (3.2) and Proposition 3.3, we have for all t > T :

0 6

∫
R2n

q dµ =

∫
R2n

(q ◦ φt) exp

Ç
−2

∫ t

0

(V2 + β) ◦ φt−s ds
å
dµ

6 µ(R2n) sup
supp q

exp

Ç
−2

∫ t

0

(V2 + β) ◦ φ−s ds
å

6 Cµ(R2n) exp (−(t− T )β)

−−−−→
t→+∞

0.

This implies that the integral of q is zero and proves the proposition.

Proposition 3.5. — µ = 0 on Ω−b ({E}) and hence on R2n.

Proof. — We follow the idea of the previous proof, now using the absorption
assumption on trapped trajectories. Let q ∈ C∞0 (R2n, [0, 1]). Since µ is sup-
ported on Ω−b ({E}) we have for all t > 0:

0 6

∫
R2n

q dµ =

∫
R2n

(q ◦ φt) exp

Ç
−2

∫ t

0

(V2 + β) ◦ φt−s ds
å
dµ

6 µ(R2n) sup
Ω−
b

({E})∩supp q

exp

Ç
−2

∫ t

0

(V2 + β) ◦ φ−s ds
å
.

Now using Proposition 2.3, we can conclude that the integral of q is zero.

Propositions 3.2 and 3.5 give the contradiction which proves Theorem 1.1.
We remark that assumption (1.7) is stronger than necessary to prove Proposi-
tion 3.5, since we did not use the fact that Im zm is allways greater that β. We
can actually prove the following result:

Corollary 3.6. — Let E > 0 and β > 0 such that

∀w ∈ Ωb({E}),∃T > 0,

∫ T

0

(
V2(X(−s, w)) + β

)
ds > 0.

Then there exist a neighborhood I of E, h0 > 0 and c > 0 such that for h ∈]0, h0]

the operator Hh has no eigenvalue in CI,hβ and

∀z ∈ CI,hβ ,
∥∥(Hh − z)−1

∥∥
L(L2(Rn))

6
c

h
.
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As explained before Corollary 1.3, we obtain results on the lower half-plane
under the more “symmetric” non-trapping condition:

Corollary 3.7. — Let E > 0 be a non-trapping energy (see (1.5)) and
β > 0. Then there exist a neighborhood I of E, h0 > 0 and c > 0 such that
for h ∈]0, h0], Re z ∈ I and |Im z| > hβ the operator (Hh − z) has a bounded
inverse on L2(Rn) and ∥∥(Hh − z)−1

∥∥
L(L2(Rn))

6
c

h
.

Proof. — We only have to apply Theorem 1.1 to Hh and its adjoint H∗h.

4. Estimate in the incoming region

In this section we prove an estimate for the outgoing solution of the
Helmholtz equation in the incoming region.

Theorem 4.1. — Assume that V2 is of short range (see (1.8)). Let I ⊂ R,
h0 > 0, δ > 1

2 , c > 0, k ∈ N and suppose that for h ∈ ]0, h0] and z ∈ CI,+ the
resolvent (Hh − z)−1 is well-defined and∥∥∥〈x〉−δ (Hh − z)−1 〈x〉−δ

∥∥∥
L(L2(Rn))

6
c

hk
.

Let R1 > 0, d > d1 > 0 and σ, σ1 ∈]− 1, 1[ such that σ1 < σ. Then there exists
R > R1 such that for z ∈ CI,+, ω ∈ S0(R2n) supported outside Z−(R1, d1,−σ1)

and ω− ∈ S0(R2n) supported in Z−(R, d,−σ) we have∥∥∥〈x〉−δ Oph(ω−)(Hh − z)−1Oph(ω) 〈x〉−δ
∥∥∥

L(L2(Rn))
= O
h→0

(h∞),

and the size of the rest is uniform in z ∈ CI,+. If the limiting absorption
principle holds in L(L2,δ(Rn), L2,−δ(Rn)) for λ ∈ I and h > 0 small enough,
then the estimate remains true for (Hh − (λ + i0))−1, λ ∈ I. Moreover if
suppω ⊂ Bx(r) for some r > 0, then the weight 〈x〉−δ can be replaced on both
sides by 〈x〉β for any β ∈ R.

Remark 4.2. — We are going to use this result for a small perturbation of a
dissipative Schrödinger operator in order to prove Theorem 1.2 (see Proposi-
tion 5.3). Then, once Theorem 1.2 is proved, we can use Theorem 4.1 for the full
non-dissipative Schrödinger operator Hh we are interested in (see Section 7).
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The result being stronger in this case, we can assume without loss of general-
ity that d1 is non-zero. The proof of this theorem follows that of the dissipative
analog given in [27]. We recall the sketch of the proof for the reader convenience
and refer to [24, 32, 27, 25] for more details.

Let d0 ∈]0, d1[ and σ0 ∈]−1, σ1[. There exist R0 > 0 and φ ∈ C∞(R2n) such
that

(4.1) ∀(x, ξ) ∈ Z−(R0, d0,−σ0), |∇xφ(x, ξ)|2 + V1(x) = |ξ|2

and, for some ρ > 0:

∀(x, ξ) ∈ R2n,∀α, β ∈ Nn,
∣∣∣∂αx ∂βξ (φ(x, ξ)− 〈x, ξ〉

)∣∣∣ 6 cα,β 〈x〉1−ρ−|α|

(see [16]). As explained in [32], we can assume that the constants cα,β > 0

for α, β ∈ Nn are as small as we wish as long as we replace φ by

(4.2) (x, ξ) 7→
(
φ(x, ξ)− 〈x, ξ〉

)
χ
( x
R

)
+ 〈x, ξ〉

for R > 2R0 large enough and χ ∈ C∞(Rn) such that χ(x) = 0 for |x| 6 1/4

and χ(x) = 1 for |x| > 1/2. In this case (4.1) remains valid on Z−(R/2, d0,−σ0).
For all (x, ξ) ∈ R2n we denote by t 7→ r(t, x, ξ) ∈ Rn the solution of the

problem {
∂tr(t, x, ξ) = ∇xφ

(
r(t, x, ξ), ξ

)
,

r(0, x, ξ) = x.

We can check that this defines a smooth function on R×R2n. If R was chosen
large enough in (4.2), then for (x, ξ) ∈ Z−(0, d1,−σ1) and t > 0 we have

|r(−t, x, ξ)| > c0(t+ |x|),

for some c0 > 0. Moreover for α, β ∈ Nn with |α|+ |β| > 1 there exists cα,β > 0

such that ∣∣∣∂αx ∂βξ r(−t, x, ξ)∣∣∣ 6 cα,β(t+ 〈x〉) 〈x〉−|α| .

For t > 0 and (x, ξ) ∈ Z−(0, d1,−σ1) we now set

F (t, x, ξ) = ∆xφ(r(t, x, ξ), ξ)− V2(r(t, x, ξ))

and define on Z−(0, d1,−σ1) the symbols

a0(x, ξ) = exp

Å
−
∫ ∞

0

F (−2s, x, ξ) ds

ã
and, for j > 1:

aj(x, ξ) = i

∫ +∞

0

∆xaj−1

(
r(−2τ, x, ξ), ξ

)
exp

Å
−
∫ τ

0

F (−2s, x, ξ) ds

ã
dτ.

These functions are solutions of the transport equations

2∇xa0 · ∇xφ+ a0∆xφ− a0V2 = 0
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and, for j > 1:

2∇xaj · ∇xφ+ aj∆xφ− ajV2 − i∆xaj−1 = 0.

Moreover aj decays as a function of S−j(R2n) and there exists c0 > 0 such that

∀(x, ξ) ∈ Z−(0, d1,−σ1), |a0(x, ξ)| > c0.

Note that V2 has to be of short range here but the sign does not matter.
Since we work on Z−(0, d1,−σ1), we now introduce a cut-off function as fol-

lows. We choose R2 and R3 such that max(R1, R/2) < R2 < R3 < R, d2 and d3

such that d1 < d2 < d3 < d and finally σ2 and σ3 such that σ1 < σ2 < σ3 < σ.
Then we consider χ1, χ2, χ3 ∈ C∞(R, [0, 1]) such that χ1(s) = 0 for s 6 R2,
χ1(s) = 1 for s > R3, χ2(s) = 0 for s 6 d2, χ2(s) = 1 for s > d3, χ3(s) = 0

for s 6 σ2 and χ3(s) = 1 for s > σ3. We fix N ∈ N. Let us define

a(h) =
N∑
j=0

hjaj and b(x, ξ, h) = χ1(|x|)χ2(|ξ|)χ3

Å
− x · ξ
|x| |ξ|

ã
a(x, ξ, h).

We also consider

p(h) =
i

h

(
|∇xφ|2 + V1 − |ξ|2

)
b(h) +

(
2∇xb(h) · ∇xφ+ b(h)∆xφ− b(h)V2

)
− ih∆xb(h).

The symbols b(h) and p(h) are supported in Z−(R2, d2,−σ2) and for α, β ∈ Nn
there exists a constant cα,β > 0 such that for h ∈]0, 1] we have

∀(x, ξ) ∈ Z−(R2, d2,−σ2),
∣∣∣∂αx ∂βξ b(x, ξ, h)

∣∣∣+
∣∣∣∂αx ∂βξ p(x, ξ, h)

∣∣∣ 6 cα,β 〈x〉−|α|

and

∀(x, ξ) ∈ Z−(R3, d3,−σ3),
∣∣∣∂αx ∂βξ p(x, ξ, h)

∣∣∣ 6 cα,β h
N+1 〈x〉−2−N−|α|

.

If R is chosen large enough, R5 ∈]R3, R[, d5 ∈]d3, d[ and σ5 ∈]σ3, σ[, then
we can construct (see [32, Lemma 4.5]) a symbol e(h) =

∑N
j=0 h

jej such that
ej ∈ S−j(R2n) is supported in Z−(R5, d5,−σ5) for all j ∈ [[0, N ]] and

Ih(e(h), φ)Ih(b(h), φ)∗ = Oph(ω−) + hN+1Oph(r(h)),

where r(h) ∈ S−N (R2n) uniformly in h ∈]0, 1] and for u ∈ S(Rn) we have set

Ih(b, φ)u(x) =
1

(2πh)n

∫
Rn

∫
Rn
e
i
h (φ(x,ξ)−〈y,ξ〉)b(x, ξ)u(y) dξ dy.

For any t > 0 we have

Ih(b(h), φ)∗Uh(t) = Uh0 (t)Ih(b(h), φ)∗ −
∫ t

0

Uh0 (s)Ih(p, φ)∗Uh(t− s) ds,
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and hence

Oph(ω−)Uh(t) = −hN+1Oph(r(h))Uh(t) + Ih(e(h), φ)Uh0 (t)Ih(b(h), φ)∗

−
∫ t

0

Ih(e(h), φ)Uh0 (s)Ih(p(h), φ)Uh(t− s) ds.

Contrary to the dissipative case, we cannot write

(Hh − z)−1 =
i

h

∫ ∞
0

e−
it
h (Hh−z)dt =

i

h

∫ ∞
0

e
it
h zUh(t) dt

for any z ∈ C+, but this is at least possible when Im z > h ‖V2‖∞. For such
a z, we obtain from the previous equality:

〈x〉−δ Oph(ω−)(Hh − z)−1Oph(ω) 〈x〉−δ

= −hN+1 〈x〉−δ Oph(r(h))(Hh − z)−1Oph(ω) 〈x〉−δ

+
i

h
〈x〉−δ

∫ ∞
0

e
it
h zIh(e(h), φ)Uh0 (t)Ih(b(h), φ)∗Oph(ω) 〈x〉−δ dt

−〈x〉−δ
∫ ∞

0

e
is
h zIh(e(h), φ)Uh0 (s)Ih(p(h), φ)∗(Hh − z)−1Oph(ω) 〈x〉−δ ds.

This equality is proved for Im z > ‖V2‖∞ but the two integrands decay with
time uniformly in z ∈ CI,+. Each term is holomorphic on CI,+, so for
any h ∈]0, h0] this equality remains valid on CI,+ by unique continuation.
Then it only remains to chose N large enough and estimate each term of the
right-hand side to conclude (we use the assumption on resolvent estimates
here). This can be done as in the dissipative case, using Propositions 3.2 and
3.5 of [32].

5. Uniform resolvent estimates

We now prove the uniform resolvent estimates for the non-dissipative
Schrödinger operator up to the real axis. In order to use Theorem 4.1 we
assume that V2 is of short range. But we expect Theorem 1.2 to be true under
a weaker assumption on V2, so we are going to give the other arguments only
assuming that V2 ∈ C∞(Rn) is of long range with a short range negative part:
there exist ρ > 0, C > 0 and constants cα for α ∈ Rn such that for all x ∈ Rn
we have

(5.1) V2(x) > −C 〈x〉−1−ρ and ∀α ∈ Nn, |∂αV2(x)| 6 cα 〈x〉−|α|−ρ .

As for Theorem 1.1, we proceed by contradiction. We suppose that Theo-
rem 1.2 is wrong and consider sequences (vm)m∈N ∈ H2(Rn)N, (zm)m∈N ∈ CN
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and (hm)m∈N ∈]0, 1]N such that if we set λm = Re zm and βm = h−1
m Im zm

then for some δ ∈
]

1
2 ,

1+ρ
2

[
we have

hm → 0, λm → E, 0 < βm → 0, ‖vm‖L2,−δ(Rn) = 1

and

‖(Hhm − zm)vm‖L2,δ(Rn) = o
m→∞

(hm).

We remark that vm is assumed to be in H2(Rn) for all m ∈ N, but is only
uniformly bounded in L2,−δ(Rn).

As for Theorem 1.1, we show that such a sequence (vm)m∈N cannot exist,
which proves first that for h small enough, Hh has no eigenvalue with real part
close to E and positive imaginary part, and then the estimate of Theorem 1.2.

If there exists a subsequence (mk)k∈N such that βmk > β > 0 for all k ∈ N,
then we obtain a contradiction with Theorem 1.1. Therefore we can assume
that

βm −−−−→
m→∞

0.

After extracting a subsequence if necessary, we can assume that (3.1) holds for
some non-negative Radon measure µ. We already know that µ is supported
in p−1({E}). In order to get a contradiction, we prove that µ = 0 and µ 6= 0.

LetW2 = V2+2C 〈x〉−1−ρ > C 〈x〉−1−ρ, the constant C being given by (5.1).
We first prove that µ 6= 0. The proof relies on the existence of an escape function
in the sense of [17]:

Proposition 5.1. — Let E > 0. There exist f ∈ C∞b (R2n,R), χ ∈ C∞0 (Rn, [0, 1])
and χ̃ ∈ C∞0 (R, [0, 1]) equal to 1 in a neighborhood of E such that

∀(x, ξ) ∈ R2n, {p, f}(x, ξ) = (1− χ(x))χ̃(p(x, ξ)) 〈x〉−2δ
.

The proof of this proposition is postponed to Appendix A.

Proposition 5.2. — The measure µ is non-zero.

Proof. — 1. Let θ ∈ C∞0 (Rn, [0, 1]) be supported in B2 and equal to 1 on B1.
For R > 0 we set θR(x) = θ

(
x
R

)
. If there exists R > 0 such that

(5.2)
∫
R2n

θR(x) 〈x〉−1−ρ
dµ(x, ξ) 6= 0,
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then the proposition is proved. Otherwise, according to Proposition 3.1, we
have for any R > 0

lim sup
m→∞

∣∣∣∣¨〈x〉−1−ρ
vm, vm

∂
L2(Rn)

∣∣∣∣
6 lim sup

m→∞

∣∣∣∣¨θR 〈x〉−1−ρ
vm, vm

∂
L2(Rn)

∣∣∣∣
+ lim sup

m→∞

∣∣∣∣¨(1− θR) 〈x〉−1−ρ
vm, vm

∂
L2(Rn)

∣∣∣∣
6
∥∥∥〈x〉2δ−1−ρ

(1− θR)
∥∥∥
L∞(Rn)

6 〈R〉2δ−1−ρ
.

This proves that

(5.3)
¨
〈x〉−1−ρ

vm, vm
∂
L2(Rn)

−−−−−→
m→+∞

0,

and hence:

βm ‖vm‖2L2(Rn) +
∥∥∥√W2vm

∥∥∥2

L2(Rn)
(5.4)

= −h−1
m Im 〈(Hhm − zm)vm, vm〉L2(Rn)

+ 2C
¨
〈x〉−1−ρ

vm, vm
∂
L2(Rn)

−−−−−→
m→+∞

0.

Since both terms of the left-hand side are non-negative, this means that each
goes to 0 as m goes to +∞. Moreover

√
W2 is smooth and all its derivatives of

order at least 1 belong to S
(
〈x〉−δ

)
, so for any f ∈ C∞b (R2n) we have

(5.5)∥∥∥√W2Opwh (f)vm

∥∥∥
L2(Rn)

=
∥∥∥Opwh (f)

√
W2vm

∥∥∥
L2(Rn)

+ O
m→∞

(hm) −−−−→
m→∞

0.

2. Let χ ∈ C∞0 (Rn, [0, 1]), χ̃ ∈ C∞0 (R, [0, 1]) and f ∈ C∞b (R2n,R) be given by
Proposition 5.1. For m ∈ N we have:

1 =
¨
〈x〉−2δ

vm, vm
∂

=
¨
〈x〉−2δ

χ(x)vm, vm
∂

+
¨
Opwhm

(
〈x〉−2δ

(1− χ(x))((1− χ̃) ◦ p)
)
vm, vm

∂
+
¨
Opwhm

(
〈x〉−2δ

(1− χ(x))(χ̃ ◦ p)
)
vm, vm

∂
.

According to Proposition 3.1, the second term goes to 0 as m goes to +∞. We
now show that this also holds for the third term in order to prove that∫

R2n

〈x〉−2δ
χ(x) dµ(x, ξ) = lim

m→∞

¨
〈x〉−2δ

χ(x)vm, vm
∂

= 1 6= 0.

3. We have
i

hm
[H1

hm ,Opwhm(f)] = Opwhm({p, f}) + h2
mOpwhm(r3(hm)),
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where r3(h) ∈ S
(
〈x〉−1−ρ ) uniformly in h ∈]0, 1], and hence¨

Opwh
(
(1− χ(x)) 〈x〉−2δ

(χ̃ ◦ p)
)
vm, vm

∂
=
〈
Opwhm({p, f})vm, vm

〉
=

i

hm

〈
[Hh

1 ,Opwhm(f)]vm, vm
〉

+ O
m→∞

(h2
m).

Since vm ∈ H2(Rn) for all m ∈ N and according to (5.3)-(5.5) we have¨
Opwh

(
(χ̃ ◦ p)(1− χ(x)) 〈x〉−2δ )

vm, vm
∂(5.6)

=
i

hm

〈(
(Hhm − zm)∗Opwhm(f)−Opwhm(f)(Hhm − zm)

)
vm, vm

〉
+ o
m→∞

(1)

−−−−→
m→∞

0,

which concludes the proof.

Let
H2
h = −h2∆ + V1(x)− ihW2(x).

The Schrödinger operator H2
h is dissipative and its dissipative part is positive

on trapped trajectories of energy E, so there exist a neighborhood I of E,
h0 > 0 and C2 > 0 such that for h ∈]0, h0] and z ∈ CI,+ we have∥∥∥〈x〉−δ (H2

h − z)−1 〈x〉−δ
∥∥∥

L(L2(Rn))
6
C2

h

(see [26]). Since 2δ < 1 + ρ we can write 2C 〈x〉−1−ρ
= W3 + W4 where

W4 ∈ C∞0 (Rn) and

∀x ∈ Rn, 〈x〉2δ |W3(x)| 6 1

2C2
.

Put
H3
h = −h2∆ + V1(x)− ihW2(x) + ihW3(x) = H2

h + ihW3(x).

Let z ∈ CI,+. By a standard perturbation argument, we know that for h ∈]0, h0]

the resolvent (H3
h − z)−1 is well-defined and

(5.7)
∥∥∥〈x〉−δ (H3

h − z)−1 〈x〉−δ
∥∥∥

L(L2(Rn))
6

2C2

h
.

As a result we can apply Theorem 4.1 with H3
h on CI,+ (we recall that V2 has

to be of short range here). We use this result to prove that the semiclassical
measure µ is supported outside Ω−∞({E}):

Proposition 5.3. — µ = 0 on Ω−∞({E}).
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Proof. — Let J ⊂ I∩]E/2, 2E[ be a neighborhood of E. We first check that
µ = 0 in the incoming region Z−(R, 0,−1/2) for some R large enough. Let R1

be such that suppW4 ⊂ BR1
, d ∈]0,

√
E/2[ and σ = 1

2 . Let R be given by Theo-
rem 4.1 applied toH3

h, and finally ω− ∈ C∞0 (R2n) supported in Z−(R, d,−1/2).
For m large enough the operator (H3

hm
− zm) has a bounded inverse, so we can

write

Opwhm(ω−)vm = Opwhm(ω−)(H3
hm − zm)−1(Hhm − zm)vm

− ihmOpwhm(ω−)(H3
hm − zm)−1W4vm.

According to (5.7) and Theorem 4.1 we obtain

∥∥Opwhm(ω−)vm
∥∥
L2,δ(Rn)

(5.8)

=
∥∥∥〈x〉δ Opwh (ω−) 〈x〉δ

∥∥∥∥∥∥〈x〉−δ (H3
hm − zm)−1 〈x〉−δ

∥∥∥ ‖(Hhm − zm)vm‖L2,δ(Rn)

+ hm

∥∥∥〈x〉δ Opwh (ω−)(H3
hm − zm)−1W4 〈x〉δ

∥∥∥ ‖vm‖L2,−δ(Rn)

−−−−→
m→∞

0.

This proves that 〈
Opwhm(ω−)vm, vm

〉
L2(Rn)

−−−−→
m→∞

0,

and hence µ = 0 on Z−(R, d,−1/2). Now let q ∈ C∞0 (R2n) supported in Ω−∞(J).
For t > 0 large enough we have φ−t(supp q) ⊂ Z−(R, d,−1/2). According to
Proposition 3.1 we obtain∫

R2n

q dµ =

∫
R2n

(q ◦ φt) exp

Ç
−2

∫ t

0

V2 ◦ φt−s ds
å
dµ = 0,

which proves that µ = 0 on Ω−∞(J).

When (5.2) holds for some R > 0, then Proposition 5.2 is proved but
not (5.6). So we cannot use it to show that µ is zero at infinity as in the
self-adjoint case (see [17]).

Proposition 5.4. — µ = 0 on Ω−b ({E}).

Proof. — This proposition is proved as Proposition 3.5, even though the total
measure of µ is no longer necessarily finite. Let q ∈ C∞0 (R2n, [0, 1]). We know
that µ is supported in Ω−b ({E}), so according to Proposition 3.1 we can write∫

R2n

q dµ =

∫
R2n

1Ω−
b

({E})(q ◦ φ
t) exp

Ç
−2

∫ t

0

V2 ◦ φt−s ds
å
dµ.
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Since the set ⋃
t>0

φ−t(supp q ∩ Ω−b ({E}))

is bounded, there exists c > 0 such that for all t > 0∫
R2n

q dµ 6 c sup
supp q∩Ω−

b
({E})

exp

Ç
−2

∫ t

0

V2 ◦ φ−s ds
å
.

Then we can conclude with Proposition 2.3.

6. Limiting Absorption Principle

After having proved resolvent estimates on CI,+, we can show the limiting
absorption principle and study existence and uniqueness of an outgoing solution
for (1.1). Before giving more precise statements, we introduce some notation.
Let

C++ = {ζ ∈ C : Re ζ > 0, Im ζ > 0} .
For u ∈ H1(Rn) we set on Rn \ {0}:

∂ru =
x · ∇u
|x|

, Dru = ∂ru+
n− 1

2 |x|
u and ∇⊥u = ∇u− x∂ru

|x|
.

This defines functions in L2(Rn \ V ) for any neighborhood V of 0. We are going
to use the following standard properties of these operators:

Proposition 6.1. — Let u, v ∈ H1(Rn) and assume that u is compactly sup-
ported outside a neighborhood of 0. We have

〈Dru, v〉L2(Rn) = −〈u, Drv〉L2(Rn) ,

and

〈∂ru, ∂rv〉L2(Rn) = 〈Dru, Drv〉L2(Rn) +

Æ
(n− 1)(n− 3)

4 |x|2
u, v

∏
L2(Rn)

.

If moreover u belongs to H2(Rn) we also have

∂r∇⊥u(x) = − 1

|x|
∇⊥u(x) +∇⊥∂ru(x).

In this section we consider a Schrödinger operator

H = −∆ + V1(x)− iV2(x)

with domain D(H) = H2(Rn). V1 and V2 are bounded and real-valued. We
assume that

(6.1) V1 − iV2 = W1 − iW2 +W3,

where:
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(i) W1 and W2 are differentiable,
(ii) for all x ∈ Rn we have W1(x) ∈ R, W2(x) > 0 and W3(x) ∈ C,
(iii) there exist ρ ∈]0, 1] and c > 0 such that for all x ∈ Rn we have
(6.2)
|W1(x)|+W2(x) 6 c 〈x〉−ρ and |∇W1(x)|+ |∇W2(x)|+ |W3(x)| 6 c 〈x〉−1−ρ

.

For x ∈ Bc1 we also set

W̃3(x) = W3(x) +
(n− 1)(n− 3)

4 |x|2
.

Définition 6.2. — Let ζ ∈ C++, f ∈ L2
loc(Rn), and suppose that

u ∈ H2
loc(Rn) is a solution for the equation

(6.3) (H − ζ2)u = f.

Then we say that u is an outgoing solution for (6.3) if there exists δ > 1
2 such

that ( Dr − iζ)u ∈ L2,δ−1(Bc1).

Let δ ∈
]

1
2 ,

1
2 + ρ

4

[
be fixed for all this section, ρ being given by (6.2). Let K

be a compact subset of C++ such that K = K ∩ C+. We set K∗ = K ∩ C+.

Proposition 6.3. — Assume the resolvent (H − ζ2)−1 is defined for all
ζ ∈ K∗ and the equation (H − ζ2)u = 0 has no non-trivial outgoing solution
when ζ ∈ K.

Let λ ∈ K∩R∗+ and f ∈ L2,δ(Rn). Then (H−ζ2)−1f converges in L2,−δ(Rn)

to the unique outgoing solution for the equation (H − λ2)u = f when ζ ∈ K∗
goes to λ.

Moreover, there exists a constant C > 0 such that for any ζ ∈ K and
f ∈ L2,δ(Rn), if we denote by u the unique outgoing solution for the equation
(H − ζ2)u = f then we have for all R > 0 the following estimates:
(6.4)
‖u‖L2,−δ(Rn) + ‖( Dr − iζ)u‖L2,δ−1(Bc1) +Rδ−

1
2 ‖u‖L2,−δ(Bc

R
) 6 C ‖f‖L2,δ(Rn) .

We denote by (H−(λ2+i0))−1f the unique outgoing solution u ∈ H2
loc(Rn)∩

L2,−δ(Rn) for the equation (H−λ2)u = f . To prove this proposition, we study
the behavior of (H−ζ2)−1f , ζ ∈ K∗, at infinity. In a compact subset of Rn, the
estimates we need are given by interior regularity (see for instance [12, § 6.3.1]):

Proposition 6.4. — Let z ∈ C and R > 0. There exists C > 0 such that if
f ∈ L2

loc(Rn) and u ∈ H2
loc(Rn) is a solution for the equation (H − z)u = f

then we have
‖u‖H2(BR) 6 C

Ä
‖f‖BR+1

+ ‖u‖BR+1

ä
.

Moreover C is uniform for (z,R) in a compact subset of C× R+.
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The difficulty is to give some estimates of (H − ζ2)−1f uniform when ζ

approaches R∗+. For some fixed ζ ∈ K∗ we have the following lemma:

Lemma 6.5. — Let f ∈ L2,δ(Rn), ζ ∈ K∗ and u = (H − ζ2)−1f . Then u and
∇u belong to L2,δ(Rn).

Proof. — Let χ ∈ C∞0 (Rn) be supported in B2 and equal to 1 on B1.
For any R > 0 we set χR : x 7→ χ

(
x
R

)
. Then we have to check that

[χR 〈x〉δ , (H − ζ2)−1] is bounded uniformly in R > 0. We prove similarly that
χR 〈x〉δ ∂ju is in L2(Rn) uniformly in R > 0 for all j ∈ [[1, n]].

The self-adjoint version for the first estimate of the following result is
Lemma 4.1 in [29]:

Lemma 6.6. — There exists C such that for ζ = ζ1 + iζ2 ∈ K∗, f ∈ L2,δ(Rn)

and u = (H − ζ2)−1f we have

ζ2 ‖u‖L2,1−δ(Rn) 6 C
Ä
‖u‖L2,−δ(Rn) + ‖( Dr − iζ)u‖L2,δ−1(Bc2) + ‖f‖L2,δ(Rn)

ä
and∥∥∥√W2u

∥∥∥2

L2, 1
2
−δ(Rn)

6 C
Ä
‖u‖L2,−δ(Rn) + ‖( Dr − iζ)u‖L2,δ−1(Bc2) + ‖f‖L2,δ(Rn)

ä
‖u‖L2,−δ(Rn) .

Proof. — Let χ ∈ C∞(Rn, [0, 1]) be equal to 1 outside B3 and equal to 0
on B2. For R > 1 we set χR : x 7→ χ(x) − χ(x/R). Let α ∈] − ∞, 1 − δ],
ζ = ζ1 + iζ2 ∈ K∗, f ∈ L2,δ(Rn) and u = (H− ζ2)−1f ∈ H2(Rn). For all R > 1

we can write〈
(H − ζ2)u, χ2

R(x)(1 + |x|)2αu
〉
L2(Rn)

=
〈
f, χ2

R(x)(1 + |x|)2αu
〉
L2(Rn)

.

Taking the imaginary part in this equality gives∥∥∥χR√W2u
∥∥∥2

L2,α(Rn)
+ 2ζ1ζ2 ‖χRu‖2L2,α(Rn)

6 ‖f‖L2,δ(Rn) ‖u‖L2,2α−δ(Rn) + ‖u‖L2,−δ(Rn) ‖W3u‖L2,2α+δ(Rn)

+ ‖χR∂ru‖L2,−δ(Rn)

∥∥(2(1 + |x|)2α∂rχR + 2α(1 + |x|)2α−1χR
)
u
∥∥
L2,δ(Rn)

6 c
Ä
‖f‖L2,δ(Rn) + ‖( Dr − iζ)u‖L2,δ−1(Rn\B2) + ‖u‖L2,−δ(Rn)

ä
‖u‖L2,2α+δ−1(Rn) ,

where c does not depend on R. Then we can let R go to infinity in the left-hand
side. Proposition 6.4 and this inequality with α = 1− δ give the first estimate.
We take α = 1

2 − δ to obtain the second.
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For all ζ ∈ K∗ and x ∈ Rn the complex number ζ2 + iW2(x) belongs to C+

and hence has a unique square root ζW (x, ζ) = ζ1(x, ζ) + iζ2(x, ζ) in C++.
Moreover there exists C > 0 such that for all ζ = ζ1 + iζ2 ∈ K∗ and x ∈ Rn
we have

(6.5) C−1
(
2ζ1ζ2 +W2(x)

)
6 ζ2(x, z) 6 C

(
2ζ1ζ2 +W2(x)

)
and

|∇xζW (x, ζ)| 6 C 〈x〉−1−ρ
,

where ρ > 0 is given by (6.2). For ζ ∈ K∗ we set

Dζr = Dr − iζW (x, ζ).

Proposition 6.7. — There exists C such that for ζ = ζ1 + iζ2 ∈ K∗,
f ∈ L2,δ(Rn) and u = (H − ζ2)−1f we have

‖( Dr − iζ)u‖L2,δ−1(Bc2) + ‖∇⊥u‖L2,δ−1(Bc2) 6 C
Ä
‖u‖L2,−δ(Rn) + ‖f‖L2,δ(Rn)

ä
.

The proof is inspired from the self-adjoint version given in [29], to which we
refer for some additional details. The new difficulty here is to take into account
the long-range imaginary part W2 of the potential.

Proof. — 1. Since

|ζW (x, ζ)− ζ| = W2(x)

|ζW (x, ζ) + ζ|
6 cW2(x),

we have

‖( Dr − iζ)u‖L2,δ−1(Rn) 6
∥∥∥Dζru

∥∥∥
L2,δ−1(Rn)

+ c ‖u‖L2,−δ(Rn) ,

where c > 0 denotes different constants which do not depend on ζ ∈ K∗ or
f ∈ L2,δ(Rn). It is therefore enough to prove the proposition with ( Dr − iζ)

replaced by Dζr .

2. We consider χ : x 7→ χ̃(|x|), where χ̃ ∈ C∞(R, [0, 1]) is non-decreasing,
equal to 0 on ] −∞, 1] and equal to 1 on [2,+∞[. For R > 1 we set χR(x) =

χ̃(|x|)− χ̃(|x| −R). Let ζ = ζ1 + iζ2 ∈ K∗, f ∈ L2,δ(Rn) and u = (H − ζ2)−1f .
It is enough to consider the case N u < N d, where

N u = ‖u‖L2,−δ(Rn) + ‖f‖L2,δ(Rn)

and

N d = max

Å∥∥∥χDζru
∥∥∥
L2,δ−1(Rn)

, ‖χ∇⊥u‖L2,δ−1(Rn)

ã
.
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According to Proposition 6.1 we can write for any R > 1:

Re
¨
f, χ2

R(1 + |x|)2δ−1 Dζru
∂

= Re
¨
(H − ζ2)u, χ2

R(1 + |x|)2δ−1 Dζru
∂

= Re
¨
Dru, Drχ2

R(1 + |x|)2δ−1 Dζru
∂

+ Re
¨
∇⊥u,∇⊥χ2

R(1 + |x|)2δ−1 Dζru
∂

+ Re
¨
W1(x)u+ W̃3(x)u− ζW (x, ζ)2u, χ2

R(1 + |x|)2δ−1 Dζru
∂

=: A1(R) +A2(R) +A3(R) +A4(R) +A5(R).

3. We have

A1(R) +A5(R) = Re
¨
Dζru, Drχ

2
R(1 + |x|)2δ−1 Dζru

∂
+ Re

¨
−i(∂rζW (x, ζ) + ζW (x, ζ) Dζr)u, χ

2
R(1 + |x|)2δ−1 Dζru

∂
.

According to Lemma 6.5, Dζru belongs to L2,δ(Bc1) and hence

lim inf
R→∞

Re
¨
Dζru, Drχ

2
R(1 + |x|)2δ−1 Dζru

∂
=

1

2
lim inf
R→∞

¨
Dζru, ∂r(χ

2
R(1 + |x|)2δ−1) Dζru

∂
>

Å
δ − 1

2

ã∥∥∥χDζru
∥∥∥2

L2,δ−1(Rn)
− c

∥∥∥Dζru
∥∥∥2

L2(B2∩Bc1)
.

Moreover

lim inf
R→∞

Re
¨
−i(∂rζW (x, ζ) + ζW (x, ζ) Dζr)u, χ

2
R(1 + |x|)2δ−1 Dζru

∂
> lim inf

R→∞
Re

¨
−i∂rζW (x, ζ)u, χ2

R(1 + |x|)2δ−1 Dζru
∂

> −c ‖u‖L2,−1−ρ+δ(Rn)

∥∥∥χDζru
∥∥∥
L2,δ−1(Rn)

.

According to Proposition 6.4, these two estimates give

(6.6) lim inf
R→∞

(A1(R) +A5(R)) >
Å
δ − 1

2

ã∥∥∥χDζru
∥∥∥
L2,δ−1(Rn)

− cN d N u.

With the same kind of argument and using the last property of Proposition 6.1
we prove that

lim inf
R→∞

A2(R) >
Å

3

2
− δ

ã
‖χ∇⊥u‖2L2,−δ(Rn) − cN u N d.

Using (6.5) and Lemma 6.6 we show that

lim inf
R→∞

A3(R) > −cN u N d.

We have the same estimate for A4(R) and

∀R > 1, Re
¨
f, χ2

R(1 + |x|)2δ−1 Dζru
∂
6 cN u N d,
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so we finally haveÅ
3

2
− δ

ã
‖∇⊥u‖2L2,δ−1(Bc2) +

Å
δ − 1

2

ã∥∥∥χDζru
∥∥∥2

L2,δ−1(Bc2)
6 cN u N d,

which, together with Proposition 6.4, concludes the proof.

As in the self-adjoint case we also use the following estimate:

Proposition 6.8. — There exists C such that for R > 1, ζ ∈ K∗, f ∈ L2,δ(Rn)

and u = (H − ζ2)−1f we have

‖u‖2L2,−δ(Bc
R

) 6 CR1−2δ
Ä
‖u‖2L2,−δ(Rn) + ‖f‖2L2,δ(Rn)

ä
.

Proof. — For all r > 0 we have

(6.7) |( Dr − iζ)u|2Sr
= |Dru+ ζ2u|2Sr + ζ2

1 |u|
2
Sr + 2ζ1 〈V2u, u〉Br + 4ζ2

1ζ2 ‖u‖
2
Br

+ 2ζ1 Im 〈f, u〉Br .

In particular

ζ2
1 |u|

2
Sr 6 |( Dr − iζ)u|2Sr + 2ζ1 ‖f‖L2,δ(Rn) ‖u‖L2,−δ(Rn) + c ‖u‖2L2,−δ(Rn) .

We multiply by (1+r)−2δ and integrate from R to +∞ to prove the proposition.

With all these estimates and uniqueness of the outgoing solution for the
equation (H − λ2)u = 0 we can now conclude that the limiting absorption
principle holds as in the self-adjoint case.

Proof of Proposition 6.3. — The first step is to prove that if we have the
estimates (6.4) on K∗, then we have the limiting absorption principle.
We refer to [29, Lemma 2.6] and recall briefly the idea. If ζm → λ and
um = (H − ζ2

m)−1f , then a subsequence of (um)m∈N converges to some u

in L2
loc(Rn) according to Proposition 6.4. We obtain convergence in L2,−δ(Rn)

according to the last estimate of (6.4). Using again Proposition 6.4 we also
have convergence in H2

loc(Rn). The limit u is necessarily an outgoing solution
for the equation (H − λ2)u = f . And since we have uniqueness for such a
solution, we actually have convergence of the whole sequence.

To apply this result, we still have to check the first estimate of (6.4).
This is a contradiction argument: we assume that we can find sequences
(fm)m∈N ∈ L2,δ(Rn)N and (zm)m∈N ∈ (K∗)N such that

zm −−−−→
m→∞

λ ∈ K ∩ R∗+,
∥∥(H − zm)−1fm

∥∥
L2,−δ = 1

and

‖fm‖L2,δ(Rn) = o
m→∞

(1).
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All the estimates of (6.4) hold for this sequence and hence (H − zm)−1fm
converges to an outgoing solution for the equation (H − λ)u = 0, which must
be zero. This gives a contradiction (see the proof of Theorem 2.3 in [29]).

For the dissipative Schrödinger operator everything holds as in the self-
adjoint case on the upper half-plane:

Proposition 6.9. — If V2 > 0 then the assumptions and hence the conclu-
sions of Proposition 6.3 hold for any compact subset K of C++.

Proof. — If V2 > 0 then the operator H with domain H2(Rn) is maximal
dissipative, so its resolvent (H − z)−1 is at least well-defined for Im z > 0.
Moreover, if u ∈ H2

loc(Rn)∩L2,−δ(Rn) is an outgoing solution for the equation
(H − ζ2)u = 0 for some ζ ∈ K then, according to (6.7), ζ ∈ R and u van-
ishes on the support of V2 and hence is an outgoing solution for the equation
(H1 − ζ2)u = 0, where H1 = −∆+V1(x) is the self-adjoint part of H. We know
from [29, § 3] that such a solution must be zero.

In the non-dissipative case we do not have such a systematic result. In order
to prove Theorem 1.4 we use the fact that for h > 0 small enough and z ∈ CI,+
we already have existence and uniform estimates for the resolvent (Hh − z)−1.

Proof of Theorem 1.4. — Let θ0 > 0 be such that V2(x) + θ0 〈x〉−1−ρ > 0 for
all x ∈ Rn. There exist a neighborhood I of E, h0 > 0 and C > 0 such that for
all h ∈]0, h0], z ∈ CI,+ and θ ∈ [0, θ0] we have∥∥∥〈x〉−δ (Hθ

h − z)−1 〈x〉−δ
∥∥∥

L(L2(Rn))
6
C

h
,

where Hθ
h = Hh− ihθ 〈x〉−1−ρ. Indeed, Theorem 1.2 gives such an estimate for

any fixed θ̃ ∈ [0, θ0], and the perturbation argument already used to prove (5.7)
gives an estimate uniform for θ in a neighborhood of θ̃. Now let θ1 ∈ [0, θ0]

and assume that u = 0 is the unique outgoing solution for the equation
(Hθ

h − z)u = 0 when θ ∈ [θ1, θ0], z ∈ CI,+ ∪ I and h ∈]0, h0]. Let h ∈]0, h0],
z ∈ CI,+∪I, θ ∈ [θ1−C/2, θ1] and let u ∈ H2

loc(Rn)∩L2,−δ(Rn) be an outgoing
solution for the equation (Hθ

h − z)u = 0. We have

(Hθ1
h − z)u = −ih(θ1 − θ) 〈x〉−1−ρ

u ∈ L2,δ(Rn).

According to Proposition 6.3, the outgoing solution for the equation
(Hθ1

h − z)u = f is given by the limiting absorption principle if z ∈ I and
hence in any case we have

‖u‖L2,−δ(Rn) 6
C

h

∥∥∥h(θ1 − θ) 〈x〉−1−ρ
u
∥∥∥
L2,δ(Rn)

6
1

2
‖u‖L2,−δ(Rn) .

This proves that u = 0.
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7. Semiclassical Measure

We study in this section the semiclassical measures for the outgoing solution
of (1.1) when the source term fh concentrates on a bounded submanifold of Rn,
V1 is of long range and V2 is of short range. We adapt to this setting the proof
given in [27] for the dissipative case.

Let Γ be a (bounded) submanifold of dimension d ∈ [[0, n − 1]] in Rn. We
consider A ∈ C∞0 (Γ), S ∈ S(Rn) and define

(7.1) fh(x) =

∫
Γ

A(z)S
(x− z

h

)
dσΓ(z),

where σΓ is the Lebesgue mesure on Γ. We can check that fh is microlocalized
on NΓ and ‖fh‖L2,δ(Rn) = O(

√
h) for any δ > 1

2 . Let E > 0 be an energy which
satisfies assumption (1.7). We assume that

(7.2) ∀z ∈ Γ, V1(z) < E.

Let

NEΓ = NΓ ∩ p−1({E})

=
¶

(z, ξ) ∈ Γ× Rn : ξ⊥TzΓ and |ξ|2 = E − V1(z)
©
⊂ R2n,

where TzΓ is the tangent space of Γ at point z. Assumption (7.2) ensures
that NEΓ is a submanifold of dimension n− 1 in R2n. The Riemannian
structure g on NEΓ is defined as follows. For (z, ξ) ∈ NEΓ and (Z,Ξ),
(Z̃, Ξ̃) ∈ T(z,ξ)NEΓ ⊂ R2n we set

g(z,ξ)

(
(Z,Ξ), (Z̃, Ξ̃)

)
=

¨
Z, Z̃

∂
Rn

+
¨
Ξ⊥, Ξ̃⊥

∂
Rn
,

where Ξ⊥, Ξ̃⊥ are the orthogonal projections of Ξ, Ξ̃ ∈ Rn on (TzΓ ⊕ Rξ)⊥ =

Tξ
(
({z} × Rn) ∩ NEΓ

)
. We denote by σNEΓ the canonical measure on NEΓ

given by g, and assume that

(7.3) σNEΓ

({
(z, ξ) ∈ NEΓ : ∃t > 0, φt(z, ξ) ∈ NEΓ

})
= 0.

With all these assumptions we can prove the following result:

Theorem 7.1. — Let fh be given by (7.1) and uh be the outgoing solution
for the Helmholtz Equation (1.1). Let assumptions (1.3), (1.7), (1.8), (7.2)
and (7.3) be fulfilled.

(i) There exists a non-negative Radon measure µ on R2n such that

(7.4) ∀q ∈ C∞0 (R2n), 〈Opwh (q)uh, uh〉 −−−→
h→0

∫
R2n

q dµ.

(ii) This measure is characterized by the following three properties:
a. µ is supported in p−1({E}).
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b. For any σ ∈]0, 1[ there exists R > 0 such that µ = 0 in the incoming
region Z−(R, 0,−σ).

c. µ is solution of the Liouville equation

(7.5) {p, µ}+ 2V2µ = π(2π)d−n |A(z)|2 |ξ|−1 ∣∣Ŝ(ξ)
∣∣2σNEΓ,

(iii) These three properties imply that for q ∈ C∞0 (R2n) we have

(7.6)
∫
R2n

q dµ

=

∫ +∞

0

∫
NEΓ

π(2π)d−n |A(z)|2 |ξ|−1 ∣∣Ŝ(ξ)
∣∣2q(φt(z, ξ))e−2

∫ t
0
V2(X(s,z,ξ)) ds

dσNEΓ(z, ξ) dt.

Note that as in [3, 27] we can let E depend on h : Eh = E0+hE1+o(h) ∈ C+,
where E0 > 0 satisfies assumption (1.7) and ImEh > 0. Then V2 has to be
replaced by V2 + ImE1 in (7.5) and (7.6).

We recall the sketch of the proof, discuss differences with the dissipative
case and refer to [3, 27] for details (see also [25]). We first remark that the
limit (7.4) is zero when q ∈ C∞0 (R2n) is supported outside p−1({E}). For q
supported close to p−1({E}) the idea is to replace the resolvent which defines
uh by the integral over finite times of the propagator. More precisely, for T > 0

and h ∈]0, 1] we set

uTh =
i

h

∫ ∞
0

χT (t)e−
it
h (Hh−E)fh,

where χT (t) = χ(t− T ) and χ ∈ C∞(R, [0, 1]) is equal to 1 in a neighborhood
of ]−∞, 0] and equal to 0 on [τ0,+∞[ for some τ0 > 0 small enough (see [27]).
Then we can study separately the contribution of different times. For small
times we proceed exactly as in the dissipative case, using a W.K.B. approxima-
tion of the propagator (see below). For intermediate times, and then to prove
that uTh is in some sense a good approximation of uh for large T and small h,
we need a non-selfadjoint version of Egorov’s Theorem.

According to (3.3) and Hille-Yosida Theorem (see for instance Theorem II.3.5
in [11]) we know that Hh generates a continuous semi-group, which we denote
by Uh(t), and

∀t > 0, ‖Uh(t)‖ L(L2(Rn)) 6 etm−

(we recall that m− = − inf V2). Let W2, W̃2 ∈ C∞b (Rn,R), W = W2 + W̃2 and,
for t ∈ R:

Uh2 (t) = e−
it
h (Hh1−ihW2) and Ũh2 (t) = e−

it
h (Hh1−ihW̃2).

The usual Egorov’s Theorem extends without modification to the non-
dissipative case:
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Theorem 7.2. — Let a ∈ C∞b (R2n). There exists a family of symbols αj(t)
for j ∈ N and t ∈ R such that:

(i) For all t ∈ R, N ∈ N and h ∈]0, 1] we have

Uh2 (t)∗Opwh (a)Ũh2 (t) =
N∑
j=0

hjOpwh (αj(t)) + hN+1RN (t, h),

where RN (t, h) is bounded on L2(Rn) uniformly in h ∈]0, 1] and t ∈ [0, T ]

for any T > 0.
(ii) We have

α0(t) = (a ◦ φt)e−
∫ t

0
W◦φs ds

.

(iii) For t ∈ R and j ∈ N we have

suppαj(t) ⊂ φ−t(supp a).

Let w ∈ R2n, T > 0 and 0 < tw,1 < · · · < tw,KT
w

6 T + τ0 be the times
between 0 and T + τ0 for which φ−tw,k(w) ∈ NEΓ0 = NEΓ ∩ (suppA × Rn).
For τw > 0 small enough we consider χw ∈ C∞0 (]0, 2τw[) equal to 1 in a neigh-
borhood of τw. For k ∈ [[1,KT

w ]] we prove that in L2(Rn)

i

h

∫ ∞
0

χT (t)χw(t− tw,k + τw)e−
it
h (Hh−E)fh = BTw,k(h) + O

h→0

(√
h
)
,

where BTw,k(h) is a Lagrangian distribution of Lagrangian submanifold

ΛTw,k = {φt(z, ξ), (z, ξ) ∈ NEΓ, t ∈]tw,k − τw, tw,k + τw[}.

This means that there exist N ∈ N, bTw,k ∈ C∞0 (Rn+N ) and a non-degenerate
phase function ψ ∈ C∞b (Rn+N ,R) (if ∇θψ(x, θ) = 0 for some (x, θ) ∈ Rn+N ,
then the N linear forms d(x,θ)∂θiψ : Rn+N → R, 1 6 i 6 N , are linearly
independent) such that

BTw,k(h) =
1

(2πh)
N
2

∫
RN

e
i
hψ(x,θ)b(x, θ) dθ,

and {
(x,∇xψ(x, θ)) for (x, θ) ∈ Rn+N such that ∇θψ(x, θ) = 0

}
⊂ ΛTw,k

(this replaces what is said in [27]). This is proved by direct computations when
tw,k is replaced by τw (and N = 0 in this case), and then we use the fact
that for any t > 0 the propagator Uh(t) can be seen as a Fourier Integral
Operator and maps, up to O(h∞), a Lagrangian distribution of submanifold Λ

to some Lagrangian distribution of submanifold φt(Λ). We know that for such
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a Lagrangian distribution there exists a smooth and non-negative function νTw,k
on ΛTw,k such that

∀q ∈ C∞0 (R2n),
〈
Opwh (q)BTw,k(h), BTw,k(h)

〉
−−−→
h→0

∫
ΛT
w,k

q(w̃)ν(w̃)dσΛT
w,k

(w̃),

where σΛT
w,k

is the Lebesgue measure on ΛTw,k. According to Egorov’s Theorem,
times far from 0 and tTw,k (k ∈ [[1,KT

w ]]) do not give any contribution around w
at the limit h→ 0, so we can prove that (7.4) holds for some measure µT if uh
is replaced by uTh .

It remains to study the contribution of large times. In [27, Prop. 2.3] we
used the fact that the damping factor exp

(
−
∫ t

0
V2 ◦ φs ds

)
is a non-increasing

function of t, which is no longer the case. We use Proposition 2.5 instead:

Proposition 7.3. — Let J be a neighborhood of E such that assumption (1.7)
holds for all λ ∈ J . Let K1 and K2 be compact subsets of p−1(J) and ε > 0.
Then there exists T0 > 0 such that for q1, q2 ∈ C∞0 (R2n) respectively supported
in K1 and K2 we have

∀T > T0, lim sup
h→0

‖Opwh (q1)Uh(T )Opwh (q2)‖ L(L2(Rn)) 6 ε ‖q1‖∞ ‖q2‖∞ .

Proof. — Let q1, q2 ∈ C∞0 (R2n) be respectively supported in K1 and K2.
Let t 7→ Uh1 (t) denote the unitary group generated by the self-adjoint part Hh

1

of Hh. According to Egorov’s Theorem we have for all T > 0:

‖Opwh (q1)Uh(T )Opwh (q2)‖ L(L2(Rn))

=
∥∥∥Uh1 (T )∗Opwh (q1)Uh(T )Opwh (q2)

∥∥∥
L(L2(Rn))

=

∥∥∥∥Opwh

Å
q2(q1 ◦ φT )e

−
∫ T

0
V2◦φs ds

ã∥∥∥∥
L(L2(Rn))

+ O
h→0

(h)

6 C sup
w∈R2n

∣∣∣∣q2(w)q1

(
φT (w)

)
e
−
∫ T

0
V2(X(s,w)) ds

∣∣∣∣+ O
h→0

(√
h
)
,

where the size of the rest depends on T , q1 and q2. The constant C only
depends on the dimension n. According to Proposition 2.5 there exists T0 such
that for T > T0 and w ∈ K2 we have

Ce
−
∫ T

0
V2(X(s,w)) ds

6 ε or φT (w) /∈ K1.

Therefore we have for all T > T0:

‖Opwh (q1)Uh(T )Opwh (q2)‖ L(L2(Rn)) 6 ε ‖q1‖∞ ‖q2‖∞ + O
h→0

(√
h
)
.

It only remains to take the limit h→ 0 for fixed T , q1 and q2 to conclude.
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For the rest of the proof we proceed as in the dissipative case. We only
have to be careful with the proof of Lemma 5.4 in [27] since the resolvent
(Hh − z)−1 cannot be written as the integral of the propagator over positive
times for all z ∈ C+. However, for h > 0 small enough and z ∈ C+ close to E,
(Hh − z)−1fh is well-defined and belongs to H2(Rn). Therefore we can write

Opwh (q)(Hh − z)−1fh −Opwh (q)e−
iT
h (Hh−z)(Hh − z)−1fh

= −
∫ T

0

Opwh (q)
d

dt
e−

it
h (Hh−z)(Hh − z)−1fh dt

=
i

h

∫ ∞
0

χT (t)Opwh (q)e−
it
h (Hh−z)fh dt

− i

h

∫ ∞
0

χ(t)Opwh (q)e−
iT
h (Hh−z)e−

it
h (Hh−z)fh dt.

Note also that since ‖Uh(T )‖ L(L2(Rn)) is no longer estimated uniformly by 1,
some rests depend on T in the proof of this lemma. This is not a real problem
since we take the limit h→ 0 for fixed T . We finally obtain that for any compact
subset K of p−1(J) and ε > 0 there exists T0 such that for q ∈ C∞0 (R2n)

supported in K we have

∀T > T0, lim sup
h→0

∣∣〈Opwh (q)uh, uh〉 −
〈
Opwh (q)uTh , u

T
h

〉∣∣ 6 ε ‖q‖∞ .

With this estimate we can check that for all q ∈ C∞0 (R2n) the function
T 7→

∫
q dµT has a limit when T → +∞, that this limit defines a non-negative

measure µ on R2n, and finally that (7.4) holds for this measure. All the
properties of µ stated in Theorem 7.1 are proved as in the dissipative case (in
particular we use Theorem 4.1 to prove (ii) b.).

Appendix A

Construction of an escape function

In this appendix we prove Proposition 5.1. A similar result (with an inequal-
ity) is proved in [17]. The purpose was to give a proof which could be extended
for matrix-valued operators. The version we give here is much more convenient
in our context.

Let J =
]
E
2 , 2E

[
, σ ∈

]
0, 1

2

[
and R given by Proposition 2.1. We set

ZJ,± = Z± ( R, 0,∓σ) ∩ p−1(J).
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Proposition A.1. — If R was chosen large enough, then for α, β ∈ Nn such
that |α| + |β| > 1 there exists cα,β such that for t > 0 and (x, ξ) ∈ ZJ,± we
have

(A.1)
∣∣∣∂αx ∂βξ φ±t(x, ξ)∣∣∣ 6 cα,β 〈t〉 .

We know (see for instance Lemma IV.9 in [22]) that the derivatives of the
flow φt are uniformly bounded as long as t stays in a bounded subset of R,
but may grow exponentially fast with time. The purpose of this proposition
is to check that if we only look at the flow far from the origin (where it
is “almost free”) then we recover a growth of size O(t) as in the free case
(x, ξ) 7→ (x+ 2tξ, ξ).

Proof. — 1. We prove the proposition for (x, ξ) ∈ ZJ,+, the case (x, ξ) ∈ ZJ,−
being analogous. Let

A(t, x, ξ) =

(
JxX(t, x, ξ) JξX(t, x, ξ)

JxΞ(t, x, ξ) JξΞ(t, x, ξ)

)
∈M2n(R),

where for instance JξX denotes the partial jacobian matrix of X with respect
to ξ. Suppose that

lim sup
t→+∞

‖A(t)‖L∞( ZJ,+,M2n(R))

t
= +∞.

Differentiating the system (1.4) with respect to x and then with respect to ξ,
we see that

∂tA(t, x, ξ) = B(t, x, ξ) ·A(t, x, ξ)

where

B(t, x, ξ) =

(
0 2 In

−HessV1(X(t, x, ξ)) 0

)
∈M2n(R),

and hence:

∂2
tA(t, x, ξ) = ∂tB(t, x, ξ)·A(t, x, ξ)+B(t, x, ξ)2·A(t, x, ξ) =: C(t, x, ξ)·A(t, x, ξ)

According to Proposition 2.1, there exists c0 > 0 such that for (x, ξ) ∈ ZJ,+
and t > 0 we have |X(t, x, ξ)| > c0(|x|+ t), so

‖C(t, x, ξ)‖ 6 ‖∂tB(t, x, ξ)‖+
∥∥B(t, x, ξ)2

∥∥ 6 c(|x|+ t)−2−ρ,

where c depends neither on (x, ξ) ∈ ZJ,+ nor on t > 0. For m ∈ N let

tm = inf
¶
t > 1 : ‖A(t, x, ξ)‖L∞( ZJ,+,M2n(R)) > mt

©
.
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Since the derivatives of φt are in L∞(R2n) uniformly for t in a compact subset
of R, we have tm → +∞. According to Taylor’s formula we have

‖A(tm)‖L∞( ZJ,+,M2n(R))

tm

6
‖A(0)‖L∞( ZJ,+,M2n(R))

tm
+ ‖∂tA(0)‖L∞( ZJ,+,M2n(R))

+
1

tm

∫ tm

0

(tm − s)c( R + s)−2−ρ ‖A(s)‖L∞( ZJ,+,M2n(R)) ds

6 c+ c

∫ tm

0

tm − s
tm

( R + s)−2−ρ smds

6 c+ cm

∫ tm

0

( R + s)−1−ρ ds

6 c+ cmR−ρ,

where the different constants c depend neither on m ∈ N nor on the choice
of R. If R was chosen so large that cR−ρ 6 1

4 , then the right-hand side is less
than m/2 for large m, which gives a contradiction. The case |α| + |β| = 1 is
proved.

2. We now proceed by induction on |α| + |β|. Let α, β ∈ Nn be such that
|α| + |β| > 2 and assume that the result is proved for any derivative of order
less than |α|+ |β|. For j ∈ [[1, n]], the differential operator ∂αx ∂

β
ξ applied to (1.4)

gives{
∂t∂

α
x ∂

β
ξXj(t, x, ξ) = 2∂αx ∂

β
ξ Ξj(t, x, ξ)

∂t∂
α
x ∂

β
ξ Ξj(t, x, ξ) = −

∑n
l=1(∂xj∂xlV1)(X(t, x, ξ)) ∂αx ∂

β
ξXl(t, x, ξ) + bα,β,j(t, x, ξ),

where bα,β,j is a sum of terms of the form

−(∂xj∂
νV1)(X(t, x, ξ))

|ν|∏
k=1

∂αkx ∂βkξ Xjk(t, x, ξ)

where |ν| > 2,
∑|ν|
k=1 αk = α,

∑|ν|
k=1 βk = β and for k ∈ [[1, |ν|]]: jk ∈ [[1, n]] and

|αk| + |βk| > 1. In particular for all k we have |αk| + |βk| < |α| + |β|, so each
term is estimated by∣∣∣∣∣∣(∂xj∂νV1)(X(t, x, ξ))

|ν|∏
k=1

∂αkx ∂βkξ Xjk(t, x, ξ)

∣∣∣∣∣∣
6 c(|x|+ t)−1−ρ−|ν| 〈t〉ν 6 c(|x|+ t)−1−ρ
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where c depends neither on t > 0 nor on (x, ξ) ∈ ZJ,+, and hence

|bα,β,j(t, x, ξ)| 6 c(|x|+ t)−1−ρ.

We also have
|∂tbα,β,j(t, x, ξ)| 6 c(|x|+ t)−1−ρ.

If we set

Aα,β(t, x, ξ) =



∂αx ∂
β
ξX1(t, x, ξ)

...
∂αx ∂

β
ξXn(t, x, ξ)

∂αx ∂
β
ξ Ξ1(t, x, ξ)

...
∂αx ∂

β
ξ Ξn(t, x, ξ)


∈ R2n and Dα,β(t, x, ξ) =



0
...
0

bα,β,1(t, x, ξ)
...

bα,β,n(t, x, ξ)


∈ R2n,

we have

∂tAα,β(t, x, ξ) = B(t, x, ξ) ·Aα,β(t, x, ξ) +Dα,β(t, x, ξ)

and

∂2
tAα,β(t, x, ξ) = C(t, x, ξ)·Aα,β(t, x, ξ)+B(t, x, ξ)·Dα,β(t, x, ξ)+∂tDα,β(t, x, ξ).

Then we can conclude as above. Note that the matrix C is the same, and hence
the choice of R does not depend on (α, β).

The estimate of size O(t) for X is what was expected since this is indeed
what we have in the free case, but we can improve the result for Ξ:

Corollary A.2. — For any α, β ∈ Nn there exists cα,β > 0 such that
for t > 0 and (x, ξ) ∈ ZJ,± we have∣∣∣∂αx ∂βξ Ξ(±t, x, ξ)

∣∣∣ 6 cα,β .

Proof. — Let α, β ∈ Nn. We have proved that

∂t∂
α
x ∂

β
ξ Ξj(±t, x, ξ)

= ∓
n∑
l=1

(∂xj∂xlV1)(X(±t, x, ξ)) ∂αx ∂
β
ξXl(±t, x, ξ) + O

t→+∞
(t−1−ρ),

where the rest is uniform in (x, ξ) ∈ ZJ,±. With the estimates we now have
on the derivatives of X this means that there exists cα,β > 0 such that for all
(x, ξ) ∈ ZJ,± and t > 0 we have∣∣∣∂t∂αx ∂βξ Ξj(±t, x, ξ)

∣∣∣ 6 cα,β 〈t〉−1−ρ
.

It only remains to integrate in time to conclude.
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Corollary A.3. — For any α, β ∈ Nn there exists cα,β > 0 such that
for t > 0 and (x, ξ) ∈ ZJ,± we have∣∣∣∣∂αx ∂βξ X(±t, x, ξ) · Ξ(±t, x, ξ)

|X(±t, x, ξ)| |Ξ(±t, x, ξ)|

∣∣∣∣ 6 cα,β .

Corollary A.4. — Let δ > 1
2 . Then for any α, β ∈ Nn there exists cα,β > 0

such that for all t > 0 and (x, ξ) ∈ ZJ,± we have∣∣∣∂αx ∂βξ 〈X(±t, x, ξ)〉−2δ
∣∣∣ 6 cα,β(|x|+ t)−2δ.

Proof. — Let α, β ∈ Nn. We remark that ∂αx ∂
β
ξ 〈X(±t, x, ξ)〉−2δ is a sum of

terms of the form

cK(X(±t, x, ξ)) 〈X(±t, x, ξ)〉−2δ−K
K∏
k=1

∂αkx ∂βkξ X(±t, x, ξ)

where K ∈ [[1, |α|+|β|]], cK(x) = 〈x〉2δ+K dK

dxK
〈x〉−2δ is bounded, α =

∑K
k=1 αk

and β =
∑K
k=1 βk. Since 〈X(±t, x, ξ)〉−2δ−K 6 c(|x|+ t)−2d−K for some c > 0,

we only have to apply Proposition A.1 to conclude.

Now we can prove Proposition 5.1 :

Proof. — Let χ̃ ∈ C∞0 (R) be supported in J and equal to 1 in a neighborhood
of E. Let χ+, χ− ∈ C∞(R) such that suppχ+ ⊂]−σ,+∞[, suppχ− ⊂]−∞, σ[

and χ+ + χ− = 1 on R. Let χ ∈ C∞0 (Rn, [0, 1]) be equal to 1 on BR+1. Let

g± : (x, ξ) 7→ χ±

Å
x · ξ
|x| |ξ|

ã
(1− χ(x))χ̃

(
p(x, ξ)

)
〈x〉−2δ

and, for w ∈ R2n:

f±(w) = ±
∫ +∞

0

g±(φ∓t(w)) dt.

In particular the functions g± are supported in ZJ,±. Let w = (x, ξ) ∈ R2n.
There exists Tw > 0 such that φ±( ZJ,±) ∩ Bx(2 |x|) = ∅ for all t > Tw and
hence

∀v ∈ Bx(2 |x|),∀t > Tw, g±
(
φ∓t(v)

)
= 0.

According to the regularity theorems under the integral sign the functions f+

and f− are smooth around w. Since this holds for any w ∈ R2n, f+ and f− are
smooth on R2n. Moreover their derivatives along the flow φt are given by

{p, f±} = ±
∫ +∞

0

{p, g± ◦ φ∓t} dt = g±.
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We now check that all the derivatives of f± are bounded. According to
the estimates proved above, for α, β ∈ Nn there exists cα,β > 0 such that
for (x, ξ) ∈ ZJ,± and t > 0 we have∣∣∣∂αx ∂βξ (g± ◦ φ±t)(x, ξ)

∣∣∣ 6 cα,β(|x|+ t)−2δ.

Let w ∈ R2n such that φ∓t(w) ∈ ZJ,± for some t > 0 (otherwise the derivatives
of f± vanish at w). Let t0 be the maximum of such times t. We have∣∣∣∂αx ∂βξ f±(w)

∣∣∣ 6 ∫ t0

0

∣∣∣∂αx ∂βξ (g± ◦ φ∓t)(w)
∣∣∣ dt

=

∫ t0

0

∣∣∣∂αx ∂βξ (g± ◦ φ±t)(φ∓t0(w)
)∣∣∣ dt

6 cα,β

∫ +∞

0

( R + t)−2δ dt.

This means that f+ and f− belong to C∞b (R2n,R). It only remains to set
f = f+ + f− to conclude.
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