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THE GEOMETRIC SATAKE CORRESPONDENCE
FOR RAMIFIED GROUPS

 X ZHU

A. – We prove the geometric Satake isomorphism for a reductive group defined over
F = k((t)), and split over a tamely ramified extension. As an application, we give a description of the
nearby cycles on certain Shimura varieties via the Rapoport-Zink-Pappas local models.

R. – Nous démontrons l’isomorphisme de Satake géométrique pour un groupe réductif dé-
fini sur F = k((t)) et déployé sur une extension modérément ramifiée. Nous donnons comme applica-
tion une description des cycles évanescents sur certaines variétés de Shimura via les modèles locaux de
Rapoport-Zink-Pappas.

Introduction

The Satake isomorphism (for unramified groups) is the starting point of the Langlands
duality. Let us first recall its statement. Let F be a non-Archimedean local field with ring
of integers O and residue field k, and let G be a connected unramified reductive group
over F (e.g., G = GLn). Let A ⊂ G be a maximal split torus of G, and W0 be the
Weyl group of (G,A). Let K be a hyperspecial subgroup of G(F ) containing A( O) (e.g.,
K = GLn( O)). Then the classical Satake isomorphism describes the spherical Hecke algebra
Sph = Cc(K \G(F )/K), the algebra of compactly supported bi-K-invariant functions
on G(F ) under convolution. Namely, there is an isomorphism of algebras

Sph ' C[X•(A)]W0 ,

where X•(A) is the coweight lattice of A, and C[X•(A)]W0 denotes the W0-invariants of the
group algebra of X•(A).

If F has positive characteristic p > 0, then the classical Satake correspondence has a vast
enhancement. For simplicity, let us assume that G is split over F (for the general case, see
Theorem A.12). Let us write G = H ⊗k F for some split group H over k so that K = H( O).
Let GrH = H(F )/H( O) be the affine Grassmannian ofH. Choose ` a prime different from p,
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410 X. ZHU

and let SatH be the category of (K ⊗ k̄)-equivariant perverse sheaves with Q`-coefficients
on GrH ⊗ k̄. Then this is a Tannakian category and there is an equivalence

SatH ' Rep(G∨Q`
),

whereG∨Q`
is the dual group ofG and Rep(G∨Q`

) is the tensor category of algebraic represen-

tations of G∨Q`
(cf. [10, 19]).

There is also a version of Satake isomorphism for an arbitrary reductive group over F ,
as recently proved by Haines and Rostami (cf. [12])(1). Namely, let B(G) be the Bruhat-Tits
building of G and v ∈ B(G) be a special vertex. Let Kv ⊂ G(F ) be the special parahoric
subgroup of G(F ) corresponding to v. Let A be a maximal split F -torus of G such that
Kv ⊃ A( O), let M be the centralizer of A in G and W0 = NG(A)/M be the Weyl group
as before. LetM1 be the unique parahoric subgroup ofM(F ), and ΛM = M(F )/M1, which
is a finitely generated Abelian group. Then

(0.1) Cc(Kv\G(F )/Kv) ' C[ΛM ]W0 .

More explicitly, suppose that G is quasi-split so that M = T is a maximal torus. Then

ΛM = (X•(T )I)
σ,

where I is the inertial group and σ is the Frobenius, and (X•(T )I)
σ denotes the σ-invariants

of the I-coinvariants of the group X•(T ).

The goal of this paper is to provide a geometric version of the above isomorphism when
F has positive characteristic p and the groupG is quasi-split and splits over a tamely ramified
extension. More precisely, let k be an algebraically closed field and let ` 6= char k be a prime.
LetG be a group over the local field F = k((t)) (so thatG is quasi-split automatically), which
is split over a tamely ramified extension. That is, there is a finite extension F̃ /F such that
GF̃ is split and char k - [F̃ : F ]. Let v ∈ B(G) be a special vertex in the building of G
and let Gv be the parahoric group scheme over O = k[[t]] (in the sense of Bruhat-Tits),
determined by v. We write LG for the loop space of G and Kv = L+Gv for the jet space
of Gv. By definition, for any k-algebra R, LG(R) = G(R⊗̂kF ) and Kv(R) = Gv(R⊗̂k O).
Let

F `v = LG/Kv

be the (twisted) affine flag variety(2), which is an ind-scheme over k. Let Pv = PKv ( F `v)
be the category of Kv-equivariant perverse sheaf on F `v, with coefficients in Q`. Let H be a
split Chevalley group over Z such that G ⊗F F s ' H ⊗ F s, where F s is a (fixed) separable
closure of F . Then there is a natural action of I = Gal(F s/F ) on H∨ := H∨Q`

(preserving a
fixed pinning).

T 0.1. – The category Pv has a natural tensor structure. In addition, as tensor
categories, there is an equivalence

R S : Rep((H∨)I) ' Pv,

(1) There is another version, known earlier, as in [6].
(2) One would call F `v the affine Grassmannian of G. However, we reserve the name “affine Grassmannian” of G

for another object, as defined in Definition A.2.
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THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 411

such that H∗ ◦ R S is isomorphic to the forgetful functor, where H∗ is the hypercohomology
functor.

This theorem can be regarded as a categorification of (0.1) in the case when k is alge-
braically closed and the group splits over a tamely ramified extension of k((t)). For the
description of (H∨)I when H is absolutely simple and simply-connected, see § 4.

Let us point out the following remarkable facts when the group is ramified. First, the
group (H∨)I is not necessarily connected as is shown in Remark (4.4). Second, it is well-
known that ifG is unramified over F , then all the hyperspecial subgroups ofG are conjugate
under Gad(F ) ([27, §2.5]), where Gad is the adjoint group of G. However, this is no longer
true for special parahoric of G if G is ramified. An example is given by the odd ramified
unitary similitude group GU2m+1. There are essentially two types of special parahorics
of GU2m+1, as given in (7.1). One of them has reductive quotient GO2m+1 (denoted byGv0

),
and the other has reductive quotient GSp2m (denoted Gv1

). Accordingly, the geometry
of the corresponding flag varieties F `v0

and F `v1
are very different, while Pv0

' Pv1
.

Indeed, their Schubert varieties (i.e., closures of Kvi -orbits) are both parameterized by
irreducible representations of GO2m+1. Let F `v0µ̄2m,1

(resp. F `v1µ̄2m,1
) be the Schubert

variety in F `v0
(resp. F `v1

) parameterized by the standard representation of GO2m+1.
Then it is shown in [31] that F `v0µ̄2m,1

is not Gorenstein, while in [25] that F `v1µ̄2m,1
is

smooth. On the other hand, the intersection cohomology of both varieties gives the standard
representation of GO2m+1. In addition, the stalk cohomologies of both sheaves are the
“same”. See Theorem 0.3 below.

R 0.1. – Instead of considering a special parahoricKv ofLG, one can begin with
the special maximal “compact” K ′v, (i.e., K ′v = L+G′v, where G′v is the stabilizer group
scheme of v as constructed by Bruhat-Tits), and consider the category of K ′v-equivariant
perverse sheaves on LG/K ′v. However, from a geometric point of view, this is less natural
since K ′v is not necessarily connected and the category of K ′v-equivariant perverse sheaves
is complicated. In fact, we do not know how to relate this category to the Langlands dual
group yet. In addition, when we discuss the Langlands parameters in Section 6, it is also more
“correct” to consider Kv rather than K ′v.

The idea of the proof of the theorem is as follows. Using Gaitsgory’s nearby cycle functor
construction as in [8, 31], we construct a functor

Z : SatH → Pv,

which is a central functor in the sense of [2]. By standard arguments in the theory of
Tannakian equivalence and the Mirkovic-Vilonen theorem, this already implies that
Pv ' Rep(G̃∨) for certain closed subgroup G̃∨ ⊂ H∨. Then we identify G̃∨ with (H∨)I

using the parametrization of the Kv-orbits on F `v.

R 0.2. – (i) We believe that the same argument (maybe with small modifications)
should work for groups split over wild ramified extensions. However, we have not checked
this carefully.

(ii) Our approach is more inspired by [8] rather than [19]. However, it would be interesting
to know whether there is the similar theory of MV-cycles in the ramified case. It seems that

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



412 X. ZHU

the geometry of semi-infinite orbits on F `v is similar to the unramified case, except when
F `v corresponds to one type of special parahorics for odd unitary groups (the one denoted
by Gv1

as above). We do not know what happens in this last case.
(iii) Our theorem and the method also share the similar features with the results of Nadler

on geometric Satake for real groups [20].

When the group G is quasi-split over the non-Archimedean local field F = Fq((t)) and
v is a special vertex of B(G,F ), the affine flag variety F `v is defined over Fq. We assume that
v is very special, i.e., it remains special when we base changeG to Fq((t)) (see § 6 for more dis-
cussions of this notion). Then we can consider the category of Kv-equivariant semi-simple
perverse sheaves on F `v, pure of weight zero, and denote it by P0

v. On the other hand, let I
be the inertial group of F and σ be the Frobenius of Gal(k/Fq), where k = Fq. Then the ac-
tion of Gal(F s/F ) on H∨ (via the pinned automorphisms) induces a canonical action of σ
on (H∨)I , denoted by actalg. One can form the semidirect product (H∨)I oactalg Gal(k/Fq),
which can be regarded as a proalgebraic group over Q`, and consider the category of alge-
braic representations of (H∨)Ioactalg Gal(k/Fq), denoted by Rep((H∨)Ioactalg Gal(k/Fq)).

T 0.2. – In this case, the functor R S in Theorem 0.1 can be extended to an
equivalence

R S : Rep((H∨)I oactalg Gal(k/Fq)) ' P0
v,

whose composition with H∗ is isomorphic to the forgetful functor.

Let us mention that under this equivalence, the restriction to Gal(k/Fq) of the represen-
tation (H∨)I oactalg Gal(k/Fq) on H∗( F ) for F ∈ P0

v is NOT the natural Galois action
of Gal(k/Fq) on H∗( F ). However, their difference can be described explicitly. See Section 4
and appendix for more details.

Our next result is to use the ramified geometric Satake isomorphism to obtain the stalk
cohomology of sheaves on F `v (i.e., the corresponding Lusztig-Kato polynomial in ramified
case), following an idea of Ginzburg (cf. [10]). Let us state the result precisely. The centralizer
ofA in our case is a maximal torus ofG, denoted by T . Then theK-orbits on F `v are labeled
byX•(T )I/W0,W0-orbits of the coinvariants of the cocharacter group ofT . For µ̄ ∈ X•(T )I ,
let F̊ `vµ̄ be the corresponding orbit. For a representation V of (H∨)I , let V (µ̄) be the weight
space of V for (T∨)I . Let X∨ ∈ Lie(H∨)I be a certain principal nilpotent element (see
Section 5 for the details), which induces a filtration FiV (µ̄) = (kerX∨)i+1 ∩ V (µ̄) on V (µ̄),
called the Brylinski-Kostant filtration. Then we have

T 0.3. – ForV ∈ Rep((H∨)I), let R S(V ) ∈ Pv be the corresponding sheaf. Then

dim H 2i−(2ρ,µ̄) R S(V )| F `vµ̄ = dim grFi V (µ̄).

Here H ∗ denotes the cohomology sheaves, and 2ρ is the sum of positive roots of H, see
Section 1 for the meaning of (2ρ, µ̄).

One of our main motivations of this work is to apply these results to the calculation of the
nearby cycles of certain ramified unitary Shimura varieties, via the Rapoport-Zink-Pappas
local models. For example, we obtain the following theorem (see Section 7 for details).
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THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 413

T 0.4. – Let G = GU(r, s) be a unitary similitude group associated to an imagi-
nary quadratic extension F/Q and a Hermitian space (W,φ) over F/Q. Let p > 2 be a prime
where F/Q is ramified and the Hermitian form is split. LetKp be a special parahoric subgroup
of G = G(Qp). Let K = KpK

p ⊂ G(Qp)G(Apf ) be a compact open subgroup with Kp small
enough. Let ShK be the associated Shimura variety over the reflex field E and ShKp be the in-
tegral model of ShK over OEp (as defined in [23]). Then for ` 6= p, the action of the inertial
subgroup I of Gal(Qp/Fp) on the nearby cycle ΨShKp⊗ OEp

OFp (Q`) is trivial.

By applying Theorem 0.3, it will not be hard to determine the traces of Frobenius on these
sheaves explicitly, which will be the input of the Langlands-Kottwitz method to determine
the local Zeta factors of ShK . Instead, we characterize these traces of Frobenius in terms of
Langlands parameters, which verifies a conjecture of Haines and Kottwitz in this case (see
Proposition 7.4).

R 0.3. – (i) While the definition of the integral model of a PEL-type Shimura
variety at an “unramified” prime p (i.e., the group is unramified at p and Kp is hyperspe-
cial) is well-known (cf. [15]), the definition of such a model at the ramified prime p (even
for Kp special) is a subtle issue. In [21, 23], the integral models ShKp are defined as certain
closed subschemes of certain moduli problems of Abelian varieties. Except a few cases
(e.g., (r, s) = (n− 1, 1) and n = r + s is small), there is no moduli description of ShKp
so far. In general, ShKp are not smooth. Indeed, as shown in [21, 23], when n = r + s is
odd and (r, s) = (n− 1, 1), for the special parahoric Kp of G(Qp) with reductive quotient
GOn, ShKp is not even semi-stable.

(ii) If r 6= s, then we know thatE = F and the above theorem gives a complete description
of the monodromy on the nearby cycles of ShKp . If r = s, then E = Q, and the complete
description of the monodromy is more complicated. See Section 7 for details. In any case, the
action of inertia on the nearby cycle is semi-simple.

(iii) We hope that there will be a “good” compactification of such Shimura varieties ShKp .
Then the above theorem, together with the existence of such compactification, would imply
that the monodromy of H∗c (ShK ⊗Ep Fp) is trivial.

(iv) The triviality of the monodromy as above would have the following surprising conse-
quence for the Albanese of Picard modular surfaces. Namely, in the case when (r, s) = (2, 1),
F/Q is ramified at p > 2 and Kp = G(Qp) is a special parahoric, the Albanese Alb(ShKp)

of ShKp is trivial. It will be interesting to find the “optimal” level structure at p so that
Alb(ShKp) can be possibly non-trivial. More detailed discussion will appear elsewhere.

Let us quickly describe the organization of the paper. We will prove Theorem 0.1 and
Theorem 0.2 in §1-4. Then we prove Theorem 0.3 in §5.

In § 6, we briefly discuss the Langlands parameters associated to a smooth representation
of a quasi-split p-adic group, which has a vector fixed by a special parahoric. We call them
“spherical” representations, and we will see that their Langlands parameters can be described
easily. Again, the correct point of view is to consider the special parahoric rather than the
special maximal compact. Then in § 7, we apply the previous results to study the nearby cycles
on certain unitary Shimura varieties.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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The paper contains an appendix, joint with T. Richarz, where we recover the full Lang-
lands dual group via the Tannakian formalism. In particular, we give the geometric Satake
correspondence for unramified groups. We hope that this formulation will be of independent
interest. In addition, we observe that for a reductive group defined over k, the Tannakian for-
malism provides a natural action actgeom of Gal(ks/k) on the dual group G∨, which differs
from the usual pinned action actalg of Gal(ks/k) on G∨ by the twist of “the half sum of the
positive roots”. This gives a geometric explanation of the two natural normalizations of the
Satake parameters.

Notations. – Let k be a field. We denote by ks a separable closure of k.

For a (not necessarily connected) diagonalizable algebraic groupC defined over a field F ,
we denote by X•(C) its group of characters and by X•(C) its group of cocharacters over the
separable closure F s. The Galois group I = Gal(F s/F ) acts on X•(C) (resp. X•(C)) and the
invariants (resp. coinvariants) are denoted by X•(C)I (resp. X•(C)I ,X•(C)I ,X•(C)I ). We
will always use λ, µ, . . . to denote elements in X•(C) or X•(C) and λ̄, µ̄ to denote elements
in X•(C)I or X•(C)I . In general, let I be a group acting on a set S. We denote SI to be the
subset of fixed points.

If G is an algebraic group defined over a field E, we denote by Rep(G) the category
of finite dimensional representations of G over E. If G is connected reductive, we denote
Gad, Gder, Gsc to be its adjoint quotient, its derived group, and the simply-connected cover
of its derived group.

Let k be a field and O = k[[t]], F = k((t)) := k[[t]][t−1]. For an O-scheme X, we denote
L+X to be the jet space over k so that for any k-algebra R, L+X(R) = X(R[[t]]). For an
F -schemeX, we denote LX to be its loop space so that LX(R) = X(R((t))). IfX is defined
over k, we write L+X for L+(X ⊗ O) and LX for L(X ⊗ F ) if no confusion will arise.

For a variety X over k, we denote D(X) the usual (bounded) derived category of `-adic
sheaves on X (` - char k). If X = limXi is an ind-scheme of ind-finite type, D(X) = limD(Xi)

as usual. If there is an action of an algebraic group G on X, the G-equivariant derived cat-
egory is denoted by DG(X) (see [1] for the details). All the functors like f∗, f!, f

∗, f ! are
understood in the derived sense unless otherwise specified.

Acknowledgement. – The author would like to thank D. Gaitsgory, T. Haines, Y. Liu,
I. Mirković, G. Pappas, M. Rapoport, T. Richarz, E. Urban, Z. Yun for useful discussions.
The author also thanks the hospitality of Tsinghua University, where part of the work has
been done. The work of the author is supported by the NSF grant under DMS-1001280.

1. Reminders on the affine flag variety associated to a special parahoric

In this section, we collect basic facts about the affine flag varieties associated to a special
parahoric of G. Another purpose of this section is to fix notations that are used in the later
sections.

Let k be an algebraically closed field and let G be a group over the local field F = k((t)),
which is split over a tamely ramified extension. Let us chooseA to be a maximalF -split torus
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THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 415

of G and T be its centralizer. Then T is a maximal torus of G since G is quasi-split. Let us
choose a rational Borel subgroup B ⊃ T .

LetH be a split Chevalley group overZ such thatH⊗F s ' G⊗F s. We need to choose this
isomorphism carefully. Let us fix a pinning (H,BH , TH , X) ofH overZ. Let us recall that this
means that BH is a Borel subgroup of H, TH is a split maximal torus contained in BH , and
X = Σã∈∆H

Xã ∈ LieB, where ∆H is the set of simple roots of H, Ũã is the root subgroup
corresponding to ã andXã is a generator in the rank one free Z-module Lie Ũã. Let Ξ be the
group of pinned automorphisms of (H,BH , TH , X), which is canonically isomorphic to the
group of the automorphisms of the root datum (X•(TH),∆H ,X•(TH),∆∨H).

Let us choose an isomorphism (G,B, T ) ⊗F F̃ ' (H,BH , TH) ⊗Z F̃ , where F̃ /F is
a cyclic extension such that G ⊗ F̃ splits. This induces an isomorphism of the root data
(X•(TH),∆H ,X•(TH),∆∨H) ' (X•(T ),∆,X•(T ),∆∨). Now the action of I = Gal(F̃ /F )

onG⊗F F̃ induces a homomorphismψ : I → Ξ. Then we can always choose an isomorphism

(1.1) (G,B, T )⊗F F̃ ' (H,BH , TH)⊗Z F̃

such that the action of γ ∈ I on the left hand side corresponds to ψ(γ)⊗γ. In the rest of the
paper, we fix such an isomorphism.

Recall that the Kottwitz homomorphism κ : T (F ) → X•(T )I (cf. [16, 11]) induces an
isomorphism

X•(T )I ' T (F )/T [,0( O),

where T [,0 is the unique parahoric group scheme of T over O (the connected Néron model).
Our convention of Kottwitz homomorphism is that the action of t ∈ T (F ) on A(G,A) (the
apartment associated to (G,A)) is given by v 7→ v−κ(t). LetW0 = W (G,A) be the relative
Weyl group ofG. It acts on T and therefore on X•(T )I . In addition, its action on the torsion
subgroup X•(T )I,tor ⊂ X•(T )I is trivial.

The Borel subgroup B determines a set of positive roots Φ+ = Φ(G,A)+ for G. There is
a natural map X•(T )I → X•(T )I ⊗ R ' X•(A)R. We define the set of dominant elements
in X•(T )I to be

(1.2) X•(T )+
I = {µ̄|(µ̄, a) ≥ 0 for a ∈ Φ+}.

Then the natural mapX•(T )+
I ⊂ X•(T )I → X•(T )I/W0 is bijective. Let us define an order�

on X•(T )I as follows. Let QH be the coroot lattice for H. The action of I on QH will send
the positive coroots of H (determined by the chosen Borel) to positive coroots. Therefore,
it makes sense to talk about positive elements in (QH)I . Namely, an element in (QH)I is
positive if its preimage inQH is a sum of positive coroots (ofH). Since (QH)I ⊂ X•(T )I , we
can define for λ, µ ∈ X•(T )I ,

(1.3) λ̄ � µ̄ if µ̄− λ̄ is positive in (QH)I .

Let Gv be a special parahoric group scheme of G over O = k[[t]] in the sense of Bruhat-
Tits (see [27] for a summary of the theory), such that the natural inclusion A ⊂ G extends
toA O ⊂ Gv (i.e., the vertex v in the (reduced) building ofG corresponding toGv is contained
in the apartment A(G,A). For examples of such group schemes, we refer to Section 7. We
write Kv = L+Gv, and consider the (twisted) affine flag variety

F `v = LG/Kv.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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This is an ind-projective scheme (cf. [22]). As is shown in loc. cit., when G is semi-simple
and simply-connected, F `v is just a partial flag variety of certain (twisted) affine Kac-Moody
group. The Kv-orbits on F `v are parameterized by X•(T )+

I . For µ̄ ∈ X•(T )+
I , let sµ̄ denote

the point in F `v corresponding to µ̄. More precisely, this point is the image of µ̄ under the
map X•(T )I ' T (F )/T [,0( O) → G(F )/Kv = F `v(k). Let F `vµ̄ be the corresponding
Schubert variety, i.e., the closure of K-orbit through sµ̄. Then

dim F `vµ̄ = (2ρ, µ̄),

where 2ρ is the sum of all positive roots (for H), and by definition (2ρ, µ̄) = (2ρ, µ) for
any lift µ of µ̄ to X•(T ). In addition, F `vλ̄ ⊂ F `vµ̄ if and only if λ̄ � µ̄. In this case,
dim F `vµ̄ − dim F `vλ̄ is an even integer. For the proof of these facts, see [25, 31].

Let Pv = PKv ( F `v) be the category of Kv-equivariant perverse sheaves on F `v, with
coefficients in Q`. By the above facts, in each connected component of F `v, the dimensions
of Kv-orbits have the constant parity. Therefore, we have

L 1.1. – Pv is a semi-simple Abelian category.

Proof. – By the argument as in [8, Proposition 1], it is enough to show that the stalks
of the intersection cohomology sheaves have the parity vanishing property. But this follows
from the existence of Demazure resolutions of Schubert varieties in F `v whose fibers have
pavings by affine spaces (for example see [8, A.7]). More precisely, the existence of such reso-
lutions were constructed in [22, Section 8] for twisted affine flag varieties, and the arguments
as in [13] apply in this situation to show that the fibers have pavings by affine spaces.

In [31, 24], a natural Gm-action on F `v is constructed. In the Kac-Moody setting, it is just
the action of the “rotation torus” on F `v. Each Schubert cell is invariant under this action.

C 1.2. – Any Kv-equivariant perverse sheaf on F `v is automatically
Gm-equivariant.

Proof. – Clearly, the intersection complex is Gm-equivariant. Then the assertion follows
from the semisimplicity of Pv.

E 1.3. – In the special case whenG = H⊗kF andGv = H⊗k O is hyperspecial,
then F `v is just the usual affine Grassmannian GrH of H, and Pv is the Satake category
ofH, i.e., the category of L+H-equivariant perverse sheaves on GrH . All the above facts are
well-known.

2. Construction of the functor Z

We continue the notations as in the previous sections and let Gv be a special parahoric
group scheme of G over O. In [31], a group scheme G over A1

k is constructed such that

1. Gη is connected reductive, splits over a (tamely) ramified extension, where η is the
generic point of A1

k;
2. For some choice of isomorphism F0 ' F , GF0

' G, where for a point x ∈ A1
k,

Ox denotes the completed local ring at x and Fx denotes the fractional field of Ox;
3. For any y 6= 0, G Oy is hyperspecial, (non-canonically) isomorphic to H ⊗ Oy;
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4. G O0
= Gv under the isomorphism GF0

' G.

The construction is as follows. Regard I as the Galois group of the cyclic cover [e] : Gm → Gm
of degree e. Then the group I acts H ×Gm. Namely, it acts on H via the pinned automor-
phism ψ : I → Ξ, and on Gm via transport of structures. Then G|Gm = (ResGm/Gm(H ×Gm))I ,
and G is the extension of it to A1 so that G O0

= Gv.
Let Gr G be the global affine Grassmannian of G, which is an ind-scheme over A1 (see, for

example [24, §5] for the ind-representability of Gr G ). Recall that it classifies triples (y, E, β)

where y is a point on A1
k, E is a G-torsor on A1 and β is a trivialization of this G-torsor away

from y. Let [e] : A1 → A1 be the natural extension of the cyclic cover of [e] : Gm → Gm.
Let G̃r G := Gr G ×A1,[e] A1 be the base change. Then

(G̃r G)0 ' F `v, G̃r G |Gm ' GrH ×Gm.

Since I acts on H via pinned automorphisms, it acts on GrH , still denoted by ψ. The
following lemma is clear from the above construction.

L 2.1. – Under the isomorphism Gr G ×Gm Gm ' GrH × Gm, the action of γ ∈ I
on the left hand side (via the Galois action on the second factor) corresponds to the action
of ψ(γ)× γ on the right hand side.

R 2.2. – One should be warned that G̃r G 6= Gr G̃ , where G̃ is the base change of G
along [e] : A1 → A1.

Recall that we denote SatH to be the Satake category for H, i.e., the category of
L+H-equivariant perverse sheaves on GrH , which is equivalent to Rep(H∨) via the geo-
metric Satake correspondence. Let

(2.1) S : Rep(H∨)→ SatH

be this equivalence. We define a functor

Z : SatH → Pv

by taking the nearby cycles. More precisely, let

(2.2) Z( F ) = Ψ
G̃r G

( F �Q`[1]),

where for an (ind)-scheme X of (ind)-finite type over A1, Ψ X denotes the usual nearby
cycle functor (see SGA 7, XIII for the definition of nearby cycles, and [8, A.2] for the
explanation why the nearby cycles functors extend to ind-schemes of ind-finite type). Recall
that the theory of nearby cycles provides an action of Gal(F s/F ) on the functor Z via
automorphisms, usually called the monodromy action.

L 2.3. – The monodromy of Z( F ) is trivial.

Proof. – This follows from the fact that there is a Gm-action on G̃r G making the natural

map G̃r G → A1 a Gm-equivariant morphism, where Gm acts on A1 via natural dilatations

(cf. [31, 24]). In addition, the restriction of this Gm-action on (G̃r G)0 = F `v coincides with
the action of the “rotation torus” on F `v as mentioned in Lemma 1.2.

Then for any F ∈ SatH , the sheaf F �Q`[1] is Gm-equivariant so that the monodromy of
the nearby cycle Z( F ) = Ψ

G̃r G
( F �Q`) is opposite to the Gm-monodromic action on Z( F )
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(see [28] for the definition of Gm-monodromic sheaves and Gm-monodromic actions, and in
particular Proposition 7.1 of loc. cit. for this statement). By Corollary 1.2, Z( F ) isGm-equiv-
ariant which exactly means that the monodromy is trivial.

R 2.4. – A mixed characteristic analogue of this lemma also holds (Theorem 7.2).

Let i0 : (G̃r G)0 → G̃r G be the closed embedding of the special fiber and j : G̃r G \ (G̃r G)0 → G̃r G

be the open complement.

C 2.5. – There is a canonical isomorphism Z( F ) ' i∗0j!∗( F �Q`).

Proof. – This is standard. Since the monodromy is trivial, from the distinguished triangle

i∗0j∗( F �Q`)→ Z( F )
0→ Z( F )→

we obtain that i∗0j∗( F � Q`) lives in perverse cohomological degree 0 and 1, and both
cohomology sheaves are isomorphic to Z( F ). But i∗0j!∗( F �Q`) = pH0i∗0j∗( F �Q`), where
pH∗ stands for the perverse cohomology.

In what follows, for F ∈ SatH , we denote F Gm = F �Q`[1] over G̃r G |Gm , and
F A1 = j!∗ F Gm .

Recall that the irreducible objects in SatH are the intersection cohomology sheaves S(Vµ)

on GrH where µ ∈ X•(TH)+ = X•(T )+. On the other hand, the irreducible objects in Pv
are the intersection cohomology sheaves ICµ̄ on F `v, where µ̄ ∈ X•(T )+

I . For µ̄ ∈ X•(T )+
I ,

let jµ̄ : F̊ `vµ̄ → F `v be the corresponding locally closed embedding of Kv-orbits.

L 2.6. – For any µ ∈ X•(T )+, let µ̄ be its image in X•(T )+
I . Then

j∗µ̄ Z( S(Vµ)) ' Q`[(2ρ, µ)].

Proof. – Consider sµ ×Gm ⊂ GrH ×Gm ⊂ G̃r G |Gm . Since G̃r G is ind-proper over A1,

it extends to a sectionA1 → G̃r G , still denoted by sµ. By [31, Proposition 3.5], sµ(0) ∈ F `v is
just the point sµ̄, where µ̄ is the image of µ under X•(TH)→ X•(TH)I .

Recall that S(Vµ) is supported on Grµ, the Schubert variety in GrH corresponding to sµ.
Let G̃rµ ⊂ G̃r G be the closure of Grµ × Gm ⊂ G̃r G |Gm . Then by the above fact, F `vµ̄ is

contained in the special fiber of G̃rµ. In fact, it is proved in [31] that the special fiber of G̃rµ
is F `vµ̄. In addition, it is shown in loc. cit. that the point sµ̄ is smooth in G̃rµ. The lemma
then is clear.

The following key result is established in [8] for the split case and in [31, Theorem 7.3] in
general. Let DKv ( F `v) be the Kv-equivariant derived category on F `v, and
? : Pv × Pv → DKv ( F `v) be the convolution product functor. For a precise definition of
the convolution product, see for example [19, 31].

P 2.7. – For any F 1 ∈ SatH and F 2 ∈ Pv, there is a canonical isomorphism
Z( F 1) ? F 2 ' F 2 ? Z( F 1) and both are objects in Pv.

A brief review of the construction of this canonical isomorphism is given in § 3.

C 2.8. – The convolution of Pv is bi-exact. Therefore, Pv is a monoidal category.
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Proof. – Observe that Pv is semi-simple (Lemma 1.1) and every irreducible object
in Pv is a direct summand of some Z( F ). Indeed, for µ̄ ∈ X•(T )+

I , let µ be a lift of it
in X•(T )+. Then by Lemma 2.6, ICµ appears as a direct summand of Z( S(Vµ)) with multi-
plicity one. As the convolution (for left and right) with Z( S(Vµ)) is exact, the convolution
with its direct summand is also exact. The first claim follows.

It is well-known that the convolution functor DKv ( F `v) × DKv ( F `v) → DKv ( F `v)
is monoidal. Its restriction to Pv × Pv takes value in Pv. As Pv is a full subcategory
ofDKv ( F `v), the associativity constraints are morphisms in Pv. Therefore, Pv is a monoidal
subcategory of DKv ( F `v).

R 2.9. – (i) According to [19, Remark 4.5], the exactness of the convolution
product probably would imply that LG×K F `v → F `v is (stratified) semi-small.

(ii) By the same argument, the convolution bi-functor ? : P( F `v)× Pv → P( F `v) is also
exact, where P( F `v) is the category of perverse sheaves on F `v.

3. Z is a central functor

In this section, we show that Z is a central functor in the sense of [2]. By Lemma 2.6,
together with some general nonsense, this already implies that Pv is equivalent to Rep(G̃∨)

for some closed subgroup G̃∨ ⊂ H∨. In the next section, we will identify G̃∨ explicitly. We
will also determine a fiber functor of Pv.

T-D 3.1. – The functor Z : SatH → Pv is naturally a monoidal
functor.

Proof. – The proof is literally the same as the proof in [8, Theorem 1(c)]. We repeat the
argument here in order to make the definition of this monoidal structure explicit.

Let Gr G×̃Gr G be the ind-scheme over A2 classifying

(3.1) Gr G×̃Gr G(R) =

(x, y, E, E′, β, β′)

∣∣∣∣∣∣∣∣
x, y ∈ A1(R), E, E′ are two G-torsors

on A1
R, β : E|A1

R−Γx ' E0|A1
R−Γx is a

trivialization, β′ : E′|A1
R−Γy ' E|A1

R−Γy

 .

Let Gr G ×̃
A1

Gr G denote the restriction of Gr G×̃Gr G along the diagonal ∆ → A2. Then

Gr G ×̃
A1

Gr G is a kind of twisted product. Indeed, let L+ G be the global jet group of G,

which classifies a point on A1 and a trivialization of the trivial G-torsor over the formal
neighborhood of this point (cf. [31, §3.1]). Then L+ G naturally acts on Gr G . In addition,
there is a L+ G-torsor over Gr G classifying quadruples (y, E, β, γ), where the triple (y, E, β)

is as in the definition of Gr G and γ is a trivialization of E over the formal neighbor-
hood of y (this is indeed the global loop group L G of G introduced in [31, §3.1]). Then

Gr G ×̃
A1

Gr G ' L G
L+ G
× Gr G . Let us denote the base change of this isomorphism along

[e] : A1 → A1 by G̃r G ×̃
A1

G̃r G ' L̃ G
L̃+ G
× G̃r G .
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Let F 1 and F 2 be two objects in SatH . We can form the twisted product ( F 1)Gm×̃( F 2)Gm
over G̃r G |Gm ×̃Gm

G̃r G |Gm . We claim that there is a canonical isomorphism

Ψ
G̃r G ×̃

A1
G̃r G

(( F 1)Gm×̃( F 2)Gm) ' Z( F 1)×̃ Z( F 2).

Indeed, let Vi ⊂ G̃r G be the closure of the support of F i � Q`[1] in G̃r G |Gm . Let L+
n G be

the nth jet group such that the action of L+ G on Vi factors through L+
n G. The corre-

sponding L+
n G torsor over Gr G is denoted by Ln G. Let us denote by L̃+

n G and L̃n G
their base changes along [e]. Then one can check the isomorphism after pullback along

L̃n G ×A1 V2 → L̃n G
L̃+
n G
× V2, and the isomorphism follows from [8, Theorem 5.2.1].

Now Gr G ×̃
A1

Gr G → Gr G , (y, E, E
′, β, β) 7→ (y, E′, ββ′) is ind-proper and taking nearby

cycles commutes with proper push-forward. Therefore we obtain the canonical isomorphism

Z( F 1 ? F 2) ' Z( F 1) ? Z( F 2).

In addition, working over Gr G ×̃
A1

Gr G ×̃
A1

Gr G , one can see that this isomorphism makes Z a

monoidal functor.

Let us recall the definition of central functors as in [2]. Namely, if F : C → D is a
monoidal functor between two monoidal categories and assume that C is a symmetric
monoidal category, then F (together with the following data) is called central if

1. there is an isomorphism c of the bi-functors C × D → D, (X,Y ) 7→ F (X) ⊗ Y and
(X,Y ) 7→ Y ⊗ F (X), i.e., an isomorphism cX,Y : F (X)⊗ Y ' Y ⊗ F (X) functorial
in X,Y ;

2. for X,X ′ ∈ C , the following diagram is commutative

F (X)⊗ F (X ′)
cX,F (X′)−−−−−−→ F (X ′)⊗ F (X)y y

F (X ⊗X ′)
F (σX,X′ )−−−−−−→ F (X ′ ⊗X),

where σ is the commutativity constraint of C ;
3. for X ∈ C and Y, Y ′ ∈ D, the following diagram is commutative

F (X)⊗ Y ⊗ Y ′ cX,Y ⊗id−−−−−→ Y ⊗ F (X)⊗ Y ′

cX,Y⊗Y ′

y yid⊗cX,Y ′

Y ⊗ Y ′ ⊗ F (X) Y ⊗ Y ′ ⊗ F (X);

4. for X,X ′ ∈ C , Y ∈ D, the following diagram is commutative

F (X)⊗ F (X ′)⊗ Y
id⊗cX′,Y−−−−−−→ F (X)⊗ Y ⊗ F (X ′)

cX,Y ⊗id−−−−−→ Y ⊗ F (X)⊗ F (X ′)y y
F (X ⊗X ′)⊗ Y

cX⊗X′,Y−−−−−−→ Y ⊗ F (X ⊗X ′) Y ⊗ F (X ⊗X ′).
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P 3.2. – The functor Z , together with the canonical isomorphisms provided in
Proposition 2.7, is a central functor. There is an algebraic group G̃∨ ⊂ H∨ together with an
equivalence S : Pv ' Rep(G̃∨) such that S ◦ Z ' ResG̃

∨

H∨ as tensor functors, where ResG̃
∨

H∨ is
the restriction functor from Rep(H∨) to Rep(G̃∨).

Proof. – Since every object in Pv appears as a direct summand of some object in the
essential image of Z , the second statement of the proposition is a direct consequence of the
first statement and Proposition 1 of [2].

The first statement can be checked literally the same as in [9]. For this, let us briefly
review the construction of the canonical isomorphisms in Proposition 2.7. Let us define the
Beilinson-Drinfeld Grassmannian

(3.2) GrBDG (R) =

{
(y, E, β)

∣∣∣∣∣ y ∈ A1(R), E is a G-torsor on A1
R, and

β : E|(Gm)R−Γy ' E0|(Gm)R−Γy is a trivialization

}
,

where E0 denotes the trivial torsor. This is the restriction to {0} × A1 (or to A1 × {0})
of the usual Beilinson-Drinfeld Grassmannian over A2 (e.g., the one considered in [19]). In
particular, we have

GrBDG |Gm ' Gr G |Gm × (Gr G)0, (GrBDG )0 ' (Gr G)0 ' F `v.

As before, we denote by G̃r
BD

G the base change along [e] : A1 → A1. Over G̃r
BD

G |Gm '
G̃r G |Gm × (Gr G)0, we can form the external product ( F 1)Gm � F 2. Then the isomorphism
in the proposition is induced from the canonical isomorphisms

Z( F 1) ? F 2 ' Ψ
G̃r

BD

G
(( F 1)Gm � F 2) ' F 2 ? Z( F 1),

where the two isomorphisms are induced from the natural maps

Gr G×̃Gr G |A1×{0} → GrBDG ← Gr G×̃Gr G |{0}×A1 .

See [31, Proposition 7.4] for more details.
Again, since the monodromy of Ψ

G̃r
BD

G
(( F 1)Gm � F 2) is trivial, we have

(3.3) Z( F 1) ? F 2 ' i∗0j!∗(( F 1)Gm � F 2) ' F 2 ? Z( F 1),

where i0, j are corresponding closed and open embedding.
Back to the proof of the proposition. The conditions (3) and (4) are checked the same way

as in [9]. To check condition (2) is even simpler than loc. cit. Observe that the monodromy
of all the nearby cycles involved is trivial. Then the nearby cycles can be expressed via
intermediate extensions as in Corollary 2.5 and (3.3), rather than via the homotopy (co)limits
of certain ind-pro system of sheaves as in loc. cit.

Now we would like to endow Pv with a fiber functor. We begin with the following general
lemma.

L 3.3. – LetG1 ⊂ G2 be a closed embedding of affine algebraic groups over a fieldE
(of characteristic zero). Let F : Rep(G1)→ VectE be an E-linear exact and faithful functor.
Assume that: (i)F (X⊗Y ) andF (X)⊗F (Y ) are (non-canonically) isomorphic; (ii)F◦ResG1

G2
is

a fiber functor of Rep(G2). Then F has a unique fiber functor structure which induces the fiber
functor structure of F ◦ ResG1

G2
as in (ii).
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R 3.4. – We are not sure whether the first assumption is necessary.

Proof. – The uniqueness is clear. We write R = ResG1

G2
for simplicity. For any X ∈ Rep(G2),

let 〈X〉 denote the full subcategory of Rep(G2) consisting of the objects that are isomorphic
to subquotients of Xn, n ∈ N, and 〈R(X)〉 denote the full subcategory of Rep(G1) con-
sisting of the objects that are isomorphic to subquotients of R(X)n, n ∈ N. Let us denote
End(FR|〈X〉) (resp. End(F |〈R(X)〉)) the endomorphism algebra of the restriction of the
functor FR (resp. F ) to 〈X〉 (resp. 〈R(X)〉). They are finite dimensional E-algebras and
clearly, the E-algebra homomorphism End(F |〈R(X)〉)→ End(FR|〈X〉) is injective. Accord-
ing to [7, Lemma 2.13], there are canonical equivalences and the following commutative
diagram

〈X〉 aX−−−−→
'

End(FR|〈X〉)-Mod
ω−−−−→ VectE

R

y y ∥∥∥
〈R(X)〉

bR(X)−−−−→
'

End(F |〈R(X)〉)-Mod
ω−−−−→ VectE .

In addition, ωaX ' FR and ωbR(X) ' F . Observe that if 〈X〉 is a subcategory of 〈Y 〉.
Then we have a natural algebra homomorphism End(FR|〈Y 〉)→ End(FR|〈X〉).
Then A = lim−→X∈RepG2

End(FR|〈X〉)∨ is a coalgebra. Similarly, we can define
B = lim−→X∈RepG2End(F |〈R(X)〉)

∨. We have the surjective map of coalgebras A→ B, and

RepG2
a−−−−→
'

A-Comod ω−−−−→ VectE

R

y y ∥∥∥
RepG1

b−−−−→
'

B-Comod ω−−−−→ VectE .

By the assumption (i) and [7, Proposition 2.16], the tensor structures on RepG1 and RepG2

induce B ⊗B → B and A⊗ A→ A respectively. Since the restriction functor R is a tensor
functor, we have the commutative diagram

A⊗A −−−−→ Ay y
B ⊗B −−−−→ B.

By assumption (ii), ωa ' FR is a fiber functor of RepG2, and therefore we know that
A = OG2

and the map A ⊗ A → A is the usual multiplication. Since the map A → B is
surjective, this implies that the map B ⊗B → B is also associative and commutative. By [7,
Proposition 2.16] again, this implies that the functor F is compatible with the associativity
and the commutativity constraints. The lemma follows.

C 3.5. – The functor given by taking the cohomology H∗ : Pv → VectQ` has a
natural structure as a fiber functor.

Proof. – It is well-known (e.g., from the decomposition theorem) that there exists an
isomorphism H∗( F `v, F 1 ? F 2) ' H∗( F `v, F 1) ⊗ H∗( F `v, F 2) (non-canonically). Since
taking nearby cycles commutes with proper push-forward, we have a canonical isomorphism
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H∗ ◦ Z ' H∗. Since H∗ : SatH → VectQ` is a fiber functor, the assertion follows from the
above lemma.

4. Identification of the group G̃∨ with (H∨)I

We need to describe the group G̃∨ from the last section. To begin with, let us re-
view how the geometric Satake correspondence (together with a choice of an ample line
bundle on GrH ) gives rise to a pinned group (H∨, B∨H , T

∨
H , X

∨). First, once we choose
TH ⊂ BH ⊂ H, the construction of [19] gives us T∨H ⊂ B∨H ⊂ H∨. Namely, let UH ⊂ BH
be its unipotent radical. For µ ∈ X•(TH), let Sµ be the semi-infinite orbit on GrH passing
through sµ as introduced in [19] (i.e., theLUH -orbit passing through sµ). LetS≤µ = ∪λ�µSλ
and S<µ = ∪λ≺µSλ. Then the fiber functor H∗ : SatH → VectQ` has a canonical filtration
(called the MV filtration) given by ker(H∗(GrH ,−) → H∗(S<µ,−)). This defines a Borel
B∨H ⊂ H∨. In addition, it is proved that the filtration admits a canonical splitting, i.e.,
a canonical isomorphism H∗(GrH ,−) '

⊕
µ H∗c(Sµ,−). This provides a maximal torus

T∨H ⊂ B∨H . Let L be an ample line bundle on GrH , and let c( L) ∈ H2(GrH ,Q`) be its
Chern class. Then it is shown in [10, 29] that the cup product with this class realizes c( L) as
a principal nilpotent element in X∨ ∈ h∨ = LieH∨. In addition, by [29, Proposition 5.6],
the quadruple (H∨, B∨H , T

∨
H , X

∨) is indeed a pinned reductive group.

R 4.1. – One remark is in order. In [29], all the assertions are proved for the affine
Grassmannian defined over C. The only place where the complex topology is used, besides
the issue of dealing with Z-coefficients as in [19], is to define the coproduct on H∗(GrH ,Z) by
realizing GrH as being homotopic to the based loop space of a maximal compact subgroup
ofHC. However, one can provide a commutative and cocommutative Hopf algebra structure
on H∗(GrH ,Z) using the Beilinson-Drinfeld Grassmannian. More precisely, one can use the
isomorphism (2.11) in loc. cit. to define the comultiplication map by the formula (2.12) in loc.
cit. This map on the other hand can be realized as follows. There is the Beilinson-Drinfeld
Grassmannian π : Gr2 → A2 whose fiber over a point in the diagonal ∆ ⊂ A2 is GrH and
whose fiber over a point off the diagonal is GrH ×GrH (cf. [19, Section 5]). Then Riπ∗Q` is
a constructible sheaf on A2, constant along the stratification A2 = ∆ ∪ (A2 −∆). Now the
usual cospecialization map of constructible sheaves gives rise to the comultiplication. From
this latter definition, the usual arguments for the commutativity constraints as in [19] show
that this defined comultiplication is indeed cocommutative. The proof of [29, Lemma 5.1]
that cTH ( L) is primitive under this Hopf algebra structure can be replaced by the following
argument: as is well-known (e.g., see [30, 1.1.9]), if L is ample on GrH , then there is an ample
line bundle on Gr2, which away from the diagonal is L� L and on the diagonal is L. Now the
above arguments and all the remaining arguments of [29] apply to the situation when GrH is
defined over arbitrary field k and sheaves have Q`-coefficients.

R 4.2. – As explained in [19, Theorem 3.6], the above pinning (H∨, B∨H , T
∨
H , X

∨)

is in fact independent of the choice of T ⊂ B. Another way to deduce this fact is as follows.
The natural grading on the cohomological functor H∗ defines a one-parameter subgroup
Gm → H∨ and T∨H is just the centralizer of this subgroup, which is independent of the
choice of T ⊂ B. On the other hand, B∨H is completely determined by X∨, which is also
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independent of the choice of T ⊂ B. In other words, there is a canonical morphism from
the Lefschetz SL2 to H∨, which gives a principal SL2 in H∨, and the pinning is determined
by this principal SL2.

Recall that we denote by ψ the action of I on GrH . The action of γ ∈ I will map Grλ
isomorphically to Grγ(λ). Therefore the pushforward functor γ∗ : D(GrH) → D(GrH)

for γ ∈ I naturally gives rise to γ∗ : SatH → SatH . In this way, I acts on SatH via tensor
automorphisms. Under the geometric Satake correspondence, I acts onH∨ clearly as pinned
automorphisms with respect to the pinning we mentioned above.

T 4.3. – G̃∨ ' (H∨)I .

R 4.4. – Observe that (H∨)I is not necessarily a connected reductive group. For
example: letH∨ = GL2n+1, let J be the matrix with 1s on the anti-diagonal and 0s elsewhere.
Let Γ = {1, γ} and γ act on H∨ via g 7→ J(gt)−1J . Then (H∨)I = O2n+1.

Proof. – Since Pv is semi-simple, G̃∨ is a reductive subgroup of H∨. We first see that
G̃∨ ⊂ (H∨)I . The following lemma is a direct consequence of [7, Corollary 2.9].

L 4.5. – Let f : H2 → H1 be a homomorphism of algebraic groups and let ωf de-
note the induced tensor functor Rep(H1) → Rep(H2) (if f is a closed embedding then ωf is
the restriction functor ResH2

H1
). Let I ⊂ Aut(H1) so that it acts on Rep(H1) via tensor auto-

morphisms. If for any γ ∈ I, ωf ◦ ωγ ' ωf , then f factors through f : H2 → HI
1 ⊂ H1.

Now, I acts on G̃r G = Gr G ×A1 A1 via the action on the second factor A1 by deck
transformations. By Lemma 2.1, we have

Z(γ∗ F ) = Ψ
G̃r G

(γ∗ F �Q`[1]) ' Ψ
G̃r G

((ψ(γ)× γ)∗( F �Q`[1])) ' Ψ
G̃r G

( F �Q`[1]) = Z( F ).

In other words, we have the tensor isomorphism between Z ◦ γ∗ and Z for all γ ∈ I. From
the above lemma, G̃∨ ⊂ (H∨)I .

Therefore, we have successive restriction functors

Rep(H∨)→ Rep((H∨)I)→ Rep(G̃∨).

To prove that G̃∨ = (H∨)I , it is enough to show that the above restriction induces an iso-
morphism of K-groups K(Rep(H∨)I) ' K(Rep(G̃∨)).

As the group (H∨)I may not be connected, we need to be careful to describe its represen-
tation ring.

Let (H∨)I,0 denote the neutral connected component of (H∨)I . This is a connected
reductive group with maximal torus (T∨)I,0, the neutral connected component of (T∨)I . The
key fact is the following lemma.

L 4.6. – The natural map

(T∨)I/(T∨)I,0 → (H∨)I/(H∨)I,0

is an isomorphism.
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Proof. – We will not distinguish a group from its E-points. As we purely work with dual
groups, we switch the notation H∨ to H, etc. in the proof. Let us choose γ to be a generator
of I. We need to show that π0(T I) = π0(HI). Let N be the normalizer of T in H and
let W = N/T be the Weyl group. Then I acts on W naturally. Let us define a right action
of W I on H1(I, T ) as follows. Suppose w is in W I and c be a cohomology class; lift w
to n ∈ N and lift c to a cocycle ϕ : I → T . Then we set (c · w)(γ) = [n−1ϕ(γ)γ(n)]. It
is clear that this is independent of all choices. We will deduce Lemma 4.6 from the following
fact.

L 4.7. – Under the above definition, every element w ∈ W I acts on H1(I, T ) via a
group automorphism. In addition, H1(I,H) is the quotient of H1(I, T ) via the above action.

Proof. – Observe that the map N I → W I is surjective. Indeed, let Hder be the derived
group of H and Hsc be the simply-connected cover of Hder. We have corresponding groups
Nder, Nsc, Tder, Tsc. We now apply the argument of [26] p. 55 (5) to Hsc and γ. Our assump-
tion that γ is pinned allows us to take t = 1 in loc. cit. It follows that the natural map
N I

sc → W I is surjective; therefore the same is true for N I → W I (another argument of this
surjectivity can be found in [3, Lemma 6.2]). By taking the lift w to n ∈ N I , it is clear that
w acts on H1(I, T ) via group automorphisms. The second statement was proved in [24].

C 4.8. – The preimage of 1 ∈ H1(I,H) under H1(I, T )→ H1(I,H) is 1.

We continue to prove Lemma 4.6. First, ifH is simply-connected, thenHI is connected as
is shown in [26, Theorem 8.2]. On the other hand, I acts on T via permuting a basis ofX•(T ).
Therefore, T I is also connected. The lemma holds in this case. For generalH, letHder be the
derived group of H and Hsc be the simply-connected cover of Hder. Let Tder and Tsc be the
corresponding preimages of T . Write

1→ Z → Hsc → Hder → 1

which then gives

(4.1) 1→ π0(HI
der)→ H1(I, Z)→ H1(I,Hsc).

Similarly, the sequence of maximal tori

1→ Z → Tsc → Tder → 1

gives

(4.2) 1→ π0(T Ider)→ H1(I, Z)→ H1(I, Tsc).

Comparing (4.1) and (4.2) and applying Corollary 4.8, we obtain that the natural map

(4.3) π0(T Ider)
∼−→ π0(HI

der)

is an isomorphism. Now consider

1→ Hder → H → D → 1

which gives

(4.4) 1→ π0(HI
der)→ π0(HI)→ π0(DI)→ H1(I,Hder).
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Similarly, the sequence of maximal tori

1→ Tder → T → D → 1

give

(4.5) 1→ π0(T Ider)→ π0(T I)→ π0(DI)→ H1(I, Tder).

Comparing (4.4) and (4.5) and using Corollary 4.8 again, we obtain that the natural map

(4.6) π0(T I)
∼−→ π0(HI)

is an isomorphism.

R 4.9. – Note that the above proof of Lemma 4.6 in fact applies to any cyclic
subgroup I of the group of pinned automorphisms of H. With a little more effort, one can
prove the same statement for any solvable subgroup. Also note that Lemma 4.7 implies that
if I acts on H via pinned automorphisms, then H1(I,H) has a canonical Abelian group
structure. This does not necessarily hold for arbitrary action of I on H.

Recall that there is a natural partial order “�” on X•(T )I given by (1.3). Let µ̄ ∈ X•(T )+
I .

We say an irreducible representation W of (H∨)I is of highest weight µ̄ if µ̄ appears as a
weight under the weight decomposition of W with respect to (T∨)I and any other weight
appearing in this weight decomposition is � µ̄. We claim that

L 4.10. – (i) For µ̄ ∈ X•(T )+
I , there is a unique (up to isomorphism) irreducible

representation Wµ̄ of (H∨)I of highest weight µ̄. In addition, any irreducible representation
of (H∨)I is of this form.

(ii) The multiplicity of the µ̄-weight in Wµ̄ is one.

Proof. – Indeed, let ¯̄µ be the image of µ̄ in X•(T )I/X•(T )I,tor, and W ¯̄µ be the unique
irreducible representation of (H∨)I,0 of highest weight ¯̄µ. Let W be an irreducible represen-

tation of (H∨)I appearing as a direct summand of ind
(H∨)I

(H∨)I,0
W ¯̄µ. Then by the Frobenius

reciprocity, W ⊗ χ also appears as a direct summand of ind
(H∨)I

(H∨)I,0
W ¯̄µ for every character χ

of (H∨)I/(H∨)I,0, regarded as a representation of (H∨)I . Then by Lemma 4.6 and counting
the dimensions,

ind
(H∨)I

(H∨)I,0
W ¯̄µ '

⊕
χ∈Rep((T∨)I/(T∨)I,0)

W ⊗ χ,

and the restriction W to (H∨)I,0 is irreducible. Therefore the restriction W to (H∨)I,0 is
isomorphic to W ¯̄µ. It is then clear that exactly one (W ⊗ χ) appearing in the direct sum is
an irreducible representation of (H∨)I of highest weight µ̄. This proves the existence. Then
uniqueness is also clear because by the Frobenius reciprocity, every irreducible representation

of (H∨)I appears as a direct summand in ind
(H∨)I

(H∨)I,0
W ¯̄µ for some ¯̄µ ∈ X•(T )I/X•(T )I,tor.
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Now we finish the proof of the theorem. Let µ ∈ X•(T )+ be a lift of µ̄. Then,

Res
(H∨)I

H∨ [Vµ] = [Wµ̄] +
∑
λ̄≺µ̄ cλ̄µ̄[Wλ̄], where [X] stands for the element in the K-group

corresponding to X. Therefore,

ResG̃
∨

H∨ [Vµ] = ResG̃
∨

(H∨)I [Wµ̄] +
∑
λ̄≺µ̄

cλ̄µ̄ResG̃
∨

(H∨)I [Wλ̄].

On the other hand, for µ̄ ∈ X•(T )+
I , the intersection cohomology sheaf ICµ̄ ∈ Pv gives rise

to an irreducible object Uµ̄ in Rep(G̃∨). By Lemma 2.6, we have

ResG̃
∨

H∨ [Vµ] = [Uµ̄] +
∑
λ̄≺µ̄

dλ̄µ̄[Uλ̄].

By induction on µ̄, one immediately obtains that

ResG̃
∨

(H∨)I [Wµ̄] = Uµ̄ +
∑
λ̄≺µ̄

eλ̄µ̄[Uλ̄].

Since [Wµ̄] (resp. [Uµ̄]) forms a Z-basis of K(Rep((H∨)I)) (resp. K(Rep(G̃∨))), this implies

that ResG̃
∨

(H∨)I is an isomorphism and therefore G̃∨ = (H∨)I .

The following table is a list of the group (H∨)I whenG over k((t)) is absolutely simple and
simply-connected, and non-split . Note that in this case, I acts on the coweight lattice of TH
by permutations of a basis and therefore X•(T )I is torsion free. Therefore, by Lemma 4.6,
(H∨)I is connected.

G H I (H∨)I

SU2n−1 SL2n−1, n ≥ 2 Z/2 SO2n−1

SU2n SL2n, n ≥ 2 Z/2 PSp2n

2Dn Spin2n, n ≥ 4 Z/2 SO2n−1

3D4 Spin8 Z/3 G2

2E6 E6 Z/2 F4

Here PSp2n denotes the adjoint form of Sp2n, and 2Dn,
3D4,

2E6 are the quasi-split but non-
split forms of Dn and E6.

Now, we switch to Theorem 0.2. Therefore, we will assume thatG is a quasi-split reductive
group defined over the non-Archimedean local field F = Fq((t)) (we can in fact replace Fq
by any other perfect field). Let k = Fq, and σ be the Frobenius element in Gal(k/Fq).
Let v ∈ B(G,F ) be a special vertex in the building which remains to be special when base
change to k((t)) (such a vertex is called very special, see § 6 for more discussions). Let Gv be
the special parahoric group scheme over Fq[[t]] corresponding to v and Kv = L+Gv. Then
the affine flag variety F `v = LG/Kv is defined overFq and when base change to k, F `v ⊗ k is
the affine flag variety considered in the previous sections, and we have the Tannakian cate-
gory Pv = PKv⊗k( F `v ⊗ k) with a fiber functor H∗.

As in Lemma A.5, there is an action of σ on Pv, and therefore an action of σ on (H∨)I .
Following the notation as in the appendix, we denote this action by actgeom. On the other
hand, since there is a canonical pinning (H∨, B∨H , T

∨
H , X

∨), there is a canonical action
of Gal(F s/F ) on H∨ by pinned automorphisms and therefore an action of σ on (H∨)I by
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pinned automorphisms. We denote this action by actalg. As in the appendix, we denote cycl

to be the cyclotomic character of Gal(k/Fq), so that cycl(σ) = q. Let

χ = ρ ◦ cycl : Gal(k/Fq)→ (H∨ad)I .

As in Proposition A.6, since the action of actgeom on (H∨)I fixes the cohomological grading
and acts on X∨ via the cyclotomic character, we know that

actgeom = actalg ◦Adχ,

and there is an isomorphism

(4.7) (H∨)I oactalg Gal(k/Fq)→ (H∨)I oactgeom Gal(k/Fq), (g, σ) 7→ (Adχ(σ)−1g, σ).

Now regarding (H∨)I oactalg Gal(k/Fq) as a pro-algebraic group over Q`, as in the ap-
pendix, we have the category Rep((H∨)I oactalg Gal(k/Fq)) of algebraic representations
of (H∨)Ioactalg Gal(k/Fq). Now Theorem 0.2 follows from the same line as in the appendix.

5. IC-stalks, q-analogy of the weight multiplicity, and the Lusztig-Kato polynomial

Let µ̄ ∈ X•(T )I and F ∈ Pv. We determine the stalk cohomology F at the point sµ̄. By
abuse of notation, the inclusion map sµ̄ ∈ F `v is still denoted by sµ̄. It will be convenient to
define

Stalkµ̄( F ) = s∗µ̄ F [−(2ρ, µ̄)], Costalkµ̄( F ) = s!
µ̄ F [(2ρ, µ̄)].

Let X∨ be the regular nilpotent element of Lie(H∨)I given by the pinning. It defines an in-
creasing filtration (the Brylinski-Kostant filtration) on any representation V ofH∨ or (H∨)I ,

(5.1) FiV = (kerX∨)i+1.

For µ̄ ∈ X•(T )I , denote by V (µ̄) the µ̄-weight subspace of V , under the action of (T∨H)I .
Then filtration (5.1) induces

(5.2) FiV (µ̄) = V (µ̄) ∩ FiV.

Let
Pµ̄(V, q) =

∑
grFi V (µ̄)qi

be the q-analogue weight multiplicity polynomial.

T 5.1. – Let F ∈ Pv and let V = H∗( F `v, F ) be the corresponding representa-
tion of (H∨)I . Then

Pµ̄(V, q) =
∑

dim H−2i(Stalkµ̄( F ))qi =
∑

dim H2i(Costalkµ̄( F ))qi.

Observe that by the parity vanishing property of F , Stalkµ̄ F and Costalkµ̄( F ) only
concentrate on even degrees.

In the split case, this is proved in [18, 4]. A more geometric proof is given by Ginzburg [10],
which relies on the geometric Satake isomorphism and certain techniques of equivariant
cohomology. We will follow Ginzburg’s idea.

Let us give a quick review of equivariant cohomology (see [1] and [10, §8] for more details).
Let M be a variety with an action of a torus A. Let BA be the classifying space (stack) of A.
Let RA = H∗(BA) and recall that SpecRA ' a = LieA. Let t ∈ a be an element. We denote

4 e SÉRIE – TOME 48 – 2015 – No 2



THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 429

by κ(t) the residue field of t and let Ht := H∗A ⊗RA κ(t). If t = 0, this functor H0 inherits a
canonical grading. For general t, this functor equips with a canonical filtration by

H≤it := Im(
∑
j≤i

Hj
A → Ht),

and there is a canonical isomorphism gr∗Ht ' H∗0. For every F ∈ DA(M), there is a spectral
sequence Ep,q2 = Hp(BA,Hq(M, F ))⇒ Hp+q

A (M, F ). If this spectral sequence degenerates
at the E2-term (which is always the case in the following discussion), then H∗0(M, F ) '
H∗(M, F ) and therefore we have a canonical isomorphism gr Ht(M, F ) ' H∗(M, F ).

Now assume that the action ofA onM has only isolated fixed pointsMA, and let η ∈ a be
the generic point. Then the localization theorem claims that there is an isomorphism

(5.3)
⊕
x∈MA

Hη(i!x F ) ' Hη(M, F ) '
⊕
x∈MA

Hη(i∗x F ),

where ix is the inclusion of the point x.

Next we review some results for split groups, which are essentially contained in [10].
However, our presentation here follows [29] closely. First, it is proved in [29, Lemma 2.2] that
there is a canonical grading preserving isomorphism

(5.4) H∗TH ' H∗ ⊗RTH : SatH → RTH -Mod,

which endows H∗TH with a structure of tensor functors and defines a canonically trivialized
H∨-torsor E ' H∨ × tH on SpecRTH = tH =: LieTH . In other words, the group scheme
Aut⊗H∗TH over tH of the tensor automorphism of this fiber functor, which a priori is an
inner form of H∨, is canonically isomorphic to H∨ × tH . In addition, the MV filtration
and its canonical splitting extend in the equivariant setting [29, Lemma 2.2] and provide
T∨H×tH ⊂ B∨H×tH ⊂ H∨×tH . Now, let cTH ( L) ∈ H2

TH (GrH) denote the equivariant Chern
class of L (3). Then the action of cTH ( L) on H∗TH (GrH , F ) for F ∈ SatH can be identified
with the action of an element

eTH ∈ Γ(tH ,Lie(ad E)).

Since E is canonically trivialized, eTH can be regarded as a map tH → h∨. Observe that eTH

is not the constant map X∨. In fact,

eTH = X∨ + h,

where h : tH → t∨H ' (tH)∗ is given by a nondegenerate invariant bilinear form (cf. [29,
Proposition 5.7]). In particular, (H∨, B∨H , T

∨
H , e

TH ) is not a pinning over tH .

The equivariant homology HTH
∗ (GrH) is a commutative and cocommutative Hopf algebra

and J∨ = SpecHTH
∗ (GrH) is a flat group scheme over tH , acting on every

H∗TH (GrH , F ), F ∈ SatH . By Tannakian formulism, this induces a map ι : J∨ → H∨ × tH .

In [29], it is shown that this is a closed embedding, which identifies J∨ with the (H∨×tH)e
TH ,

the centralizer of eTH in H∨ × tH .

(3) By replacing L by a power of it, we can assume that L is TH -equivariant.
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Let η be the generic point of tH . Then J∨η is indeed a torus in H∨η since eTH (η) ∈ h∨η is
regular semisimple. Then localization theorem gives rise to an isomorphism of J∨η -modules

(5.5)
⊕

µ∈X•(TH)

Hη(s!
µ F ) ' Hη(GrH , F ).

Following the idea of Ginzburg, we claim that this decomposition corresponds to the weight
decomposition under J∨η ⊂ H∨η . First, let B∨H → T∨H be the natural projection. As is shown
in [29], J∨ ⊂ B∨H × tH and the composition J∨ → B∨H × tH → T∨H × tH is identified with
the map (cf. Remark 3.4 of loc. cit.)

RTH [X•(TH)] '
⊕

µ∈X•(TH)

HTH
∗ (sµ)→ HTH

∗ (GrH).

Over η, this is an isomorphism and therefore we obtain a canonical isomorphism
J∨η ' (T∨H)η. In addition, the action of J∨η on Hη,c(Sµ, F ) via J∨η → (T∨H)η is identi-
fied with the natural action of J∨η on Hη(s!

µ F ) ' Hη,c(Sµ, F ). Therefore, we obtain the
following proposition, originally proved by Ginzburg by another method.

P 5.2. – Let V ∈ Rep(H∨) and S(V ) ∈ SatH be the corresponding sheaf
(see (2.1)). Under the identification of the weight lattice of J∨η with X•(T∨H) via the canonical
isomorphism J∨η → (T∨H)η, the direct summand Hη(s!

µ S(V )) ⊂ Hη(GrH , S(V )) corresponds
to the weight subspace V (µ) ⊂ V for J∨η .

R 5.3. – Let us observe that the localization isomorphism (5.5) holds over tH
after we remove all root hyperplanes. This is because for every TH -invariant finite dimen-
sional closed subvarietyZ ⊂ GrH , there are only finitely many 1-dimensionalTH -orbits inZ,
and TH acts on these orbits via rotations determined by roots. Therefore, in all the discus-
sions above, we can replace the generic point η by any (closed) point in tH \{ã = 0, ã ∈ ΦH},
where ΦH is the set of roots of H.

Now let t be a closed point on tH such that

(5.6) h(t) = 2ρ

so that eTH (t) = X∨ + h(t) = X∨ + 2ρ. According to [29, Proposition 5.7], such point
exists (unique up to adding an element in the center z(h) of h) and does not belong to any
root hyperplanes. Therefore, the localization isomorphism (5.5) holds for Ht by the above
remark. From now on, we will always choose the point t satisfying (5.6).

Recall that under the geometric Satake isomorphism H∗ : SatH ' Rep(H∨), the natural
grading on the cohomology functor corresponds to the principal grading on representations
of H∨. More precisely, consider the cocharacter 2ρ : Gm → T∨H ⊂ H∨. Then the grading
on the cohomology functor corresponds to the grading given by 2ρ on the representations.
This follows from the fact that H∗c(Sµ, F ) is nonzero only in degree (2ρ, µ). Now it is clear
from (5.4) that for the closed point t ∈ tH , the filtration H≤it corresponds to the increasing
filtration on the representations associated to the gradings given by 2ρ. For i ∈ Z, let

X•(TH)i = {µ ∈ X•(TH) | (2ρ, µ) = i}.
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Let V be a representation of H∨. Denote

V (i) =
∑

µ∈X•(TH)i

V (µ),

where V (µ) is the µ-weight space of J∨t . Let us identify Ht(GrH , S(V )) with V canonically,
so that Ht(s

∗
µ S(V )) is identified with V (µ) by Proposition 5.2. Then we have the following

proposition.

P 5.4. – Let t be as in (5.6). Write Ht = Ht(GrH , S(V )) for simplicity. Then
for any m ∈ Z,

H≤2i+m
t ∩

⊕
µ∈X•(T )m

Ht(s
!
µ S(V )) = H≤2i+1+m

t ∩
⊕

µ∈X•(T )m

Ht(s
!
µ S(V )) = FiV ∩ V (m),

where FiV is defined as in (5.1).

Proof. – Let n be the unique element in U∨H such that Adn(X∨ + 2ρ) = 2ρ. Then the
canonical isomorphism J∨t ' T∨H is given by Adn : J∨t → T∨H . The proposition clearly
follows from the following purely representation theoretical lemma.

L 5.5. – Let V be a representation of H∨. Let

V =
∑

V 1(i), V =
∑

V 2(i)

be two gradings on V , given by the cocharacters 2ρ : Gm → H∨ and Adn−12ρ : Gm → H∨

respectively. Let F 1
• V and F 2

• V be two filtrations on V given by

F 1
i V =

∑
j≤i

V 1(j), F 2
i V = (kerX∨)i+1.

Then for any m ∈ Z, V 2(m) ∩ F 1
2i+mV = V 2(m) ∩ F 1

2i+1+mV = V 2(m) ∩ F 2
i V .

Proof. – Let Y ∨ ∈ h∨ so that {X∨, 2ρ, Y ∨} forms an sl2-triple. Then the lemma is purely
a statement about this sl2 and can be checked easily by direct calculation.

This finishes the discussion for split groups. Now let G be as before and A be its maximal
split torus. By the isomorphism (1.1), we can regardA as a subtorus of TH . Note that we can
restrict everything discussed above to A ⊂ TH . In particular, we can choose the point t ∈ a
such that h(t) = 2ρ. This is because h : tH → t∨H is equivariant under the automorphisms
of the based root datum and 2ρ is a fixed point under these automorphisms.

We begin to prove the theorem. Observe that it is enough to prove the theorem for
objects in Pv of the form Z( F ), where F ∈ SatH . Indeed, both maps Pv → Z[q]

given by F 7→ Pµ̄(H∗( F ), q) and F 7→
∑

dim H2i(Costalkµ̄( F ))qi factor through the
Grothendieck group, and as observed in the proof of Theorem 0.1 in Section 4, the objects
of the form Z( F ), F ∈ SatH generate the Grothendieck group of Pv.

Recall that the maximal torus A ⊂ G extends naturally to a split torus over O and
A O ⊂ Gv. Therefore, we can regard A as a subtorus of Kv, as A is a natural subgroup
ofL+A O consisting of “constant” elements. The set of fixed points of the action ofA on F `v
are exactly {sµ̄|µ̄ ∈ X•(T )I}. This will be clear if we regard LG as a Kac-Moody group and
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A as its maximal torus. We consider the A-equivariant cohomology H∗A : Pv → RA-Mod.
Since the nearby cycles commute with proper base change, we have a canonical isomorphism

H∗A ◦ Z ' H∗A : SatH → RA-Mod.

Indeed, when fixing a cohomological degree, we can replace BA by (Pn)rkA for n large
enough, and consider the nearby cycle functors for the family G̃r G ×A (Pn)rkA. The claim
then is clear.

R 5.6. – One should be able to argue as defining the tensor structure of H∗, that
there is a canonical isomorphism

H∗A ' H∗ ⊗RA : Pv → RA-Mod,

which endows H∗A with a fiber functor structure, and the corresponding (H∨)I torsor on
SpecRA = a =: LieA is canonically trivialized. However, we did not investigate this.

Let p : X•(T )→ X•(T )I be the projection. Let η be the generic point of a. Now, the key
observation is

L 5.7. – Under the canonical isomorphism Hη( F `v, Z( F )) ' Hη(GrH , F ), the
direct summand H∗η(s!

µ̄ Z( F )) corresponds to
⊕

µ∈p−1(µ̄) H∗η(s!
µ F ).

Proof. – Recall that if f : X → Y is a morphism of varieties over A1, then there are
always the natural maps f∗Ψ Y → Ψ Xf

∗ and Ψ Yf∗ → f∗Ψ X (see SGA 7 Exposé XIII,
(2.1.7.1) (2.1.7.2)). In addition, these two maps fit into the following commutative diagram

Ψ Y( F ) −−−−→ f∗f
∗Ψ Y( F )y y

Ψ Y(f∗f
∗ F ) −−−−→ f∗Ψ X (f∗ F ).

Now let µ ∈ X•(TH) and apply this remark to sµ : A1 → G̃r G as defined in the proof
of Lemma 2.6. By taking the cohomology H∗A, we obtain, for any F ∈ SatH , the following
commutative diagram

(5.7)

H∗A(GrH , F )
'−−−−→ H∗A( F `v, Z( F )) −−−−→ H∗A(s∗µ̄ Z( F ))y y y

H∗A(s∗µ F )
'−−−−→ H∗A( F `v,ΨG̃r G

(sµ∗s
∗
µ F ))

'−−−−→ H∗A(ΨA1(s∗µ F )).

In other words, the composition H∗A( F `v, Z( F )) → H∗A(GrH , F ) → H∗A(s∗µ F ) factors
as H∗A( F `v, Z( F )) → H∗A(s∗µ̄ Z( F )) → H∗A(s∗µ F ). On the other hand, by the localization
theorem, over the generic η of a, we have

(5.8)

H∗η( F `v, Z( F )))
'−−−−→

⊕
µ̄∈X•(T )I

H∗η(s∗µ̄ Z( F ))

'
y y'

H∗η(GrH , F )
'−−−−→

⊕
µ∈X•(T ) H∗η(s∗µ F ).

Observe that in the localization Theorem (5.3), for x, y ∈ MA and x 6= y, the composition
Hη(i!x F )→ Hη(i∗y F ) is zero. Therefore, the lemma follows from (5.7) and (5.8).
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As a result, by Proposition 5.2, if F = S(V ), this direct summand can be further identified
with

⊕
µ∈p−1(µ̄) V (µ), the weight subspaces under J∨η . In addition, by Proposition 5.4,

H
≤2i+(2ρ,µ̄))
t ∩Ht(s

!
µ̄ Z( S(V ))) = H

≤2i+1+(2ρ,µ̄))
t ∩Ht(s

!
µ̄ Z( S(V ))) = FiV ∩

⊕
µ∈p−1(µ̄)

V (µ),

where we write Ht = Ht( F `v, Z( S(V ))) for brevity. Therefore, to finish the proof of the
theorem, it remains to show that

L 5.8. – Let F ∈ Pv. Then the canonical map

(5.9) H∗A(s!
µ̄ F )→ H∗A( F )

is a splitting injective map of free RA-modules. Therefore,

H≤it ( F `v, Z( S(V ))) ∩Ht(s
!
µ̄ Z( S(V ))) = H≤it (s!

µ̄ Z( S(V ))).

These are general facts about flag varieties for Kac-Moody groups. The basic geometric
fact behind this proposition is that the “big open cell” of the flag variety contracts to a
point under certain Gm-action. Then the statement follows using an argument with weights
(cf. [10]). We here reproduce the proof for completeness.

Proof. – Without loss of generality, we can assume that F is an intersection cohomology
complex. First, we claim that it is enough to prove a dual statement: the map

(5.10) H∗A( F )→ H∗A(s∗µ̄ F )

is surjective. To see this, recall that since each of H∗( F ), s∗µ̄ F , s!
µ̄ F concentrates in cohomo-

logical degrees of the same parity, the spectral sequence calculating the A-equivariant coho-
mology degenerates at the E2-term, which implies that all H∗A( F ), H∗A(s∗µ̄ F ), H∗A(s!

µ̄ F ) are
finite free RA-modules. Then taking Hom(−, RA) interchanges (5.9) and (5.10).

Since F `v is the flag variety of certain Kac-Moody group (cf. [22, Section 9.h]), for
every sµ̄, there is a Gm-action on F `v, contracting an open neighborhood of sµ̄ in F `v to sµ̄.

In addition, thisGm-action stabilizes every Schubert cell F̊ `
s

λ̄, and commutes with the action
of A on F `v. Denote this open neighborhood by j : Uµ̄ ↪→ F `v. Then Uµ̄ is an inductive
limit of affine spaces. Indeed, U0̄ is just the big open cell in the flag variety, and Uµ̄ is the
translate U0̄ via sµ̄ (lifted to an element in T (F )).

Now we can assume that our group is defined over Fq((t)) and splits over a totally ramified
extension. All the discussion above remains unchanged in this setting. Recall that we denote
P0
v to be the semisimple Kv-equivariant perverse sheaves on F `v, pure of weight zero. It is

well-known that for every object F in Pv, H∗A(s∗µ̄ F ) is pure of weight zero (i.e., Hi
A(s!

µ̄ F ) is
pure of weight i), essentially due to the existence of Demazure resolutions. To show (5.10) is
surjective, we decompose this map into

H∗A( F )→ H∗A(Uµ̄, j
∗ F )→ H∗A(s∗µ̄ F ).

It is well-known that the second map is an isomorphism since j∗ F is equivariant under
this Gm-action, which contracts (Uµ̄ ∩ Supp F ) to sµ̄. In particular, H∗A(Uµ̄, j

∗ F ) is pure
of weight zero. Therefore, it is enough to show that the first map is surjective. Denote
i : Z = F `v \ Uµ̄ ↪→ F `v to be the complement. Then we have the distinguished triangle

i∗i
! F → F → j∗j

∗ F →
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and therefore
0→ H∗A(i! F )→ H∗A( F )→ H∗A(Uµ̄, j

∗ F )→ 0.

The last map is surjective because the weights of H∗A(i! F ) are ≥ 0.

6. The Langlands parameter

In this section, we briefly discuss the Langlands parameters for smooth “spherical” repre-
sentations of a quasi-split p-adic group. The parameters themselves can be described easily,
and they will be used when we discuss the Frobenius trace of nearby cycles for certain unitary
Shimura varieties.

We will assume that F is a non-Archimedean local field with finite residue field and
that G is a connected reductive group over F . First, we generalize the hyperspecial vertex of
an unramified group as follows. Recall that by [27], the building of G(F ) can be embedded
into the building ofG(L), whereL is the completion of a maximal unramified extension ofF .

D 6.1. – A special vertex v ofG is called geometrically special (or very special)
if it remains special in GL. The parahoric subgroup of G corresponding to a geometrically
special vertex is called a geometrically special (or very special) parahoric subgroup of G.

Clearly, if G is an unramified group, then very special vertices of G are the same as
hyperspecial vertices of G.

L 6.1. – A very special vertex of G exists if and only if G is quasi-split over F .

Proof. – Assume that G is quasi-split. Then the existence of such points follows exactly
by the same argument as in [27, 1.10.2]. We prove the converse. Let v be a very special point.
Choose a maximal F -split torus A of G such that the corresponding apartment A(G,A, F )

containing v. Let S be a maximal L-split torus defined over F and containingA. We identify
the apartment A(GL, SL, L) with X•(S) ⊗ R by v. As v is special, there is a bijection
between the finite Weyl chambers for (GL, SL) and the affine Weyl chambers (or called
alcove) with v as a vertex, and this bijection is compatible with the action of Gal(L/F ).
To show that G is quasi-split, it is enough to find an L-rational Borel containing S stable
under Gal(L/F ), which is equivalent to finding a finite Weyl chamber in X•(S) ⊗ R, stable
under Gal(L/F ). Therefore, it enough to show that among all alcoves with v as a vertex,
there is one stable under Gal(L/F ). But as it is known, one of such alcoves intersects with
A(G,A, F ) (since every reductive group overF is residually quasi-split, see [27, §1.10]), which
is stable under Gal(L/F ).

In fact, by checking the classification of central isogeny classes of quasi-simple, absolutely
simple reductive group over F as in [27, §4], we find that ifG is quasi-split, then every special
vertex ofG is very special except the following case: up to central isogeny,G is an unramified
odd unitary group. Then there are two special vertices in its relative local Dynkin diagram,
only one of which is hyperspecial. To prove this assertion, one uses the following observation:
Using the notation as in loc. cit., a vertex v in ∆ (the relative local Dynkin diagram of G) is
very special if and only if the corresponding Gal(L/F )-orbit O(v) ⊂ ∆1 (the absolute local
Dynkin diagram of G) consists of one point, which is special in ∆1.
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Next we turn to representations.

D 6.2. – We call an irreducible smooth representation V of G spherical, if
there is some v ∈ V, v 6= 0, which is fixed by some very special parahoric subgroup of G.

R 6.2. – Again, one could try to define spherical representations of G as those
with a vector fixed by some special maximal compact subgroup of G. However, from the
point of view of Langlands parameters discussed below, this is not correct.

Clearly, if G is unramified, spherical representations are those usually called unram-
ified representations. For the unramified representations, the description the associated
Langlands parameters is well-known (for example, see [3, Chapter II]). Let us explain the
Langlands parameters of spherical representations for quasi-split ramified groups.

Following the notation in the previous sections, we denote by H∨ its dual group in the
sense of Langlands defined over C, i.e., the root datum is dual to the root datum of G. Let
us equip H∨ with a pinning (H∨, B∨, T∨, X∨)(4). Then Gal(F s/F ) acts on H∨ via pinned
automorphisms, which we denote by actalg, and we can form the Langlands dual group ofG
as

LGalg = H∨ oactalg Gal(F s/F ).

Let WF be the Weil group of F . A Langlands parameter is a continuous homomorphism
(up to conjugation by H∨) ρ : WF → LGalg, such that its composition with the canonical
projection LGalg → Gal(F s/F ) is the natural inclusion WF → Gal(F s/F ) and ρ(WF )

consists of semisimple elements of LGalg (see [3, 8.2] for the unexplained terminology).
We write ρ(γ) = (ρ1(γ), γ) for γ ∈WF , where ρ1 is a map from WF to H∨.

D 6.3. – A “spherical” parameter (or Langlands-Satake parameter) is a Lang-
lands parameter ρ which can be conjugated to the form ρ(γ) = (1, γ) for γ in the inertial
group I.

Let (H∨)I be the I-fixed point subgroup ofH∨ (which could be non-connected according
to Remark 4.4). Then Gal(F s/F )/I acts on (H∨)I through a finite cyclic group 〈σ〉, where
σ ∈ Gal(F s/F )/I is the Frobenius element.

L 6.3. – “Spherical” Langlands parameters ρ : WF → LGalg are in one-to-one
correspondence to semi-simple elements in (H∨)I × σ ⊂ (H∨)I oactalg 〈σ〉 up to conjugacy
by (H∨)I .

We denote the set of semi-simple elements in (H∨)I × σ by ((H∨)I × σ)ss.

Proof. – First, observe that elements h ∈ H∨ satisfy that (h, 1)(1, γ)(h−1, 1) = (1, γ) for
all γ ∈ I if and only if h ∈ (H∨)I .

Let Φ be a lift of the Frobenius element to WF . Then ρ is uniquely determined by ρ1(Φ),
which is a semi-simple element in H∨. Let γ ∈ I. Then (1,ΦγΦ−1) = ρ(ΦγΦ−1) =

(ρ1(Φ),Φ)(1, γ)(ρ1(Φ−1),Φ−1) implies that ρ1(Φ) is invariant under I. Conversely, if
g ∈ H∨ oactalg I, then the formulas ρ1(I) = 1, ρ1(Φ) = g define ρ.

(4) In fact, by the construction of the appendix, there is a canonical pinned of H∨ provided by the geometric Satake
correspondence.
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Let A be a maximal F -split torus and let T be the centralizer of A, which is a maximal
torus of G. Let W0 = W (G,A) be the Weyl group. As explained in [11, Remark 9], we
can identify W0 with the σ invariants of the Weyl group W ((H∨)I , (T∨)I) (observe that the
latter group was denoted by W0 in Section 4), and let N0 be the inverse image of W0 inside
the normalizer of (T∨)I in (H∨)I . Let Rep((H∨)I oactalg 〈σ〉) be a category of algebraic
representations of (H∨)I oactalg 〈σ〉.

For every W ∈ Rep((H∨)I oactalg 〈σ〉), by restriction of its character to (H∨)I × σ, we
obtain a function chW on (H∨)I×σ. We denote by R the algebra of functions on (H∨)I×σ,
generated by all chW . We can adapt the proofs in [3, 6.4-6.7] to the group (H∨)I o 〈σ〉, and
obtain

P 6.4. – (i) The natural map X•(T )σI ⊂ X•(T )I induces an isomorphism

α : (T∨)I o σ/ IntN0 ' SpecC[X•(T )σI ]W0 .

(ii) The natural map (T∨)I o σ → (H∨)I o σ induces an isomorphism

β : (T∨)I o σ/ IntN0 ' ((H∨)I o σ)ss/ Int((H∨)I).

(iii) The composition βα−1 : SpecC[X•(T )σI ]W0 → ((H∨)I × σ)ss/ Int((H∨)I) induces an
isomorphism

C[X•(T )σI ]W0 ' R

as functions on ((H∨)I × σ)ss/ Int(H∨)I .

Therefore, the set of spherical Langlands parameters can be identified with the set of
all characters of R. Namely if ρ is a spherical parameter, then the corresponding character
χρ : R→ C is given by

(6.1) χρ(chW ) = tr(ρ(Φ),W ),

where we assume (after conjugation) that ρ(Φ) ∈ ((H∨)I × σ)ss, and ∈ (H∨)I o 〈σ〉.

Now let us explain how to attach to a spherical representation its spherical parameter.
Let π be a spherical representation of G, such that πKv 6= 0 for a very special parahoric
subgroup Kv ⊂ G(F ). Therefore, π determines a character χπ of Cc(Kv\G(F )/Kv) by

(6.2) χπ(f) = tr(π(f)),

where we fix a measure on G(F ) so that the volume of Kv is one.

D 6.4. – We define the spherical parameter associated to π to be the unique
Langlands parameter

Sat(π) : WF → LG

such that χSat(π) = χπ under the Satake isomorphism

(6.3) Cc(Kv\G(F )/Kv) ' R .
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As explained in Lemma A.13, in the case F = Fq((t)), the isomorphism (6.3) can be
deduced from 0.2 under the sheaf-function dictionary. We come back to the notation as
in § 4, in particular k = Fq. Let µ̄ ∈ X•(T )I . By abuse of notation, we denote the corre-
sponding Schubert variety in F `v ⊗ k by F `vµ̄ ⊗ k. If µ̄ is defined Fq, i.e., µ̄ ∈ (X•(T )I)

σ,
then F `vµ̄ ⊗ k is also defined over Fq and we denote the corresponding Schubert variety
in F `v by F `vµ̄. In this case the intersection cohomology sheaf ICµ̄ is naturally in P0

v,
and H∗(ICµ̄) is a representation of (H∨)I oactalg Gal(k/Fq). When restricted to (H∨)I ,
it is the highest representation Wµ̄. By abuse of notation, this algebraic representation
of (H∨)I oactalg Gal(k/Fq) is still denoted byWµ̄. LetAµ̄ ∈ Cc(Kv\G(F )/Kv) be the asso-
ciated function under Grothendieck’s sheaf-function dictionary. Combining (6.1) and (6.2),
we have

(6.4) tr(π(Aµ)) = tr(Sat(π)(Φ),Wµ̄).

7. Applications to the nearby cycles on certain Shimura varieties

One of the main motivations of this work is to calculate the nearby cycles for certain
unitary Shimura varieties. This is achieved by the so-called Rapoport-Zink-Pappas local
models.

Let F/Q be a quadratic imaginary field; we fix an embedding F ⊂ C. Let (W,φ) be a
Hermitian space over F/Q, of dimension n = dimW ≥ 3. Let G = GU(W,φ) be the group
of unitary similitudes defined by

G(R) = {g ∈ GLF (W ⊗Q R) | φ(gv, gw) = c(g)φ(v, w), c(g) ∈ R×}.

Assume that (WR, φR) ' (Cn, H), where H is the standard Hermitian matrix on Cn of
signature (r, s), i.e., H = diag{(−1)(s), 1(r)} is the diagonal matrix with −1 repeated at
the first s places and 1 repeated at the remaining r places(5). Without loss of generality,
we can assume that s ≤ r. Let h : ResC/RGm → GR be the homomorphism given
by h(z) = diag{z(s), z̄(r)}. LetK ⊂ G(Af ) be an open compact subgroup, small enough (i.e.,
K is contained in some principal congruence subgroup for some N ≥ 3). Then associated
to the data (G, {h},K), one can define a Shimura variety Sh(G,K) over a number field E,
where E = Q if r = s, and E = F if r 6= s. Let us recall that h also determines
a conjugacy class of one parameter subgroups of GC (the Shimura cocharacter), defined
over E. In our case, GC ' GLn × Gm and the one parameter subgroups are conjugate
to µr,s(z) = (diag{z(s), 1(r)}, z).

Let us fix a prime p > 2 and assume that F/Q is ramified at p. We denote Fp (resp.Ep) the
completion of F (resp. E) at the unique place over p. In addition, we assume that (W,φ) is
a split Hermitian form at p. In other words, (W,φ)Qp ' (Fnp , J), where J is the split
Hermitian matrix on Fnp with all its anti-diagonal entries 1, and 0 elsewhere. Observe that
this assumption automatically holds if n is odd. ThenGQp is quasi-split. We will assume that
K = KpK

p ⊂ G(Qp)G(Apf ) and Kp is a special parahoric of GQp , which is automatically
very special in the sense of (6.1). Let us make this more concretely.

(5) The corresponding Hermitian form is H(z, w) = z̄tHw for z, w ∈ Cn.
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Let π be a uniformizer of Fp so that π2 = ap with a a Teichmüller lifting of F×p .
Let {e1, . . . , en} be a basis of Fnp so that φ(ei, ej) is given by J . Let

Λi = Span OFp
{π−1e1, . . . , π

−1ei, ei+1, . . . , en}.

If n = 2m+ 1, we consider two integral models for GQp ,

(7.1) Gv0
= {g ∈ G, gΛ0 = Λ0}, Gv1

= {g ∈ G, gΛm = Λm}.

If n = 2m, we consider the integral model

(7.2) Gv = {g ∈ G, gΛm = Λm}.

As explained in [23, Section 1.2], these Gv are special parahoric group schemes and essen-
tially all special parahoric group schemes of G are conjugate to these ones.

Let Kp = Gv(Zp). In this case, the Shimura variety Sh(G,K) has a well-defined model
over OEp , as in [23]. Let us denote the integral model by ShKp . In addition, there is the so-
called local model diagram

S̃hKp

π

||

ϕ

""
ShKp Mloc

Kp ,

where the scheme Mloc
Kp , which is called the local model of ShKp , is projective over OEp

with an action of Gv ⊗Zp OEp , and is étale locally isomorphic to ShKp . In addition,

π : S̃hKp → ShKp is a Gv ⊗Zp OEp -torsor, and ϕ : S̃hKp → Mloc
Kp is Gv ⊗Zp OEp -equivariant

and is formally smooth (cf. [23] for details).
We are interested in the nearby cycle ΨShKp

(Q`), which is an `-adic complex on ShKp ⊗ OEp Fp,

on which Γ = Gal(Qp/E) acts continuously, compatibly with the action of Γ on Mloc
Kp ⊗Fp

through Γ→ Gal(Fp/Fp). From the local model diagram, we have

π∗ΨShKp
(Q`) ' ϕ∗ΨMloc

Kp
(Q`).

Therefore, it is essentially enough to determine ΨMloc
Kp

(Q`). For this purpose, we need to recall

the geometry of Mloc
Kp .

First, let F ′ = Fp((u)) be a ramified quadratic extension of Fp((t)) with u2 = at, where
a ∈ F×p as before. LetW ′ = F ′e1 + · · ·+F ′en and φ′ be a split Hermitian form onW ′ given
by φ′(ei, en+1−j) = δij . Let G′ be the corresponding unitary similitude group over Fp((t)).
The parahoric group scheme Gv of G over Zp has an obvious counterpart G′v over Fp[[t]].
Namely, consider

Λ′i = Span OF ′{π
−1e1, . . . , π

−1ei, ei+1, . . . , en}.

If Gv = GQp ∩ Aut(Λi), then G′v = G′ ∩ Aut(Λ′i). Observe that there is an isomorphism
Gv ⊗ Fp ' G′v ⊗ Fp (given by the obvious identification of (W,φ)Fp ' (W ′, φ′)Fp ). In
addition, the Shimura cocharacter µr,s makes sense as a cocharacter of G′ ⊗ (Fp((t)))s.
Let F `v = LG′/L+G′v be the associated affine flag variety considered before.

Now, we give the description of Mloc
Kp . The following statements can be extracted from

[23, 25, 24].
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P 7.1. – (i) The generic fiber of Mloc
Kp is isomorphic to Pµr,s , where Pµr,s is the

variety of maximal parabolic subgroups of GEp of the type given by µr,s.
(ii) The special fiber is isomorphic to F `vµ̄r,s in an equivariant way. More precisely, the

L+G′v-action on F `vµ̄r,s factors through an action of G′v ⊗ Fp, and there is an isomorphism

Mloc
Kp ' F `vµ̄r,s ,

intertwining the Gv ⊗ Fp action on the left and this G′v ⊗ Fp-action on the right.
(iii) The generic point of the special fiber Mloc

Kp ⊗Fp is smooth in Mloc
Kp .

Having described the geometry of Mloc
Kp , let us state the main theorem of this section. First,

let Pv be either

1. the category of L+G′v-equivariant Weil perverse sheaves on F `v, constant along each
L+G′v-orbit; or

2. the category of L+G′v ⊗ Fp-equivariant perverse sheaves on F `v ⊗ Fp.

Likewise, we understand ICµ̄r,s either as a pure perverse sheaf of weight zero, or just a
geometric perverse sheaf. By Theorem 0.1, we have:

1. if n = 2m+ 1 is odd,

R S : Rep(GO2m+1) ' Pv;

2. if n = 2m is even,
R S : Rep(GSp2m) ' Pv.

Next, let V be the standard representation of GLn and Vr,s = ∧sV to be its sth wedge power.
We extend Vr,s to a representation of GLn ×Gm, on which Gm acts via the homotheties.

T 7.2. – Regard Vr,s as a representation of GOn ⊂ GLn × Gm if n is odd, or
of GSpn ⊂ GLn ×Gm if n is even by restriction. Then:

1. Denote by Ψgeom the underlying complex of sheaves of ΨMloc
Kp

[rs]( rs2 ) on Mloc
Kp ⊗Fp. Then

Ψgeom ' R S(Vr,s) '

{
ICµ̄r,s n odd,∑
s′≥0,s−s′∈2Z≥0

ICµ̄n−s′,s′ n even.

2. Let r 6= s. Then the action of the inertial subgroup I ⊂ Γ on ΨMloc
Kp

is trivial so that ΨMloc
Kp

admits a structure as a Weil sheaf on F `v. In addition, as Weil sheaves,

ΨMloc
Kp

[rs](
rs

2
) ' R S(Vr,s).

3. Let r = s = m where n = 2m. By (1)

Ψgeom '
∑

m′≥0,m−m′∈2Z≥0

ICµ̄n−m′,m′ .

The action of the inertial subgroup I on ΨMloc
Kp

factors through I → Gal(Fp/Qp) ' Z/2.

In addition, the action of Z/2 on ICµ̄n−m′,m′ is trivial if 4 | m −m′ and is through the
non-trivial character if 4 - m−m′. As Weil sheaves,

(ΨMloc
Kp

)I [rs](
rs

2
) '

∑
m′≥0,m−m′∈4Z≥0

ICµ̄n−m′,m′ ,
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where (ΨMloc
Kp

)I denotes the inertial invariants of ΨMloc
Kp

.

Proof. – Observe that Ψgeom is an object in Pv. This follows from Proposition 7.1 (ii).
Observe that ICµ̄r,s is a direct summand of Ψgeom. This follows from the fact that Mloc

Kp is
flat over OEp with special fiber isomorphic to F `vµ̄r,s .

The partially flag variety Pµr,s is a Schubert variety in the affine Grassmanian of GEp
overEp, (see (A.2)). Therefore, H∗( Pµr,s) is a natural representation of GLn×Gm (the dual
group of GEp ), which is indeed just Vr,s. Since nearby cycles commute with proper push-
forward, we have

(7.3) Vr,s ' H∗( Pµr,s) ' H∗(Ψgeom).

Part (1) of the theorem would follow if we can show that this isomorphism is an isomorphism
of GOn or GSpn-modules. This is indeed the case, and can be shown using the constructions
in [24]. In fact, as a further application of the main results of this paper, we will prove the
corresponding Part (1) for all ramified groups in loc. cit. Here for the ramified unitary groups,
we give a more direct (and easier) argument, without showing that (7.3) is an isomorphism
of GOn or GSpn-modules. (However, we do need the existence of this natural isomorphism
as graded vector spaces.) In fact, we will deduce the theorem from the following description
of the restriction of Vr,s as a representation of (GLn × Gm)I . Note that if n is odd, then
Vr,s remains irreducible as a representation of GOn = (GLn × Gm)I , denoted by Wµ̄r,s . If
n is even, the symplectic form induces a surjective map Vr,s → Vr+2,s−2 and the kernel is the
irreducible representation of GSpn = (GLn×Gm)I of highest weight µ̄r,s, denoted byWµ̄r,s .
Finally, if (r, s) = (m,m), Vm,m canonically extends to a representation of (GLn×Gm)o I

(e.g., see Corollary A.11).

L 7.3. – (i) As (GLn ×Gm)I -modules,

Vr,s '

{
Wµ̄r,s n odd,∑
s′≥0,s−s′∈2Z≥0

Wµ̄n−s′,s′ n even.

(ii) The representation Vm,m of (GLn×Gm)o I, when restricted to GSpnoI = GSpn×I,
decomposes as

(7.4) Vm,m =
∑

m′≥0,m−m′∈2Z≥0

Wµ̄n−m′,m′ ⊗ χm′ ,

where χm′ is the trivial character of Gal(Fp/Qp) if 4 | m−m′, and is the non-trivial character
if 4 - m−m′.

Proof. – (i) is clear and we prove (ii). Clearly, there are some charactersχm′ of Gal(Fp/Qp)
such that the decomposition (7.4) holds. We need to identify these characters.

First, it is clear that χm = 1. This is because the lowest weight space of Vµ̄m,m is the same
as the lowest weight space of Vm,m, which in turn is the same as H0( Pµm,m) as I-modules.
But the action of I on H0( Pµm,m) is trivial. This shows that χm = 1.

Now pick up g ∈ I whose projection to Gal(Fp/Qp) ' Z/2 is non-trivial. To iden-
tify other χm′ , let us write the weight lattice of GLn × Gm in a standard way to be
X• =

⊕
Zεi

⊕
Zε and the set of simple roots to be {εi − εi+1, 1 ≤ i ≤ n − 1}. Then
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the action of g on X• will send εi to −εn+1−i and ε to ε + ε1 + · · ·+ εn. The weight lattice
of GSpn is X•/{εi + εn+1−i = 0, i = 1, . . . ,m}.

Let {v1, . . . , vn} be a standard basis of V so that vi is a weight vector of GLn of weight εi
as usual. Then a basis of Vm,m is given by {vi1 ∧ · · · ∧ vim | 1 ≤ i1 < · · · < im ≤ n}. We
divide this set of basis into two subsets A and B. A base vector vi1 ∧ · · · ∧ vim belongs to
the subset A if {i, n + 1 − i} * {i1, . . . , im} for any 1 ≤ i ≤ m. All remaining base vectors
belong to B. It is clear that Span{v | v ∈ A} ⊂ Vµ̄m,m and therefore, the action of g fixes
each v ∈ A since χm = 1. On the other hand, it is easy to see from the description of the
action of g on X•, that for v ∈ B, gv will be a multiple of some w ∈ B,w 6= v. From this, we
deduce that for any t in the maximal torus of GSpn,

(7.5) tr(gt, Vm,m) = ε(t)
∑

ε1(t)
±1 · · · εm(t)

±1
.

On the other hand, according to (7.4), we have

tr(gt, Vm,m) =
∑

m′≥0,m−m′∈2Z≥0

χm′(g) ch(Wµ̄n−m′,m′ )(t),

where ch(Wµ̄r,s) denotes the character of Wµ̄r,s as a GSpn-module, and χm′(g) = ±1

according to whether χm′ is trivial or not. Now it is easy to see that the above two identities
force χm′ = 1 if 4 | m −m′ and χm′ 6= 1 if 4 - m −m′. Indeed, let T be an indeterminant
and write

ε(1 + ε1T ) · · · (1 + εmT )(1 + ε−1
1 T ) · · · (1 + ε−1

m T ) =
∑

akT
k,

then am+i = am−i and ch(Wµ̄r,s) = as − as−2 = ar − ar+2. Put T =
√
−1, the left hand

side becomes (
√
−1)mε(ε1 + ε−1

1 ) · · · (εm + ε−1
m ), which is exactly (7.5), and the right hand

side is (
√
−1)m(am − 2am−2 + 2am−4 − · · · ). The lemma is proved.

Now we prove the theorem. We first assume that n is odd. As Vr,s remains irreducible as
a representation of GOn. Therefore, R S(Vr,s) ' ICµ̄r,s and we have

dimVr,s = dim H∗(ICµ̄r,s) ≤ dim H∗(Ψgeom) = dim H∗( Pµr,s) = dimVr,s.

Therefore, Ψgeom = ICµ̄r,s . As ICµ̄r,s is irreducible, the inertial group I acts on ΨMloc
Kp

via

some character. Observe that the action of I on H0(ΨMloc
Kp

) ' H0( Pµr,s) ' Q` is via the

same character, again due to the fact that nearby cycles commute with proper push-forward.
Therefore the action of I on ΨMloc

Kp
is trivial. Therefore, ΨMloc

Kp
[rs]( rs2 ) ' ICµ̄r,s⊗ L for some

rank one local system L on SpecFp. By comparing the action of Frobenius on H∗( Pµr,s) and
on H∗(ICµ̄r,s), we obtain the theorem in this case.

Now we assume that n is even. Recall that under the (ramified) geometric Satake
isomorphism, the cohomological grading corresponds to the grading by
2ρ : Gm → GSpn ⊂ GLn ×Gm. Therefore, (7.3) is an isomorphism of the representa-
tions of 2ρ(Gm) ⊂ GSpn. We claim that this already implies Part (1) of the theorem. Indeed,
for a representation V of GSpn, we denote V (i) to be the eigenspace of 2ρ of eigenvalue i.
Let us write

Ψgeom =
∑

m′≥0,m−m′∈2Z≤0

cm′ICµ̄n−m′,m′ ,
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we need to show that cm′ = 1. First as in Lemma 2.6, cs = 1 by Proposition 7.1 (iii). Next,
we show that cs−2 = 1. Observe that the gradings on H∗(ICµ̄r,s) range from rs to−rs. From

dim H(s−2)(r+2)(Ψgeom) = cs−2 + dim H(s−2)(r+2)(ICµ̄r,s),

dimVr,s((s− 2)(r + 2)) = 1 + dim(Wµ̄r,s((s− 2)(r + 2))),

we conclude that cs−2 = 1. Now by induction, cm′ = 1 for all m′ ≥ 0,m−m′ ∈ 2Z≥0. This
shows that

Ψgeom ' R S(Vr,s).

Next, we determine the action of the inertial group I on ΨMloc
Kp

. First, assume that r 6= s. To

show that the action of I on ΨMloc
Kp

is trivial, we again observe that I acts on each irreducible

direct summand of ΨMloc
Kp

via a certain character. On the other hand, the group GEp is split.

Therefore, the action of I on H∗( Pµr,s) is trivial, and therefore is trivial on ΨMloc
Kp

. Again,

comparing the action of the Frobenius, we conclude the result in this case.

Finally, let us assume that r = s = m, where n = 2m. Then Ep = Qp and GQp is
not split. In addition the action of I on H∗( Pµm,m) is not trivial. Indeed, as Pµm,m is de-
fined over Qp, according to the appendix, Vµm,m = H∗( Pµm,m) is a natural representation
of LGgeom = (GLn ×Gm) oactgeom Gal(Qp/Qp), so that the natural action of Gal(Qp/Qp)
on H∗( Pµm,m) is given by the restriction of this representation to Gal(Qp/Qp). This semidi-
rect product (GLn×Gm)oactgeomGal(Qp/Qp) is not the Langlands dual group LGalg

Qp ofGQp .

But if we form both semi-product using I ⊂ Gal(Qp/Qp), they become the same because the
cyclotomic character is trivial on I. On the other hand, since G is split over Fp, the action
of I factors through I → Gal(Fp/Qp) ' Z/2. We know that

Ψgeom =
∑

m′≥0,m−m′∈2Z≥0

ICµ̄n−m′,m′ .

As argued in the case r 6= s, the action of I on ΨMloc
Kp

also factors through I → Gal(Fp/Qp).

Assume that the action of I on ICµ̄n−m′,m′ is through the character χ′m′ . We need to show
that χ′m′ = χm′ , where χm′ is as in Lemma 7.3. Since H∗(ΨMloc

Kp
) ' H∗( Pµm,m) ' Vm,m as

(2ρ(Gm)× I)-modules, by taking the I-invariants, we obtain that∑
χ′
m′=1

H∗(ICµ̄n−m′,m′ ) =
∑
χm′=1

Wµ̄n−m′,m′ .

Again, as argued before by considering the gradings, it is easy to see that this forces χ′m′ = χm′ .
Finally, by comparing the action of Frobenius on H∗(ΨI

Mloc
Kp

) and on H∗( Pµm,m)I , we con-

clude the theorem.

Combining Theorem 7.2 and Theorem 5.1, it is not hard to obtain the explicit formula of
the trace of Frobenius of ΨMloc

Kp
, which will be the input of the Langlands-Kottwitz method

of calculating the local Zeta function of the Shimura varieties. Instead of writing down the
explicit formula, let us characterize this function in terms of its trace on “unramified” repre-
sentations of G(F ) (which clearly determines this function uniquely). The characterization
verifies a conjecture of Haines and Kottwitz in this case.
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P 7.4. – Let zr,s be the function on G′(F ) associated to ΨI
Mloc
Kp

under the

Grothendieck sheaf-function dictionary, and let Vr,s be the representation of LGalg
Ep

attached
to µr,s ∈ X•(T ) as above (or in Corollary A.11). For π an “unramified” representation
of G′(F ), with the Langlands parameter Sat(π) as defined in (6.4), we have

tr(π(zr,s)) = tr(Sat(π)(Φ), V Ir,s).

The proof is a direct consequence of Theorem 7.2 and (6.4).

R 7.5. – In the Langlands-Kottwitz methods of calculating the Zeta factors of
Shimura varieties, one needs some mysterious test functions zµ to be put into the trace for-
mula. Assuming the Local Langlands, Haines and Kottwitz give a conjectural characteriza-
tion of this test function zµ in the general setting (i.e., arbitrary group and arbitrary level
structure). In the special case when the group is quasi-split and the level structure is special
parahoric, in which case the Langlands parameters is clear (as in Section 6), their character-
ization is reduced to the above proposition. Therefore, this proposition is the first example
of their conjecture in the case when the group is ramified at p. In [24], we will show that the
same characterization holds for arbitrary (tamely ramified) quasi-split groups with special
parahoric level structure.

Finally, let us make Theorem 7.2 more explicit for some special cases.

C 7.6. – Let (r, s) = (n − 1, 1). Then the inertial group acts on ΨShKp

trivially. In addition, as Weil sheaves, ΨShKp
' Q`. In particular, for every x ∈ ShKp(Fpn),

tr(Frobx,ΨKp) = 1.

Proof. – The first statement follows from Theorem 7.2 and the local model diagram. We
need to show that ICµ̄n−1,1 ' Q`[n−1](n−1

2 ). However, according to Theorem 5.1, we know
that ICµ̄n−1,1 [1−n]( 1−n

2 ) is a sheaf (for the standard t-structure) rather than a complex, with
each stalk isomorphic toQ`. As ICµ̄n−1,1

[1−n]( 1−n
2 ) is indecomposable as object inD( F `v),

this forces ICµ̄n−1,1
[1 − n]( 1−n

2 ) ' Q`. Now, since π∗ΨKp ' ϕ∗ICµ̄n−1,1
[1 − n]( 1−n

2 ) and
π has geometrically connected fibers, the corollary follows.

R 7.7. – Concerning the part of the Frobenius trace, this corollary has been
proven in [17, 23, 25]. Indeed, for the case n is odd, and the special parahoric is Gv0

, this
is a main result of [17]. In this case, ShKp is not semi-stable. For the case n is odd and the
parahoric is Gv1

, it is shown in [25] that ShKp is smooth. For the case n is even, it is shown
in [23] that ShKp is smooth.

Next, we consider the case (r, s) = (2, 2). Recall that the local model diagram can be
written as a morphism

ShKp → [Gv \Mloc
Kp ],

where [Gv \ Mloc
Kp ] denotes the stack quotient. Therefore, the Schubert stratification

on Mloc
Kp ⊗Fp induces a stratification on ShKp ⊗ Fp, called the Kottwitz-Rapoport (KR)

stratification. In the case (r, s) = (2, 2), the stratification has two strata ShKp,b and ShKp,s.
The smaller one ShKp,s is zero-dimensional. Similarly to the previous case, we have
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C 7.8. – Let (r, s) = (2, 2). Then ΨShKp
= Ψ1

ShKp
+Ψ2

ShKp
. The inertial action

on Ψ1
ShKp

is trivial and as Weil sheaves, Ψ1
ShKp

' Q`. The vanishing cycle ΦShKp
(Q`) ' Ψ2

Kp
.

When we forget the action of Gal(Qp/Qp), Ψ2
ShKp

=
∑
x∈ShKp,s

δx[−4], where δx is the delta
sheaf supported at x. In addition, the inertial action on δx factors through a non-trivial quadratic
character. In particular, for every x ∈ ShKp(Fpn), tr(Frobx,Ψ

I
ShKp

) = 1.

Appendix

Construction of the full Langlands dual group via the geometric Satake correspondence
by Timo Richarz & Xinwen Zhu

In the main body of the paper, we considered a reductive group G over F = k((t))

(k algebraically closed), split over a tamely ramified extension, and recovered (H∨)Gal(F s/F )

by the Tannakian formalism from a certain category of perverse sheaves associated to G,
where H∨ is the dual group of G, on which Gal(F s/F ) acts via pinned automorphisms. In
this appendix, we take a different point of view to recover the full Langlands dual group
LG = H∨ o Gal(F s/F ) of G by the Tannakian formalism. The construction is easy but
we cannot find it in the literature. Most proofs will be omitted or rather sketched since they
are very simple.

Let us begin with a review of certain general nonsense of Tannakian formalism. A similar
discussion appears in [14, Appendix 2]. Let ( C , ω) be a neutralized Tannakian category over a
fieldE of characteristic zero with fiber functorω. We define a monoidal category Aut⊗( C , ω)

as follows: objects are pairs (σ, α), where σ : C → C is a tensor automorphism and
α : ω ◦ σ ' ω is a natural isomorphism of tensor functors; morphisms between (σ, α) and
(σ′, α′) are natural tensor isomorphisms between σ and σ′ that are compatible with α, α′

in an obvious way. The monoidal structure is given by compositions. Since ω is faithful,
Aut⊗( C , ω) is (equivalent to) a set, and in fact is a group. For example, (σ, α) = id means
that there is an isomorphism ε : σ ' id of tensor functors such that ωε = α (such ε will be
unique).

Let H = Aut⊗Cω, the Tannakian group defined by ( C , ω). Let Aut(H) be the group of
automorphisms of H and Out(H) be the group of outer automorphisms of H.

L A.1. – There is a canonical action of Aut⊗( C , ω) on H by automorphisms. In
addition, the map Aut⊗( C , ω) → Aut(H) induces [Aut⊗( C)] → Out(H), where [Aut⊗( C)]

is the group of isomorphism classes of tensor automorphisms of C .

The action of (σ, α) on H is given as follows. Let R be an E-algebra and h : ωR ' ωR be
an R-point of H. Then (σ, α)h is the following composition

ωR
α← ωR ◦ σ

h◦id→ ωR ◦ σ
α→ ωR.

R A.2. – As is shown [14], Aut⊗( C , ω) can be upgraded into a fppf sheaf on the
category of affine schemes over E, and as fppf sheaves Aut⊗( C , ω) ' Aut(H). We do not
need this fact.
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Let Γ be an abstract group. We define an action of Γ on ( C , ω) to be a group homomor-
phism act : Γ → Aut⊗( C , ω). Assume that Γ acts on ( C , ω). We can then define CΓ, the
category of Γ-equivariant objects in C as follows: objects are (X, {cγ}γ∈Γ), where X is an
object in C and cγ : actγ(X) ' X is an isomorphism, satisfying the natural cocycle condi-
tion, i.e., cγ′ ◦actγ′(cγ) = cγ′γ ; the morphisms between (X, {cγ}γ∈Γ) and (X ′, {c′γ}γ∈Γ) are
morphisms between X and X ′, compatible with cγ , c′γ in an obvious way.

L A.3. – Let Γ be a group acting on ( C , ω). Then the category CΓ is a neutral
Tannakian category, with fiber functor ω. In addition, if Γ is a finite group, regarded as an
algebraic E-group, then the Tannakian group Aut⊗CΓω is canonically isomorphic to H o Γ.

Proof. – The monoidal structure on CΓ is defined as

(X, {cγ}γ∈Γ)⊗ (X ′, {c′γ}γ∈Γ) = (X ′′, {c′′γ}γ∈Γ),

where X ′′ = X ⊗X ′ and c′′γ : actγ(X ′′)→ X ′′ is the composition

actγ(X ⊗X ′) ' actγ(X)⊗ actγ(X ′)
cγ⊗c′γ−→ X ⊗X ′.

This gives CΓ the structure of a Tannakian category. Now assume that Γ is finite, and hence
H o Γ is an affine group scheme. By [7, Prop. 2.8], it is enough to show that,

Rep(H)Γ '−→ Rep(H o Γ)

as tensor categories compatible with the forgetful functors. Let ((V, ρ), {cγ}γ∈Γ) ∈ Rep(H)Γ.
Then we define (V, ρ̃) ∈ Rep(H o Γ), for any k-algebra R (h, γ) ∈ (H o Γ)(R), by

(h, γ) 7−→ ρ(h) ◦ αg,R(V ) ◦ ωR ◦ c−1
γ ∈ GL(V ⊗R),

where αg,R : ωR ◦ σg ' ωR is induced by the action of Γ as above. Using the cocycle
relation one checks that this is indeed a representation, and that the map defines the desired
equivalence.

R A.4. – If Γ is not finite, then the category ( CΓ, ω) is still Tannakian, but
H̃ = Aut⊗CΓω is no longer H o Γ since the latter cannot be regarded as an affine group

scheme (sometimes H̃ is called the algebraic envelop of H o Γ). However, there is always a
group homomorphism

H(E) o Γ→ H̃(E).

Although this is not an isomorphism in general, we may still regard ω(X) for X ∈ CΓ as a
representation of H(E) o Γ.

Now, we assume that G is a connected reductive group over any field k. We switch the
notation to use G∨ to denote the reductive group over E = Q` dual to G in the sense of
Langlands, i.e., the root datum of G∨ is dual to the root datum of Gks . Up to the choice of
a pinning (G∨, B∨, T∨, X∨) of G∨, we have an action of Γk = Gal(ks/k) on G∨ via

(A.1) Γk → Out(Gks) ' Out(G∨) ' Aut(G∨, B∨, T∨, X∨) ⊂ Aut(G∨).

Then the Langlands dual group LG is defined to beG∨oΓk. Our goal is to recover this group
via the above Tannakian formalism.
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Let L+G be the jet group ofG⊗k[[t]] and LG be the loop group ofG⊗k((t)). Recall that
by definition, for every k-algebra R, L+G(R) = G(R[[t]]) and LG(R) = G(R((t))). Let

(A.2) GrG = LG/L+G

be the affine Grassmannian of G over k. Let GrG ⊗ ks be its base change to the separable
closure of k. From [31, Lemma 3.3], formation of the affine Grassmannian commutes with
étale base change, we have GrG ⊗ ks ' GrGks . Since Gks is split, we can consider the usual
Satake category Sat on GrGks , i.e., the category of (L+G⊗ks)-equivariant perverse sheaves
on GrG ⊗ ks, which is equivalent to Rep(G∨Q`

) via the geometric Satake correspondence of
[19]. Note that the Galois group Γk acts on GrG ⊗ ks. For γ ∈ Γk, the pullback functor
γ∗ : D(GrG⊗ ks)→ D(GrG⊗ ks) clearly restricts to a functor γ∗ : Sat→ Sat. In addition,
there is a canonical isomorphism αγ : H∗(γ∗ F ) ' H∗( F ).

L A.5. – The assignment γ 7→ (γ∗, αγ) defines an action of Γk on (Sat,H∗).

According to Lemma A.1, there is a canonical action of Γk on G∨, denoted by actgeom.
And we can form

LGgeom := G∨ oactgeom Γk,

which we will call the geometric Langlands dual group.

Now, our goal is to understand the relation between LGgeom and the usual Langlands
dual group LG. Recall that in Section 4, we explained that once we choose an ample line
bundle on GrG, the geometric Satake isomorphism provides G∨ with a canonical pinning
(G∨, B∨, T∨, X∨). Therefore, there is an action of Γk on G∨ via (A.1), denoted by actalg.
Then we can form the usual Langlands dual group by LGalg = G∨ oactalg Γk. It turns out
that the difference between actgeom and actalg can be described explicitly.

Let

cycl : Γk → Z×`
be the cyclotomic character of Γk defined by the action of Γk on the `∞-roots of unity of ks.
Let G∨ad be the adjoint group of G∨. Let ρ be the half sum of positive coroots of G∨, which
gives rise to a one-parameter group ρ : Gm → G∨ad. We define a map

χ : Γk
cycl→ Z×`

ρ→ G∨ad(Q`),

which gives a map Adχ : Γk → Aut(G∨) to the inner automorphism of G∨.

P A.6. – Let (G∨, B∨, T∨, X∨) be the pinning defined by the geometric
Satake isomorphism as in §4. We have actgeom = actalg ◦Adχ.

Proof. – Observe that the action of Γk preserves the cohomological grading. In addition,
Γk acts on X∨ through cycl since X∨ is the Chern class of the chosen ample line bundle
on GrG. Therefore, Adχ−1 ◦ actgeom preserves (G∨, B∨, T∨, X∨). But since Adχ−1 ◦ actgeom

and actalg act on the based root datum (X•(T ),∆) by the same way, these two actions must
coincide.
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R A.7. – (i) An interesting corollary of the above proposition is that the actgeom

of Γk on G∨ only depends on the quasi-split form of G, since the same is true for actalg.
(ii) The existence of these two actions actgeom and actalg is a geometric source of the two

natural normalizations for the Satake parameters. In addition, these two actions are also
parallel to the notions of C-algebraic and L-algebraic, as recently introduced by Buzzard
and Gee [5].

C A.8. – We have LGalg '−→ LGgeom given by

(g, γ) 7→ (Adχ(γ−1)(g), γ).

Following [3, 2.6], we define the notation of the algebraic representations of LGalg as
follows. For every k′ ⊂ ks finite over k such that Gk′ is split, one can form the “finite form”
of Langlands dual groupG∨oactalg Gal(k′/k), which can be regarded as an algebraic group
over Q`. Therefore, we may consider LGalg = lim←−G

∨ oactalg Gal(k′/k) as a pro-algebraic

group over Q`, Then it makes sense to talk about the category of algebraic representations
Rep(LGalg) of LGalg, which is the inductive limit of Rep(G∨ oactalg Gal(k′/k)).

Now, we consider certain categories of perverse sheaves. First, according to the above
discussions, we call the action of Γk on Sat via γ 7→ (γ∗, αγ) as in Lemma A.5 the geometric
action. We can also define an algebraic action of Γk on Sat as γ 7→ (γ∗, χ(γ)−1αγχ(γ)).
Clearly, there is a canonical isomorphism between SatΓk,geom and SatΓk,alg sending
( F , {cγ}γ∈Γk) to ( F , {cγ}γ∈Γk). The reason we distinguish them is due to the follow-
ing observation: since the algebraic action of Γk on G∨ factors through Gal(k′/k) if Gk′ is
split, the algebraic action of Γk on Sat also factors through Gal(k′/k), and therefore it makes
sense to talk about SatGal(k′/k),alg, which is naturally a full category of SatΓk,alg. In addition,
according to Lemma A.3, SatGal(k′/k),alg is equivalent to Rep(G∨ oactalg Gal(k′/k)). Now,
let SatΓk,alg,f ⊂ SatΓk,alg be the full subcategory, which is the union of all SatGal(k′/k),alg.
We obtain that

H∗ : SatΓk,alg,f ' Rep(LGalg).

Our next goal then is to identify SatΓk,alg,f as a subcategory of SatΓk,geom.
As Γk is a topological group, a natural guess would be the full subcategory of SatΓk,geom,ct,

consisting of objects on which Γk acts continuously. Equivalent, let PL+G(GrG) be the
category of perverse sheaves on GrG. Then the pullback functor to GrG ⊗ ks induces
PL+G(GrG) ' SatΓk,geom,ct. However, it is not the case that SatΓk,geom,ct = SatΓk,alg,f .

D A.1. – (i) Let X be a smooth variety over k, we define a constant sheaf to
be a direct sum of (Q`[1]( 1

2 ))⊗ dimX .

(ii) We define PfL+G(GrG) to be the full subcategory of PL+G(GrG), consisting of those
sheaves F , such that there exists some k′ ⊃ k such that F ⊗ k′ is constant along each
(L+G⊗ k′)-orbit.

R A.9. – (i) The toy model is whenG = {e} is the trivial group. Then PL+G(GrG)

is the category Γk-Mod of continuous representations of Γk while PfL+G(GrG) is the sub-
category Γk-Modf consisting of representations of finite quotients of Γk. In particular, if
k is a finite field, we can identify the latter as the category of semi-simple Γk-modules, pure
of weight zero.
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(ii) Observe that every object in PL+G(GrG) is of the form ⊕iICi ⊗ Li, where ICi is
an intersection cohomology sheaf on GrG, and Li is a representation of Γk. Therefore,
F ∈ PfL+G(GrG) if and only if all Li ∈ Γk-Modf . In particular, if k = Fq is a finite field, the
category PfL+G(GrG) is equivalent to the category of semi-simple L+G-equivariant perverse
sheaves on GrG, pure of weight zero.

P A.10. – Under the canonical isomorphism SatΓk,geom = SatΓk,alg, we have
the identification

PfL+G(GrG) = SatΓk,alg,f .

Therefore, we obtain an equivalence of tensor categories

H∗ : PfL+G(GrG)→ Rep(LGalg).

Proof. – Let k′ ⊃ k such that Gk′ splits. We denote PL+G,k′(GrG) the full subcat-

egory of PfL+G(GrG) consisting of those F such that F ⊗ k′ is constant along each
(L+G⊗ k′)-orbit. Then under

PL+G(GrG)→ SatΓk,geom ' SatΓk,alg,

PL+G,k′(GrG) maps to SatGal(k′/k),alg. To see this, one reduces to the case when G is split
over k and k′ = k. In this case PL+G,k(GrG) ' Sat and this statement is clear.

For every F ∈ PfL+G(GrG), let us describe H∗( F ) as a representation of LGalg more
explicitly. First, as an object in SatΓk,geom, it is a natural representation of LGgeom, on which
G∨ acts via the usual geometric Satake isomorphism, and Γk acts via the natural Galois
action. Then the action of LGalg is via (A.8).

In particular, if Grµ is a Schubert variety in GrG defined over k (i.e., the conjugacy class
of the one-parameter subgroup determined by µ is defined over k), then ICGrµ

is an object

in PfL+G(GrG). Therefore, H∗(ICGrµ
) is a representation ofG∨oactalg Gal(k′/k), where k′ is

the splitting field of G. We thus obtain

C A.11. – LetVµ be a representation ofG∨ of highest weightµ. If the conjugacy
class of the one parameter subgroup µ : Gm → Gks is defined over k, then Vµ can be extended
canonically to a representation of G∨ oactalg Gal(k′/k), where k′ is the splitting field of G.

Now we specialize to the case that k = Fq is a finite field, so thatG⊗k[[t]] is a hyperspecial
group scheme for the unramified group Gk((t)). Note that LGalg

k((t)) = LGalg. We therefore
obtain the geometric Satake isomorphism for unramified groups.

T A.12. – Let PfL+G(GrG) be the category of semi-simple, L+G-equivariant per-
verse sheaves on GrG, pure of weight zero. Then we have an equivalence of tensor categories

H∗ : PfL+G(GrG) ' Rep(LGalg).
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Let σ be the Frobenius element in Γk. Denote by H G the Grothendieck ring of PfL+G(GrG),
tensored with Q`, and by RLG the algebra associated to Rep(LGalg). Theorem A.12 gives
an isomorphism of algebras

(A.3) Φ : H G → RLG.

Let HG be the spherical Hecke algebra of compactly supported bi-G(Fq[[t]])-invariant
functions. Let RLG be the algebra of Q`-valued functions on (G∨ × σ)ss, generated by the
characters of elements in Rep(LGalg). Here, (G∨ × σ)ss is the set of semi-simple elements
in G∨ × σ, as defined in [3, Section 6]. We have a surjective map of algebras Tr : H G → HG

(resp. Ch : RLG → RLG) given by the trace of Frobenius (resp. by sending a representation
to its character).

L A.13. – The isomorphism (A.3) induces a unique isomorphism

φ : HG → RLG

such that Ch ◦Φ = φ ◦ Tr.

Proof. – Uniqueness is clear and we show the existence. For an object X in either cate-
gory, we denote by [X] its class in the Grothendieck ring. Then it is easy to see that the kernel
of the map Tr : RLG → RLG is the ideal generated by elements of the form [V ⊗ψ]−ψ(σ)[V ],
where V ∈ Rep(LGalg) and ψ : Γk → Q×` is a character of Γk factoring through a finite
quotient. On the other hand, the kernel of the map Ch : H G → HG is the ideal generated
by elements of the form [ F ⊗ L] − tr(σ, L)[ F ], where F ∈ PfL+G(GrG), and L is a rank
one local system on SpecFq, pure of weight zero. But it is clear that these two ideals match
under Φ. The lemma follows.

Recall that by [3, 6.7] the classical Satake isomorphism also gives an isomorphism of alge-
bras φ̃ : HG ' RLG. By tracking back the construction of geometric Satake correspondence
and the classical Satake isomorphism, one can show that φ = φ̃. Indeed, ifG = T is a toruse,
this is clear. For general G, one observes that the fiber functor decomposes as a direct sum
of weight functors [19, §3]: PfL+G(GrG) → PfL+T (GrT ), and under the sheaf-function dic-
tionary this corresponds to the constant term map CT : HG → HT . Therefore, either φ or φ̃
is uniquely determined by the following commutative diagram

HG
∼−−−−→ RLG

CT

y yres

HT
∼−−−−→ RLT .

The general case follows.
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