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RINGS OF MICRODIFFERENTIAL OPERATORS
FOR ARITHMETIC D-MODULES

—
CONSTRUCTION AND AN APPLICATION

TO THE CHARACTERISTIC VARIETIES FOR CURVES

by Tomoyuki Abe

Abstract. — One aim of this paper is to develop a theory of microdifferential oper-
ators for arithmetic D-modules. We first define the rings of microdifferential operators
of arbitrary levels on arbitrary smooth formal schemes. A difficulty lies in the fact that
there is no homomorphism between rings of microdifferential operators of different lev-
els. To remedy this, we define the intermediate differential operators, and using these,
we define the ring of microdifferential operators for D†. We conjecture that the char-
acteristic variety of a D†-module is computed as the support of the microlocalization
of a D†-module, and prove it in the curve case.

Introduction

This paper is aimed to construct a theory of rings of microdifferential oper-
ators for arithmetic D-modules. Let X be a smooth variety over C. Then the
sheaf of rings of microdifferential operators denoted by EX is defined on the
cotangent bundle T ∗X of X. This ring is one of basic tools to study D-modules
microlocally, and it is used in various contexts. One of the most important and
fundamental properties is the equality

(い) Char(M ) = Supp(EX ⊗π−1DX
M )
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36 T. ABE

for a coherent DX -module M , where π : T ∗X → X is the projection. One
goal of this study is to find an analogous equality in the theory of arithmetic
D-modules.

We should point out two attempts to construct rings of microdifferential
operators. The first attempt was made by R. G. López in [13]. In there, he
constructed the ring of microdifferential operators of finite order on curves.
However, the relation between his construction and the theory of arithmetic
D-modules was not clear as he pointed out in the last remark of [13]. The
second construction was carried out by A. Marmora in [23]. Our work can be
seen as a generalization of this work, and we explain the relation with our
construction in the following.

Now, let R be a complete discrete valuation ring of mixed characteris-
tic (0, p). Let X be a smooth formal scheme over Spf(R), and we denote the
special fiber of X by X. For an integer m ≥ 0, P. Berthelot defined the ring of
differential operators of level m denoted by D̂

(m)
X ,Q. He also defined the charac-

teristic varieties for coherent D̂
(m)
X ,Q-modules in almost the same way we define

the characteristic varieties for analytic (or algebraic) D-modules. It is natural
to hope that there exists a theory of microdifferential operators, and that we
can define the ring of microdifferential operators Ê

(m)
X ,Q of level m associated

with D̂
(m)
X ,Q satisfying an analog of (い). When X is a curve (and m = 0), this

was done by Marmora in his study of Fourier transform. He fixed a system
of local coordinates, constructed the ring of microdifferential operators using
explicit descriptions as in [8, Chapter VIII], and proved that the construction
does not depend on the choice of local coordinates. In this paper, we use a
general technique of G. Laumon of formal microlocalization of certain filtered
rings (cf. [22]) to define the ring of naive microdifferential operators of level m
denoted by Ê

(m)
X ,Q (cf. 2.9). One advantage of this construction is that we do not

need to choose coordinates. It follows also formally using the result of Laumon
that for a coherent D̂

(m)
X ,Q-module M , we get an analogous equality of (い)

(ろ) Char(m)(M ) = Supp(Ê
(m)
X ,Q ⊗π−1D̂

(m)
X ,Q

π−1M )

in T (m)∗X := Spec(gr(D
(m)
X )), where π : T (m)∗X → X is the projection, and

Char(m) denotes the characteristic variety (cf. 2.14).
Before explaining the construction of sheaves of microdifferential operators

associated with D†X ,Q, let us review the theory of Berthelot, and see why we
need to consider D†X ,Q-modules. Berthelot proved that many fundamental the-

orems in the theory of analytic D-modules hold also for D̂
(m)
X ,Q-modules. For ex-

ample, he defined pull-backs and push-forwards, and proved that push-forwards
of coherent modules by proper morphisms remain coherent (cf. [7]). However,
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RINGS OF MICRODIFFERENTIAL OPERATORS FOR ARITHMETIC D-MODULES 37

the analogue of Kashiwara’s theorem, which states an equivalence between the
category of coherent D̂

(m)
X ,Q-modules which are supported on a smooth closed

formal subscheme Z of X and the category of coherent D̂
(m)
Z ,Q-modules, does

not hold. This failure makes it difficult to define a suitable subcategory of holo-
nomic modules in the category of D̂

(m)
X ,Q-modules. To remedy this, Berthelot

took inductive limit on the levels to define the ring D†X ,Q, and proved an ana-
logue of Kashiwara’s theorem for coherent D†X ,Q-modules (cf. [7, 5.3.3]). As
in the analytic D-module theory, we need to consider holonomic modules to
deal with push-forwards along open immersions, and we need to define charac-
teristic varieties to define holonomic modules. When a coherent D†X ,Q-module
possesses a Frobenius structure (i.e., an isomorphism M

∼−→ F ∗M ), Berthelot
defined the characteristic variety. He reduced the definition to a finite level
situation using a marvelous theorem of Frobenius descent, and proved Bern-
stein’s inequality by using the analogue of Kashiwara’s theorem. However, in
the absence of Frobenius, the situation is mysterious.

In this paper, we propose a new formalism which allows us at least con-
jecturally to interpret this characteristic varieties by means of microlocaliza-
tions, and use them to define the characteristic varieties for general coherent
D†X ,Q-modules which may not carry Frobenius structures. We also prove the
conjecture in the case of curves (cf. Theorem 7.2). Let us describe a more precise
statement and difficulties to carry this out.

One of the difficulties in defining microdifferential operators associated with
D† is that there are no transition homomorphism (cf. 4.1)

Ê
(m)
X ,Q → Ê

(m+1)
X ,Q

compatible with D̂
(m)
X ,Q → D̂

(m+1)
X ,Q . This makes it hard to define the ring

of microdifferential operators corresponding to D†X ,Q in a naive way.

Let π : T ∗X →X be the projection. To remedy this, we define a π−1D̂
(m)
X ,Q-al-

gebra Ê
(m,m′)
X ,Q for any integer m′ ≥ m called the “intermediate ring of micro-

differential operators of level (m,m′)” so that there exist homomorphisms
of π−1D̂

(m)
X ,Q-algebras

Ê
(m,m′+1)
X ,Q → Ê

(m,m′)
X ,Q , Ê

(m,m′)
X ,Q → Ê

(m+1,m′)
X ,Q ,

and Ê
(m,m)
X ,Q = Ê

(m)
X ,Q. We define

E
(m,†)
X ,Q := lim←−

m′

Ê
(m,m′)
X ,Q .
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38 T. ABE

On this level, we have a transition homomorphism E
(m,†)
X ,Q → E

(m+1,†)
X ,Q compat-

ible with D̂
(m)
X ,Q → D̂

(m+1)
X ,Q . We define

E †X ,Q := lim−→
m

E
(m,†)
X ,Q .

Unfortunately, contrary to (ろ), we no longer have the equality

Char(m)(M ) = Supp(E
(m,†)
X ,Q ⊗π−1D̂

(m)
X ,Q

π−1M )

for a coherent D̂
(m)
X ,Q-module M in general (cf. 7.1). However, we conjecture

the following.

Conjecture. — Let X be a quasi-compact smooth formal scheme over R, and
M be a coherent D̂

(m)
X ,Q-module. Then there exists N > m such that for any

m′ ≥ N ,

Char(m′)(D̂
(m′)
X ,Q ⊗D̂

(m)
X ,Q

M ) = Supp(E
(m′,†)
X ,Q ⊗

π−1D̂
(m)
X ,Q

π−1M ).

This conjecture implies that Car(M ) = Supp(E †X ,Q ⊗M ) for a coherent
F -D†X ,Q-module M where Car denotes the characteristic variety defined by
Berthelot. It is also worth noticing here that if this conjecture is true, the
characteristic varieties for coherent D̂

(m)
X ,Q-modules stabilize when we raise the

level m, and in particular we are able to define characteristic varieties for co-
herent D†X ,Q-modules even without Frobenius structures. In the last part of
this paper, we prove the following.

Theorem 7.2. — When X is a curve, the conjecture is true.

Finally, let us point out one of the most important applications of this the-
orem. The construction of the rings of microdifferential operators in this paper
and Theorem 7.2 are crucial technical tools for the proof of the product for-
mula for p-adic epsilon factors in [3]. Especially, the results of this paper is
used to establish the theory of p-adic local Fourier transform and the “principle
of stationary phase”. While the present paper is on the review, this product
formula was used as one of the most important ingredients to establish the
“Langlands correspondence” of overconvergent F -isocrystals in [2] and [1]: In
the celebrated paper of Lafforgue [20], Langlands correspondence for function
field is established. This is a certain correspondence between `-adic Galois rep-
resentations and cuspidal automorphic forms. A natural question is if there is
any analogous correspondence for overconvergent F -isocrystals. In [1], a similar
correspondence is established, and the conjecture of Deligne [12, 1.2.10 (vi)] (or
more precisely [11, 4.13]) is proven for curves as an application.
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RINGS OF MICRODIFFERENTIAL OPERATORS FOR ARITHMETIC D-MODULES 39

To conclude the introduction, let us see the structure of this paper. In § 1,
we review the theory of formal microlocalization of certain filtered rings, and
single out some basic cases where these rings are Noetherian (according to
Definition 1.9). Using these results, we define the naive ring of microdifferen-
tial operators Ê

(m)
X ,Q, and prove some basic facts in the next section § 2. Before

proceeding to the definition of the intermediate rings of microdifferential op-
erators, we study some properties of gr(E

(m)
X ,Q) in § 3. These are used to study

the intermediate rings, which are defined in § 4. In § 5, we prove the flatness
of transition homomorphisms and related results. One of the most important
properties of E

(m,†)
X ,Q is that its sections over a strict affine open subscheme form

a Fréchet-Stein algebra. In § 6, we prove a finiteness property of certain sheaves
of modules, which may be useful to deal with sheaves on formal schemes. In
the last section, we formulate the conjecture, and prove it in the case of curves.
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Conventions

In this paper, all rings are assumed to be associative with unity. Filtered groups
are assumed to be exhaustive (cf. 1.1.1), and modules are left modules unless
otherwise stated. In principle, we use Roman fonts (e.g., X) for schemes, and
script fonts (e.g., X ) for formal schemes.

If the reader is opening this paper in order to read [3], he might notice
that the version of this paper used in it is not final. However, we notice
that the numbering has not been changed since [3] was published.

1. Preliminaries on filtered rings

The aim of this section is to review the formal construction of the microlo-
calization of certain filtered rings due to O. Gabber and G. Laumon. To fix
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40 T. ABE

notation and terminology, we begin by reviewing well-known definitions and
properties of filtered modules.

1.1. — The reader can refer to [10, III, § 2] and [18] for more details.

1.1.1. — An increasing sequence {Gn}n∈Z of subgroups of a group G is called
an increasing filtration on G. The filtration is said to be positive if Gn = 0 for
all n < 0. We say that the filtration is separated if

⋂
nGn = {e} where e is

the unit. If Gn are normal subgroups of G for all n, the filtration defines a
canonical topology, which makes G a topological group (cf. [10, III, § 2.5]).
Unless otherwise stated, we always assume that filtrations are exhaustive (i.e.,⋃
iGi = G).

Let A be a ring (not necessary commutative), and {Ai}i∈Z be a filtration of
the additive group A. We say that the couple (A, {Ai}i∈Z) is a filtered ring
if Ai · Aj ⊂ Ai+j , and 1 ∈ A0. If there is no possible confusion, we ab-
breviate it by (A,Ai). Let M be an A-module, and {Mi}i∈Z be a filtration
of the additive group M such that Ai · Mj ⊂ Mi+j for any i, j ∈ Z. Then
the couple (M, {Mi}i∈Z) is said to be a filtered (A,Ai)-module. We often de-
note (M, {Mi}i∈Z) by (M,Mi) for short.

1.1.2. — Let A be a ring, and I be a two-sided ideal. We put An := I−n

for n ≤ 0, and An := A for n > 0. The couple (A, {An}n∈Z) is a filtered ring,
and the filtration is called the I-adic filtration.

Let (M,Mi) be a filtered (A,Ai)-module. We say that the filtration {Mi}i∈Z
of M is good if there exist m1, . . . ,ms ∈ M and k1, . . . , ks ∈ Z such that
Mn =

∑s
i=1An−ki

·mi for any n.

1.1.3. — A filtered homomorphism f : (A,Ai) → (B,Bi) is a ring homomor-
phism f : A → B such that there exists an integer n satisfying f(Ai) ⊂ Bi+n
for any integer i. Such a homomorphism is continuous with respect to the topol-
ogy defined by the filtration on A and B. The filtered homomorphism f is said
to be strict if f(Ai) = f(A) ∩Bi for any i ∈ Z.

1.1.4. — For a filtered ring (A,Ai), we put gri(A) := Ai/Ai−1, and
gr(A) :=

⊕
i gri(A). The module gr(A) is naturally a graded ring, and

it is called the associated graded ring. We define the principal symbol
map σ : A→ gr(A) in the following way: let x ∈ A. If x ∈

⋂
iAi, then we

put σ(x) = 0. Otherwise there exists an integer i such that x ∈ Ai and x 6∈ Ai−1.
We define σ(x) to be the image of x in gri(A) ⊂ gr(A).
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RINGS OF MICRODIFFERENTIAL OPERATORS FOR ARITHMETIC D-MODULES 41

1.1.5. — We introduce the completion of a filtered ring. We refer to [18, Ch. I,
§ 3] for the details. Let (A,Ai) be a filtered ring. Let A[ν, ν−1] be the ring of
Laurent polynomials with one variable ν over A, graded by the degree of ν.
Here, the element ν is in the center by definition. We define the graded sub-
algebra of A[ν, ν−1] denoted by A•, called the Rees ring of (A,Ai), by the
formula

A• :=
⊕
i∈Z

Ai · νi.

For an integer n ≥ 1, we define a graded ring A•,n := A•/ν
nA• ∼=⊕

i∈ZAi/Ai−n · νi. For i ∈ Z, we put Ai,n := Ai/Ai−n, the part of de-
gree i of A•,n. We get a projective system of graded rings

→ A•,n+1 → A•,n → · · · → A•,1 ∼= gr(A).

We define a module and a ring by

Âi := lim←−
n→∞

Ai,n
(∼= lim←−

n→∞
Ai/Ai−n

)
, Â := lim−→

i→∞
Âi.

The couple (Â, {Âi}i∈Z) is a filtered ring, and is called the completion of (A,Ai).
This definition coincides with [18, Ch. I, 3.4.1] by [18, Ch. I, 3.5, (d) and (e)].
We note that the completion is separated, and the canonical homomorphism
gr(A) −→ gr(Â) is an isomorphism by [18, Ch. I, 4.2.2]. We say that the fil-
tered ring (A,Ai) is complete if the canonical homomorphism A → Â is an
isomorphism of filtered rings.

1.1.6. — We say that a filtered ring (A,Ai) is left (resp. right, two-sided) Noethe-
rian filtered if the Rees ring A• is left (resp. right, two-sided) Noetherian. If
A is a Noetherian filtered ring, the associated graded ring gr(A) is Noetherian
since gr(A) ∼= A•/νA•. If A is a complete filtered ring, A is Noetherian filtered
if and only if gr(A) is a Noetherian ring (cf. [18, Ch. II, 1.2.3]). This shows that
the completion of a Noetherian filtered ring is Noetherian filtered. Moreover,
if (A,Ai) is a Noetherian filtered ring, the canonical homomorphism A→ Â is
flat by [18, Ch. I, 1.2.1]. We say that a Noetherian filtered ring is Zariskian if
any good filtered module is separated. Any Noetherian filtered complete ring
is known to be Zariskian (cf. [18, Ch. II, 2.2.1]).

1.1.7. — Let X be a topological space or, more generally, topos. The termi-
nologies defined so far except for those defined in 1.1.6 and principal symbol
in 1.1.4 can be defined also in the language of sheaves by replacing “ring” by
“sheaf of rings on X” and so on. See [8, A.III.2] for more details.
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42 T. ABE

1.2. — Let (A,Ai) be a filtered ring which is complete and the associated graded
ring gr(A) is commutative. Let S1 ⊂ gr(A) be a homogeneous multiplicative set
(i.e., a multiplicative set consisting of homogeneous elements). Let cn : A•,n →
A•,1 ∼= gr(A) be the canonical homomorphism. We put

Sn :=
{
x ∈ A•,n

∣∣ cn(x) ∈ S1

}
.

By [22, A.2.1], the multiplicative set Sn satisfies the two-sided Ore condition
(cf. [21, 4. § 10A]). We define a graded ring by

A′•,n := S−1
n A•,n ∼= A•,nS

−1
n .

This defines a projective system of graded rings {A′•,n}. Let us denote by A′i,n
the part of degree i of A′•,n. We define

A′i := lim←−
n→∞

A′i,n, A′ := lim−→
i→∞

A′i.

The filtered ring (A′, A′i) is complete. We denote this filtered ring by (A,Ai)S1
,

and we call it the microlocalization of (A,Ai) with respect to S1. If gr(A)

is Noetherian, then A′0 and A′ are Noetherian and the canonical homomor-
phism A→ A′ is flat by [22, Corollaire A.2.3.4].

Let us describe elements of A′ concretely. Put S :=
{
a ∈ A | σ(a) ∈ S1

}
,

and take s ∈ S. By definition, s is invertible in (A,Ai)S1
. Given an ele-

ment a ∈ A′i, there exist ak ∈ Alk and sk ∈ S ∩ Alk−k (thus ak s−1
k ∈ A′k)

for each integer k ≤ i, such that a =
∑
k≤i ak s

−1
k , where the sum is infinite

and we consider the topology defined by the filtration of A (cf. 1.1.1). More-
over, assume that σ(s) ∈ grN (A) and S1 =

{
σ(s)n

}
n≥0

. Then for any s′ ∈ S,
there exists an integer l such that σ(s′) = σ(s)l. Since a := sl − s′ ∈ ANl−1,
s′−1 = s−l ·

∑
k≥0(as−l)k. Thus for any a′ ∈ A′i, there exist an integer nk ≥ 0

and a′k ∈ Ak+Nnk
such that a′ =

∑
k≤i a

′
k s
−nk .

1.3. — Let (A,Ai) be a complete filtered ring whose associated graded ring is
commutative. The constructions in the previous subsection can be carried out
in almost the same way also for filtered (A,Ai)-modules. For the details see
[22, A.2]. For example, for a filtered A-module (M,Mi) and a homogeneous
multiplicative system S1 ⊂ gr(A), we are able to define the microlocalization
of (M,Mi) with respect to S1 denoted by (M,Mi)S1

, which is complete.

1.4. — Let us sheafify the results. Let (A, {Ai}i∈Z) be a positively filtered ring
such that the associated graded ring gr(A) is commutative. Let R := gr(A) be
the positively graded commutative ring. Note that A0 = R0 is a commutative
ring by assumption. We let X := Spec(R0), V := Spec(R), P := Proj(R).
Let s : X → V be the morphism defined by the canonical projection R → R0.
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RINGS OF MICRODIFFERENTIAL OPERATORS FOR ARITHMETIC D-MODULES 43

We put V̊ := V \ s(X). We have the following canonical commutative diagram
(cf. [16, II, 8.3]).

V
p

((

V̊
q //oo

��

P

vv
X.s

ZZ

We define a topological space V ′ in the following way: as a set, V ′ := V . The
topology of V ′ is generated by the basis of open sets{

D(f)
∣∣ f ∈ R and f is homogeneous

}
.

We denote by ε : V → V ′ the identity map as sets, which is continuous. In
the sequel, various sheaves are defined naturally on V ′. A general strategy of
[22] is to define sheaves on V , which are final outputs, by taking ε−1. Now, let
us denote by O(T ), for a topological space T , the category of open sets of T .
The canonical functor ε−1 : O(V ′)→ O(V ) admits a left adjoint denoted by ε·.
For U ∈ O(V ), this functor can be described as ε·(U) =

⋃
λ∈Gm,X

λ · U where
Gm,X acts on V naturally. Using this functor, ε−1 can clearly be calculated:
let F ′ be a sheaf on V ′. Then we have

(1.4.1) (ε−1 F ′)(U) = F ′(ε·(U))

by [22, A.3.0.2]. Thanks to this equality, many properties of F ′ also automati-
cally be applied to that of ε−1 F ′.

Having this strategy in mind, let us define first important sheaves on V .
Let OV ′ := ε∗ OV . For n ∈ Z, we denote by OV ′(n), the subsheaf of OV ′ consist-
ing of the homogeneous sections of degree n. We put OV (n) := ε−1( OV ′(n)), and
OV (∗) :=

⊕
n∈Z OV (n). We note that OV (∗) ∼= ε−1ε∗ OV . We get OV (n)|V̊ ∼=

q−1 OP (n) for any integer n by [22, A.3.0.5]. By [22, A.3.0.5], we also have

(1.4.2) p∗ OV (∗) ∼= s−1 OV (∗) ∼= R̃

where ·̃ denotes the associated quasi-coherent OX -module.

1.5. — Let ( A, Ai) be the filtered quasi-coherent OX -algebra associated
to (A,Ai) on X. Let f be a homogeneous element of gr(A), and we put
S1(f) := {fm}m≥0 ⊂ gr(A). Let Sn(f) be the multiplicative set of A•,n con-
structed from S1(f) (see 1.2), and define A′•,n(f) := Sn(f)−1A•,n. We define
a sheaf B′•,n on V ′ to be the sheaf associated to the presheaf D(f) 7→ A′•,n(f)

over the open basis of V ′ consisting of D(f) with a homogeneous element f
in gr(A). By [22, A.3.1.1], we know that

(1.5.1) Γ(D(f), B′•,n) = A′•,n(f).
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We define
B′i := lim←−

n→∞
B′i,n, B′ := lim−→

i→∞
B′i.

Then we have an isomorphism of complete filtered rings (A,Ai)S1(f)
∼−→

Γ(D(f), ( B′, B′i)) for a homogeneous element f of gr(A) by [22, (A.3.1.2)].
Now, let us use the general machinery to define a filtered sheaf of rings on V
as follows:

( B, Bi) := ε−1( B′, B′i).

There is a canonical homomorphism of filtered rings ϕ : p−1( A, Ai)→ ( B, Bi)
on V . The filtered ring ( B, Bi) is called the microlocalization of ( A, Ai). By
[22, A.3.1.6], we have canonical isomorphisms of graded rings

(1.5.2) grn( B) ∼= OV (n), gr( B) ∼= OV (∗).

Remark. — Note that q∗( OV̊ (n)) ∼= OP (n) (resp. OV̊ (n)) is a quasi-coherent
OP -module (resp. OV̊ (0)-module). However, caution that, a priori, q∗( B|V̊ )

and q∗( Bi|V̊ ) do not have OP -module structure, nor do A|V̊ and Ai|V̊ have
OV̊ -module or OV̊ (0)-module structure.

1.6. — Let (M,Mi) be a filtered (A,Ai)-module such that Mi = 0 for i � 0

(and
⋃
i∈ZMi = M). Let ( M, Mi) be the quasi-coherent OX -module associated

to the filtered module (M,Mi). This is a filtered ( A, Ai)-module.
Using exactly the same construction (cf. [22, A.3.2]), we are able to define

a ( B′, B′i)-module ( N ′, N ′i) on V ′ such that we have an isomorphism of com-
plete filtered modules (M,Mi)S1(f)

∼−→ Γ(D(f), ( N ′, N ′i)) for a homogeneous
element f of gr(A). We define a filtered ( B, Bi)-module by

( N , N i) := ε−1( N ′, N ′i).

There is a homomorphism ϕM : p−1( M, Mi)→ ( N , N i) over ϕ.

1.7. Lemma. — Let g̃r( M) be the quasi-coherent OV -module associated with the
gr(A) = R-module gr(M). Suppose gr(M) is finitely presented over gr(A). Then
we have the following equalities in V :

Supp(g̃r( M)) = Supp(gr( N )) = Supp( B⊗p−1 A p
−1 M).

Proof. — The first equality follows from [22, Proposition A.3.2.4 (i)]. Let us
show the second one. Let U := D(f) with a homogeneous element f of gr(A).
Since Γ(U, N ) is complete, it is in particular separated with respect to the
filtration. Thus, Γ(U, N ) = 0 if and only if Γ(U, gr( N )) ∼= gr

(
Γ(U, N )

)
= 0

where the first isomorphism follows from [22, A.3.2]. Combining this with [22,
Proposition A.3.2.4 (ii)], the lemma follows.
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Definition. — Assume M is an A-module of finite type. Then there exists a
good filtration {Mi}i∈Z (cf. [8, A.III 2.15]) of M. Suppose gr(A) is Noetherian.
The above lemma implies that Supp(g̃r( M)) does not depend on the choice
of good filtrations. We call this the characteristic variety of M and denote
by Char( M).

1.8. Remark. — These construction localize and are functorial. In particular,
we may globalize the definitions of microlocalizations on schemes not necessary
affine (cf. [22, A.3.3]).

1.9. — Now, we collect some basic facts on Noetherian conditions.

Definition. — Let X be a topological space, A be a sheaf of rings on X, and B
be an open basis of the topology.

(i) The ring A is said to be left Noetherian with respect to B if it satisfies
the following conditions.

1. It is a left coherent ring (i.e., locally, any finitely generated left ideal of A
is finitely presented).

2. For any point x ∈ X, the stalk Ax is a left Noetherian ring.
3. For any U ∈ B, Γ(U, A) is a left Noetherian ring.

In the same way, we define a right (resp. two-sided) Noetherian ring with respect
to B. When there is no possible confusion, we abbreviate two-sided Noetherian
sheaf of rings with respect to B as Noetherian ring.

(ii) A filtered ring ( A, Ai) is said to be pointwise left (resp. right, two-sided)
Zariskian if the stalk Ax is left (resp. right, two-sided) Zariskian for any x ∈ X.

(iii) An A-algebra B is said to be of finite type over A if for any x ∈ X, there
exists an open neighborhood U of x and a surjection A[T1, . . . , Tn]|U � B|U .

Remark. — This definition of Noetherian ring is slightly different from that
of [19, Definition 1.1.1], who replaced 3 by Condition (c): for any open set U
of X, a sum of left coherent A|U -ideals are also coherent. In §6, we show that
a stronger property than Condition (c) holds for some of the Noetherian rings
defined in this paper.

Example. — LetX be a Noetherian scheme. LetB be the open basis consisting
of affine open subschemes of X. Then OX is a Noetherian ring with respect
toB. More generally, let X be a locally Noetherian adic formal scheme (cf. [16,
I, 10.4.2]) and C be the open basis consisting of affine open formal subschemes
of X . Then OX is Noetherian with respect to C by [16, I, 10.1.6].
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1.10. — The following lemma is a generalization of [5, 3.3.6] to filtered rings.

Lemma. — Let ( A, {Ai}i∈Z) be a filtered ring on a topological space X. Let B
be an open basis of the topological space X. Suppose that the following conditions
hold:

1. For any U ∈ B, the filtered ring
(
Γ(U, A),Γ(U, Ai)

)
is complete.

2. The graded ring gr( A) is left Noetherian with respect to B.
3. For V,U ∈ B such that V ⊂ U , the restriction homomorphism

Γ(U, gr( A))→ Γ(V, gr( A)) is right flat.
4. For any U ∈ B, the canonical homomorphism gr(Γ(U, A))→ Γ(U, gr( A))

is an isomorphism.

Then, for any x ∈ X, the canonical homomorphism

(1.10.1) Ax → A∧x
is right faithfully flat, where ∧ denotes the completion with respect to the fil-
tration on Ax. Moreover, ( A, Ai) is pointwise left Zariskian, and A is left
Noetherian with respect to B. The statement is also valid if we replace left
(resp. right) by right (resp. left).

Proof. — We only deal with the left case, and modules are always assumed to
be left modules. Let x ∈ X, and take U ∈ B such that x ∈ U . Let us check
that the restriction homomorphism

(1.10.2) r : Γ(U, A)→ A∧x
is flat. Indeed, consider the following commutative diagram

gr(Γ(U, A))
∼ //

gr(r)

xx ��

Γ(U, gr( A))

��
gr( A∧x ) gr( Ax)∼

oo
∼

// gr( A)x

where the vertical homomorphisms are the restriction homomorphism of A
and gr( A). The upper horizontal homomorphism is an isomorphism by condi-
tion 4. The right vertical homomorphism is flat by condition 3, and thus gr(r)

is flat as well. Since the filtered rings Γ(U, A) and A∧x are complete and their
associated graded rings are Noetherian by conditions 2 and 4, these filtered
rings are in fact Noetherian filtered (cf. 1.1.6). Since the source and the target
of r are Noetherian filtered complete rings, r is flat by the flatness of gr(r) and
[18, Ch. II, 1.2.1]. By taking the inductive limit over U , (1.10.1) is flat.

We say that an Ax-module M is monogenic of finite presentation if there
exists a surjection Ax → M such that the kernel is a finitely generated ideal
of Ax. By [5, 3.3.5], to check that (1.10.1) is faithful, it suffices to show that for
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any Ax-module M monogenic of finite presentation such that A∧x ⊗M = 0, we
getM = 0. Therefore, we assumeM to be monogenic of finite presentation such
that A∧x ⊗M = 0. By this assumption, there exist U ∈ B and a Γ(U, A)-mod-
ule MU monogenic of finite presentation such that Ax ⊗MU

∼= M . We fix a
surjection φ : AU := Γ(U, A)→MU . This induces a good filtration on MU . We
define an AU -ideal K by the following short exact sequence

0→ K → AU
φ−→MU → 0.

We consider the induced filtration from AU on K. Then we have the following
exact sequence

0→ gr(K)→ gr( AU )
gr(φ)−−−→ gr(MU )→ 0.

Since gr( A∧x ) is flat over gr( AU ) ∼= Γ(U, gr( A)), the sequence

(1.10.3) 0→ gr( A∧x )⊗gr( AU ) gr(K)→ gr( A∧x )→ gr( A∧x )⊗gr( AU ) gr(MU )→ 0

is exact. The sequence

(1.10.4) 0→ A∧x ⊗ AU
K → A∧x ⊗ AU

AU → 0

is also exact by the flatness of r in (1.10.2) and the hypothesis on M . We
endow these two modules with the tensor filtrations (cf. [18, p.57]). Consider
the following diagram:

0 // gr( A∧x )⊗ gr(K)
β //

��

gr( A∧x ) //

∼
��

gr( A∧x )⊗ gr(MU ) // 0

gr( A∧x ⊗K)
α // gr( A∧x ⊗ AU )

where the vertical homomorphisms are canonical ones. The right vertical ho-
momorphism is an isomorphism by [18, Ch. I, 6.15]. Since the upper row is
exact and

gr( A∧x )⊗ gr(K)→ gr( A∧x ⊗K)

is surjective by [18, p.58], α is injective. This implies that the homomor-
phism (1.10.4) is strict by [18, Ch. I, 4.2.4 (2)], and α is an isomorphism.
Thus, by diagram chasing, β is also an isomorphism, and

gr( Ax)⊗ gr(MU ) ∼= gr( A∧x )⊗ gr(MU ) = 0.

Since gr( Ax) ∼= (gr( A))x, this shows that there exists V ∈ B such that x ∈ V ,
V ⊂ U , and

Γ(V, gr( A))⊗Γ(U,gr( A)) gr(MU ) = 0.
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Let MV := Γ(V, A) ⊗Γ(U, A) MU , and equip it with the tensor filtration. Since
the filtration on MU is good, the filtration on MV is also good by [18, Ch. I,
6.14]. Since the canonical homomorphism

Γ(V, gr( A))⊗Γ(U,gr( A)) gr(MU ) ∼= gr
(
Γ(V, A)

)
⊗gr(Γ(U, A)) gr(MU )→ gr(MV )

is surjective, here the first isomorphism comes form condition 4, we have
gr(MV ) = 0. Since Γ(V, A) is complete and the filtration on MV is good,
we obtain that MV = 0 (cf. 1.1.6). Since M ∼= Ax ⊗ AV

MV = 0, the fully
faithfulness follows.

Since gr( Ax) is Noetherian, Ax is Zariskian by [18, Ch. II, 2.1.2 (4)], and in
particular Ax is Noetherian. To show that A is Noetherian, it remains to prove
that A is coherent. For this, it suffices to check the conditions of [5, 3.1.1]. We
have already checked (a). The flatness of the restriction Γ(U, A)→ Γ(V, A) for
open subsets V ⊂ U in B follows by [18, Ch. II, 1.2.1], thus (b) is satisfied,
and the lemma follows.

1.11. Lemma. — We use the notation of 1.4 and 1.5, and we further assume
that gr(A) is a Noetherian ring.

(i) The rings OV (0) and OV (∗) are Noetherian. Moreover, OV (n) is a co-
herent OV (0)-module on V̊ for any integer n.

(ii) The microlocalization B is Noetherian and pointwise Zariskian on V .
Moreover, ϕ is flat.

Proof. — Let us check (i). By [16, II, 2.1.5], the ring A0 is also Noethe-
rian, and gr(A) is of finite type over A0. Then by the same argument as
[22, A.3.1.8], OV (0) and OV (∗) are Noetherian. Now, since OP (n) is a co-
herent OP ∼= OP (0)-module and OX(∗) is of finite type over OX(0), the second
claim follows.

Let us check (ii). Applying Lemma 1.10 to the microlocalization B on V̊ , B is
a Noetherian ring and pointwise Zariskian on V̊ by (1.5.2). Let us show B is
in fact Noetherian and pointwise Zariskian on V . It is pointwise Zariskian
on the zero section by (1.4.1) (or more directly by [22, A.3.1.5]). To check
condition (i)-2 of Definition 1.9, we apply (1.4.2), and for (i)-3, we apply (1.4.1).
It remains to show that B is coherent, which follows directly from [5, 3.1.1].
The flatness follows by [22, A.3.1.7].

1.12. Lemma. — Let (A, {Ai}i∈Z) be a filtered ring such that A0 is Noetherian
filtered,

⊕
i≥0 gri(A) is Noetherian. Then A is Noetherian filtered.

Proof. — By [16, II, 2.1.5, 2.1.6], gri(A) is finitely generated over A0 for
any i ∈ Z. Then the statement is nothing but [19, Proposition 1.1.5] apply-
ing in the case where the topological space is just a point.
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1.13. Lemma. — Let ( A, Ai) be a pointwise Zariskian filtered ring on a topo-
logical space X. Let ( M, Mi) be a good filtered ( A, Ai)-module. Then the filtra-
tion {Mi} is separated (i.e., lim←−i Mi = 0).

Proof. — Since lim←−i Mi ↪→ M, we get the following commutative diagram for
any x ∈ X.

(lim←−i Mi)x
� � //

((

Mx

lim←−i Mi,x.

OO

Since A is pointwise Zariskian, lim←−i Mi,x = 0, and thus, lim←−i M = 0.

2. Microdifferential sheaves

We apply the results of the previous section to the theory of arithmetic
D-modules, and define the ring of naive microdifferential operators of finite
level.

2.1. — Let S be a scheme over Zp (which may not be locally of finite type).
Let X be a smooth scheme over S, and let m be a non-negative integer. Then
we may consider the sheaf of S-linear differential operators of level m denoted
by D

(m)
X/S on X. We often abbreviate this as D

(m)
X . For the details of this sheaf,

we can refer to [5, 6, 7]. For i ∈ Z, let D
(m)
X,i be the sub- OX -module consisting

of operators whose orders are less than or equal to i in D
(m)
X (cf. [5, 2.2.1]).

By definition, D
(m)
X,i = 0 for i < 0. Then

{
D

(m)
X,i

}
i∈Z is an increasing filtration

of D
(m)
X , which we call the filtration by order. By [5, 2.2.4], the ring gr(D

(m)
X )

is commutative. Let (1)

T (m)∗X := Spec(gr(D
(m)
X )), P (m)∗X := Proj(gr(D

(m)
X )).

We call these the pseudo cotangent bundles of level m. When we need to em-
phasize the base, we denote T (m)∗X by T (m)∗(X/S). When m = 0, we de-
note T (m)∗X and P (m)∗X by T ∗X and P ∗X respectively, which are nothing
but the usual cotangent bundles of X. Let T̊ (m)∗X := T (m)∗X \ s(X) where

(1) We warn the reader that the notation T (m)∗X is used in [5] for the associated reduced
scheme

(
Spec(gr(D

(m)
X ))

)
red

.
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s : X → T (m)∗X denotes the zero section. Then there exist the canonical mor-
phisms (cf. 1.4) as follows:

T (m)∗X

πm ))

T̊ (m)∗X q //oo

��

P (m)∗X

uu
X.

Recall the notation OT (m)∗X(n) for n ∈ Z of 1.4 which is a subsheaf
of OT (m)∗X(∗) consisting of homogeneous elements of degree n. There is a
canonical isomorphism q−1 OP (m)∗X(n) ∼= OT (m)∗X(n) on T̊ ∗X for any inte-
ger n (cf. 1.4). We remind that OT (m)∗X does not coincide with OT (m)∗X(∗).
The following lemma is immediate from Lemma 1.11.

Lemma. — The rings OT (m)∗X(0), OT (m)∗X(∗) are Noetherian, and OT̊ (m)∗X(n)

is a coherent OT̊ (m)∗X(0)-module for any integer n. Moreover, OT̊ (m)∗X(∗) is an
OT̊ (m)∗X(0)-algebra of finite type.

2.2. — We can consider the microlocalization of (D
(m)
X/S ,D

(m)
X/S,i) denoted

by (E
(m)
X/S ,E

(m)
X/S,i) using the technique of 1.4. We often abbreviate this

as (E
(m)
X ,E

(m)
X,i ). This is a filtered ring on T (m)∗X. Then there exists a

canonical homomorphism of filtered rings

ϕm : π−1
m (D

(m)
X ,D

(m)
X,i )→ (E

(m)
X ,E

(m)
X,i ).

By (1.5.2), we have canonical isomorphisms

(2.2.1) grn(E
(m)
X ) ∼= OT (m)∗X(n), gr(E

(m)
X ) ∼= OT (m)∗X(∗).

Since gr(D
(m)
X ) is a Noetherian ring by the proof of [5, 2.2.5], E

(m)
X is point-

wise Zariskian and Noetherian, and moreover ϕm is flat by Lemma 1.11. Since
the canonical homomorphism π−1

m πm∗ OT (m)∗X(∗) → OT (m)∗X(∗) is injective,
gr(ϕm) is injective as well, and thus ϕm is strictly injective by [18, Ch. I, 4.2.4
(2)].

Remark. — The π−1 OX -modules E
(m)
X and E

(m)
X,i do not possess OT (m)∗X -mod-

ule structure (cf. Remark 1.5).

2.3. Lemma. — We assume that S and X are affine, and S = Spec(A).
Let S′ := Spec(B) be an affine scheme finite over S. We put X ′ := X ×S S′,
and we have the base change isomorphism T (m)∗(X ′/S′) ∼= T (m)∗(X/S)×S S′
(cf. [5, 2.2.2]). Let f be a homogeneous section of Γ(T (m)∗X, OT (m)∗X), and f ′
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be the image in Γ(T (m)∗X ′, OT (m)∗X′). We put U := D(f) and U ′ := D(f ′).
Then there exists a canonical isomorphism of filtered rings

Γ
(
U, (E

(m)
X/S ,E

(m)
X/S,i)

)
⊗A B

∼−→ Γ
(
U ′, (E

(m)
X′/S′ ,E

(m)
X′/S′,i)

)
.

Proof. — We may assume that deg(f) > 0. By [5, 2.2.2], there exists an iso-
morphism

(2.3.1) Γ
(
X, (D

(m)
X/S ,D

(m)
X/S,i)

)
⊗A B

∼−→ Γ
(
X ′, (D

(m)
X′/S′ ,D

(m)
X′/S′,i)

)
.

We denote Γ
(
U, (E

(m)
X ,E

(m)
X,i )

)
by (EX , EX,i), and Γ

(
X ′, (D

(m)
X′ ,D

(m)
X′,i)

)
by (DX′ , DX′,i). The isomorphism (2.3.1) induces a homomorphism of fil-
tered rings (DX′ , DX′,i) → (EX , EX,i) ⊗A B. Since B is finite over A,
(EX , EX,i) ⊗A B is a complete filtered ring by [18, Ch. II, 1.2.10 (5)]. By the
universality [22, Proposition A.2.3.3], (EX , EX,i)⊗AB is the microlocalization
of (DX′ , DX′,i), and the lemma follows.

Remark. — Consider the general situation of 2.1, and let S′ → S be a fi-
nite morphism. Put X ′ := X ×S S′. We have the base change isomorphism
f ′ : T (m)∗(X ′/S′)

∼−→ T (m)∗(X/S) ×S S′, and using the lemma, we have the
following isomorphism:

f ′−1
(
(E

(m)
X/S ,E

(m)
X/S,i)⊗S OS′

) ∼−→ (E
(m)
X′/S′ ,E

(m)
X′/S′,i).

Note, however, that since E
(m)
X and E

(m)
X,i are not quasi-coherent, a priori,

the tensor product does not commute with global section functor over affine
schemes. In this sense, the assertion of the lemma is slightly stronger than this
global version.

2.4. — Now, we pass to the limit. Let R be a complete discrete valuation ring
of mixed characteristic (0, p) whose residue field is denoted by k. We denote
the field of fractions by K, and let π be a uniformizer of R. For a non-negative
integer i, we put Ri := R/(πi+1). From now on, we use these notation freely
without referring to this subsection.

Let X be a smooth formal scheme over R. We denote by Xi the reduction
of X over Ri. We define T (m)∗X and P (m)∗X by the limit of T (m)∗Xi and
P (m)∗Xi over i respectively. We also define OT (m)∗X (∗) (resp. OT (m)∗X (n)) to
be the limit of OT (m)∗Xi

(∗) (resp. OT (m)∗Xi
(n)) over i, and put OT (m)∗X ,Q(∗)

(resp. OT (m)∗X ,Q(n)) to be OT (m)∗X (∗) ⊗ Q (resp. OT (m)∗X (n) ⊗ Q).
Let ε· : O(V )→ O(V ′) be the functor in 1.4 where V = T (m)∗X .
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Definition. — (i) Let B′ be the open basis of V ′ consisting of D(f) in T (m)∗X
over an affine open subscheme U of X where f is a homogeneous element
of Γ(T (m)∗U , OT (m)∗U ). An open subset U ⊂ T̊ (m)∗U is said to be strictly
affine if U ∈ B′.

(ii) We define an open basis B of V to be the set consisting of U ∈ O(V )

such that ε·(U) ∈ B′.

Lemma. — The rings OT (m)∗X (0) and OT (m)∗X (∗) are Noetherian with respect
to B, and OT̊ (m)∗X (n) is a coherent OT̊ (m)∗X (0)-module for any integer n.
Moreover, OT̊ (m)∗X (∗) is an OT̊ (m)∗X (0)-algebra of finite type.

Proof. — The proof is the same as Lemma 1.11, so we only sketch here.
We put V := T (m)∗X and V̊ := T̊ (m)∗X . To check that OV̊ (n) is a co-
herent OV̊ (0)-module, it suffices to point out that OP (m)∗X (n) is a coherent
OP (m)∗X

∼= OP (m)∗X (0)-module. The proof that OV̊ (∗) is of finite type is the
same. It remains to show that OV (0) is Noetherian. The only remaining thing
we need to check is the coherence of OV (0) and OV (∗) around the zero section,
and for this, apply [5, 3.1.1] as Lemma 1.11.

We define a sheaf of rings on the topological space T (m)∗X ≈ T (m)∗X0

(≈ denotes the canonical homeomorphism of topological spaces) by

Ê
(m)
X := lim←−

i

E
(m)
Xi

.

For j ∈ Z, we also define
E

(m)
X ,j := lim←−

i

E
(m)
Xi,j

.

We remark that the “filtration” E
(m)
X ,j of Ê

(m)
X is not exhaustive. We define a

submodule (which is in fact a ring by Lemma 2.5 (iii) below) by

E
(m)
X := lim−→

j→∞
E

(m)
X ,j ⊂ Ê

(m)
X .

There is a canonical homomorphism of rings on T (m)∗X

(2.4.1) ϕ̂m : π−1
m D̂

(m)
X → Ê

(m)
X .

This homomorphism is injective by the injectivity of ϕm in 2.2. Since
ϕ̂m(π−1

m D
(m)
X ,n) ⊂ E

(m)
X ,n, ϕ̂m|π−1

m D
(m)
X

induces a homomorphism of mod-

ules π−1
m D

(m)
X → E

(m)
X . We abusively denote this homomorphism by ϕm.

We see from the following Lemma 2.5 (iii) that this homomorphism is in fact
a homomorphism of rings.
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2.5. Lemma. — Let X be a smooth formal scheme over R. Let U be an open
formal subscheme of T (m)∗X belonging to B. Let i be a non-negative integer,
and we denote U ⊗Ri by Ui.

(i) The ring Γ(U , Ê
(m)
X ) is π-adically complete and flat over R. Moreover,

the canonical homomorphisms Ê
(m)
X ⊗ Ri → E

(m)
Xi

and E
(m)
X ⊗ Ri → E

(m)
Xi

are
isomorphisms.

(ii) Let j be an integer, and k be a positive integer. Let E be one of E
(m)
X ,j+k,

E
(m)
X , Ê

(m)
X . We have

Γ(U ,E /E
(m)
X ,j)

∼= Γ(U ,E )/Γ(U ,E
(m)
X ,j), E

(m)
X ,j+k/E

(m)
X ,j
∼= lim←−

i

E
(m)
Xi,j+k

/E
(m)
Xi,j

.

(iii) Let j and k be integers. Then E
(m)
X ,j · E

(m)
X ,k ⊂ E

(m)
X ,j+k in Ê

(m)
X , and in

particular, (E
(m)
X , {E (m)

X ,j}j∈Z) is a filtered ring. Moreover, the π-adic completion

of E
(m)
X is isomorphic to Ê

(m)
X .

(iv) The filtered rings E
(m)
Xi

and E
(m)
X are complete with respect to the filtra-

tion by order.

Proof. — For a projective system { F i}i≥0 on a topological space T and for an
open subset U of T ,

(2.5.1) Γ(U, lim←−
i

F i)
∼−→ lim←−

i

Γ(U, F i)

by [16, 0I, 3.2.6]. For an inductive system { F i}i≥0 on a Noetherian topological
space T and for an open subset U of T ,

(2.5.2) lim−→
i

Γ(U, F i)
∼−→ Γ(U, lim−→

i

F i)

by [15, Ch. II, 3.10]. Since U is an open subset of an affine formal scheme
ε·(U ), U is a Noetherian space.

By (2.5.1) and the definition of Ê
(m)
X in 2.4, Γ(U , Ê

(m)
X ) ∼= lim←−i Γ(Ui,E

(m)
Xi

).

Since Γ(Ui,E
(m)
Xi

) is flat over Γ(Ui,D
(m)
Xi

) (cf. 2.2), the ring Γ(Ui,E
(m)
Xi

) is flat
over Ri. Thus we get first two claims of (i) by Lemma 2.3 and the following
Lemma 2.6. For E

(m)
X ⊗Ri

∼−→ E
(m)
Xi

, we show E
(m)
X ,j ⊗Ri

∼−→ E
(m)
Xi,j

for any j ∈ Z
by the same argument, and take the inductive limit over j.

Let us prove (ii) for the E = E
(m)
X ,j+k case. By (1.5.1),

Γ(Ui,E
(m)
Xi,j+k

/E
(m)
Xi,j

) ∼= Γ(Ui,E
(m)
Xi,j+k

)/Γ(Ui,E
(m)
Xi,j

).
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Since the projective system
{

Γ(Ui,E
(m)
Xi,j

)
}
i≥0

satisfies the Mittag-Leffler con-
dition by (i), the sequence

0→ lim←−
i

Γ(Ui,E
(m)
Xi,j

)→ lim←−
i

Γ(Ui,E
(m)
Xi,j+k

)→ lim←−
i

Γ(Ui,E
(m)
Xi,j+k

/E
(m)
Xi,j

)→ 0

is exact. Considering (2.5.1), this shows that

(2.5.3) Γ(U , lim←−
i

E
(m)
Xi,j+k

/E
(m)
Xi,j

) ∼= Γ(U ,E
(m)
X ,j+k)/Γ(U ,E

(m)
X ,j).

Thus, since B is a basis of the topology, the canonical homomorphism
E

(m)
X ,j+k/E

(m)
X ,j → lim←−i E

(m)
Xi,j+k

/E
(m)
Xi,j

is an isomorphism, and the second equality
of (ii) follows. The first equality of (ii) follows by using (2.5.3) once again.
To deal with the E = Ê

(m)
X case, just replace E

(m)
Xi,j+k

(resp. E
(m)
X ,j+k) by E

(m)
Xi

(resp. Ê
(m)
X ) in the argument above. For the E = E

(m)
X case, use (2.5.2) and

the E = E
(m)
X ,j+k case.

The first claim of (iii) follows since E
(m)
Xi

is a filtered ring. By (i), Ê
(m)
X is

the π-adic completion of E
(m)
X .

Let us prove (iv). The completeness of E
(m)
Xi

follows by definition. Let us see
the completeness of E

(m)
X . For an open affine subscheme U in B, consider the

following exact sequence

0→ Γ(U ,E
(m)
X ,k/E

(m)
X ,j)→ Γ(U , Ê

(m)
X /E

(m)
X ,j)→ Γ(U , Ê

(m)
X /E

(m)
X ,k)→ 0

for integers k ≥ j. The last surjection is deduced by using (ii). Since the
projective system

{
Γ(U ,E

(m)
X /E

(m)
X ,j)

}
j
satisfies the Mittag-Leffler condition

by (ii), the following sequence is exact:

0 // lim←−j lim−→k
E

(m)
X ,k/E

(m)
X ,j

//

∼
��

lim←−j lim−→k
Ê

(m)
X /E

(m)
X ,j

//

��

lim←−j lim−→k
Ê

(m)
X /E

(m)
X ,k

//

∼
��

0

lim←−j E
(m)
X /E

(m)
X ,j Ê

(m)
X Ê

(m)
X /E

(m)
X

where j → −∞ and k →∞. The middle vertical homomorphism is an isomor-
phism as well by the commutativity (2.5.1) and the fact that two projective
limits commute. Thus the lemma is proven.

2.6. Lemma. — Let {Ei}i≥0 be a projective system of R-modules such that for
each i, Ei is a flat Ri-module. Assume that the homomorphism Ei+1 ⊗Ri → Ei
induced by the transition homomorphism is an isomorphism for any non-
negative integer i. Let E := lim←−iEi. Then the canonical homomorphism
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E ⊗ Ri → Ei is an isomorphism for any non-negative integer j. Moreover,
E is π-adically complete and flat over R.

Proof. — We leave the proof to the reader.

2.7. Lemma. — Let V̊ := T̊ (m)∗X . Let A =
⊕

i∈Z Ai be a graded OV̊ (0)-alge-
bra of finite type on V̊ such that Ai is a coherent OV̊ (0)-module for any i ∈ Z.
Then for any V ⊂ U in B, the restriction homomorphism Γ(U, A)→ Γ(V, A) is
flat, and A is Noetherian with respect to B.

Proof. — We put O := OV̊ (0). Let us check the conditions of Definition 1.9 (i).
Condition 2 follows since A is of finite type over O. Let U be an open subset
of V̊ in B such that there exists a surjection φ : O[T1, . . . , Tn]|U → A|U . We
claim that the homomorphism

Γ(U, O[T1, . . . , Tn])→ Γ(U, A)

is surjective. Indeed, since Ai is a coherent O-module for any i, Ker(φ) is an
inductive limit of coherent O|U -modules. Since U is Noetherian and separated,
H1(U,−) commutes with inductive limit by [15, Ch. II, 4.12.1], and we have
H1(U,Ker(φ)) = 0, which implies the claim. Thus condition 3 is fulfilled. It
remains to show that A is a coherent ring. For this, it suffices to check the
conditions of [5, 3.1.1]. For V ⊂ U in B, we have the restriction isomorphism
Γ(V, O)⊗Γ(U, O) Γ(U, Ai)

∼−→ Γ(V, Ai) for any i since Ai is a coherent O-module
using (1.4.1). This induces an isomorphism

Γ(V, O)⊗Γ(U, O) Γ(U, A)
∼−→ Γ(V, A).

Since the restriction homomorphism Γ(U, O) → Γ(V, O) is flat, this isomor-
phism shows that Γ(U, A)→ Γ(V, A) is flat as well. Thus the claim follows.

2.8. Proposition. — Let X be a smooth formal scheme over R.
(i) The rings E

(m)
X , Ê

(m)
X , E

(m)
X ,0 are Noetherian with respect to B.

(ii) The homomorphism ϕ̂m of (2.4.1) is flat.
(iii) Let E be either E

(m)
X ,0 or E

(m)
X or Ê

(m)
X . For any open subsets U ⊃ V

in B, the restriction homomorphism Γ(U ,E )→ Γ(V ,E ) is flat.

Proof. — Let us prove (i). First, we show the claim for E
(m)
X and E

(m)
X ,0. Let us

check the conditions of Lemma 1.10 for E
(m)
X (resp. E

(m)
X ,0) on V̊ := T̊ (m)∗X .

Conditions 1 and 4 hold by Lemma 2.5. By Lemma 2.5 (ii), gr(E
(m)
X ) ∼= OV̊ (∗)

as graded rings. By Lemma 2.4, this implies that gri(E
(m)
X ) is a coherent

OV̊ (0)-module on V̊ for any i ∈ Z, and gr(E
(m)
X ) (resp. gr(E

(m)
X ,0)) is an

OV̊ (0)-module of finite type on V̊ . Thus by Lemma 2.7, conditions 2 and 3
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are fulfilled. This implies that E
(m)
X and E

(m)
X ,0 are Noetherian with respect

to B on V̊ . Using [18, Ch. II, 1.2.1], ϕ̂m is flat, and (ii) follows. It remains to
check that the rings are Noetherian around the zero section. By using (1.4.1),
we only need to prove the coherence. This follows from [5, 3.1.1].

For Ê
(m)
X , let us endow with the π-adic filtration

{
π−iÊ

(m)
X

}
i≤0

(cf. 1.1.2).

Since Ê
(m)
X is π-torsion free by Lemma 2.5 (i), the homomorphism E

(m)
X0

[T ]→
gr(Ê

(m)
X ) sending T to π ∈ gr1(Ê

(m)
X ) is an isomorphism. It is straightforward

to check the conditions of Lemma 1.10. We remind that the π-adic filtration
can also be used when we apply Lemma 1.10 to show that E

(m)
X ,0 is Noetherian.

To prove (iii), it suffices to apply (i) and [18, Ch. II, 1.2.1].

Remark. — By the proof, we can moreover say that E
(m)
X and E

(m)
X ,0 are point-

wise Zariskian with respect to the filtration by order on T̊ (m)∗X , and Ê
(m)
X and

E
(m)
X ,0 are pointwise Zariskian with respect to the π-adic filtration on T̊ (m)∗X .

2.9. — Now, we define

Ê
(m)
X ,Q := Ê

(m)
X ⊗Q, E

(m)
X ,Q := E

(m)
X ⊗Q.

Note that ⊗Q commutes with global section functor over Noetherian space
by [5, 3.4]. The homomorphism ϕ̂m of (2.4.1) induces a canonical injective
homomorphism

ϕ̂m ⊗Q : π−1
m D̂

(m)
X ,Q → Ê

(m)
X ,Q.

If there is no risk of confusion, we sometimes denote ϕ̂m ⊗Q abusively by ϕ̂m.
We call the sheaves E

(m)
Xi

, Ê
(m)
X , Ê

(m)
X ,Q the rings of naive microdifferential op-

erators of level m. Proposition 2.8 implies the following.

Corollary. — The rings E
(m)
X ,Q and Ê

(m)
X ,Q are Noetherian with respect to B.

Moreover, ϕ̂m ⊗Q and the restriction homomorphism Γ(U ,E )→ Γ(V ,E ) are
flat for U ⊃ V in B, where E is either E

(m)
X ,Q or Ê

(m)
X ,Q.

2.10. — Let us describe sections of rings of microdifferential operators explic-
itly. We use the notation of 2.4. Suppose in addition that X is affine, and
possesses a system of local coordinates {x1, . . . , xd}. Let

{
∂1, . . . , ∂d

}
be the

corresponding differential operators, and
{
ξ1, . . . , ξd

}
be the corresponding ba-

sis of Γ(T ∗X , OT∗X ). Let k be a positive integer. We have a differential oper-
ator ∂〈k〉(m)

i for any 1 ≤ i ≤ d in D
(m)
Xl

for any integer l ≥ 0 or in D̂
(m)
X (cf. [5,

2.2.3]). Write k = pm q + r with 0 ≤ r < pm. Recall that there is a relation
(cf. [5, (2.2.3.1)])

k! ∂
〈k〉(m)

i = q! ∂ki .
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Now, these operators define elements in gr(D
(m)
Xl

) by taking the principal sym-

bol (cf. 1.1.4). We denote σ(∂
〈k〉(m)

i ) by ξ〈k〉(m)

i in grk(D
(m)
Xl

) ⊂ gr(D
(m)
Xl

). From
now on, we use the multi-index notation. For example, for k = (k1, . . . , kd) ∈ Nd,
we denote by ξ〈k〉(m) := ξ

〈k1〉(m)

1 . . . ξ
〈kd〉(m)

d , ∂〈k〉(m) := ∂
〈k1〉(m)

1 . . . ∂
〈kd〉(m)

d , and
|k| := k1 + · · ·+kd. We denote by k ≥ k′ if ki ≥ k′i for any 1 ≤ i ≤ d. For n ∈ Z,
we sometimes denote (n, . . . , n) by n if there is no possible confusion.

Let
Θ ∈ Γ(T ∗X , OT∗X )

be a non-zero homogeneous section of degree n. We consider π−1
m OX as a sub-

ring of OT (m)∗X . This section induces a section Θ(m) ∈ Γ(T (m)∗X , OT (m)∗X )

for any integer m ≥ 0 as follows: we may write

(2.10.1) Θ =
∑
|k|=n

ak ξ
k

where k ∈ Nd and ak ∈ Γ(X , OX ) in a unique way. We put

Θ(m) :=
∑
|k|=n

ap
m

k

(
ξ〈p

m〉(m)
)k
.

The homogeneous element Θ induces also elements in D
(m)
X or D

(m)
Xl

. We put

Θ̃
(m)
le :=

∑
|k|=n

ap
m

k

(
∂〈p

m〉(m)
)k

where the subscript “le” stands for “left”. Since D
(m)
X ,Q

∼= D
(m′)
X ,Q for any non-

negative integerm′, we sometimes consider these operators as sections of D
(m′)
X ,Q.

Let U be the open affine subset of T (m)∗X defined by Θ(m). We claim
that the operator Θ̃

(m)
le is invertible is Γ(U ,E

(m)
X ). Indeed, the inverse of Θ̃

(m)
le

in E
(m)
Xl

has degree −npm for any l. Since the inverse of Θ̃
(m)
le is unique in E

(m)
Xl

,
these elements induce an element of lim←−l E

(m)
Xl,−npm = E

(m)
X ,−npm ⊂ E

(m)
X .

Let {bk,i} be a sequence in Γ(X , OX ) for k ∈ Nd and i ∈ N such that the
following holds: for each integer N , let βN,i := sup|k|=inpm+N |bk,i|, where | · |
denotes the spectral norm (cf. [5, 2.4.2]) on Γ(X , OX ). Then

(2.10.2) lim
i→∞

βN,i = 0, lim
N→+∞

sup
i

{
βN,i

}
= 0.

In the sequel, we consider the ring π−1
m D

(m)
Xl

(resp. π−1
m D̂

(m)
X ) as a subring

of E
(m)
Xl

(resp. Ê
(m)
X ) for any l by ϕm of 2.2 (resp. ϕ̂m of (2.4.1)). The sum

(2.10.3)
∑
N∈Z

∑
|k|−inpm=N

bk,i ∂
〈k〉(m) (Θ̃

(m)
le )−i
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converges in Γ(Ul,E
(m)
Xl

) for any l. We note that the order of ∂〈k〉(m) (Θ̃
(m)
le )−i

is N ,
∑
|k|−inpm=N ... is a finite sum by the first condition of (2.10.2), and∑

|k|−inpm=N ... = 0 for N � 0 by the second condition. Since these ele-

ments form a projective system over l, we have an element in Γ(U , Ê
(m)
X ).

Even though the sum of (2.10.3) does not converge in Γ(U , Ê
(m)
X ) with re-

spect to the π-adic topology in general (2), we abusively denote by (2.10.3) the
operator in Γ(U , Ê

(m)
X ).

Lemma. — For any element P ∈ Γ(U , Ê
(m)
X ), there exists a sequence {bk,i}

for k ∈ Nd and i ∈ N satisfying (2.10.2) such that P can be written as
(2.10.3). Moreover, if P ∈ Γ(U ,E

(m)
X ,j) for some integer j, we can take bk,i = 0

for |k| − inpm > j.

This is called a left presentation of levelm. We remind here that presentation
is not unique.

Proof. — Since Γ(U ,E
(m)
X ,j) and Γ(U , Ê

(m)
X ) are flat over R and π-adically

complete by Lemma 2.5 (i), it suffices to show that any element of Γ(U ,E
(m)
X0,j

)

can be written as ∑
N∈Z

∑
|k|−inpm=N

ck,i ∂
〈k〉(m) (Θ̃

(m)
le )−i,

with ck,i ∈ Γ(X0, OX0
) such that the following holds: for each integer N ,

ck,i = 0 for almost all couples (k, i) ∈ Nd × N such that |k| − inpm = N , and
ck,i = 0 for any |k| − inpm > j. This follows from 1.2.

Remark. — Instead of using Θ̃
(m)
le , we can also use

Θ̃
(m)
ri :=

∑
|k|=n

(
∂〈p

m〉(m)
)k
ap

m

k ,

to get right presentations. The construction is essentially the same, so we leave
the details to the reader.

(2) However, we are able to define a reasonable weaker topology on Γ(U , E
(m)
X ) such that

this sum converges. In the curve case, see [3, 1.2.2].
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2.11. — We used Θ̃
(m)
le to describe elements of Ê

(m)
X . We may also use a variant

of Θ̃
(m+j)
le for j ≥ 0 to describe them. Suppose Θ is written as (2.10.1). Then

we put

Θ(m,m+j) :=
∑
|k|=n

ap
m+j

k

(
ξ〈p

m〉(m)
)k pj

, Θ̃
(m,m+j)
le :=

∑
|k|=n

ap
m+j

k

(
∂〈p

m〉(m)
)k pj

.

If there is no risk of confusion, we sometimes abbreviate Θ̃
(m)
le (resp. Θ̃

(m,m′)
le )

as Θ(m) (resp. Θ(m,m′)).

Lemma. — Let m′ ≥ m be an integer, and we put j := m′ −m.
(i) Let rm,m′ := (pm

′
!) · (pm!)−p

j ∈ Zp. Then Θ(m,m′) = rnm,m′ ·Θ(m′).

(ii) The operator Θ̃
(m,m′)
le is invertible in Γ(U ,E

(m)
X ).

Proof. — We know that for any 1 ≤ i ≤ d,(
ξ
〈pm〉(m)

i

)pj

= rm,m′ · ξ
〈pm′ 〉(m′)
i .

Since rm,m′ does not depend on i, we get (i) by definition. For the proof of (ii),
just copy the proof of the invertibility of Θ̃

(m)
le in 2.10.

Let m′ ≥ m be an integer. We claim that any S ∈ Γ(U , Ê
(m)
X ) can also be

written as ∑
N∈Z

∑
|k|−inpm′=N

ck,i ∂
〈k〉(m) (Θ̃

(m,m′)
le )−i,

with a sequence {ck,i} in Γ(X , OX ) for k ∈ Nd and i ∈ N, such that the
following holds: for each integer N , let γN,i := sup|k|=inpm′+N |ck,i|. Then

lim
i→∞

βN,i = 0, lim
N→+∞

sup
i
{γN,i} = 0.

The verification is left to the reader.

2.12. — Assume further that Θ is of the form ξk0 +
∑
k ak ξ

k where
ak ∈ Γ(X , OX ), |k0| > 0, and k runs through k ∈ Nd such that |k| = |k0|
and k 6= k0. Then we can check that Γ(D(Θ), OT (m)∗Xj

(∗)) is a free
Γ(Xj , OXj

)-module with basis
{
ξ〈k〉(m) · (Θ(m,m′))−i

}
(k,i)∈I where

I :=
{

(k, i) ∈ Nd × Z
∣∣ k − pm′k0 is not ≥ 0

}
.

Let m′ ≥ m. Using this basis, we define a continuous homomorphism of left
Γ(X , OX )-modules

φ : Γ
(
D(Θ), OT (m)∗X (∗)

)
→ Γ

(
D(Θ),E

(m)
X

)
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by sending ξ〈k〉(m) ·(Θ(m,m′))−i to ∂〈k〉(m) ·(Θ̃(m,m′)
le )−i. Now, take Pk belonging

to Γ(U , OT (m)∗X (k)) for each k ∈ Z such that limk→∞ |Pk| = 0. Then the
infinite sum

∑
k φ(Pk) makes sense in Γ(U , Ê

(m)
X ) as (2.10.3). Conversely, we

have the following lemma whose verification is similar.

Lemma. — For any element P ∈ Γ(U , Ê
(m)
X ), there exists a unique Pk ∈

Γ(U , OT (m)∗X (k)) for each k ∈ Z such that limk→∞ |Pk| = 0, and P =
∑
k φ(Pk).

2.13. Example. — Consider the case where dim(X ) = 1, and X possesses a local
coordinate. Let U := T (m)∗X \ s(X ) where s is the zero section. Take k > 0,
and write k = q·pm−r where 0 ≤ r < pm. Put ∂〈−k〉(m) := ∂〈r〉(m) · (∂〈pm〉(m))−q,
which is defined in Γ(U ,E

(m)
X ). Then any element of Γ(U , Ê

(m)
X ) can be written

uniquely as
∑

k∈Z
ak · ∂〈k〉(m) with ak ∈ Γ(X , OX ) such that limk→∞ ak = 0.

2.14. — Let us clarify the relation between the characteristic varieties and the
supports of microlocalizations. Let M be a coherent D̂

(m)
X ,Q-module. Let us recall

the definition of the characteristic variety of M defined in [7, 5.2.4]. First, we
take a π-torsion free coherent D̂

(m)
X -module M ′ such that M ′ ⊗Q ∼= M using

[5, 3.4.5]. Then, M ′/π is a coherent D
(m)
X0

-module. Now, we can check that
Char(M ′/π) ⊂ T (m)∗X0 (cf. Definition 1.7) does not depend on the choice
of M ′. This Char(M ′/π) is called the characteristic variety of M denoted (3)

by Char(m)(M ). By using the canonical homeomorphism T (m)∗X0 ≈ T (m)∗X ,
we consider that the characteristic varieties are in T (m)∗X .

Let us define another subvariety of T (m)∗X defined by M . Consider the
following coherent Ê

(m)
X ,Q-module

Ê
(m)
X ,Q(M ) := Ê

(m)
X ,Q ⊗π−1

m D̂
(m)
X ,Q

π−1
m M ,

which is called the microlocalization of M . Note here that since Ê
(m)
X ,Q(M ) is an

Ê
(m)
X ,Q-module of finite type, the support Supp(Ê

(m)
X ,Q(M )) ⊂ T (m)∗X is closed

by [16, 0I, 5.2.2] (4).

2.15. Proposition. — Let M be a coherent D̂
(m)
X ,Q-module. Then, we have the

following equality of closed subsets of T (m)∗X :

Char(m)(M ) = Supp(Ê
(m)
X ,Q(M )).

(3) We warn that the characteristic variety Char(m)(M ) is denoted by Car(m)(M ) in [7].
(4) In [16], only commutative case is treated, but the same argument can be used also for
non-commutative case.
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Proof. — Take a coherent D̂
(m)
X -module M ′ flat over R and M ′ ⊗ Q ∼= M .

Let us calculate the support of the microlocalization. Since Ê
(m)
X is pointwise

Zariskian with respect to the π-adic filtration by Remark 2.8, the π-adic filtra-
tion on Ê

(m)
X ⊗ π−1

m M ′ is separated by Lemma 1.13, and thus

Supp(Ê
(m)
X ⊗π−1

m M ′) = Supp(E
(m)
X ⊗π−1

m M ′) = Char(M ′⊗k) =: Char(m)(M ),

where the second equality holds by Lemma 1.7. Moreover, since Ê
(m)
X is flat over

π−1
m D̂

(m)
X , Ê

(m)
X ⊗M ′ is π-torsion free. This implies that Supp(Ê

(m)
X ,Q(M )) =

Supp(Ê
(m)
X ⊗ π−1

m M ′), and the proposition follows.

2.16. Remark. — P. Berthelot pointed out to the author another method to
define Ê

(m)
X . Let X be a smooth affine formal scheme over R. Let Θ be a

homogeneous section of Γ(T ∗X , OT∗X ). For each i ≥ 0, there exists an inte-
ger m′ ≥ m such that Θ̃

(m,m′)
le is contained in the center of D

(m)
Xi

. Note that in

this case, Θ̃
(m,m′)
le = Θ̃

(m,m′)
ri . Let A be a ring, and S be a multiplicative system

of A consisting of elements in the center of A. We can construct the ring of
fractions S−1A as the commutative case. (The details are left to the reader.)
Using this, we define

Γ(D(Θ(m)),L D
(m)
Xi

) := S−1
Θ(m,m′) Γ(D(Θ(m)), π−1D

(m)
Xi

),

where SΘ(m,m′) denotes the multiplicative system generated by Θ̃
(m,m′)
le . We can

check easily that this does not depend on the choice of m′ and defines a sheaf.
By taking the completion with respect to the filtration by order, we get E

(m)
Xi

.
By definition, the sheaf L D

(m)
Xi

is a Noetherian ring.

3. Pseudo cotangent bundles and pseudo polynomials

3.1. — Recall the notation of 2.4. Let A be a commutative R-algebra, m be a
non-negative integer, and d be a positive integer. We define

A[ξ1, . . . , ξd]
(m) := A

[
ξ
〈pi〉(m)

j | j = 1, . . . , d, i = 0, . . . ,m
]
/Im

where ξ〈p
i〉(m)

j is an indeterminate for any i and j, and Im is the ideal generated
by the relations

(ξ
〈pi〉(m)

j )p =
(pi+1)!

(pi!)p
ξ
〈pi+1〉(m)

j

for 1 ≤ j ≤ d and 0 ≤ i < m. We note that (pi+1!) · (pi!)−p ∈ Zp. We define

deg
(
ξ
〈pi〉(m)

j

)
:= pi, which makes A[ξ1, . . . , ξd]

(m) a graded ring. We call this the
ring of pseudo polynomials over A. We denote by A{ξ1, . . . , ξd}(m) the π-adic
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completion of A[ξ1, . . . , ξd]
(m). We call this the pseudo Tate algebra over A. We

note that for an R-algebra A,

A⊗R R[ξ1, . . . , ξd]
(m) ∼= A[ξ1, . . . , ξd]

(m).

Lemma. — Let A be a commutative R-algebra. For any non-negative inte-
gers m′ ≥ m, there exists a unique isomorphism of graded rings

A[ξ1, . . . , ξd]
(m) ⊗Q ∼−→ A[ξ1, . . . , ξd]

(m′) ⊗Q

sending ξ〈1〉(m)

i to ξ
〈1〉(m′)
i for 1 ≤ i ≤ d.

Proof. — Left to the reader.

3.2. Lemma. — Let X = Spf(A) be an affine smooth formal scheme over R
possessing a system of local coordinates {x1, . . . , xd} on X . Let Ai := A⊗RRi.
Then there exists a unique isomorphism of graded rings

Ai[ξ1, . . . , ξd]
(m) ∼−→ Γ(Xi, gr(D

(m)
Xi

))

sending ξ〈p
i〉(m)

j to σ(∂
〈pi〉(m)

j ), where σ denotes the principal symbol (cf. 1.1.4),
for 1 ≤ k ≤ d.

Proof. — To construct the homomorphism of graded rings, use [5, 2.2.4]. This
homomorphism is surjective by [5, 2.2.5]. To check the injectivity, it suffices to
show that, for any k ≥ 0, the parts of degree k of both sides are free over Ai
with the same ranks. The detail is left to the reader.

3.3. — LetX be a smooth scheme over k, andm ≥ 0 be an integer. LetX(m) :=

X ⊗k,Fm∗
k

k where Fm∗k : k → k is the m-th absolute Frobenius homomorphism
(i.e., the homomorphism sending x to xp

m

). By [7, 5.2.2], we have a canonical
isomorphism

(T (m)∗X)red
∼−→ X ×X(m) T ∗X(m)

where red denotes the associated reduced scheme. The scheme T ∗X(m) is de-
duced from T ∗X by the base change X(m) → X. This induces the canonical
morphism of schemes (which may not be a morphism over k)

(T (m)∗X)red → T ∗X

such that the underlying continuous map is a homeomorphism of topological
spaces.

Now, let X be a smooth formal scheme over R. Since the topological space
of T (m)∗Xi is homeomorphic to that of T (m)∗X , we also get a canonical home-
omorphism T (m)∗X ≈ T ∗X . Consider the situation as in 2.10. The affine
open subset of T ∗X defined by Θ and that of T (m)∗X defined by Θ(m) are
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homeomorphic under this canonical homeomorphism. From now on, we identify
the spaces T ∗X , T (m)∗X , T ∗Xi, and T (m)∗Xi using these homeomorphisms.
In particular, we consider E

(m)
X etc. as sheaves on T ∗X or T ∗Xi. We denote

the projection π : T ∗X →X . The notation “π” is the same as the uniformizer
of R, but we do not think there is any confusion. This identification also induces
the identification of topological spaces

P ∗X ≈ P ∗Xi ≈ P ∗(m)Xi ≈ P ∗(m)X .

3.4. Lemma. — Let X be an affine smooth formal scheme over R of dimen-
sion d. We use the notation and the identifications in 3.3. We take non-negative
integers m′ ≥ m.

(i) For any integer k, there exist integers ak, bk ≥ 0 such that the following
holds: let Θ ∈ Γ(T ∗X , OT∗X ) be a homogeneous section of degree n.

(a) The operator
pak ∂〈l〉(m) (Θ(m,m′))−i,

which is a priori contained in Γ(D(Θ),E
(m′)
X ,Q ) by Lemma 2.11 (i), is con-

tained in Γ(D(Θ),E
(m′)
X ) for any |l| − inpm′ ≥ k. If d pm′+1 < k, we may

take ak = 0.
(b) The operator

pbk ∂〈l〉(m′) (Θ(m′))−i

is in Γ(D(Θ),E
(m)
X ) for any |l| − inpm′ ≤ k. If k < pm+1, we may take

bk = 0.

(ii) Let Θ ∈ Γ(T ∗X , OT∗X ) be a homogeneous section. Take an integer m′′

such that m ≤ m′′ ≤ m′. Suppose P = α · ∂〈k〉(m) (Θ(m,m′))−i with α ∈ R is
contained in Γ(D(Θ),E

(m′)
X ). Then it is also contained in Γ(D(Θ),E

(m′′)
X ).

Proof. — First, let us show (i). Since the proof for (b) is essentially the same,
we concentrate on proving (a). We show the following.

Claim. — Letm′ ≥ 0 be an integer. For integersm, a, k such thatm′ ≥ m ≥ 0,
m′ −m ≥ a ≥ 0, there exists an integer αk,m,a ≥ 0 such that, for any Θ and
|l| − inpm′ ≥ k, pαk,m,a∂〈l〉(m)(Θ(m,m′))−i is equal to α · ∂〈l〉(m+a)(Θ(m+a,m′))−i

with some α ∈ Zp. If k > d pm
′+1, we can take αk,m,a = 0.

Once this claim is proven, the lemma follows by taking a = m′ −m.

Proof of the claim. — Let b := m′−m−1 ≥ −1. We show the claim using the
induction on b. When b = −1 or more generally a = 0, we can take αk,m,a = 0.
Since we can take αk,m,a = αk,m+1,a−1+αk,m,1, it suffices to show the existence
of αk,m,1 by the induction hypothesis.
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There exists a number c ∈ Z∗p such that

Θ(m,m′) = c pnp
b

·Θ(m+1,m′).

For l′ ∈ Nd, we put

g(l′) :=

d∑
j=1

[
l′j

pm+1

]
where [α] denotes the maximum integer less than or equal to α. Then

∂〈l〉(m) = c′ pg(l) ∂〈l〉(m+1)

with c′ ∈ Z∗p. Since
lj

pm+1
− 1 <

[
lj

pm+1

]
≤ lj
pm+1

,

we get the inequalities

inpb +
k

pm+1
− d ≤ |l|

pm+1
− d <

d∑
j=1

[
lj

pm+1

]
= g(l).

Thus,

∂〈l〉(m) (Θ(m,m′))−i = c′ c−i pg(l)−inp
b

∂〈l〉(m+1) (Θ(m+1,m′))−i,

and we may take αk,m,1 = max
{

0, [d− kp−(m+1) + 1]
}
. Thus, we conclude the

proof of the claim. �

Let us prove (ii) on D(Θ). We get

Θ(m,m′) = u (pm
′−m !)n ·Θ(m′,m′)

where n denotes the order of Θ, and u denotes a number in Z∗p. Thus, for m ≤ l ≤ m′,

(3.4.1) Θ(m,m′) = u′
(pm

′−m !)n

(pm′−l !)n
·Θ(l,m′) = ul p

al ·Θ(l,m′)

where u′ and ul denote numbers in Z∗p, and al is equal to n · (pm
′−l + · · ·+ pm

′−m−1).
We also get

(3.4.2) ∂〈k〉(m) = u′ pbl ∂〈k〉(l) , bl =

d∑
j=1

l∑
i=m+1

[p−ikj ].

Now, we define two functions f, g : [m,m′] → R. The function f is the contin-
uous function such that it is affine on the interval [l, l + 1] for any integer l
in [m,m′[, and

f(l) := ordp(α) + bl = ordp(α) +

d∑
j=1

l∑
i=m+1

[p−ikj ],
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where ordp denotes the p-adic order normalized so that ordp(p) = 1. The func-
tion g is the continuous function such that it is affine on the interval [l, l + 1]

for any integer l in [m,m′[, and

g(l) := i · al = ni · (pm
′−l + pm

′−l+1 + · · ·+ pm
′−m−1).

Since the operator ∂〈k〉(m)(Θ(m,m′))−i is a section of E
(m)
X , we have g(m) ≤ f(m).

By (3.4.1) and (3.4.2), it suffices to show that if g(m′) ≤ f(m′), then g(l) ≤ f(l)

for any integer l in [m,m′]. We put

Df(l) := f(l)− f(l − 1) =

d∑
j=1

[p−l kj ], Dg(l) := g(l)− g(l − 1) = nipm
′−l.

For any a ∈ R, we have p−1 · [a] ≥ [p−1a]. Indeed, p−1a ≥ [p−1a], and
a ≥ p · [p−1a]. Since p · [p−1a] is an integer, we get what we want by the
definition of [·]. This implies that p−1 · [p−lkj ] ≥ [p−(l+1)kj ], and thus

p−1 ·Df(l) ≥ Df(l + 1).

In turn, we have p−1 · Dg(l) = Dg(l + 1). Suppose there exists an integer l
in ]m,m′] such that f(l) < g(l) and f(a) ≥ g(a) for any integer a in [m, l[. This
shows that Df(l) < Dg(l). Thus, Df(b) < Dg(b) for any l ≤ b, which implies
f(m′) < g(m′). This contradicts with the assumption, and we conclude that
g(l) ≤ f(l) for any m ≤ l ≤ m′.

3.5. — Let M and M ′ be π-torsion free R-modules. A p-isogeny φ : M 99KM ′

is an isomorphism
φQ : M ⊗Q ∼−→M ′ ⊗Q

such that there exist positive integers n and n′ satisfying

pn · φQ(M) ⊂M ′ ⊂ p−n
′
· φQ(M).

Here φQ is called the realization of the p-isogeny. We say that the p-isogeny is
a homomorphism if we can take n to be 0.

Lemma. — Let M and M ′ be π-torsion free R-modules, and let φ : M 99KM ′

be a p-isogeny. Then this induces a canonical p-isogeny

φ̂ : M∧ 99KM ′∧.

where ∧ denotes the π-adic completion. If the given p-isogeny is a homomor-
phism, the induced p-isogeny is also a homomorphism.

Proof. — Let φQ : M ⊗Q→M ′ ⊗Q be the realization of the isogeny. By
definition, there exists an integer n such that pn · φQ induces a homo-
morphism M →M ′. We denote this homomorphism by φn : M →M ′.
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Let C := Coker(φn). Since φ is a p-isogeny, C is a πn
′
-torsion module for

some integer n′ ≥ 0. We have an exact sequence of projective systems

0→ {C}′i≥n′ →
{
M ⊗Ri

}
i≥n′ →

{
M ′ ⊗Ri

}
i≥n′ → {C}i≥n′ → 0,

where {C}′i≥n′ denotes the projective system
{
· · · → C

π−→ C
π−→ C → · · ·

}
,

and {C}i≥n′ is the projective system
{
· · · → C

id−→ C
id−→ C → · · ·

}
. Since

any projective system appearing in the short exact sequence above satisfies the
Mittag-Leffler condition, the exact sequence induces an exact sequence

0→ M̂
φ̂n−−→ M̂ ′ → C → 0

by taking the projective limit. Thus, we get a p-isogeny φ̂Q := p−n·φ̂n : M̂⊗Q→
M̂ ′ ⊗ Q as desired. By construction, the homomorphism φ̂Q does not depend
on the choice of the integer n.

Let M , M ′ be π-torsion free R-modules a topological space X. Then ex-
actly in the same way, we can define p-isogeny φ : M 99KM ′. Namely, it is a
homomorphism of sheaves of modules φQ : M ⊗Q→M ′ ⊗Q such that there
exist positive integers n and n′ satisfying pn ·φQ(M ) ⊂M ′ ⊂ p−n′φQ(M ). We
say that the p-isogeny is a homomorphism if we can take n to be 0.

3.6. — Let X = Spf(A) be an affine smooth formal scheme over R, and assume
that it possesses a system of local coordinates {x1, . . . , xd}. We identify the
ring of global sections of OT (m)∗X with A{ξ1, . . . , ξd}(m) using Lemma 3.2.
Let Θ be a homogeneous element of A[ξ1, . . . , ξd] whose degree is strictly greater
than 0. For a commutative graded ring Λ and a homogeneous element f ∈ Λ,
we denote the submodule of degree n of the graded ring Λf by Λ(f)(n). Then
by construction of OP∗(m)X ,

Γ(D+(Θ), OP∗(m)X (n)) ∼= (A[ξ1, . . . , ξd]
(m)

(Θ(m))
(n))∧

where ∧ denotes the π-adic completion, and we used the notation of [16, II,
(2.3.3)]. For m′ ≥ m, we note that

(3.6.1) (A[ξ1, . . . , ξd]
(m)

(Θ(m))
(n))∧ ∼= (A[ξ1, . . . , ξd]

(m)

(Θ(m,m′))
(n))∧,

since there exists Q ∈ A[ξ1, . . . , ξd]
(m) such that

(Θ(m))p
m′−m

= Θ(m,m′) + pQ.

Lemma 2.11 (i) and the isomorphism A[ξ1, . . . , ξd]
(m)⊗Q ∼= A[ξ1, . . . , ξd]

(m′)⊗Q
of Lemma 3.1 induces the following homomorphism

A[ξ1, . . . , ξd]
(m′)

Θ(m′) → A[ξ1, . . . , ξd]
(m)

Θ(m,m′) ⊗Q.
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Using Lemma 3.4 (i)-(b), this homomorphism defines a p-isogeny

A[ξ1, . . . , ξd]
(m′)

(Θ(m′))
(n) 99K A[ξ1, . . . , ξd]

(m)

(Θ(m,m′))
(n)

for any n ∈ Z. For n < pm+1, this p-isogeny is moreover a homomorphism by
the same lemma. This defines a p-isogeny

(A[ξ1, . . . , ξd]
(m′)

(Θ(m′))
(n))∧ 99K (A[ξ1, . . . , ξd]

(m)

(Θ(m,m′))
(n))∧

by Lemma 3.5. Composing this with (3.6.1), we get a canonical p-isogeny

(A[ξ1, . . . , ξd]
(m′)

(Θ(m′))
(n))∧ 99K (A[ξ1, . . . , ξd]

(m)

(Θ(m))
(n))∧,

which is a homomorphism for n < pm+1. By construction, this p-isogeny is
compatible with restrictions. Moreover, since bn of Lemma 3.4 does not depend
on Θ, this induces a p-isogeny of sheaves. Summing up, we obtain the following
lemma.

Lemma. — Let m′ ≥ m be non-negative integers. For any n ∈ Z, there exist
canonical p-isogenies of sheaves of modules

OP∗(m′)X (n) 99K OP∗(m)X (n), OT∗(m′)X (n) 99K OT∗(m)X (n)

on the topological spaces P ∗X and T̊ ∗X respectively. These are homomor-
phisms for n < pm+1.

3.7. Lemma. — By using the homomorphism of Lemma 3.6, OP∗(m)X can be
seen as an OP∗(m′)X -algebra. Then OP∗(m)X is a coherent OP∗(m′)X -algebra.

Proof. — Let Θ be a homogeneous element of A[ξ1, . . . , ξd] whose degree is
strictly greater than 0. First of all, let us show that the homomorphism of rings

(3.7.1) (A[ξ1, . . . , ξd]
(m′)

(Θ(m′))
(0))∧ → (A[ξ1, . . . , ξd]

(m)

(Θ(m))
(0))∧

is finite. By construction of (3.7.1), it suffices to show the finiteness of the
homomorphism

A[ξ1, . . . , ξd]
(m′)

(Θ(m′))
(0)→ A[ξ1, . . . , ξd]

(m)

(Θ(m,m′))
(0).

Let

S :=

{
(k, k′, i) ∈ Nd × Nd × N

∣∣∣∣∣ kj < pm
′
for any j, |k′| < ord(Θ), and

|k|+ |k′| pm′ = ipm
′
ord(Θ)

}
.

The condition |k|+ |k′| pm′ = ipm
′
ord(Θ) means that the order of

ξ〈k+k′pm′ 〉(m)(Θ(m,m′))−i
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is equal to 0. Obviously, #S <∞. Let

T :=
{
k ∈ Nd

∣∣ k ∈ pm′ Nd, |k| = ipm
′
ord(Θ) for some integer i

}
.

The set T is a submonoid of the commutative monoid Nd. For any k ∈ T , there
exists u ∈ Z∗p such that

(3.7.2) ξ〈k〉(m)(Θ(m,m′))−i = u · ξ〈k〉(m′)(Θ(m′))−i.

Let
U :=

{
k ∈ Nd

∣∣ |k| = ipm
′
ord(Θ) for some i

}
.

This is also a submonoid of Nd. Let

S′ :=
{
l ∈ Nd

∣∣ there exists (k, k′, i) ∈ S such that l = k + pm
′
k′
}
.

The monoid T is a submonoid of U , and S′ is a finite subset of U . We claim
that U = T + S′. Indeed, take l ∈ U . We can write l = i + pm

′
i′ such that

i, i′ ∈ Nd and ij < pm
′
for any j. Now, there exists k′ such that |k′| < ord(Θ),

i′j ≥ k′j for any j, and

|i′| − |k′| =
[
|i′| · (ord(Θ))−1

]
· ord(Θ)

where [α] denotes the maximum integer less than or equal to α. We put k := i.
Then there exists an integer i such that |i|+pm′ |k′| = ipm

′
ord(Θ). By construc-

tion (k, k′, i) ∈ S, and pm′ · (i′ − k′) ∈ T . Since l = pm
′ · (i′ − k′) + (k+ pm

′
k′),

the claim follows. Considering (3.7.2), this implies that the homomorphism⊕
l∈S

A[ξ1, . . . , ξd]
(m′)

(Θ(m′))
(0)→ A[ξ1, . . . , ξd]

(m)

(Θ(m,m′))
(0)

sending 1 sitting at the (k, k′, i) ∈ S component to ξ〈k+k′pm′ 〉(m)(Θ(m,m′))−i is
surjective. Thus the homomorphism (3.7.1) is finite.

Let us prove the coherence. Let Ξ be another homogeneous element
of A[ξ1, . . . , ξd] whose degree is strictly greater than 0. Let U be the affine
open subset of P ∗X defined by Θ, and U ′ by that of Ξ ·Θ. It suffices to show
that the canonical homomorphism

(3.7.3) Γ(U , OP∗(m)X )⊗Γ(U , O
P∗(m′)X

) Γ(U ′, OP∗(m′)X )→ Γ(U ′, OP∗(m)X )

is an isomorphism. By changing Θ and Ξ to some powers of Θ and Ξ respec-
tively, we may assume that ord(Ξ) = ord(Θ). We put

A := A[ξ1, . . . , ξd]
(m′)

(Θ(m′))
(0), Ψ :=

Ξ(m′)

Θ(m′)
,

B := A[ξ1, . . . , ξd]
(m)

(Θ(m,m′))
(0), Φ :=

Ξ(m)

Θ(m)
, Φ′ :=

Ξ(m,m′)

Θ(m,m′)
.
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Let φ : A → B be the canonical homomorphism. Firstly, Φ′ = φ(Ψ) in B by
Lemma 2.11 (i). Secondly,

( BΦ)∧ ∼= ( BΦ′)
∧

by the same reason as (3.6.1). Thirdly,

Bφ(Ψ)
∼= B⊗ A AΨ.

Combining these, ( B ⊗ A AΨ)∧ ∼= ( BΦ)∧. This is implies that the π-adic com-
pletion of the left hand side of (3.7.3) is isomorphic to the right hand side.
However, by the finiteness of (3.7.1), the left hand side of (3.7.3) is already
π-adically complete by [16, 0I, 7.3.6], and as a result, (3.7.3) is an isomorphism.
Thus we obtain the lemma.

3.8. — Let X be an affine smooth formal scheme over R possessing a sys-
tem of local coordinates. For any n ∈ Z, the module OT∗(m)X (n) is an
OT∗(m)X (0)-module on T̊ ∗X , and by using Lemma 3.6, OT̊∗(m)X (n) can be
seen as an OT̊∗(m′)X (0)-module.

Corollary. — The OT̊∗(m′)X (0)-module OT̊∗(m)X (n) is coherent.

Remark. — We show in Lemma 4.3 that the OT̊∗(m′)X (0)-module structure
on OT̊∗(m)X (n) does not depend on the choice of local coordinates, and the
corollary can be globalized.

4. Intermediate microdifferential sheaves

In Section 2, we defined the ring of naive microdifferential operators. How-
ever, we do not have any natural homomorphism Ê

(m)
X ,Q → Ê

(m+1)
X ,Q as shown

in 4.1. To remedy this situation, we consider the intermediate ring of microdif-
ferential operators denoted by Ê

(m,m′)
X ,Q for m′ ≥ m, which is the “intersection”

of Ê
(m)
X ,Q and Ê

(m′)
X ,Q . In this section, we define these rings and prove some basic

properties.

4.1. — To start with, let us show the non-existence of a homomorphism
Ê

(m)
X ,Q → Ê

(m+1)
X ,Q compatible with the canonical homomorphism D̂

(m)
X ,Q → D̂

(m+1)
X ,Q .

Suppose the homomorphism existed. Then, for any coherent D̂
(m)
X ,Q-module M ,

we would get

Char(m)(M ) ⊃ Char(m+1)(D̂
(m+1)
X ,Q ⊗

D̂
(m)
X ,Q

M )

by Proposition 2.15. However, this does not hold as the following example
shows:
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Example. — Let X := Â1
R, X be the special fiber, x be the canoni-

cal coordinate, and ∂ be the corresponding differential operator. We put
M = D̂

(0)
X ,Q/D̂

(0)
X ,Q(∂ − x). Then,

1. Char(0)(M ) = s(X), where s : X → T ∗X is the zero-section.
2. Char(1)(D̂

(1)
X ,Q ⊗D̂

(0)
X ,Q

M ) ∩ T̊ ∗X 6= ∅.

Proof. — Since M is a coherent OX ,Q-module, the first claim follows. Let
us check the second claim. First, let us prove that D†X ,Q ⊗D̂

(0)
X ,Q

M 6= 0.

Let fn ∈ K{x} (i.e., the Tate algebra), and
∑
n≥0 fn∂

[n] ∈ Γ(X ,D†X ,Q). We
get ∑

n≥0

fn ∂
[n] · (∂ − x) =

∑
n≥0

(
fn ∂

[n] ∂ − x fn ∂[n] − fn ∂[n−1]
)

=
∑
n≥0

(
n fn−1 − x fn − fn+1

)
∂[n].

Assume
∑
n≥0 fn ∂

[n] · (∂ − x) = 1. Then there exist gn, hn ∈ K[x], deg(gn) <

n− 1 and deg(hn) < n, such that the equality

(−1)nfn = (xn−1 + gn) + (xn + hn) · f0

should hold for any n > 0. However, there is no f0 ∈ K{x} such that∑
n≥0 fn∂

[n] ∈ Γ(X ,D†X ,Q) (since |fn| = max
{

1, |f0|
}
by the equality), and

D†X ,Q ⊗M 6= 0.

Now, let e be the element of Γ(X ,M ) defined by 1 ∈ Γ(X , D̂
(0)
X ,Q). As an

OX ,Q-module, M is free of rank 1. Since

∂n · e =
(
xn + (polynomial in K[x] whose degree is less than n)

)
· e,

the D̂
(0)
X ,Q-module structure on M does not extend continuously to a

D̂
(1)
X ,Q-module structure. This shows that the canonical homomorphism

M →M (1) := D̂
(1)
X ,Q ⊗M is not an isomorphism.

Garnier shows in [14, 5.2.4] that for any coherent D̂
(0)
X ,Q-module M , the char-

acteristic variety Char(0)(M ) satisfies the Bernstein inequality (i.e., the dimen-
sion of the characteristic variety is greater than or equal to 1 unless M = 0).
Using the relation of characteristic varieties of Frobenius descents (cf. [7, 5.2.4
(iii)]), the Bernstein inequality also holds for any coherent D̂

(m)
X ,Q-module. Thus

there are three possibilities for the characteristic variety V of M (1): either ∅
or [X] or V ∩ T̊ ∗X 6= ∅. Since M (1) is not 0, V is not empty. If V = [X], M (1)

would be a coherent OX ,Q-module, and since M is a coherent OX ,Q-module
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of rank 1, we would get that M ∼= M (1), which is a contradiction. Thus the
second claim follows.

4.2. — Before going to the main theme of this section, let us fix some frequently
used notation. Consider the situation where an open subscheme U of T ∗X is
given. For non-negative integers i′ ≥ i, we put

D(i) := Γ(π(U ),D
(i)
X ), D

(i)
Q := Γ(π(U ),D

(i)
X ,Q), E(i) := Γ(U ,E

(i)
X ),

E
(i)
Q := Γ(U ,E

(i)
X ,Q), E(i,i′) := Γ(U ,E

(i,i′)
X ), E

(i,i′)
Q := Γ(U ,E

(i,i′)
X ,Q ),

Ê(i,i′) := Γ(U , Ê
(i,i′)
X ), Ê

(i,i′)
Q := Γ(U , Ê

(i,i′)
X ,Q ), E

(i,†)
Q := Γ(U ,E

(i,†)
X ,Q).

The last 5 rings are defined in 4.11. The first 6 rings are considered to be filtered
rings.

4.3. — Let X be a smooth formal scheme over R. For a non-negative integerm,
we defined the filtered ring (E

(m)
X ,E

(m)
X ,n). By (2.2.1) and Lemma 2.5 (ii),

(4.3.1) OT (m)∗X (n) ∼= E
(m)
X ,n/E

(m)
X ,n−1.

Let m′ ≥ m be an integer. Consider the canonical homomorphism

φm′,m : D
(m)
X → D

(m′)
X .

This homomorphism becomes an isomorphism if we tensor with Q.

Lemma. — There exists a unique strictly injective homomorphism of filtered
rings

ψm,m′ : E
(m′)
X ,Q → E

(m)
X ,Q

such that the following diagram is commutative:

π−1D
(m′)
X ,Q

ϕm′

��

π−1D
(m)
X ,Q

ϕm

��

φm′,m⊗Q
∼

oo

E
(m′)
X ,Q ψm,m′

// E (m)
X ,Q

where we refer to 2.4 for ϕm. For m′′ ≥ m′ ≥ m, ψm,m′ ◦ ψm′,m′′ = ψm,m′′ .
By using (4.3.1), grn(ψm,m′) can be identified with the p-isogeny in Lemma 3.6
locally.
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Proof. — Once the existence and the uniqueness is proven, the compatibility
ψm,m′ ◦ ψm′,m′′ = ψm,m′′ automatically holds by the compatibility of φm′,m.

Let us prove the uniqueness first. Since the problem is local, we may assume
that X possesses a system of local coordinates, and it suffices to show the
uniqueness for the ring of sections over D(Θ) where Θ ∈ Γ(X , OT∗X ) is a ho-
mogeneous element. Suppose there are two homomorphisms ψ,ψ′ satisfying the
condition. By the commutativity of the diagram, ψ(Θ(m′)) = ψ′(Θ(m′)) =: θ.
By the uniqueness of the inverse of θ, ψ((Θ(m′))−1) = ψ′((Θ(m′))−1). Since ψ
and ψ′ are filtered homomorphisms, these homomorphisms are continu-
ous with respect to the topology defined by the filtrations (cf. 1.1.1).
Let E be the subring of Γ(D(Θ),E

(m′)
X ) generated by Γ(D(Θ),D

(m′)
X )

and (Θ(m′))−1. Then, ψ|E = ψ′|E . Since Γ(D(Θ),E
(m)
X ,Q) is separated and

E is dense in Γ(D(Θ),E
(m′)
X ), we get ψ = ψ′, and the uniqueness follows.

Now, let us check the existence. Since the problem is local by the unique-
ness, we may suppose that X is affine. Let Θ be a homogeneous ele-
ment of Γ(X , OT∗X ), and let U := D(Θ). It suffices to construct ψm,m′
on U := D(Θ). We use the notation of 4.2. Let D(m′)

S be the microlocal-
ization of D(m′) by using the multiplicative set S of gr(D(m′)) generated
by Θ(m′) ∈ gr(D(m′)) (cf. 1.2), and let (E

(m)
Q )′ be the completion of E(m)

Q

with respect to the filtration by order. Since Θ(m,m′) is invertible in (E
(m)
Q )′,

Θ(m′) is also invertible by Lemma 2.11 (i). Thus, by the universal property
of the microlocalization [22, A.2.3.3], there exists a unique homomorphism
of filtered rings α : D

(m′)
S → (E

(m)
Q )′ factoring the canonical homomorphism

D(m′) → (E
(m)
Q )′. For any n, there exists an integer N such that the homo-

morphism pN · αn induces a homomorphism D
(m′)
S,n → E

(m)
n by the concrete

description Lemma 2.10 and Lemma 3.4 (i)-(b). Let (D
(m′)
S,n )∧ be the π-adic

completion of D(m′)
S,n . Since E

(m)
n is π-adically complete, this induces the

homomorphism (pN · αn)∧ : (D
(m′)
S,n )∧ → E

(m)
n . We define

α̂n := p−N · (pN · αn)∧ : (D
(m′)
S,n )∧ → E(m)

n ⊗Q.

By construction, we have α̂n+1|D∧n = α̂n where D∧n := (D
(m′)
S,n )∧. On the other

hand, we have βn : (D
(m′)
S,n )∧

∼−→ E
(m′)
n . Indeed, by Lemma 2.3, D(m′)

S,n ⊗ Ri ∼=
Γ(U ,E

(m′)
Xi,n

), and since E(m′)
n is π-adically complete, the isomorphism follows.

Thus, we obtain
lim−→
n

(αn ◦ β−1
n ) : E(m′) → E

(m)
Q ,

which is what we are looking for.
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Finally, let us check that ψm,m′ is strictly injective. By construction, locally,
grn(ψm,m′) coincides with the p-isogeny of Lemma 3.6 for any n. This implies
that the canonical homomorphism gr(E

(m′)
X ) → gr(E

(m)
X ,Q) is injective. Since

E
(m′)
X is separated with respect to the filtration by order, we get the strict

injectivity by [18, Ch. I, 4.2.4 (5)].

4.4. — We preserve the notation. For non-negative integers m′ ≥ m, we define
a sheaf of rings

E
(m,m′)
X := ψ−1

m,m′(E
(m)
X ) ∩ E

(m′)
X ,

where the intersection is taken in E
(m′)
X ,Q . By definition, E

(m,m)
X = E

(m)
X . We

denote E
(m,m′)
X ⊗Ri by E

(m,m′)
Xi

. Let U be an open subset of T ∗X . Then the
left exactness of the functor Γ implies that

Γ(U ,E
(m,m′)
X ) ∼= ψ−1

m,m′(E
(m)) ∩ E(m′) ⊂ E(m′)

Q

using the notation of 4.2.

Since ψm,m′(E
(m′)
X ) and E

(m)
X are sub-π−1D

(m)
X -algebras of E

(m)
X ,Q, the ring

E
(m,m′)
X is also a π−1D

(m)
X -algebra on T ∗X . Moreover, by putting

E
(m,m′)
X ,n := ψ−1

m,m′(E
(m)
X ,n) ∩ E

(m′)
X ,n ,

we may equip E
(m,m′)
X with a filtration, and we consider E

(m,m′)
X as a filtered

ring. By Lemma 4.3, ψm,m′ is a strict homomorphism, and the canonical ho-
momorphisms of filtered rings

(E
(m,m′)
X ,E

(m,m′)
X ,n )→ (E

(m)
X ,E

(m)
X ,n), (E

(m,m′)
X ,E

(m,m′)
X ,n )→ (E

(m′)
X ,E

(m′)
X ,n )

are also strict injective homomorphisms. By the explicit presentation
Lemma 2.10 and Lemma 3.4 (i)-(b), ψm,m′(E

(m′)
X ,n ) ⊂ E

(m)
X ,n for n < pm+1,

and in particular

(4.4.1) E
(m,m′)
X ,0 = E

(m′)
X ,0 .

4.5. Lemma. — Assume X to be affine, and let Θ be a homogeneous section
of OT∗X . We put U := D(Θ).

1. For non-negative integers M ′ ≥ M ≥ m′ ≥ m, (Θ(M,M ′))−1 ∈
Γ(U ,E

(m,m′)
X ).

2. For non-negative integers M ′ ≥ M and M ′ ≥ m′ ≥ m, (Θ(M,M ′))−1 ∈
Γ(U ,E

(m,m′)
X ,Q ).
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Proof. — For any integerm′′ such that m′′ ≥ m′ ≥ m, (Θ(m′,m′′))−1 ∈ Γ(U ,E
(m)
X ).

Indeed, there exist a non-negative integer n and a unit u of R such that
Θ(m′,m′′) = u p−n ·Θ(m,m′′) by Lemma 2.11, and thus

(Θ(m′,m′′))−1 = u−1 pn · (Θ(m,m′′))−1 ∈ Γ(U ,E
(m)
X ).

This yields the first claim.
In turn, for any integer m′′ such that M ′ ≥ m′′, we can check that

(Θ(M,M ′))−1 ∈ Γ(U ,E
(m′′)
X ,Q ), which implies the second claim.

4.6. — Let ι : E
(m)
X → E

(m)
X ,Q be the canonical inclusion. Take an integer n.

Consider the following commutative diagram
(4.6.1)

0 // E (m,m′)
X ,n−1

//
� _

��

E
(m′)
X ,n−1 ⊕ E

(m)
X ,n−1� _

��

αn−1:=

((ψm,m′ )n−1,ιn−1)
// (E (m)

X ,Q)n−1� _

��

0 // E (m,m′)
X ,n

// E (m′)
X ,n ⊕ E

(m)
X ,n

αn:=

((ψm,m′ )n,ιn)
// (E (m)

X ,Q)n,

whose rows are exact sequences.

Lemma. — Let inc : (E
(m)
X ,Q)n−1 → (E

(m)
X ,Q)n be the canonical inclusion. The

following sequence is exact:

0→ Im(αn−1)→ (E
(m)
X ,Q)n−1 ⊕ Im(αn)→ (E

(m)
X ,Q)n,

where the second (resp. last) homomorphism is induced by (αn−1, inc)

(resp. inc− αn).

Proof. — Since the statement is local, we may suppose that X is affine and
possesses a system of local coordinates. Moreover, it suffices to show the exact-
ness for the modules of sections over U := D(Θ) where Θ is a homogeneous
section of Γ(T ∗X , OT∗X ). We use the notation of 4.2. We also denote ψm,m′
by ψ and (ψm,m′)n by (ψ)n for short.

An operator P of D̂
(m)
X ,Q is said to be homogeneous of degree l if we can write

P =
∑
|k|=l ak ∂

〈k〉(m) with ak ∈ OX ,Q. Take S ∈ Im((ψ)n, ιn). Using a left
presentation, we can write

S := ψ
(∑
k≤n
i∈Z

Pk,i(Θ
(m′))i

)
+
∑
k≤n
i∈Z

Qk,i(Θ
(m,m′))i

where the first sum is an element of E(m′)
n and the second sum is one

of E(m)
n , and Pk,i, Qk,i are homogeneous operators of degree k − ipm′ord(Θ)
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in D̂
(m′)
X ,Q and D̂

(m)
X ,Q respectively with some convergence conditions. Suppose

S ∈ (E
(m)
Q )n−1. We need to show that this element is contained in Im(αn−1).

Since limi→±∞ Pn,i = 0 in D̂
(m′)
X ,Q and by Corollary 3.8, there exists a finite

subset I ⊂ Z such that

ψ
(∑
i6∈I

Pn,i(Θ
(m′))i

)
∈ E(m)

n .

This is in fact contained in E
(m)
n ∩ ψ(E

(m′)
n ). Then for N � 0, there exists

ak ∈ Γ(X , OX ) for |k| = n+Npm
′
ord(Θ) =: M and k ≥ 0 such that∑

i∈I
Pn,i(Θ

(m′))i ∈
∑
|k|=M

ak∂
〈k〉(m′)(Θ(m′))−N + E

(m′)
n−1 +

(
ψ−1(E(m)

n ) ∩ E(m′)
n

)
and ak∂

〈k〉(m′)(Θ(m′))−N 6∈ ψ−1(E(m)) for any |k| = M and k ≥ 0 such that
ak 6= 0. By the same argument for E(m) and increasing N if necessary, we
may also suppose that there exists bk ∈ Γ(X , OX ) for |k| = M such that
bk∂
〈k〉(m)(Θ(m,m′))−N 6∈ E(m′) for any bk 6= 0, and∑

i

Qn,i(Θ
(m,m′))i ∈

∑
|k|=M

bk∂
〈k〉(m)(Θ(m,m′))−N + E

(m)
n−1 + (ψ(E(m′)

n ) ∩ E(m)
n )

in E(m)
Q . However, since S ∈ (E

(m)
Q )n−1,

(4.6.2)∑
|k|=M

ak∂
〈k〉(m′)(Θ(m′))−N + bk∂

〈k〉(m)(Θ(m,m′))−N ∈ (E
(m)
Q )n−1 + (ψ(E(m′)

n ) ∩ E(m)
n ).

The finite set
{
ξk · (Θ(m′))−N

}
|k|=M in OT∗X ,Q(n) is linearly independent

over OX ,Q. Thus, by the choice of ak and bk, (4.6.2) is possible only when
ak = bk = 0, and the lemma is proven.

Corollary. — We have

gr(E
(m,m′)
X ) = gr(ψm,m′)

−1
(
gr(E

(m)
X )

)
∩ gr(E

(m′)
X )

where the intersection is taken in the ring

gr(E
(m)
X ,Q) ∼=

⊕
i∈Z

OT∗X ,Q(i) = OT∗X ,Q(∗).

Proof. — The canonical homomorphism Im(αn)/Im(αn−1)→ (E
(m)
X ,Q)n/(E

(m)
X ,Q)n−1

is injective by the lemma above. Thus, the corollary follows by (4.6.1).
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4.7. Lemma. — Let m′ ≥ m be non-negative integers. We have an inclusion
E

(m−1,m′)
X ⊂ E

(m,m′)
X in E

(m′)
X ,Q . Moreover, there exists a unique strict injective

homomorphisms of filtered π−1D
(m−1)
X -algebras α : E

(m,m′+1)
X → E

(m,m′)
X such

that ψm,m′ ◦ α = ψm,m′+1.

Proof. — Let us show the first claim. It suffices to show that ψm−1,m′ :

E
(m−1,m′)
X → E

(m−1)
X ,Q factors through the composition E

(m,m′)
X → E

(m)
X →

E
(m−1)
X ,Q . We consider E

(m−1,m′)
X and E

(m,m′)
X as subrings of E

(m−1)
X ,Q using these

injections. We may assume X is affine, and let U := D(Θ) where Θ is a homo-
geneous section of Γ(T ∗X , OT∗X ). Let us use the notation of 4.2. It suffices to
show that E(m−1,m′) is contained in E(m,m′). Take P ∈ (E(m−1,m′))N for some
integer N . We inductively define Pi ∈ (E(m−1,m′))N−i and Qi ∈ (E(m,m′))N−i
such that Pi+1 = Pi − Qi for i ≥ 0. Put P0 := P . Assume Pi is constructed.
We can write

σ(Pi) =
∑

|k|=N−i

ak ξ
〈k〉(m−1) (Θ(m−1,m′))−n

with ak ∈ Γ(X , OX ) and n ∈ Z. By Corollary 4.6, this is contained in both
gr(E(m−1)) and gr(E(m′)). Thus, Lemma 3.4 (ii) is shows that

Qi :=
∑

|k|=N−i

ak ∂
〈k〉(m−1) (Θ(m−1,m′))−n

is in E(m,m′). By construction, Pi+1 := Pi −Qi is contained in (E(m−1,m′))N−i−1.
The filtered ring E(m,m′) is complete by (4.4.1) and Lemma 2.5 (iv). Thus,
P =

∑
i≥0Qi ∈ E(m,m′). The second claim can be checked similarly, and left

to the reader.

4.8. Lemma. — For any n ∈ Z, grn(E
(m,m′)
X ) is a coherent OT (m′)∗X (0)-mod-

ule on T̊ ∗X . Moreover, on T̊ ∗X ,
⊕

i≥0 gri(E
(m,m′)
X ) and gr(E

(m,m′)
X ) are

OT (m′)∗X (0)-algebras of finite type, and they are Noetherian.

Proof. — The modules grn(E
(m)
X ) and grn(E

(m′)
X ) are coherent OT (m′)∗X (0)-mod-

ules on T̊ ∗X by Corollary 3.8 and (4.3.1). Since

grn(E
(m)
X ,Q) ∼= OT (m)∗X ,Q(n) =

∑
i≥0

p−i OT (m)∗X (n),

there exists an integer i0 such that grn(E
(m)
X ) + grn(E

(m′)
X ) ⊂ p−i0 OT (m)∗X (n).

Since the intersection of two coherent modules in a coherent module is coherent,
grn(E

(m)
X )∩grn(E

(m′)
X ) is also a coherent OT (m′)∗X (0)-module, and grn(E

(m,m′)
X )

is coherent as well by Corollary 4.6.
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Claim. — Let A =
⊕

i∈Z Ai be a finitely generated O := OT̊ (m)∗X (0)-algebra
such that Ai are coherent O-modules for all i. Let B :=

⊕
i∈Z Bi be a sub-

O-algebra of A such that Bi ⊂ Ai and Bi are coherent O-modules for all i.
Assume A is finite over B. Then B is a Noetherian ring and finitely generated
over O.

A proof is similar to that of Lemma 2.7 using [4, 7.8]. For any integerm′′ ≥ 0,⊕
i≥0 gri(E

(m′′)
X ) is finitely generated OT (m′′)∗X (0)-algebras by Lemma 2.4,

OT (m)∗X (0) is a coherent OT (m′)X (0)-module on T̊ ∗X by Corollary 3.8, and⊕
i≥0 gri(E

(m)
X ) is finite over

⊕
i≥0 gri(E

(m,m′)
X ) by Lemma 3.4 (i)-(a). Using

the claim, this shows that
⊕

i≥0 gri(E
(m,m′)
X ) is an OT (m′)∗X (0)-algebra of fi-

nite type and Noetherian. Now, since
⊕

i≤0 gri(E
(m,m′)
X ) ∼=

⊕
i≤0 gri(E

(m′)
X ) is

an OT (m′)∗X (0)-algebra of finite type, gr(E
(m,m′)
X ) is finitely generated as well.

Applying the claim again to both A and B being equal to gr(E
(m,m′)
X ), we

conclude that the ring is Noetherian.

4.9. Proposition. — (i) The filtered ring (E
(m,m′)
X ,E

(m,m′)
X ,n ) is complete.

(ii) The rings E
(m,m′)
X ,0 and E

(m,m′)
X are Noetherian on T̊ ∗X .

(iii) For open subsets T̊ ∗X ⊃ U ⊃ V in B, the restriction homomorphism
Γ(U ,E )→ Γ(V ,E ) is flat. Here E denotes E

(m,m′)
X ,0 or E

(m,m′)
X .

Proof. — We have already used (i) but we rewrite the statement because of the
importance. This follows from the fact that E

(m,m′)
X ,n = E

(m′)
X ,n for any n < pm+1

by (4.4.1) and Lemma 2.5 (iv). We also get (ii) and (iii) for E = E
(m,m′)
X ,0 by

Proposition 2.8.

Let us prove (ii) for E
(m,m′)
X . Let us check the conditions of Lemma 1.10

for the filtered ring (E
(m,m′)
X ,E

(m,m′)
X ,n ). The first condition is nothing but (i).

The second and the third conditions follow from Lemma 2.7 together with
Lemma 4.8. The last condition follows from Lemma 2.5 (ii) and Corollary 4.6.
Hence E

(m,m′)
X is a Noetherian ring. Thus, for any open subscheme U in B,

Γ(U ,E
(m,m′)
X ) is Noetherian, and (iii) holds by using [18, Ch. II, 1.2.1].

Remark. — By the proof, we can moreover say that E
(m,m′)
X is pointwise

Zariskian with respect to the filtration by order on T̊ ∗X . This implies that
E

(m,m′)
Xi

is also pointwise Zariskian with respect to the filtration by order for
any integer i ≥ 0 on T̊ ∗X .
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4.10. Lemma. — Let X be an affine smooth formal scheme. Let U ⊂ T̊ ∗X be
an open set in B, and U be a finite B-covering (i.e., a covering consisting of
subsets in B) of U . Let E be either E

(m,m′)
X or E

(m,m′)
X ,Q . Then Ȟi

aug(U,E ) = 0

for i ∈ Z. Here Ȟi
aug denotes the augmented Čech cohomology (cf. [9, 8.1.3]).

In particular, H1(U ,E ) = 0.

Proof. — Let V,W ∈ B. Since ε·(V ∩W ) = ε·(V ) ∩ ε·(W ), we may assume
that U is strictly affine and U is a finite strictly affine covering (cf. Defini-
tion 2.4). Let us show that Ȟi

aug(U,E
(m,m′)
X ,k ) = 0 for any k. By Lemma 4.8,

E
(m,m′)
X ,k /E

(m,m′)
X ,−n is a coherent OT (m′)∗X (0)-module. Thus,

Ȟi
aug(U,E

(m,m′)
X ,k /E

(m,m′)
X ,−n ) = 0

for i ∈ Z. By the coherence, the projective system
{

Γ(V ,E
(m,m′)
X ,k /E

(m,m′)
X ,−n )

}
n≥0

satisfies the Mittag-Leffler condition for any strictly affine open subset V . This
shows that Cqaug(U,E

(m,m′)
X ,k /E

(m,m′)
X ,−n ) satisfies the Mittag-Leffler condition for

any q ∈ Z. Thus

Ȟi
aug(U,E

(m,m′)
X ,k ) ∼= Ȟi

aug(U, lim←−E
(m,m′)
X ,k /E

(m,m′)
X ,−n ) ∼= lim←− Ȟ

i
aug(U,E

(m,m′)
X ,k /E

(m,m′)
X ,−n ) = 0

for i ∈ Z, where the first equality holds since E
(m,m′)
X ,k is complete by Proposi-

tion 4.9 (i). Thus, we get what we wanted.

Now, since E
(m,m′)
X

∼= lim−→k
E

(m,m′)
X ,k , we have Ȟi

aug(U,E
(m,m′)
X ) = 0 by

using (2.5.2). The vanishing for E
(m,m′)
X ,Q follows immediately from the

E = E
(m,m′)
X case. Finally, let us prove H1(U ,E ) = 0. We know that

H1(U ,E ) ∼= lim−→V Ȟ
1(V,E ) where V runs over open coverings of U . Given

an open covering V of U , there exists a refinement V′ which is a B-covering.
Thus the statement follows from the first claim.

Remark. — We may also prove that Hi(U ,E ) = 0 for i > 0. This can be
proven in the same way by using [16, 0III 13.3.1].

4.11. — We define

Ê
(m,m′)
X := lim←−

i

E
(m,m′)
Xi

, Ê
(m,m′)
X ,Q := Ê

(m,m′)
X ⊗Q.

These are π−1D̂
(m)
X -algebras and the latter is moreover a π−1D̂

(m)
X ,Q-algebra. We

call Ê
(m,m′)
X and Ê

(m,m′)
X ,Q the intermediate rings of microdifferential operators
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of level (m,m′). Let U be an open subset of T̊ ∗X in B. Applying Lemma 4.10
to the exact sequence

0→ E
(m,m′)
X

πi+1

−−−→ E
(m,m′)
X → E

(m,m′)
Xi

→ 0,

we get an isomorphism

(4.11.1) Γ(U ,E
(m,m′)
Xi

) ∼= Γ(U ,E
(m,m′)
X )⊗Ri,

and by taking the projective limit over i, we have Γ(U , Ê
(m,m′)
X ) ∼=

Γ(U ,E
(m,m′)
X )∧, where ∧ denotes the π-adic completion. By Lemma 2.6,

Γ(U , Ê
(m,m′)
X ) ⊗ Ri ∼= Γ(U ,E

(m,m′)
Xi

), and thus Ê
(m,m′)
X ⊗ Ri ∼= E

(m,m′)
Xi

, in

particular, Ê
(m,m′)
X is π-adically complete. We also define

E
(m,†)
X ,Q := lim←−

m′→∞
Ê

(m,m′)
X ,Q .

This is a ring on T ∗X . Note that there exists a canonical homomorphism
E

(m,†)
X ,Q → E

(m+1,†)
X ,Q of rings by Lemma 4.7. We define

E †X ,Q := lim−→
m→∞

E
(m,†)
X ,Q .

For a quasi-compact open subscheme U of T̊ ∗X , (2.5.2) shows

Γ(U ,E †X ,Q) ∼= lim−→
m′→∞

Γ(U ,E
(m′,†)
X ,Q ).

4.12. Proposition. — The rings Ê
(m,m′)
X , Ê

(m,m′)
X ,Q are Noetherian on T̊ ∗X , and

Proposition 4.9 (iii) and Lemma 4.10 are also valid if we take E to be either
Ê

(m,m′)
X or Ê

(m,m′)
X ,Q .

Proof. — It suffices to show the proposition for E = Ê
(m,m′)
X . First, let

us check Lemma 4.10 for this E . Since E
(m,m′)
X is π-torsion free, we have

Ȟi
aug(U,E

(m,m′)
Xi

) = 0 by (4.11.1) and Lemma 4.10. The projective system{
Γ(V ,E

(m,m′)
Xi

)
}
i≥0

satisfies the Mittag-Leffler condition for any V ∈ B again
by (4.11.1), and we conclude that

Ȟi
aug(U, Ê

(m,m′)
X ) ∼= Ȟi

aug(U, lim←−
i

E
(m,m′)
Xi

) ∼= lim←−
i

Ȟi
aug(U,E

(m,m′)
Xi

) = 0.

To prove that Ê
(m,m′)
X is Noetherian, we check the conditions of Lemma 1.10

for the π-adic filtration. Conditions 2 and 3 follow from the fact that E
(m,m′)
X
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is Noetherian by Proposition 4.9. Condition 4 follows from (4.11.1). Proposi-
tion 4.9 (iii) for E = Ê

(m,m′)
X follows directly from the E = E

(m,m′)
X case by

using [5, 3.2.3 (vii)], and we finish the proof.

Remark. — By the proof we can moreover say that Ê
(m,m′)
X is pointwise

Zariskian with respect to the π-adic filtration on T̊ ∗X .

4.13. Lemma. — For non-negative integers m′ ≥ m, the canonical homo-
morphism Ê

(m,m′)
X ,Q → Ê

(m)
X ,Q is injective, and the canonical homomorphism

Ê
(m,m′)
X /E

(m,m′)
X ,0 → Ê

(m)
X /E

(m)
X ,0 is a p-isogeny.

Proof. — We omit subscripts X (e.g., E
(m)
0 instead of E

(m)
X ,0). Consider the

following diagram whose rows are exact:

0 // E (m,m′)
0

//

��

E (m,m′) //

��

E (m,m′)/E
(m,m′)
0

//

γ

��

0

0 // E (m)
0

// E (m) // E (m)/E
(m)
0

// 0.

Since the injective homomorphism E (m,m′) → E (m) is strict, γ is injective
as well. Moreover, by Lemma 3.4 (i)-(a), there exists an integer a such that
Coker(γ) is killed by pa. Since E (m,m′)/E

(m,m′)
0 is π-torsion free, this implies

that γ is a p-isogeny.

Thus we get the following commutative diagram, whose rows are exact

0 // (E (m,m′)
0 )∧ //

��

Ê (m,m′) //

��

Ê (m,m′)/Ê
(m,m′)
0

//

γ̂

��

0

0 // (Ê (m)
0 )∧ // Ê (m) // Ê (m)/Ê

(m)
0

// 0,

where ∧ denotes the π-adic completion. By 3.5, γ̂ is also a p-isogeny, and in
particular, it is an isomorphism after tensoring with Q. Since E

(m)
0 and E

(m,m′)
0

are already complete with respect to the π-adic topology by Lemma 2.5 (i) and
E

(m,m′)
0 → E

(m)
0 is injective, the left vertical homomorphism is injective as

well.
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4.14. — Let the situation be as in 2.10. Let m′′ ≥ m′ ≥ m be non-negative
integers. We have the following concrete description:

Im
(
Γ(U , Ê

(m,m′)
X ,Q )→ Γ(U , Ê

(m)
X ,Q)

)
=

{ ∑
|k|−inpm′′<0

ak,i∂
〈k〉(m′)(Θ̃

(m′,m′′)
le )−i +

∑
|k|−inpm′′≥0

ak,i∂
〈k〉(m)(Θ̃

(m,m′′)
le )−i

∣∣∣ (∗)}.
(∗) Let k ∈ Nd, i ≥ 0, ak,i ∈ Γ(X , OX ,Q). For an integer N , put
αN,i := sup|k|=inpm′′+N |ak,i|. Then limi→∞ αN,i = 0 for any N ,
limN→∞ supi{αN,i} = 0, and there exists a real number C > 0 such that
C > supi{αN,i} for any N < 0.

Moreover, consider the situation of 2.12. The homomorphism φ induces
Γ(D(Θ), OT (m)∗X (∗) ∩ OT (m′)∗X (∗)) → Γ(D(Θ), Ê

(m,m′)
X ), where the intersec-

tion is taken in OT∗X ,Q(∗). This homomorphism is abusively denoted by φ.
Let us denote by | · |(i) the norm of OT∗X ,Q(∗) defined by the p-adic norm
on OT (i)∗X (∗). Then any element of the above image can be written uniquely
as

(4.14.1)
∑
k∈Z

φ(Pk)

where Pk ∈ Γ(U , OT∗X ,Q(k)) such that limk→∞ |Pk|(m) = 0 and there exists a
real number C such that |Pk|(m′) < C for any k < 0.

4.15. Lemma. — Let m′ > m be non-negative integers. The homomorphism
Ê

(m,m′)
X ,Q → Ê

(m+1,m′)
X ,Q is injective, and induces an isomorphism

Ê
(m,m′)
X ,Q /Ê

(m,m′+1)
X ,Q

∼−→ Ê
(m+1,m′)
X ,Q /Ê

(m+1,m′+1)
X ,Q .

Proof. — Let us check the injectivity. Since the verification is local, we may
assume that we are in the situation of 2.10. Since the restriction homomor-
phisms of OT∗X (∗) are injective, those of Ê

(m,m′)
X ,Q are injective as well, and the

verification is generic. Thus, we may assume that we are in the situation of
2.12, and we can use the concrete description (4.14.1). Since the description is
unique, the injectivity follows.

For the second claim, it suffices to show that the canonical homomorphism

(E
(m,m′)
X ,Q )0/(E

(m,m′+1)
X ,Q )0 → Ê

(m,m′)
X ,Q /Ê

(m,m′+1)
X ,Q

is an isomorphism. This follows from Lemma 4.13.
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4.16. Lemma. — Let m′ > m ≥ 0 be integers. Then the canonical injection
Ê

(m+1,m′+1)
X ,Q → Ê

(m+1,m′)
X ,Q induces the isomorphism:

Ê
(m+1,m′+1)
X ,Q /Ê

(m,m′+1)
X ,Q

∼−→ Ê
(m+1,m′)
X ,Q /Ê

(m,m′)
X ,Q .

Proof. — We have the following diagram whose rows are exact.

0 // Ê (m,m′+1)
X ,Q /(E

(m,m′+1)
X ,Q )0

//

��

Ê
(m+1,m′+1)
X ,Q /(E

(m+1,m′+1)
X ,Q )0

//

��

Ê
(m+1,m′+1)
X ,Q /Ê

(m,m′+1)
X ,Q

//

��

0

0 // Ê (m,m′)
X ,Q /(E

(m,m′)
X ,Q )0

// Ê (m+1,m′)
X ,Q /(E

(m+1,m′)
X ,Q )0

// Ê (m+1,m′)
X ,Q /Ê

(m,m′)
X ,Q

// 0

The first two vertical homomorphisms are isomorphisms by Lemma 4.13. Thus
the right vertical homomorphism is an isomorphism as well, and the corollary
follows.

By Lemma 4.13 and Lemma 4.15, we have the following big diagram of rings
of microdifferential operators.

π−1D̂
(m)
X ,Q ⊂

∩

π−1D̂
(m+1)
X ,Q ⊂

∩

π−1D̂
(m+2)
X ,Q ⊂

∩

. . . ⊂ π−1D†X ,Q
∩

E
(m,†)
X ,Q ⊂

∩

E
(m+1,†)
X ,Q ⊂

∩

E
(m+2,†)
X ,Q ⊂

∩

. . . ⊂ E †X ,Q

...

∩

...

∩

...

∩

. .
.

Ê
(m,m+2)
X ,Q ⊂

∩

Ê
(m+1,m+2)
X ,Q ⊂

∩

Ê
(m+2)
X ,Q

Ê
(m,m+1)
X ,Q ⊂

∩

Ê
(m+1)
X ,Q

Ê
(m)
X ,Q

5. Flatness results

5.1. — Let X be an affine smooth formal scheme, and U be a strictly affine
open subscheme of T̊ ∗X . Let E be one of the rings E

(m,m′)
X , E

(m,m′)
X ,Q , Ê

(m,m′)
X ,

Ê
(m,m′)
X ,Q . Let M be a finite Γ(U ,E )-module. We use the terminologies in [9,

9.1, 9.2] freely. Let T be the Grothendieck topology (in the sense of [9, 9.1.1/1])
on U defined in the following way.
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– A subset is said to be admissible open if it is strictly affine open subset
of U .

– A covering is called an admissible covering if it is open covering in the
usual sense.

We define a presheaf M4 on (U ,T) by associating Γ(V ,E ) ⊗Γ(U ,E ) M with
an strictly affine open subscheme V .

5.2. Lemma. — For any finite B-covering U of U , Ȟi
aug(U,M4) = 0 for i ∈ Z.

Proof. — We just copy the proof of [9, 8.2.1/5] using Lemma 4.10 and
Lemma 4.12.

5.3. Corollary. — (i) For any finite Γ(U ,E )-module M , the presheaf M4 de-
fines a sheaf on (U ,T), and the functor 4 is exact.

(ii) Let U be a strictly affine open subscheme of T̊ ∗X , and suppose there
exists a finite presentation on U :

(E |U )⊕a
φ−→ (E |U )⊕b →M → 0.

Then we have a canonical isomorphism Γ(U ,M )4
∼−→M .

Proof. — Let us prove (i). Lemma 5.2 shows that the presheaf M4 is a sheaf.
The functor 4 is exact since the restriction homomorphism Γ(V ,E )→ Γ(W ,E )

is flat where W ⊂ V ⊂ U are strictly affine by Proposition 4.9 and 4.12. Let us
show (ii). We put M := Coker(Γ(U , φ)). Let E := Γ(U ,E ). By the definition
of M , we have the following exact sequence

E⊕a
Γ(U ,φ)−−−−−→ E⊕b →M → 0.

Taking the exact functor 4, we have an isomorphism M ∼= M4. Taking the
global sections, Γ(U ,M ) ∼= M , and the claim follows.

Remark. — We did not prove that any coherent E -module on U can be writ-
ten as M4 with a finite Γ(U ,E )-module M . We do not go into the prob-
lem further in this paper. We believe, however, that for any coherent E -mod-
ule M on a strict affine open subscheme U , the canonical homomorphism
Γ(U ,M )4 →M is an isomorphism.

Let us use the notation of 1.4. We consider the induced topology from
(T ∗X )′ on the underlying set of U , and denote the topological space by U ′.
We denote by ε : U → U ′ the continuous map induced by the identity. The
topology of U ′ is slightly finer (cf. [9, 9.1.2/1]) than T. Thus by [9, 9.2.3/1], the
sheaf M4 extends uniquely to a sheaf on U ′, denoted by (M4)′. Now, we get
the sheaf ε−1((M4)′). We also denote this sheaf on the topological space U
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by M4, and from now on, M4 indicates the associated sheaf on U unless
otherwise stated.

5.4. — Let X be an affine smooth formal scheme over R possessing a system of
local coordinates. Take a homogeneous element Θ in Γ(T ∗X , OT∗X ) such that
deg(Θ) > 0. Let U := D(Θ). In the rest of this section, we use the notation
of 4.2 freely.

Recall that we have the canonical injection

ρm,m′ : Ê
(m,m′+1)
Q → Ê

(m,m′)
Q .

We define E[m,m′] := ρ−1
m,m′(Ê

(m,m′)), and equip it with non-exhaustive filtra-

tion by order. Since Ê(m,m′) ⊗Q = Ê
(m,m′)
Q , we get E[m,m′] ⊗Q ∼= Ê

(m,m′+1)
Q .

See 5.7 for an account why we need to introduce this ring.

Lemma. — There exists a subring E ⊂ E[m,m′] such that the following holds.
We equip E with the induced non-exhaustive filtration from E[m,m′].

1. The ring E contains Ê(m,m′+1), and the inclusion E ⊂ E[m,m′] is a
p-isogeny.

2. The ring gr(E) is finitely generated over gr(E(m,m′+1)).
3. The ring E and the Rees ring (E0)• of E0 are two-sided Noetherian.

Proof. — In this proof, we denote Ê(m,m′+1) by E for simplicity and
consider the non-exhaustive filtration by order. By Lemma 4.5, we have
(Θ(m′,m′+1))−1 ∈ Ê(m,m′) and (Θ(m′,m′+1))−1 ∈ Ê

(m,m′+1)
Q . This shows that

(Θ(m′,m′+1))−1 ∈ E[m,m′]. We put E to be the subring of E[m,m′] generated
by E and θ := (Θ(m′,m′+1))−1.

Let us show that the inclusion E ↪→ E[m,m′] is a p-isogeny. Since
E/E0 → Ê(m,m′)/E

(m,m′)
0 is a p-isogeny by Lemma 4.13, it suffices to

check that E0 ↪→ E
[m,m′]
0 is a p-isogeny. Let a := aord(θ) of Lemma 3.4 (i).

Let ∂〈k〉(m′)(Θ(m′,m′+1))−i for k ≥ 0 and i ≥ 0 be an operator in E[m,m′] whose
order is less than or equal to 0. Then there exists an integer j > 0 such that the
order of ∂〈k〉(m′)(Θ(m′,m′+1))−i+j is strictly greater than ord(θ) and less than
or equal to 0. By the choice of a, the operator pa · ∂〈k〉(m′)(Θ(m′,m′+1))−i+j is
in E, and thus

pa · ∂〈k〉(m′)(Θ(m′,m′+1))−i ∈ E · θj ⊂ E.

Take any P in E[m,m′]
0 . There exists an integer b such that pb · P ∈ Ê(m,m′+1).

Take a left presentation (2.10.3) of level m′ + 1 such that pb · bk,i ∈ Γ(X , OX )
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for any k and i. For an integer M ′ and ? ∈ {≤, >}, we put

P?M ′ :=
∑
N?M ′

∑
|k|−inpm′+1=N

bk,i ∂
〈k〉(m′+1) (Θ(m′+1))−i.

Since (Θ(m′+1))−1 ·Θ(m′,m′+1) ∈ pE, the operator (P≤M · (Θ(m′,m′+1))b) where
M = b · ord(θ) (< 0) is contained in E. Thus,

pa · P = pa · P>M + pa · P≤M ∈ E + E · θb ⊂ E,

which implies that pa · E[m,m′]
0 ⊂ E0, and the claim follows.

Let us check condition 2 and show that this E is left Noetherian. We
can show E to be right Noetherian similarly. We define a filtration Gi
for i ≥ 0 on E in the following way: we put G0(E) := E. For i > 0, we
inductively define Gi+1(E) := E +Gi(E) · θ. Let P ∈ El for some inte-
ger l. Since pnθ = u · (Θ(m′+1))−1 by Lemma 2.11 where u ∈ Z∗ and n

denotes the order of Θ, we can write (pnθ)P = P (pnθ) +
∑
k>1 Pk(pnθ)k with

Pk ∈ E(k−1)npm′+1+l−1, thus

(5.4.1) θ · P ∈ P · θ + El−1 · θ.

This implies that condition 2 holds. Moreover, the filtration G is compatible
with ring structure and exhaustive. Let us show that grG(E) is Noetherian.
Once this is shown, since G is positive, E is Noetherian as well.

We put E := E/pnE. Let A := E ⊕
⊕

k>0E · T k be a graded ring, whose
graduation is defined by the degree of the indeterminate T , and the multipli-
cation is defined by

T · P = (θ P θ−1) · T ∈ (P + El−1) · T

for P ∈ El where the membership relation holds by (5.4.1). It is straightforward
to check that this gives us a ring structure. We denote by Ai the homogeneous
part of degree i. Since pnθ ∈ E, there exist the surjection E � grGi (E) for i ≥ 1

sending 1 to θi, which defines the surjection of rings

A� grG(E).

It suffices to show that A is Noetherian. For Q ∈ E, we denote by σ(Q) the
principal symbol in gr(E) where the filtration is taken with respect to the
filtration by order, and for Q′ ∈ E, we denote by σ(Q′) the principal symbol of
the image of Q′ in E. Let us define a “symbol map” Σ: A→ gr(E). Let P ∈ A.
Then we may write in a unique way P =

∑
Pi where Pi ∈ Ai. Let k be the

largest integer such that Pk 6= 0. We define Σ(P ) to be σ(Pk) ∈ gr(E). Let I
be a left ideal of A. We define

S :=
{

Σ(P ) | P ∈ I
}
⊂ gr(E).
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Since, for P ∈ El, we have T · P ∈ P · T + El−1 · T in grG1 (A), the set S
is closed under multiplication by homogeneous elements of gr(E). Moreover,
S is also closed under addition of two homogeneous elements with the same
degree. Let IS in gr(E) be the ideal generated by S. By the above properties,
we get that S = IS ∩

⋃
i∈Z gri(E). Since gr(E) is Noetherian, we can take

homogeneous generators P ′1, . . . , P ′k ∈ S of IS . There exist elements P1, . . . , Pk
of A such that Σ(Pi) = P ′i and the degrees of Pi are the same d > 0 for all i.
For any P ∈ I, the completeness of E with respect to the filtration by order
implies that there exists Ri ∈ A such that P−

∑
RiPi is degree less than d, and

thus contained in
⊕

i<dAi. Since
⊕

i<dAi is finite over the Noetherian ring E,
there exists Q1, . . . , Qk′ generating I ∩

⊕
i<dAi over E. By the construction,

P1 . . . , Pk, Q1, . . . , Qk′ generate I, and in particular, I is finitely generated.

It remains to show that (E0)• is Noetherian. Although the proof is
slightly more complicated, the idea is essentially the same. We define a fil-
tration F on

⊕
j≤0 Eνj : F0 is equal to

⊕
j≤0Eν

j , and we inductively define
Fi+1 := F0 + Fi · θ, namely Fi =

⊕
j≤0Gi(E)νj . We define the induced fil-

tration on (E0)• from
⊕

j≤0 Eνj also denoted by F . It suffices to show that
grF ((E0)•) is Noetherian. Let (grGi (E))j denotes the image of Gi(E) ∩ Ej
in grGi (E), and we put N := npm

′+1 = −ord(θ) > 0. Then, for i > 0, we get a
surjection

ENi ⊕ ENi−1 · ν−1 ⊕ · · ·� grFi ((E0)•) ∼=
⊕
j≤0

(grGi (E))j · νj ,

sending P · νj with P ∈ ENi+j to (P · θi) · νj . We define a ring graded both by
the degree of T and ν by

A′ := (E0 ⊕ E−1 · ν−1 ⊕ . . . )︸ ︷︷ ︸
=:A′0

⊕
⊕
i>0

(
ENi ⊕ ENi−1 · ν−1 ⊕ . . .

)
T i︸ ︷︷ ︸

=:A′i

and define the ring structure in the same way as before using (5.4.1). If we
simply say degree, it means the degree of T . We denote by A′i the part of
degree i. Since there exists a surjection A′ → grF ((E0)•), it suffices to show
that A′ is Noetherian. Let gr[j](E) :=

⊕
i≤j gri(E). We define a double graded

commutative ring
B :=

⊕
a,b≥0

gr[Na−b](E)µaν−b,

whose ring structure is defined by the canonical homomorphism

gr[Na−b](E)× gr[Na′−b′](E)→ gr[N(a+a′)−(b+b′)](E).

We claim that this ring is Noetherian. For this, it suffices to show that B is
finitely generated over gr0(E). We know that

⊕
i≥0 gri(E) and

⊕
i≤0 gri(E) are

tome 143 – 2015 – no 1



RINGS OF MICRODIFFERENTIAL OPERATORS FOR ARITHMETIC D-MODULES 87

finitely generated over gr0(E). Then the following claim leads us to the desired
conclusion.

Claim. — Let C =
⊕

i∈Z Ci be a graded commutative ring. Assume that C
is Noetherian, and that C≤0 :=

⊕
i≤0 Ci and C≥0 :=

⊕
i≥0 Ci are finitely

generated over C0. Let C[j] :=
⊕

j≥i Ci. Then for any positive integer N ,
the ring DN :=

⊕
j≥0 C[Nj]ν

Nj , where ν is an indeterminate, is also finitely
generated over C0. Moreover, the ring

⊕
k,j≥0 C[Nj−k]ν

jµk is finitely generated
over C0 where ν and µ are indeterminates.

Proof. — It suffices to check the N = 1 case. Indeed, D1 can be seen as
a DN -algebra, and D1 is integral over Dn. Thus if D1 is finitely generated
over C0, DN is also finitely generated over C0 by [4, 7.8].

It suffices to show that
⊕

j≥0

(⊕
0≥i Ci

)
νj ⊂ D1 and

⊕
j≥0

(⊕
j≥i≥0 Ci

)
νj ⊂ D1

are finitely generated over C0. Since the former one is isomorphic to C≤0[ν],
it is finitely generated. Let {xi}i∈I be a finite set of generators of C≥0

∼=⊕
i≥0 Ciν

i ⊂ D1 over C0. Then the latter one is generated by {xi}i∈I and ν,
and the claim follows. �

For P ∈ A′, we can write P =
∑
i Pi with Pi ∈ A′i in a unique way. Let s

be the maximal integer such that Ps 6= 0. We denote Ps in A′s by τ(P ).
Let τ(P ) =

∑
0≤i≤K Piν

−i with PK 6= 0. We define Σ′(P ) ∈ B to be
σ(PK)µsν−K where σ denotes the principal symbol with respect to the filtration
by order of E. Let I be an ideal of A′, and we put S′ := {Σ′(P ) | P ∈ I} ⊂ B.
This set is closed under addition of two elements with the same degree, and
multiplication by homogeneous element. Take a finite set {Qi} in I such that{

Σ′(Qi)
}
is a set of generators of the ideal BS′ ⊂ B. It is straightforward to

check that the set {Qi} generates I.

5.5. Proposition. — (i) The ring Ê[m,m′]
Q := Ê[m,m′] ⊗Q is Noetherian where ·̂

indicates the π-adic completion.
(ii) The canonical homomorphism αm,m′ : Ê

(m,m′+1)
Q → Ê

[m,m′]
Q is flat.

(iii) The canonical homomorphism βm,m′ : Ê
[m,m′]
Q → Ê

(m,m′)
Q is flat.

Proof. — We use the notation of Lemma 5.4. Since E is Noetherian, the canon-
ical homomorphism E → Ê is flat and Ê is Noetherian by [5, 3.2.3]. Since E
is p-isogeneous to E[m,m′], they are also p-isogeneous even after taking π-adic
completion by Lemma 3.5. Thus we get (i). Since E[m,m′] ⊗ Q ∼= Ê

(m,m′+1)
Q ,

the flatness of αm,m′ follows, which is (ii).
Let us prove (iii). We put Efin :=

⋃
n En. By condition 2 of Lemma 5.4 and

Lemma 4.8,
⊕

i≥0 gri(Efin) is Noetherian. Since E0 is a Noetherian filtered ring

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



88 T. ABE

with respect to the filtration by order by condition 3, Efin is also a Noetherian
filtered ring by Lemma 1.12. Let E′fin be the completion of Efin with respect to
the filtration. Then the canonical homomorphism Efin → E′fin is flat and E′fin

is Noetherian (cf. 1.1.6). Thus, by taking the π-adic completion, the canonical
homomorphism Êfin → Ê′fin is flat by [5, 3.2.3 (vii)] where ∧ denote the π-adic
completion. It suffices to show that

(5.5.1) Êfin ⊗Q ∼= Ê
[m,m′]
Q , Ê′fin ⊗Q ∼= Ê

(m,m′)
Q .

Let E[m,m′]
fin :=

⋃
nE

[m,m′]
n . Since Efin ⊂ E[m,m′]

fin is a p-isogeny and the π-adic
completion of E

[m,m′]
fin is Ê

[m,m′]
Q , we get the first isomorphism. Let us

show the second one. Note that the completion of E[m,m′]
fin with respect

to the filtration by order is E(m,m′). There exists an integer n such that
pnE

[m,m′]
fin ⊂ Efin ⊂ E[m,m′]

fin . Since these inclusions are strict homomorphisms,
the inclusions are preserved even after taking the completion with respect to
the filtration by order, and we get pnE(m,m′) ⊂ E′fin ⊂ E(m,m′). In partic-
ular, the inclusion E′fin ⊂ E(m,m′) is a p-isogeny, which implies the second
isomorphism of (5.5.1), and the proposition follows.

5.6. Lemma. — Let m′ > m. Put F (m′) := ι(Ê
(m,m′)
Q ) ∩ Ê(m) where ι : Ê(m,m′)

Q →
Ê

(m)
Q is the canonical injection. Then, for any j ≥ 0, F (m′)

Xj
:= F (m′) ⊗Rj does

not depend on m′.

Proof. — By definition, the canonical homomorphism F
(m′)
Xj

→ E
(m)
Xj

:= Γ(U ,E
(m)
Xj

)

is injective. There exists m′′ ≥ m′ such that Θ(m,m′′) is in the center of D(m)
Xj

.

Let LD(m)
Xj

be the subring of E(m)
Xj

generated by D(m)
Xj

and (Θ(m,m′′))−1, which

does not depend on the choice of m′′. (In fact, LD(m)
Xj

:= Γ(U ,L D
(m)
Xj

) using

the notation of Remark 2.16.) It suffices to show that LD(m)
Xj

= F
(m′)
Xj

in E(m)
Xj

.

Since (Θ(m,m′′))−1 ∈ F (m′), we have LD(m)
Xj
⊂ F (m′)

Xj
. Let us show the opposite

inclusion. By Remark 4.14, any element of F (m′) can be written as∑
k<0

Pk,i · (Θ(m′,m′′))−i︸ ︷︷ ︸
1©

+
∑
k≥0

Pk,i · (Θ(m,m′′))−i︸ ︷︷ ︸
2©

where Pk,i ∈ (D
(m)
Q )k+npm′′ i (n := ord(Θ)) with some convergence condi-

tions. The sum 2© becomes finite in E
(m)
Xj

since limk→∞ Pk,i = 0. Since
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(Θ(m′,m′′))−1 ≡ 0 mod pÊ(m), 1© is also a finite sum in E
(m)
Xj

, and we have

F
(m′)
Xj

⊂ LD(m)
Xj

.

Corollary. — The image of the homomorphism Ê
(m,m′+2)
Q → Ê

[m,m′]
Q is dense

with respect to the π-adic topology on Ê[m,m′]
Q for any m′ ≥ m.

Proof. — Set (m,m′) of Lemma 5.6 to be (m′,m′ + 1). Then F (m′+1) =

E[m′,m′], and the lemma implies that the image of the homomorphism
Ê

(m′,m′+2)
Q → Ê

[m′,m′]
Q is dense. This shows that the image of the homomor-

phism (E
(m′,m′+2)
Q )0 → (E

[m′,m′]
Q )0 is also dense, and so is the image of the

composition

(E
(m,m′+2)
Q )0

∼−→ (E
(m′,m′+2)
Q )0 → (Ê

[m′,m′]
Q )0

∼←− (Ê
[m,m′]
Q )0,

which is nothing but the canonical homomorphism (E
(m,m′+2)
Q )0 → (Ê

[m,m′]
Q )0.

Since
Ê

(m,m′+2)
Q /(E

(m,m′+2)
Q )0

∼−→ Ê
[m,m′]
Q /(Ê

[m,m′]
Q )0,

we conclude the proof.

5.7. — We recall the definition of Fréchet-Stein algebra. For more details, we
refer to [25]. A K-algebra A together with a projective system of K-Banach al-
gebras {Ai}i≥0 and a homomorphism of projective systems A→ {Ai} where A
denotes the constant projective system is called a Fréchet-Stein algebra (cf. [25,
§ 3]) if the following hold.

1. For any i ≥ 0, the ring Ai is Noetherian.
2. The transition homomorphism Ai+1 → Ai is flat and the image is dense

in Ai.
3. The given homomorphism of projective systems induces an isomorphism

of K-algebras A→ lim←−iAi.

In general, the image of the homomorphism Ê
(m,m′+1)
Q → Ê

(m,m′)
Q is not dense,

and the projective system
{
Ê

(m,m′)
Q

}
m′≥m does not give a Fréchet-Stein struc-

ture on E(m,†)
Q . We need to replace Ê(m,m′)

Q by Ê[m,m′]
Q to get such a structure

as the following theorem shows.

5.8. Theorem. — (i) The ring E(m,†)
Q is a Fréchet-Stein algebra with respect to

the projective system
{
Ê

[m,m′]
Q

}
m′≥m.
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(ii) For a finitely presented E(m,†)
Q -module M , we have

Ri lim←−
m′

(Ê
(m,m′)
Q ⊗

E
(m,†)
Q

M)
∼←−

{
M if i = 0

0 if i 6= 0.

(iii) Let V ⊂ U be strictly affine open subschemes of T̊ ∗X . Then the ho-
momorphism Γ(U ,E

(m,†)
X ,Q )→ Γ(V ,E

(m,†)
X ,Q ) is flat.

Proof. — For (i), combine Proposition 5.5 and Corollary 5.4. To check (ii), the
projective systems

{
Ê

[m,m′]
Q ⊗M

}
m′≥m and

{
Ê

(m,m′)
Q ⊗M

}
m′≥m are cofinal

in the projective system

· · · → Ê
[m,m′+1]
Q ⊗M → Ê

(m,m′+1)
Q ⊗M → Ê

[m,m′]
Q ⊗M → Ê

(m,m′)
Q ⊗M → · · · ,

and these three projective systems have the same Ri lim←−m′ . Thus, [25, § 3 The-

orem] leads us to (ii). Let us prove (iii). Put E∗ := Γ(∗,E (m,†)
X ,Q ) for ∗ ∈ {U ,V }.

Let 0→ I → EU →M → 0 be an exact sequence of EU -modules such that I
is a finitely generated ideal. By [10, I, § 4 Proposition 1], it suffices to show that
TorEU

1 (EV ,M) = 0. Using [25, Corollary 3.4-i], since M is finitely presented,
M is coadmissible, and thus I is coadmissible as well. By [25, Remark 3.2, § 3
Theorem] and Proposition 4.12, the sequence

0→ EV ⊗EU I → EV → EV ⊗EU M → 0

is exact, and we get the vanishing of Tor.

Remark. — In (ii) of the theorem, we can more generally take M to be a
coadmissible E(m,†)

Q -module (cf. [25, § 3]).

5.9. Corollary. — Let U be a strictly affine open subscheme of T̊ ∗X , and M
be a finitely presented Γ(U ,E

(m,†)
X ,Q )-module. We define the presheaf M4 in the

same way as 5.1. Then Lemma 4.10, Lemma 5.2, Corollary 5.3 are also valid
for E = E

(m,†)
X ,Q ,E †X ,Q, and M .

Proof. — Let us check the claim for E = E
(m,†)
X ,Q . For any strictly open sub-

scheme V ⊂ U ,
Ri lim←−

m′

(
Γ(V , Ê

(m,m′)
X ,Q )⊗M

)
= 0

for i > 0 by Theorem 5.8 (ii). Let us denote by Ê
(m,m′)
X ,Q ⊗ M the coherent

Ê
(m,m′)
X ,Q |U -module associated with M . By Lemma 5.2, this shows that the

sequence

· · · → lim←−
m′

Cqaug(U, Ê
(m,m′)
X ,Q ⊗M)→ lim←−

m′

Cq+1
aug (U, Ê

(m,m′)
X ,Q ⊗M)→ · · ·
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is exact. Since

lim←−
m′

Cqaug(U, Ê
(m,m′)
X ,Q ⊗M) ∼= Cqaug(U,E

(m,†)
X ,Q ⊗M)

by Theorem 5.8 (ii), Lemma 4.10 and Lemma 5.2 for this E follows. The veri-
fication of Corollary 5.3 is similar. For the claims on E †X ,Q, we only note that
the functor lim−→ is exact.

5.10. Corollary. — Let m′ > m be non-negative integers. Then the canonical
injection E

(m+1,†)
X ,Q → Ê

(m+1,m′)
X ,Q induces the isomorphism:

E
(m+1,†)
X ,Q /E

(m,†)
X ,Q

∼−→ Ê
(m+1,m′)
X ,Q /Ê

(m,m′)
X ,Q .

Proof. — It suffices to show that E(m+1,†)
Q /E

(m,†)
Q

∼−→ Ê
(m+1,m′)
Q /Ê

(m,m′)
Q for

any strictly affine open subscheme U . This follows from Lemma 4.16 and the
fact that R1 lim←−m′ Ê

(m,m′)
Q = 0 by Theorem 5.8.

5.11. — Now, we argue the flatness of Ê
(m,m′)
X ,Q → Ê

(m+1,m′)
X ,Q .

Lemma. — The canonical homomorphism Ê
(m,m′)
X ,Q → Ê

(m+1,m′)
X ,Q is flat for

non-negative integers m′ > m.

Proof. — Since the verification is local, we may assume that we are in the
situation of 2.10. It suffices to check that Ê(m,m′)

Q → Ê
(m+1,m′)
Q is flat. The

proof being similar to [5, 3.5.3], we only sketch. Let F be the subring of Ê(m,m′)
Q

generated over Ê(m,m′) by
{
∂
〈pm+1〉(m+1)

i

}
1≤i≤d. Since [P, ∂

〈pm+1〉(m+1)

i ] ∈ D(m)

for P ∈ D(m),

[(Θ(m))−1, ∂
〈pm+1〉(m+1)

i ] = (Θ(m))−1 · [∂〈p
m+1〉(m+1)

i ,Θ(m)] · (Θ(m))−1 ∈ Ê(m).

Thus, [Q, ∂
〈pm+1〉(m+1)

i ] ∈ Ê(m,m′) for Q ∈ Ê(m,m′). This shows that

F =
∑
k

Ê(m,m′) ·
(
∂〈p

m+1〉(m+1)
)k
.

Now, define the filtration on F by the order of ∂〈p
m+1〉(m+1) . Then we have a

surjection Ê(m,m′)[T1, . . . , Td]→ gr(F ) sending Ti to σ(∂
〈pm+1〉(m+1)

i ). Thus, F
is Noetherian since Ê(m,m′) is. This implies that the homomorphism F → F∧ is
flat. Using Lemma 3.4 (i), we can check that F∧ is p-isogeneous to Ê(m+1,m′)

Q ,
and the lemma follows.
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5.12. — We sum up the results we got in this section as the following theorem.

Theorem. — Let m′ ≥ m be non-negative integers.

1. The canonical injective homomorphism E
(m,†)
X ,Q → Ê

(m,m′)
X ,Q is flat.

2. The canonical injective homomorphism Ê
(m,m′+1)
X ,Q → Ê

(m,m′)
X ,Q is flat.

3. Let M be a finitely presented E
(m,†)
X ,Q -module. Then we get

M
∼−→ lim←−

m′

Ê
(m,m′)
X ,Q ⊗

E
(m,†)
X ,Q

M .

4. The canonical injective homomorphism Ê
(m,m′)
X ,Q → Ê

(m+1,m′)
X ,Q is flat.

Proof. — We restate what we have proven for 2 and 4. To check 1, it suffices
to apply [25, Remark 3.2]. Let us prove 3. Since M is finitely presented, there
exists a strictly affine open subscheme U such that there exists a presentation
on which M possesses a finite presentation. Then we apply Corollary 5.9.

Remark. — We do not know if Ê
(m,m′)
X ,Q is flat over π−1D̂

(m)
X ,Q. However, in the

curve case, this is flat by [3, 1.3.4].

6. On finiteness of sheaves of rings

In this section, we introduce a finiteness property for modules on certain
topological spaces, and prove some stationary type theorem. This finiteness is
especially useful when we consider modules on formal schemes.

6.1. — First, let us introduce conditions on topological spaces and on sheaves.
A ringed space (X, OX) is said to satisfy condition (FT) if the following
two conditions hold.

1. The topological space X is sober (5) (i.e., any irreducible closed
subset has a unique generic point, see [17, Exp. IV, 4.2.1]) and
Noetherian (cf. [16, 0I, § 2.2]).

2. The structure sheaf OX is a coherent ring, and OX,x is Noetherian
for any x ∈ X.

Let (X, OX) be a ringed space satisfying (FT), and let M be a coherent
OX -module. Let Z := {Zi}i∈I be a finite family of irreducible closed sub-
sets. The module M is said to satisfy condition (SH) with respect to Z if the
following holds.

(5) In this paper, we do not use the uniqueness of generic points, and this assumption is a
little stronger than what is really needed.
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For any section s ∈ Γ(U, M) over any open subset U , there exists a subset
I ′ ⊂ I such that Supp(s) =

⋃
i∈I′ Zi ∩ U .

We simply say that M satisfies condition (SH) if there exists a finite family Z
such that M satisfies (SH) with respect to Z.

6.2. Lemma. — Let (X, OX) be a ringed space satisfying (FT). Let M be a
coherent OX-module satisfying (SH) with respect to Z = {Zi}i∈I . Then for any
sub- OX-module K of M, there exists an open subset Z ′i of Zi for each i ∈ I
such that Supp( K ) =

⋃
i∈I Z

′
i.

Proof. — Let U be an open subset of X, and take 0 6= s ∈ Γ(U, K ).
Let ϕU : Γ(U, K ) ↪→ Γ(U, M) be the inclusion. Since ϕ is injective, Supp(s) =

Supp(ϕU (s)). There exists a subset Is ⊂ I such that

Supp(s) = Supp(ϕU (s)) =
⋃
i∈Is

Zi ∩ U

by (SH) of M. Note that this is an open subset of
⋃
i∈Is

Zi. Let S :=⋃
U⊂X Γ(U, K ) where U runs over open subsets of X, and Si be the subset

of S consisting of the elements s such that i ∈ Is. Now, we get

Supp( K ) =
⋃
s∈S

Supp(s) =
⋃
i∈I

( ⋃
s∈Si

Supp(s) ∩ Zi
)
.

Since Supp(s)∩Zi is open in Zi, the set Z ′i :=
⋃
s∈Si

Supp(s)∩Zi is also open
in Zi.

6.3. Proposition. — Let (X, OX) be a ringed space satisfying (FT). Let M be a
coherent OX-module, and assume that for any open subset U ⊂ X, (SH) holds
for any coherent subquotient of M|U . Now, let

K 1 ⊂ K 2 ⊂ K 3 ⊂ · · · ⊂ M

be an ascending chain of sub- OX-modules (not necessarily coherent) of M. Then
the chain is stationary.

Proof. — Let n ∈ N and Z be a closed subset of X. We say that the chain
is stationary for (n,Z) if Kn|X\Z = K i|X\Z for any i ≥ n. We claim that if
the chain is stationary for (n,Z) with Z 6= ∅, then there exists an integer n′

and Z ′ ( Z such that the chain is stationary for (n′, Z ′). Once this is proven,
(i) follows since X is a Noetherian space.

Let us show the claim. By Lemma 6.2, there exists an integer a such that
Supp( K i) = Supp( K a) for any i ≥ a. We may suppose that Z ⊂ Supp( K a).
Take a generic point η of Z. Since OX,η is Noetherian, there exists
n′ ≥ max{a, n} such that K i,η = Kn′,η for any i ≥ n′. Fix a set of gen-
erators {f1, . . . , fα} of Kn′,η. There exists an open neighborhood U of η such
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that {f1, . . . , fα} can be lifted on U and U ∩ Z is irreducible. We fix a set of
liftings {f̃1, . . . , f̃α} in Γ(U, Kn′). Let S be the sub- OX |U -module of M|U gen-
erated by {f̃1, . . . , f̃α}, which is coherent since OX is. Now, let M′U := M|U/ S
be a coherent OX |U -module, and denote by K ′i the image of K i|U in M′U .
We know that Supp( K i) ∩ U ⊃ Supp( K ′i). By construction, η 6∈ Supp( K ′i)
for any i ≥ n′. By assumption, M′U also satisfies (SH). Let W := {Wj}j∈J be
a finite family of irreducible closed subset of U such that M′U satisfies (SH)
with respect to W. Let J ′ be the subset of J such that η 6∈ Wj , and we put
W ′ :=

⋃
j∈J′Wj . We let

Z ′ := (Z ∩W ′) ∪ (Z \ U).

Since η 6∈ Z ′, we get Z ′ ( Z. For any i ≥ n′, by Lemma 6.2, there exists an
open subset W ′j of Wj for each j ∈ J such that

Supp( K ′i) =
⋃
j∈J

W ′j .

We claim that W ′j ∩ Z = ∅ for any j 6∈ J ′. Indeed, j 6∈ J ′ implies η ∈ Wj and
Z ∩ U ⊂ Wj . If W ′j ∩ Z 6= ∅, we would get η ∈ W ′j since Z ∩ U is irreducible
closed and W ′j is open in Wj . This contradicts with η 6∈ Supp( K ′i). Thus,

(6.3.1) Supp( K ′i) ∩ (Z \W ′) ∩ U = ∅.

Now, the chain is stationary for (n′, Z ′): it suffices to check K i,z = Kn′,z for any
z ∈ Z \Z ′ = (Z \W ′)∩U . However, we get K ′i,z = 0 for any i ≥ n′ by (6.3.1).
Thus, K i,z = Sz by the definition of K ′i, which concludes the proof.

6.4. — We show that coherent modules over some Noetherian rings we have
defined in this paper satisfy (SH). For this, we prepare some lemmas. In the
following, let (X, OX) be a ringed space satisfying (FT).

Lemma. — Condition (SH) is closed under extensions: suppose there exists an
exact sequence of coherent OX-modules 0→ F ′ → F → F ′′ → 0 such that F ′

and F ′′ satisfy condition (SH). Then F also satisfies condition (SH).

Proof. — Left to the reader.

6.5. Lemma. — Let M be a coherent OX-module. The module M satisfies con-
dition (SH) if and only if there exists a covering {Ui}i∈I of X such that M|Ui

satisfies the condition on Ui for any i.

Proof. — We only need the proof for the “if” part. Since X is quasi-compact,
we may assume that the covering is finite. By assumption, for each i ∈ I, there
exists a family {Zj}j∈Ji

of closed subsets of Ui such that M|Ui
satisfies (SH)
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with respect to this family. The module M satisfies (SH) with respect to the
family

⋃
i∈I
{
Zj
}
j∈Ji

. Since the verification is straightforward, we leave the
details to the reader.

6.6. Lemma. — Let ( F , F i) be a separated filtered sheaf. Suppose that gr( F )

satisfies (SH). Then F also satisfies (SH).

Proof. — Assume that gr( F ) satisfies (SH) with respect to Z = {Zi}i∈I . Let U
be an open subset of X, and take a non-zero s ∈ Γ(U, F ). There exists an
integer i0 such that s ∈ Γ(U, F i0) and s 6∈ Γ(U, F i0−1) since the filtration
is exhaustive (see Convention) and separated. Let σ(s) ∈ Γ(U, gri0( F )) ⊂
Γ(U, gr( F )) be the principal symbol of s. Then there exists J0 ⊂ I such that
Supp(σ(s)) =

⋃
j∈J0

Zj ∩ U . For k ≥ 0, we inductively define an open sub-
set Uk, and a subset Jk of J in the following way. We put U0 := U . Now,
let Uk+1 := Uk \ Supp(σ(s|Uk

)). Then there exists J ′k+1 such that

Supp(σ(s|Uk+1
)) =

⋃
j∈J′k+1

Zj ∩ Uk+1.

We define Jk+1 := Jk∪J ′k+1. Obviously, J0 ⊂ J1 ⊂ · · · ⊂ I. Since I is a finite set,
this sequence is stationary. Let J :=

⋃
i Ji ⊂ I. Then Supp(s) =

⋃
j∈J Zj ∩ U ,

and F satisfies (SH) with respect to Z as well.

6.7. Definition. — Let (X, OX) be a ringed space satisfying (FT). The ringed
space or OX is said to be (SH)-Noetherian if condition (SH) is satisfied for any
coherent OX |U -modules and open subset U ofX. If, moreover, OX is Noetherian
with respect to B, we say that OX is strictly Noetherian with respect to B.

6.8. Lemma. — Let (X, E) be a ringed space satisfying (FT), and let ( E, Ei) be a
filtration on E. Suppose that the filtration is pointwise Zariskian (cf. Definition
1.9). If gr( E) is (SH)-Noetherian, then so is E.

Proof. — Let M be a coherent E-module. Since the verification is local by
Lemma 6.5, we may suppose that there exists a good filtration ( M, Mi). By
Lemma 1.13, the filtration is separated. Now by Lemma 6.6, the corollary fol-
lows.

6.9. Lemma. — Let A be a strictly Noetherian sheaf with respect to B
(resp. (SH)-Noetherian sheaf) on a topological space X, then so is A[T ].

Proof. — It is easy to check that A is Noetherian if and only if A[T ] is a
Noetherian ring since Γ(U, A[T ]) ∼= Γ(U, A)[T ] for any open set U . Assume A
to be (SH)-Noetherian, and let M be a coherent A[T ]-module. It suffices to
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show that M satisfies (SH). Since the verification is local by Lemma 6.5, we
may assume that there exist integers a, b ≥ 0 and a presentation

A[T ]⊕a
ψ−→ A[T ]⊕b

φ−→ M → 0.

Let An :=
⊕

i≤n A · T i and K ′n := ψ( An). Let Km,n := K ′m ∩ A⊕bn in A[T ]⊕b,
which is a coherent sub-A-module of A⊕bn ⊂ A[T ]⊕b. Since A is strictly Noethe-
rian, Kn :=

⋃
m≥0 Km,n = Ker(φ) ∩ An is a coherent A-module by Proposi-

tion 6.3. We define a coherent A-module Mn by A⊕bn /Kn ⊂ M. By construc-
tion,

⋃
n Mn = M, and ( M, {Mn}n∈Z) is a filtered ( A[T ], {An}n∈Z)-module.

It suffices to show that gr( M) satisfies (SH) by Lemma 6.6. We have checked
gri( M) is a coherent A-module for any i. By construction, the homomorphism
T : gri( M) → gri+1( M) is surjective for any i, and we have the following se-
quence of surjections.

M0 = gr0( M)� · · ·� gri( M)� gri+1( M)� · · ·
Since M0 is coherent and A is strictly Noetherian, this sequence is station-
ary, and there exists an integer N such that T i : grN ( M) → grN+i( M) is an
isomorphism for any i ≥ 0. Since

⊕
0≤i≤N gri( M) is a coherent A-module, it

satisfies (SH) with respect to a family Z. Then gr( M) satisfies (SH) with respect
to Z.

6.10. Corollary. — Let X be a topological space satisfying (FT), and A be a
strictly Noetherian R-module on X with respect to B (resp. (SH)-Noetherian).
Then so is A ⊗Q.

Proof. — We only prove the strictly Noetherian case. It is easily verified that
A ⊗ Q is Noetherian with respect to B. Let An := Ker( A pn

−→ A). Since A is
strictly Noetherian, the sequence A0 ⊂ A1 ⊂ · · · ⊂ A is stationary. Let A∞ :=

lim−→n
An. Since A/A∞ is a coherent A-algebra, it is strictly Noetherian, and we

may assume that A is a flat R-module in the sequel. Let Fi( A ⊗ Q) := π−i A
for i ≥ 0 and Fi( A⊗Q) = 0 for i < 0. Then it suffices to show that grF ( A⊗Q) is
strictly Noetherian by Lemma 6.8. Since grF ( A⊗Q) is a coherent A[T ]-algebra
where the action of T is the multiplication by π−1 ∈ grF1 ( A ⊗Q), it is reduced
to showing that A[T ] is strictly Noetherian, which follows from Lemma 6.9.

6.11. Lemma. — Let X be a Noetherian scheme, and let B be the open basis
consisting of open affine subschemes of X. Then OX is strictly Noetherian with
respect to B.

Proof. — Condition (FT) on (X, OX) is a basic property of Noetherian
schemes. Let M be a coherent OX -module, and let us check (SH) for this M.
Since the statement is local by Lemma 6.5, we may suppose that X = Spec(A)
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for a Noetherian ring A. There exists a finite decreasing filtration {Mi}0≤i≤n
on M such that M0 = M, Mn = 0, the quotient Mi/Mi+1 is irredundant for
any 0 ≤ i < n, and

Ass( Mi/Mi+1) ⊂ Ass( M)

by [16, IV 3.2.8]. By Lemma 6.4, it suffices to show the lemma for irredundant
modules, but in this case, it follows by definition.

Using Lemma 6.9, we have the following corollary.

Corollary. — Let X be a Noetherian scheme and A be a quasi-coherent OX-al-
gebra of finite type. Then A is strictly Noetherian.

6.12. Lemma. — Let (Y, A) be a ringed space satisfying (FT), and assume
that A is strictly Noetherian with respect to B. Let X be a sober and Noethe-
rian topological space, and f : X → Y be an open continuous map of topological
spaces. Let C be an open basis of X consisting of V such that f(V ) ∈ B. Then
the ringed space (X, f−1 A) is strictly Noetherian with respect to C.

Proof. — Let N be a coherent A-module satisfying (SH) with respect to Z.
Then f−1 N satisfies (SH) with respect to f−1(Z). We claim that for any
coherent f−1 A-module M, there exists a coherent A-module N such that
M ∼= f−1( N ). Now, the functor f∗ is exact since f is open. Thus, for a co-
herent f−1 A-module M, the canonical homomorphism f−1f∗M → M is an
isomorphism, and f∗M|f(X) is a coherent A|f(X)-module. Thus f−1 A is (SH)-
Noetherian. We leave the details to check that it is Noetherian with respect
to C.

6.13. Theorem. — Let X be a smooth formal scheme of finite type over Spf(R).
Then OXi , OX , OX ,Q, D

(m)
Xi

, D
(m)
X , D

(m)
X ,Q, D̂

(m)
X , D̂

(m)
X ,Q are strictly Noethe-

rian sheaves on X . Moreover, E
(m,m′)
Xi

, E
(m,m′)
X , Ê

(m,m′)
X , Ê

(m,m′)
X ,Q are strictly

Noetherian on T̊ ∗X .

Proof. — Note first that X and T̊ ∗X are Noetherian spaces. The ring OXi
is

strictly Noetherian by Lemma 6.11. To check that OX is strictly Noetherian,
we consider the π-adic filtration. Since OX is pointwise Zariskian with respect
to the π-adic filtration by [5, 3.3.6] and [18, Ch. II, 2.2 (4)] (or we can use
Lemma 1.10), it suffices to show that grπ( OX ) ∼= OX0

[T ] is strictly Noetherian
by Lemma 6.8 where grπ denotes the gr with respect to the π-adic filtration
and T denotes the class of π. This follows from Lemma 6.9. For OX ,Q use
Corollary 6.10.
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Let X be either X or Xi for some i ≥ 0. Let us prove that D
(m)
X is

strictly Noetherian. We consider the filtration by order. Since the filtra-
tion is positive, it suffices to show that gr(D

(m)
X ) is strictly Noetherian by

Lemma 6.8. Since gr(D
(m)
X ) is of finite type over gr0(D

(m)
X ), and gri(D

(m)
X )

is coherent gr0(D
(m)
X )-module for any i, gr(D

(m)
X ) can be seen as a coherent

OX [T1, . . . , Tn]-algebra for some n, and the claim follows by using Corollary 6.9.
Let us prove that D̂

(m)
X is strictly Noetherian. Consider the π-adic filtra-

tion. Then D̂
(m)
X is pointwise Zariskian filtered by [5, 3.3.6] and [18, Ch. II,

2.2 (4)]. By Lemma 6.8, it suffices to show that grπ(D̂
(m)
X ) ∼= (D

(m)
X0

)[T ] is
strictly Noetherian where grπ denotes the gr with respect to the π-adic fil-
tration and T denotes the class of π. Since we checked that D

(m)
X0

is strictly
Noetherian, (D

(m)
X0

)[T ] is strictly Noetherian by Lemma 6.9, and thus D̂
(m)
X is

strictly Noetherian.
LetX be either X orXi for some i. Let us check that E := E

(m,m′)
X is strictly

Noetherian on T̊ ∗X . Consider the filtration by order. It suffices to show that
gr(E ) is strictly Noetherian by Lemma 6.8 and Remark 4.9. Let q : T̊ ∗X →
P ∗X be the canonical surjection. Then, it suffices to show that q∗(gr(E )) is
strictly Noetherian by (1.4.1). By Lemma 4.8, we know that q∗(gr(E )) is an
OP (m)∗X -algebra of finite type and q∗(gri(E )) is a coherent OP (m)∗X -module for
any i, and we get the claim by using Lemma 6.9.

For Ê
(m,m′)
X and Ê

(m,m′)
X ,Q the verifications are the same as those of D̂

(m)
X and

D̂
(m)
X ,Q, and we leave the details to the reader.

7. Application: Stability theorem for curves

In this section, we focus on the relation between the support of the mi-
crolocalization and the characteristic variety. We formulate a conjecture on the
relation, and prove the conjecture in the curve case.

7.1. — Recall the setting 2.4, and let X be a quasi-compact smooth formal
scheme over R. One might expect that, for a coherent D̂

(m)
X ,Q-module M ,

Char(m)(M ) = Supp(E
(m,†)
X ,Q ⊗π−1D̂

(m)
X ,Q

π−1M ).

For the definition of the characteristic varieties, see 2.14. However, this does not
hold in general. Indeed, suppose this were true. Then since Supp(E

(m,†)
X ,Q ⊗M ) ⊃

Supp(E
(m+1,†)
X ,Q ⊗M ), we would get Char(m)(M ) ⊃ Char(m+1)(D̂

(m+1)
X ,Q ⊗M ).

However, this does not hold by Example 4.1. Considering these, we conjecture
the following.
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Conjecture. — Let X be a quasi-compact smooth formal scheme over R, and
M be a coherent D̂

(m)
X ,Q-module. Then there exists an integer N ≥ m such that

for any m′ ≥ N ,

Char(m′)(D̂
(m′)
X ,Q ⊗D̂

(m)
X ,Q

M ) = Supp(E
(m′,†)
X ,Q ⊗

π−1D̂
(m)
X ,Q

π−1M ).

We prove this conjecture in the case where X is a formal curve (i.e., dimen-
sion 1 connected smooth formal scheme of finite type over R). Namely,

7.2. Theorem. — Let X be a smooth formal curve over R. Let M be a coherent
D̂

(m)
X ,Q-module. Then there exists an integer N ≥ m such that we have

Char(m′)(D̂
(m′)
X ,Q ⊗M ) = Supp(E †X ,Q ⊗M )

for m′ ≥ N .

This theorem is proven in the last part of this section.

7.3. Remark. — The conjecture and Theorem 7.2 may seem to be different since
we used E

(m′,†)
X ,Q in the conjecture and E †X ,Q in the theorem. However, these are

equivalent. Indeed, since there exists a homomorphism E
(m′,†)
X ,Q → E

(m′+1,†)
X ,Q and

the topological space T ∗X is Noetherian, there exists an integer a such that
for any m′ ≥ a,

Supp(E †X ,Q ⊗M ) ⊂ Supp(E
(m′,†)
X ,Q ⊗M ) = Supp(E

(a,†)
X ,Q ⊗M ).

We remind that these supports are closed by [16, 0I, 5.2.2]. Let us show that
this inclusion is in fact an equality. Since the problem is local, we may assume
that X is affine, and take global generators m1, . . . ,mn ∈ Γ(X ,M ) of M

over D̂
(m)
X ,Q. Suppose that the inclusion is not an equality, and take a point

x ∈ Supp(E
(a,†)
X ,Q ⊗M ) which is not contained in Supp(E †X ,Q⊗M ). This means

that (E †X ,Q ⊗M )x = 0. Now, we know that

(E †X ,Q ⊗M )x ∼= lim−→
m′

(E
(m′,†)
X ,Q ⊗M )x

by [15, Ch. II, 1.11]. Thus there exists an integer m′ ≥ a such that the images
of m1, . . . ,mn in (E

(m′,†)
X ,Q ⊗M )x are 0. Since the latter module is generated

by these elements over (E
(m′,†)
X ,Q )x, we would have (E

(m′,†)
X ,Q ⊗M )x = 0, which

contradicts with the assumption. Summing up, we obtain

Supp(E †X ,Q ⊗M ) =
⋂

m′≥m

Supp(E
(m′,†)
X ,Q ⊗M ).
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7.4. — Before we start proving the theorem:

Definition. — Let X be a smooth formal scheme of dimension 1 over R (not
necessarily quasi-compact), and let M be a coherent D†X ,Q-module. We define

Char(M ) := Supp(E †X ,Q ⊗M ).

7.5. Corollary. — Suppose that k is perfect and there exists a lifting σ : R
∼−→ R

of the absolute Frobenius automorphism of k, and fix one. Let X be a smooth
formal scheme of dimension 1, and let M be a coherent F -D†X ,Q-module. Then

Car(M ) = Char(M ),

where Car denotes the characteristic variety defined by Berthelot (cf. [7, 5.2.7]).

Proof. — The problem being local, we may assume that X is quasi-compact,
and thus a curve. Since this follows immediately from the definition of Car, we
recall it briefly. For a large enough integerm, we can take the Frobenius descent
of levelm denoted by M (m) by [6, 4.5.4], which is a coherent D̂

(m)
X ,Q-module with

an isomorphism D̂
(m+1)
X ,Q ⊗M (m) ∼−→ F ∗M (m). The characteristic variety of M

is by definition Char(m)(M (m)). Since we have M (m+k) := D̂
(m+k)
X ,Q ⊗M (m) ∼=

F k∗M (m), Char(m)(M (m)) = Char(m+k)(M (m+k)) by [7, 5.2.4 (iii)]. Thus the
corollary follows by applying Theorem 7.2 to M (m).

7.6. — Let us prove the theorem. To do it, we show the following proposition
first.

Proposition. — Let X be a smooth formal curve over R, and M be a coherent
D̂

(m)
X ,Q-module. Suppose that there exists an integer N ′ ≥ m such that

Char(m′)(D̂
(m′)
X ,Q ⊗M ) = Char(N ′)(D̂

(N ′)
X ,Q ⊗M )

for any m′ ≥ N ′. Then the conclusion of Theorem 7.2 holds.
The proof is given in 7.9. For an interval I ⊂ R, we denote I ∩ Z by IZ in

the following.

7.7. Lemma. — Let X be a smooth formal scheme. (We do not need to assume
that X is a curve in this lemma.) Let M be a D̂

(m)
X ,Q-module and x ∈ T ∗X .

Suppose there exist integers b ≥ a ≥ m such that

(Ê
(m′)
X ,Q ⊗M )x = 0

for any integer b ≥ m′ ≥ a. Then the canonical homomorphism

(7.7.1) (Ê
(l,•)
X ,Q ⊗M )x → (Ê

(m′,•)
X ,Q ⊗M )x
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is split surjective for any integers b ≥ m′ ≥ a, m′ ≥ l ≥ m, and • ∈{
†, [m′,∞[Z

}
. Here Ê

(l,†)
X ,Q means E

(l,†)
X ,Q by abuse of language. Moreover, we

get

Ker
(
(Ê

(l,•)
X ,Q ⊗M )x → (Ê

(m′,•)
X ,Q ⊗M )x

) ∼= Tor
D̂

(m)
X ,Q

1 (Ê
(m′,•)
X ,Q /Ê

(l,•)
X ,Q,M )x

∼=

{
(Ê

(l,a)
X ,Q ⊗M )x ⊕

⊕m′−1
i=a (Ê

(i,i+1)
X ,Q ⊗M )x if l < a⊕m′−1

i=l (Ê
(i,i+1)
X ,Q ⊗M )x if l ≥ a.

Proof. — For • ∈
{
†, [m′,∞[Z

}
,

Ê
(m′,•)
X ,Q /Ê

(l,•)
X ,Q

∼−→ Ê
(m′)
X ,Q/Ê

(l,m′)
X ,Q

by Corollary 5.10. We denote this quotient by Q. We get the following diagram
whose rows are exact:

Tor1(Ê
(m′,•)
X ,Q ,M ) //

��

Tor1(Q,M )
β //

∼

��

Ê
(l,•)
X ,Q ⊗M //

��

Ê
(m′,•)
X ,Q ⊗M //

��

Q ⊗M

∼

��

// 0

Tor1(Ê
(m′)
X ,Q ,M ) // Tor1(Q,M )

α // Ê (l,m′)
X ,Q ⊗M // Ê (m′)

X ,Q ⊗M // Q ⊗M // 0

where the ⊗ and Tor1 are taken over D̂
(m)
X ,Q, and we omit the pull-

back of sheaves π−1 since it is obvious where to put them. Now, since

Tor
D̂

(m)
X ,Q

1 (Ê
(m′)
X ,Q ,M ) = 0 by the flatness of Ê

(m′)
X ,Q over D̂

(m′)
X ,Q and D̂

(m′)
X ,Q

over D̂
(m)
X ,Q (cf. Proposition 2.8 (ii) and [5, 3.5.3]), the homomorphism α is

injective. Moreover, since (Ê
(m′)
X ,Q ⊗M )x = 0 by the hypothesis, the homomor-

phism αx is an isomorphism, and (Q ⊗M )x = 0. Since α is injective, β is
injective as well. Thus, the homomorphism (7.7.1) is split surjective and

Ker(Ê
(l,•)
X ,Q ⊗M → Ê

(m′,•)
X ,Q ⊗M )x ∼= Tor1(Q,M )x

∼−−→
αx

(Ê
(l,m′)
X ,Q ⊗M )x.

Let us calculate Tor1(Q,M )x. We only treat the case where l < a, and since
the proof is similar, the other case is left to the reader. To calculate this, it
suffices to show

(Ê
(l,m′)
X ,Q ⊗M )x ∼= (Ê

(l,a)
X ,Q ⊗M )x ⊕

m′−1⊕
i=a

(Ê
(i,i+1)
X ,Q ⊗M )x.

We use the induction on k := m′−a. For k = 0, the claim is redundant. Suppose
that the statement holds to be true for k = k0−1 ≥ 0. Then it suffices to show
the following isomorphism for m′′ = a+ k0:

(7.7.2) (Ê
(l,m′′)
X ,Q ⊗M )x ∼= (Ê

(l,m′′−1)
X ,Q ⊗M )x ⊕ (Ê

(m′′−1,m′′)
X ,Q ⊗M )x.
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Indeed, we just apply the induction hypothesis to (Ê
(l,m′−1)
X ,Q ⊗M )x to get the

conclusion. Let us show (7.7.2). Note that m′′ − 1 ≥ a. This isomorphism can
be shown using exactly the same method as before using the following diagram
instead:

Tor1(Ê
(l,m′′−1)
X ,Q ,M ) //

��

Tor1(Q′,M ) //

∼

��

Ê
(l,m′′)
X ,Q ⊗M //

��

Ê
(l,m′′−1)
X ,Q ⊗M //

��

Q′⊗M

∼

��

// 0

Tor1(Ê
(m′′−1)
X ,Q ,M ) // Tor1(Q′,M ) // Ê (m′′−1,m′′)

X ,Q ⊗M // Ê (m′′−1)
X ,Q ⊗M // Q′⊗M // 0

where

Q′ = Ê
(l,m′′−1)
X ,Q /Ê

(l,m′′)
X ,Q

∼= Ê
(m′′−1)
X ,Q /Ê

(m′′−1,m′′)
X ,Q

using Lemma 4.15.

7.8. Lemma. — Let X be a curve. Then the canonical homomorphism

π−1D̂
(m+k)
X ,Q /D̂

(m)
X ,Q → E

(m+k,†)
X ,Q /E

(m,†)
X ,Q

is an isomorphism.

Proof. — It suffices to prove that the canonical homomorphism of sheaf of
abelian groups π−1D̂

(m)
X ,Q → Ê

(m)
X ,Q/(E

(m)
X ,Q)−1 is an isomorphism. To show this,

it suffices to check that π−1D
(m)
Xi
→ E

(m)
Xi

/E
(m)
Xi,−1 is an isomorphism, whose

verification is straightforward.

7.9. Proof of Proposition 7.6. — Consider the following diagram of sheaves
on T ∗X for any integer m′ ≥ m.

Tor1(D̂
(m′)
X ,Q,M ) //

��

Tor1(D̂
(m′)
X ,Q/D̂

(m)
X ,Q,M ) //

∼
��

M

��

// D̂ (m′)
X ,Q ⊗M

��

Tor1(Ê
(m′)
X ,Q ,M ) // Tor1(Ê

(m′)
X ,Q/Ê

(m,m′)
X ,Q ,M )

α
// Ê (m,m′)

X ,Q ⊗M // Ê (m′)
X ,Q ⊗M

Here ⊗ and Tor are taken over D̂
(m)
X ,Q, and we omit the pull-back of sheaves π−1.

Since D̂
(m′)
X ,Q and Ê

(m′)
X ,Q are flat over D̂

(m)
X ,Q, the left vertical arrow of the diagram

is just 0 → 0. Thus the homomorphism α is injective. Consider the following
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commutative diagram

Tor1(E
(m′,†)
X ,Q /E

(m,†)
X ,Q ,M )

β //

∼
��

E
(m,†)
X ,Q ⊗M

��

Tor1(Ê
(m′)
X ,Q/Ê

(m,m′)
X ,Q ,M )

α
// Ê (m,m′)

X ,Q ⊗M

where the isomorphism is by Lemma 5.10. Since α is injective, β is also injective.
This implies that

Km′ := Ker
(
ϕm′ : E

(m,†)
X ,Q ⊗ π

−1M →E
(m′,†)
X ,Q ⊗ π−1M

)(*)

∼= Tor1(E
(m′,†)
X ,Q /E

(m,†)
X ,Q , π−1M )

∼= π−1Tor1(D̂
(m′)
X ,Q/D̂

(m)
X ,Q,M ) ↪→ π−1M .

Since π−1D̂
(m)
X ,Q is strictly Noetherian by Lemma 6.12 and Theorem 6.13, there

exists an integer N such that Kk = KN for k ≥ N . So far we have not used
the assumption on the characteristic varieties.

By changing m if necessarily, we may assume that m = N ′. Now, by this
assumption,

Z := Supp(Ê
(m)
X ,Q ⊗M ) = Supp(Ê

(m′)
X ,Q ⊗M )

for any m′ ≥ m. Take x ∈ T̊ ∗X \ Z. Then Lemma 7.7 shows that ϕm′,x (see
(*)) is split surjective. Thus, the homomorphism

ψm′,x : (E
(N,†)
X ,Q ⊗M )x → (E

(m′,†)
X ,Q ⊗M )x

is also surjective for anym′ ≥ N . Since the kernel is isomorphic to (Km′/KN )x,
the homomorphism ψm′,x is an isomorphism by the choice of N . Thus using
Lemma 7.7 again,

(Ê
(m′,m′′)
X ,Q ⊗M )x = 0

for any integer m′ ≥ N and m′′ ≥ m′.

Let U be the complement of Z. Let V ⊂ U be a strictly affine open sub-
scheme. By the above observation, we get Γ(V , Ê

(m′,m′′)
X ,Q ⊗M ) = 0. Since

Γ(V ,E
(m′,†)
X ,Q ) is a Fréchet-Stein algebra, we have Γ(V ,E

(m′,†)
X ,Q ⊗M ) = 0. Thus

the proposition follows.
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7.10. Proof of Theorem 7.2:— We use the notation in the proof of Proposi-
tion 7.6. There exists an integer M such that Kk = KM for k ≥ M . Note
that to prove the existence of this M , we did not use the assumption of Propo-
sition 7.6. Let x ∈ T̊ ∗X . Suppose there is an integer m′ > M such that
(Ê

(m′)
X ,Q ⊗M )x = 0. Then by using Lemma 7.7,

0 = (Ê
(m′)
X ,Q ⊗M )x ∼= (Ê

(m,m′)
X ,Q ⊗M )x/Km′,x

= (Ê
(m,m′)
X ,Q ⊗M )x/Km′′,x ⊂ (Ê

(m′′,m′)
X ,Q ⊗M )x

for an integer m′ ≥ m′′ ≥ M . However, since (Ê
(m′′,m′)
X ,Q ⊗ M )x is gener-

ated by the image of M , we have (Ê
(m′′,m′)
X ,Q ⊗M )x = 0. This implies that

(Ê
(m′′)
X ,Q ⊗M )x = 0 for m′ ≥ m′′ ≥M . Thus,

Supp(Ê
(m′)
X ,Q ⊗M ) ⊂ Supp(Ê

(m′+1)
X ,Q ⊗M )

for m′ ≥M .

Now suppose there exists M ′ ≥ M such that Supp(Ê
(M ′)
X ,Q ⊗M ) = T ∗X .

Then there is nothing to prove. Using [14, 5.2.4] we may suppose that the
dimension of Supp(Ê

(m′)
X ,Q ⊗M ) is equal to 1 for any m′ ≥M .

In this case, for any m′ ≥ M , there exists an open formal subscheme Um′

of X such that

Char(m′)(D̂
(m′)
X ,Q ⊗M |Um′ ) ∩ T ∗Um′ = Um′ ,

and Um′ ⊃ Um′+1. Let M (m′) := D̂
(m′)
X ,Q ⊗M . The module M (m′)|Um′ is a co-

herent OUm′ ,Q-module. Let rm′ be the rank as a locally projective OUm′ ,Q-mod-
ule. Then we know that rm′ ≥ rm′+1 for any m′ ≥M . There exists an integer
N ≥M such that rN = rm′ for any m′ ≥ N . Now,

Claim. — Let Y be a smooth formal scheme, and N be a coherent D̂
(m)
Y ,Q-mod-

ule which is also coherent as an OY ,Q-module. For m′ ≥ m, the canonical
homomorphism

α : N → N (m′) := D̂
(m′)
Y ,Q ⊗D̂

(m)
Y ,Q

N .

is an isomorphism in the following two cases:

1. N (m′) is a coherent OY ,Q-module with the same rank as N .
2. the D̂

(m)
Y ,Q-module structure on N extends continuously to a D̂

(m′)
Y ,Q -mod-

ule structure.
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These claims seem more or less standard, but we provide a proof at the end
for the sake of completeness. Let us finish the proof assuming the claims first.
By the choice of N , the canonical homomorphism

M (N)|Um′ →M (m′)|Um′

is an isomorphism for m′ ≥ N by Claim 1. The proof of [24, 2.16] is im-
mediately translated to our situation to prove that for a smooth curve Y

and a D̂
(m)
Y ,Q-module M which is coherent as an OY ,Q-module, if there ex-

ists an open formal subscheme V such that M |V is a D̂
(m+1)
V ,Q -module, then

M is a D̂
(m+1)
Y ,Q -module. Thus M (N)|UN

is already a D̂
(m′)
UN ,Q-module, and thus

M (N)|UN

∼−→ D̂
(m′)
UN ,Q ⊗M (N)|UN

by Claim 2. This implies that the condition
of Proposition 7.6 holds, and we obtain the theorem.

Finally, let us check the claims. Since the claims are local, we may assume Y
to be affine. In the following, we make no difference between sheaves and the
modules of global sections. Consider the first situation. We denote by Tm′

(resp. T ′m′) the OY ,Q-module (resp. D̂
(m′)
Y ,Q -module) topology on N (m′). Since

N (m′) is a finite OY ,Q-module (resp. D̂ (m′)
Y ,Q -module) by assumption, it becomes

a Banach space by [9, 3.7.3/1]. By construction, Im(α) is dense with respect
to the topology T ′m′ . On the other hand, Im(α) is closed with respect to the
topology Tm′ by [9, 3.7.3/1]. By open mapping theorem, or more precisely [9,
3.7.3/3], T ′m′ is equivalent to Tm′ , which implies that α is surjective. Since
the ranks of the both sides are the same by assumption, the homomorphism
is an isomorphism. Consider the second situation. The extended D̂

(m′)
Y ,Q -module

structure yields the homomorphism β : N (m′) → N . By definition, we have
β ◦ α = id. It remains to show that α is surjective. To check this, it suffices to
show that α is in fact a homomorphism of D̂

(m′)
Y ,Q -modules. Since the D̂

(m)
Y ,Q-mod-

ule and D̂
(m′)
Y ,Q -module topology on N coincide and D̂

(m)
Y ,Q is dense in D̂

(m′)
Y ,Q , we

get the desired assertion by a standard continuity argument.
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