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ELLIPTIC ESTIMATES IN COMPOSITE MEDIA
WITH SMOOTH INCLUSIONS:

AN INTEGRAL EQUATION APPROACH

 H AMMARI, E BONNETIER, F TRIKI
 M VOGELIUS

A. – We consider a scalar elliptic equation for a composite medium consisting of ho-
mogeneous C1,α0 inclusions, 0 < α0 ≤ 1, embedded in a constant matrix phase. When the inclu-
sions are separated and are separated from the boundary, the solution has an integral representation,
in terms of potential functions defined on the boundary of each inclusion. We study the system of in-
tegral equations satisfied by these potential functions as the distance between two inclusions tends to
0. We show that the potential functions converge in C0,α, 0 < α < α0 to limiting potential functions,
with which one can represent the solution when the inclusions are touching. As a consequence, we ob-
tain uniform C1,α bounds on the solution, which are independent of the inter–inclusion distances.

R. – Nous étudions des milieux composites constitués d’inclusions homogènes de
forme C1,α0 , immergées dans une phase matrice constante. Lorsque les inclusions ne se touchent
pas, la solution de l’équation de diffusion peut être représentée à l’aide de potentiels de surface,
solutions d’un système d’équations intégrales. Nous étudions ce système lorsque la distance inter-
inclusion tend vers 0. Nous montrons que les potentiels de surface convergent dans C0,α, 0 < α < α0,
vers des potentiels limites, qui permettent d’obtenir une représentation intégrale du problème limite.
Nous en déduisons des estimations sur les solutions dans C1,α, uniformes par rapport à la distance
inter-inclusions.

1. Introduction

In a bounded domain Ω ⊂ R2, we consider a composite medium consisting of a finite
number of inclusions embedded in a matrix phase. We assume that the inclusions and the
matrix have (different) constant, scalar conductivities. The resulting, spatially varying, piece-
wise constant conductivity is denoted by a(·). Given a current g on the boundary ∂Ω, with∫
∂Ω
g dσ = 0, we consider the solution u to the elliptic equation

∇ · (a(·)∇u) = 0 in Ω, with a(·)∂νu = g on ∂Ω,

in other words, we consider the continuous function u, which is harmonic in each inclusion
as well as in the matrix, which satisfies the usual transmission conditions across the inclusion
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454 H. AMMARI, E. BONNETIER, F. TRIKI AND M. VOGELIUS

boundaries, and which has the prescribed co-normal derivative g on ∂Ω. To make u unique
we impose the condition

∫
∂Ω
u dσ = 0 .

In this paper, we are interested in a priori estimates for the solution u, and in particular its
gradient. We assume that Ω has a smooth boundary, and that the imposed current is smooth.
When the inclusions are merely Lipschitz, it is well known (from elliptic theory in domains
with corners) that ∇u is generally not uniformly bounded, i.e., generally not in L∞. On the
other hand, when the inclusions are smooth (say C1,α0 , 0 < α0 ≤ 1) and when they are
not mutually touching and do not touch ∂Ω, it is equally well known that ∇u is bounded.
A natural question is whether ∇u stays uniformly bounded, even as some of the inclusions
get close.

This question has been addressed in several papers (see for example [11] and [18]). It
has been established that ∇u is bounded in L∞(Ω) independly of the distance between the
smooth inclusions. The answer given in [18] is actually quite a bit more general. It addresses
the case of a divergence form elliptic equation with ‘piecewise Hölder coefficients’: assume
there exist numbers 0 < α0, 0 < c0, µ ≤ 1, 0 < λ0 < Λ0, and a positive integer M such that

i. Ω contains M possibly touching inclusions Dl, 1 ≤ l ≤ M , each of which is a C1,α0

subdomain.
ii. For any 1 ≤ l ≤M , dist(Dl, ∂Ω) > c0 > 0,

iii. In each inclusion, and in the remaining partDM+1 := Ω\∪1≤l≤MDl, the conductivity
satisfies λ0 < a|Dl < Λ0, and has Cµ regularity.

Then
M+1∑
l=1

||u|| C1,α(Dl∩Ωε)
≤ C||g||L2(∂Ω), for any 0 < α < min{µ, α0

2(α0 + 1)
},(1)

where Ωε, ε > 0, denotes the set

Ωε = {X ∈ Ω, dist(X, ∂Ω) > ε}.

The constant C depends on ε, α,M, λ0,Λ0, µ,Ω and the appropriate C1,α “norms” of the
parametrizations of the inclusion boundaries. But note that C is independent of the inter–
inclusion distance. The proof given in [18] uses elliptic blow-up techniques and maximum
principles, and is thus restricted to scalar problems.

In a subsequent paper [19], Y.-Y. Li and L. Nirenberg extended the above result to strongly
elliptic systems, with the same restriction 0 < α < min{µ, α0

2(α0+1)} for the regularity
“measure” of u. Recently, G. Citti and F. Ferrari [13] followed the approach of [18], using
more precise estimates and obtained an improved regularity result. They show that the
solution u is locally in C1,α, for α ≤ min{µ, α0}. However, they assume that the inclusions
are strictly separated from one another, and their proof yields regularity estimates that may
depend on the inter-inclusion distance. The uniform character of the estimates is the cardinal
point of [18] and of our work.

In the case of perfectly conducting or perfectly insulating inclusions the gradients may
blow up as the inter-inclusion distance, δ, approaches 0. The estimates (1) are therefore not
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uniform in the magnitude of the conductivities. In [7], the solution for perfectly conducting
inclusions is shown to satisfy

(2)


||∇u||L∞ ≤ C√

δ
||u||L2(∂Ω) for n = 2,

||∇u||L∞ ≤ C
δ| ln δ| ||u||L2(∂Ω) for n = 3,

||∇u||L∞ ≤ C
δ ||u||L2(∂Ω) for n = 4,

where n is the ambient dimension. The case n = 2 was derived independently by Yun, using
conformal mapping techniques [22]. The picture is less complete for the case of insulating
inclusions, see [8].

For n = 2 and for circular inclusions, one can obtain very precise bounds in terms of
both contrast and inter-inclusion distance, since the solution has a series representation that
lends itself to asymptotic analysis [5, 3, 12, 20]. Optimal upper and lower bounds on the
potential gradients are derived in [5, 3] for nearly touching pairs of circular inclusions. In
the case of two disks, a decomposition of the solution into a singular part, and a part that
remains uniformly bounded with respect to δ, is given in [4].

When the conductivity is piecewise constant, and when the inclusions are C1,α0 , mutually
separated and separated from the boundary, then one can represent u in the form

u(X) =

M∑
l=1

Slϕl(X) +H(X),(3)

where H is a harmonic function, where each ϕl is defined on ∂Dl, and where Sl denotes
the single layer potential on ∂Dl. Invoking the transmission conditions on ∂Dl and the
Neumann condition on ∂Ω, we can derive a system of integral equations, for the ϕl’s, and
an associated (implicit) formula for H. As each inclusion has C1,α0 regularity, results from
classical potential theory (see, e.g., [15]) show that this system is invertible. Detailed facts
about the regularity of u may be deduced from the representation (3).

The aim of this paper is to show that the system of integral equations for the ϕl’s is
uniformly invertible in C0,α as inclusions get close. The associated uniform estimates on the
inverse can then be used to derive a priori estimates for the solution, u, in C1,α norms.

The integral representation (3) of solutions has also been used in other related contexts.
In particular, recent works have focused on the connection between the bounds on ∇u and
the spectral properties of the kernel of the integral equation system (the Neumann–Poincaré
operator) for varying coefficient contrast and inter-inclusion distance [1, 10].

For simplicity we always assume that the inclusions are convex, and that any two that
asymptotically meet only meet at one point. Since the regularity of u and the corresponding
estimates only depend on the geometry of the inclusions locally, we shall restrict ourselves
to the case of two inclusions, D1 and D2, of size O(1), that asymptotically meet (with a
horizontal tangent) at the point 0, see Figure 1. We denote Γi := ∂Di, i = 1, 2. For
simplicity, we assume that the matrix phase has conductivity 1 and that both inclusions have
conductivity k 6= 1. For δ > 0, we consider the situation where the inclusions are at a distance
δ apart, say in the unit vertical direction e2. As we shall see, the corresponding system of
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F 1. The touching and near–touching configurations. Dδ
1 = D1 − δ

2
e2, and

Dδ
2 = D2 + δ

2
e2.

integral equation for the potential functions (ϕδ1, ϕ
δ
2) may be written

T δ

(
ϕδ1

ϕδ2

)
:=

(
λI −K∗1 Lδ2

Lδ1 λI −K∗2

)(
ϕδ1

ϕδ2

)
=

(
gδ1

gδ2

)
.(4)

Here, λ = k+1
2(k−1) , (gδ1, g

δ
2) are known functions (given in terms of the boundary flux g),

K∗i denotes the trace on Γi of the normal derivative of the single layer potential on Γi, and
Lδ2 denotes the normal derivative on Γ1 (or rather, on the −δ vertical translate of Γ1) of the
single layer potential defined on Γ2. To be precise

Lδ2ϕ
δ
2(X) = −ν1(X) · ∇S2ϕ

δ
2(X − δe2), X ∈ Γ1,

and similarly forLδ1. We notice that even though the physical situation is as in the right picture
of Figure 1, we use potentials ϕδi that live on the δ independent curves Γi = ∂Di, as in the
left picture of Figure 1. Thus, vertical translations (by ±δ and ±δ/2) appear in appropriate
places. We also notice that the parameter λ always satisfies |λ| > 1/2.

Throughout the paper, we assume that the inclusions are C1,α0 , with 0 < α0 ≤ 1 and
we seek the potentials in the space C0,α, 0 < α < α0, of slightly less regular functions.
When δ > 0, the kernel of Lδ2 is smooth, so that Lδ2 is a compact operator from C0,α(Γ2)

to C0,α(Γ1) [17]. Similarly, Lδ1 is compact, so that by Fredholm theory, the system (4) is
invertible in C0,α(Γ1)× C0,α(Γ2).

If the operators (Lδ1, L
δ
2) were convergent in the operator norm (C0,α to C0,α) as δ → 0,

and if we could show that the limiting system corresponding to (4) is invertible, then the
operators (T δ)−1 would converge in norm to the inverse of that limiting system. In particular
(T δ)−1 would be norm bounded, and we would immediately obtain uniform piecewise C1,α

estimates for u. It is indeed possible to show that the operators (Lδ1, L
δ
2) converge pointwise

to some (L0
1, L

0
2), and that the limiting system corresponding to (4) is necessarily invertible.

However, as we shall show that the operators (L0
1, L

0
2) are not compact, the convergence

of (Lδ1, L
δ
2) cannot take place in the operator norm. Therefore the simple argument above

cannot be used to obtain uniform estimates for u. We note here that we are not entirely sure
whether this “degenerate” picture is special to dimension two. In our opinion it would be
very interesting to resolve this question, and thus to understand any potential “qualitative”
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difference in the behavior of the gradients near contact points in dimension two versus
dimension three and higher.

Due to the lack of norm convergence, mentioned above, we appeal to results about collec-
tively compact operators established by P.M. Anselone [6]. These results require only point-
wise convergence and invertibility of the limiting operator to garantee pointwise convergence
(and thus uniform norm-boundedness) of the (T δ)−1’s. It is very useful to note that the limit-
ing operators (L0

1, L
0
2) are nearly compact: their kernel is singular only at one point, namely

where the two inclusions touch.

We use this observation to split the operators T δ as a sum of operators the supports of
which depend on a small parameter ε. Due to our assumptions the curve Γ1 can, nearX = 0,
be parametrized as (x, ψ1(x)) with ψ1 ∈ C1,α0(R) and such that ψ1(0) = ψ′1(0) = 0, and
similarly for the curve Γ2. Given ε > 0, we introduce approximate curves ψ1,ε, ψ2,ε which
satisfy {

ψj,ε ≡ ψj j = 1, 2, |x| ≤ ε
||ψj,ε|| C1,α ≤ 2 ||ψj || C1,α0 εν

for any 0 < α < α0, where ν = α0 − α > 0, see Figure 2. We then split Lδ2 as

Lδ2 = χ

Kε,δ
2 +

1

2π
√

1 + [ψ′1,ε(x)]2
(Jε,δ2 + Iε,δ2 )

+ (1− χ)Lδ2,

where χ is a smooth cut-off function that is identically one near the origin. The term Kε,δ
2 is

(near X = 0) the difference between Lδ2 and the normal derivative at the approximate point
(x, ψ1,ε(x) − δe2) of the single layer potential on the approximate curve y → (y, ψ2,ε(y)).
Since the original and approximate curves coincide in an ε-neighborhood of the origin, the
operators Kε,δ

2 are collectively compact with respect to δ. The term involving Iε,δ2 is the
normal derivative at the approximate point (x, ψ1,ε(x)− δe2) of the single layer potential on
the straight line y → (y, ψ2,ε(x)), and the term involving Jε,δ2 is the remainder, see Figure 2.

D

D1

2
δ

δ

x

(x,ψ
1,ε

ε

(x) −   /2)δ

(x, ψ
2,ε

(x) +    /2) δ

y

 

(y, ψ
2 ,ε

(y,ψ2 ,ε

ψ
1 ,ε −   /2(x) ψ

1,ε
(y, (y) −   /2)δ

ψ
2 ,ε

(x) +   /2δ

(x) +   /2)

(y) +   /2)δ

δ

δ

x

F 2. The approximate curves introduced in the splitting of Lδ2.
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We decompose Lδ1 likewise and define

Λε,δ =

 λI χ(X)

2π
√

1+[ψ′1,ε(x)]2
(Jε,δ2 + Iε,δ2 )

χ(X)

2π
√

1+[ψ′2,ε(x)]2
(Jε,δ1 + Iε,δ1 ) λI


Cε,δ =

(
−K∗1 χKε,δ

2 + (1− χ)Lδ2

χKε,δ
1 + (1− χ)Lδ1 −K∗2

)
,

so that T δ = Λε,δ +Cε,δ. In this decomposition, the operators Cε,δ are collectively compact,
whereas the operators Λε,δ are pointwise convergent and invertible, with uniformly norm-
bounded inverses. Since they do incorporate a term from the Lδi , the operators Λε,δ are,
however, not “diagonal”.

Given |λ| > 1/2, we show in Lemmas 6 and 7, that we can fix ε > 0 small enough, so that
the norm of the off–diagonal terms of Λε,δ is strictly smaller than |λ|, uniformly with respect
to 0 < δ < 1. The operators Λε,δ, 0 < δ < 1 are thus invertible in C0,α(Γ1)× C0,α(Γ2). We
then show (Lemmas 5 and 8) that (Λε,δ, Cε,δ) converge pointwise to some limiting operators
(Λε,0, Cε,0), as δ → 0 (for Cε,δ in a collectively compact fashion). These limiting operators
correspond to an integral formulation of the limiting elliptic problem with δ = 0. As a
consequence, we obtain our main result, Theorem 1: the operatorsT δ are invertible operators
in L( C0,α(Γ1) × C0,α(Γ2)), and their inverses are bounded independently of δ. Moreover,
the operators (T δ)−1 converge pointwise to (T 0)−1 as δ → 0.

The paper is organized as follows: In Section 2, we make precise our assumptions on the
geometry, we describe in detail the system of integral equations, when the inclusions are
not touching, and we also derive the splitting of the system as briefly explained above. Our
main result is found and proven in Section 3. The proof depends on a number of technical
lemmas that are precisely stated in this section, but the verifications of which are relegated
to Appendices A-D. Appendices A-C are devoted to proving Lemmas 5–7, that concern the
properties of the operators (Kε,δ

2 , Jε,δ2 , Iε,δ2 ), for ε sufficiently small. Appendix D gives a
proof of Lemma 8 which asserts that, for fixed ε > 0, the aforementioned operators converge
pointwise when δ → 0. Finally, Appendix E is devoted to a proof of the non–compactness
of the limiting operators (L0

1, L
0
2). Although this result is not needed for the proof of our

main Theorem, we feel its inclusion is nonetheless relevant, since it was what motivated a
significant part of our analysis.

2. Layer potentials for a system of 2 inclusions

2.1. Notations and assumptions

We recall that a closed curve Γ ⊂ R2 has regularity C1,α if it can be covered by a local set
of charts

ψj : x ∈ Ij −→ (ψj,1(x), ψj,2(x)) ⊂ R2 ,

where Ij , 1 ≤ j ≤ J , are open intervals of R, and where the ψj,i’s areC1,α(Ij) functions with
(ψ′j,1)2 + (ψ′j,2)2 > 0. We say that a continuous function f is of regularity C0,α(Γ) if for any
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of the local charts

|f ◦ ψj | C0,α(Ij)
:= sup

x,x̂∈Ij , |x−x̂|<1

|f(ψj,1(x), ψj,2(x))− f(ψj,1(x̂), ψj,2(x̂))|
|x− x̂|α

≤ C.

The norm on C0,α(Γ) is defined by

||f || C0,α(Γ) = max

(
||f ||L∞(Γ), max

1≤j≤J
|f ◦ ψj | C0,α(Ij)

)
.

We consider a bounded smooth domain Ω ⊂ R2 containing 0. D1 and D2 are two touch-
ing, simply connected domains (inclusions) contained in Ω; their boundaries are denoted Γ1

and Γ2. We assume that D1 lies in the lower half–plane x2 < 0, D2 in the upper half–plane,
and make the following assumptions about the geometry:

A1. The inclusions are strictly convex and only meet at the point 0.
A2. Around the point 0, Γ1 and Γ2 are parametrized by 2 curves (x, ψ1(x)) and (x, ψ2(x))

respectively. The graph of ψ1 (resp. ψ2) lies below (resp. above) the x-axis.
A3. The inclusionsD1 andD2 are globally C1,α0 , for some 0 < α0 ≤ 1. In particular, each

function ψj has regularity C1,α0 .
A4. D1 and D2 lie strictly inside Ω, i.e., dist(∂Ω, D1 ∪D2) > c0 for some c0 > 0.

Throughout the text, C is a generic positive constant, that may only depend on the
geometry of each inclusion, but not on the parameters δ, ε0 and ε introduced below.

2.2. The system of integral equations

Let g ∈ C∞(∂Ω), such that
∫
∂Ω
g = 0. We first introduce the diffusion equation

(5)


div(a0(x)∇u0) = 0 in Ω,

∂νu0(x) = g on ∂Ω,∫
∂Ω
u0 = 0,

where the conductivity a0 is equal to k > 0, k 6= 1, in D1 ∪D2, and to 1 in Ω \ (D1 ∪D2).
The real physical situation we are interested in is one in which the two inclusions are

separated by a small distance: For δ > 0, we set Dδ
1 = D1 − δ/2e2, Dδ

2 = D2 + δ/2e2,
and we denote by aδ the corresponding conductivity distribution. Let uδ be the solution to

(6)


div(aδ(x)∇uδ) = 0 in Ω,

∂νuδ(x) = g on ∂Ω,∫
∂Ω
uδ = 0.

In other words, the function uδ is harmonic inside and outside the inclusions Dδ
1, Dδ

2, and
satisfies the transmission conditions

u+
δ = u−δ

∂u+
δ

∂ν = k
∂u−δ
∂ν , on ∂Dδ

i .(7)

Here u+
δ (resp. u−δ ) denotes the solution outside (resp. inside) the inclusions, and ν is the

outside normal to ∂Dδ
i . Since the coefficients aδ = 1+(k−1)χDδ1∪Dδ2 converge to a inLp(Ω)

for any p <∞, it follows from Meyers’ theorem [9] that

lim
δ→0
||uδ − u0||H1(Ω) = 0.(8)
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LetG(X,Y ) = 1
2π ln(|X−Y |) denote the fundamental solution to the Laplace operator in

dimension 2. Let S∂Ω and D∂Ω denote the single and double layer potentials on ∂Ω, defined
on L2(∂Ω) by

S∂Ωf(X) =

∫
∂Ω

G(X,Y )f(Y )dσY X ∈ R2 \ ∂Ω,

D∂Ωf(X) =

∫
∂Ω

∂νY G(X,Y )f(Y )dσY X ∈ R2 \ ∂Ω,

and let Si denote the single layer potential on Γi, defined on L2(Γi) by

Sif(X) =

∫
Γi

G(X,Y )f(Y )dσY X ∈ R2 \ Γi.

We introduce the harmonic parts of u0 and uδ (see [2] sect. 1.4)

(9)

{
H0(X) = −S∂Ωg(X) +D∂Ω(u0|∂Ω)(X) X ∈ Ω

Hδ(X) = −S∂Ωg(X) +D∂Ω(uδ|∂Ω)(X) X ∈ Ω.

L 1. – Let δ0 > 0, and ω ⊂⊂ Ω, such that Dδ
1 ∪Dδ

2 ⊂ ω, for δ < δ0. Then, for all
n ∈ N, there exists C = C(n, k,Ω, dist(∂Ω, ω)) > 0, such that

∀ δ < δ0, ||Hδ|| Cn(ω) ≤ C||g||L2(∂Ω).(10)

We furthermore have that

lim
δ→0
||Hδ −H0|| Cn(ω) = 0.(11)

Proof. – The definition of Hδ and H0 immediately gives

Hδ −H0 = D∂Ω(uδ/∂Ω)−D∂Ω(u0/∂Ω),

and since ω is strictly inside Ω we may estimate

||Hδ −H0|| Cn(ω) ≤ C||uδ − u0||L2(∂Ω) ≤ C||uδ − u0||H1(Ω),

where the constants C only depend on n, Ω and dist(∂Ω, ω). The assertion (8) now leads to
the desired convergence (11). To prove the uniform estimate (10), we see that

||Hδ|| Cn(ω) ≤ C
(
||g||L2(∂Ω) + ||uδ||L2(∂Ω)

)
,(12)

and

(13) ||uδ||L2(∂Ω) ≤ C||uδ||H1(Ω) ≤ C||g||L2(∂Ω),

where the constants C only depend on n, k Ω and dist(∂Ω, ω). For the last estimate we have
used the Trace Theorem as well as an elliptic energy estimate. A combination of (12) and (13)
gives the desired estimate for Hδ.

Let δ > 0. We define for X ∈ Γ1

ϕδ1(X) =
(
∂νu

+
δ − ∂νu

−
δ

)
|∂Dδ1

(X − δ

2
e2)

and for X ∈ Γ2

ϕδ2(X) =
(
∂νu

+
δ − ∂νu

−
δ

)
|∂Dδ2

(X +
δ

2
e2).

4 e SÉRIE – TOME 48 – 2015 – No 2



ELLIPTIC ESTIMATES 461

By repeated integrations by parts, it is easy to calculate that uδ can be represented as

uδ(X) = S1ϕ
δ
1(X +

δ

2
e2) + S2ϕ

δ
2(X − δ

2
e2) +Hδ(X).(14)

The standard jump relations for a single layer potential also show that the functions ϕδ1 and
ϕδ2 solve the following system of integral equations

(15)


(λI −K∗1 )ϕδ1(X)− ∂

∂νS2ϕ
δ
2(X − δe2) = ∂νHδ(X − δ

2e2) X ∈ Γ1

− ∂
∂νS1ϕ

δ
1(X + δe2) + (λI −K∗2 )ϕδ2(X) = ∂νHδ(X + δ

2e2) X ∈ Γ2.

In this system, λ = k+1
2(k−1) ∈ R \ [−1/2, 1/2], and K∗i denotes the operator defined

on L2(Γi) by

K∗i f(X) =
1

2π

∫
Γi

(X − Y ) · ν(X)

|X − Y |2
f(Y ) dsY .

Classical results from potential theory show that for any 0 < α < α′ < α0,

(16) ||Si(ϕδi )||C1,α(Dδi )
+ ||Si(ϕδi )||C1,α(Ω\Dδi ) ≤ C||ϕδi ||C0,α′ (Γi)

,

for i = 1, 2, see [17]. Based on the representation formula (14) and Lemma 1 we thus
immediately get the following result.

L 2. – Let uδ be the solution to (6), and let (ϕδ1, ϕ
δ
2) be the solution to (15), whereHδ

is given by (9). For any small η > 0, let Ωη denote the set Ωη = {x ∈ Ω, dist(x, ∂Ω) > η}.
Then for any 0 < α < α′ < α0,

||uδ||C1,α(Dδ1)
+ ||uδ||C1,α(Dδ2)

+ ||uδ||C1,α(Ωη\(Dδ1∪Dδ2))

≤ C

(
2∑
i=1

||ϕδi ||C0,α′ (Γi)
+ ||g||L2(∂Ω)

)
,

for some constant C, depending on α, α′, α0,Ω, k, η, but independent of δ.

According to this lemma we obtain the desired piecewise Hölder estimates (1) on∇uδ, if
we can establish uniform C0,α, α < α0, bounds on the potentials ϕδi . Since Hδ is bounded
uniformly in any norm on the curves Γi (by Lemma 1) such uniform bounds on the ϕδi follow
if we can verify that the operator on the left-hand side of (15) has a uniformly bounded
inverse as an operator on C0,α(Γ1)× C0,α(Γ2), α < α0. This verification is the focus of the
remainder of this paper.
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2.3. Decomposition of the system of integral equations

In this section, we begin our detailed study of the system of integral equations

T δ

(
ϕδ1

ϕδ2

)
:=

(
λI −K∗1 Lδ2

Lδ1 λI −K∗2

)(
ϕδ1

ϕδ2

)
=

(
g1

g2

)
,(17)

where, for (ϕ1, ϕ2) ∈ C0,α(Γ1)× C0,α(Γ2),

(18)


Lδ2ϕ2(X) = − ∂

∂νS2ϕ2(X − δe2) X ∈ Γ1

Lδ1ϕ1(X) = − ∂
∂νS1ϕ1(X + δe2) X ∈ Γ2.

When δ > 0, classical potential theory applies, and one finds that T δ is a continuous linear
mapping on C0,α(Γ1) × C0,α(Γ2), invertible with bounded inverse, for any 0 < α < α0,
and for any |λ| > 1/2.

Our goal is to study the behavior of T δ and its inverse as δ → 0. As the inclusions come to
touch, the terms ∂νS2ϕ2 and ∂νS1ϕ1 may become singular at the contact point. To isolate
this difficulty, we decompose T δ as a sum Λε,δ + Cε,δ, where for a fixed ε > 0 sufficiently
small, the operator Λε,δ contains the singular part of T δ (i.e., the identity plus a piece of the
off-diagonal terms) and where Cε,δ is compact.

We fix a small parameter 0 < ε0 < 1 so that

(19)
1

2
<

1 + ε0

2
< |λ|.

Let R0 = 2(1 + ε−1
0 ). By a rescaling of Ω, if necessary, we may assume that each inclusion

is sufficiently large so that the intersection of (Γ1 ∪ Γ2) ∩ B(0, 2R0) with the vertical axis is
reduced to the contact point 0. In other words, the ‘South pole’ of Γ1 and the ‘North pole’
of Γ2 are at a distance greater than 2R0 from the contact point. Let χ be a smooth cut-off

function, such that

(20)


0 ≤ χ(X) ≤ 1,

χ(X) = 1 for X ∈ B(0, ε0),

Supp(χ) ∈ B(0, R0),

||∇χ||∞ ≤ ε0.

We also assume that ε0 is sufficiently small so that around the contact point X = 0, the
curves Γi can be parametrized by

(21)

{
|x| ≤ ε0 −→ X = (x, ψ1(x)) ∈ Γ1,

|y| ≤ ε0 −→ Y = (y, ψ2(y)) ∈ Γ2.

L 3. – Given 0 < ε0 < 1 for which (21) holds, and given 0 < α < 1, there exists an
operator E : C0,α(Γ2) −→ C0,α(R), such that for any ϕ ∈ C0,α(Γ2),

(22)


||Eϕ||0,α ≤ (1 + ε0)||ϕ||0,α
Eϕ(y) = ϕ(y, ψ2(y)), y ∈ (−ε0, ε0)

Supp(Eϕ) ⊂ (−2/ε0, 2/ε0).

4 e SÉRIE – TOME 48 – 2015 – No 2



ELLIPTIC ESTIMATES 463

Proof. – Given ϕ ∈ C0,α(Γ2), we first define ϕ̃ ∈ C0,α(R) by

ϕ̃(y) =


ϕ(y, ψ2(y)), if y ∈ [−ε0, ε0]

ϕ(ε0, ψ2(ε0)), if y > ε0

ϕ(−ε0, ψ2(−ε0)), if y < −ε0.

It is easy to check that ||ϕ̃||0,α ≤ ||ϕ||0,α: For instance, when |y| ≤ ε0, ŷ > ε0 and |y− ŷ| < 1,
we can estimate

|ϕ̃(y)− ϕ̃(ŷ)|
|y − ŷ|α

=
|ϕ(y, ψ2(y))− ϕ(ε0, ψ2(ε0))|

|y − ŷ|α

≤ |ϕ(y, ψ2(y))− ϕ(ε0, ψ2(ε0))|
|y − ε0|α

≤ ||ϕ||0,α,

and similarly for the other choices of y, ŷ.
Next, let ρ denote a C1(R) function with values in [0, 1], with compact support in (− 2

ε0
, 2
ε0

),
and such that {

ρ(y) = 1 if |y| ≤ ε0

||ρ′||∞ ≤ ε0.

We define Eϕ(y) = ρ(y)ϕ̃(y), which satisfies ||Eϕ||∞ ≤ ||ϕ̃||∞ ≤ ||ϕ||∞ and

sup
|y−ŷ|≤1

|Eϕ(y)− Eϕ(ŷ)|
|y − ŷ|α

≤ sup
|y−ŷ|≤1

(
||ρ||∞

|ϕ̃(y)− ϕ̃(ŷ)|
|y − ŷ|α

+ ||ϕ̃||∞ ||ρ′||∞|y − ŷ|1−α
)

≤ (1 + ε0)||ϕ||0,α,

and the lemma follows.

We letα < α0 and fix 0 < ε < ε0. We introduce two auxiliairy functionsψ1,ε, ψ2,ε, defined
on R, which satisfy (see Figure 3) :

ψj,ε ≡ ψj , j = 1, 2, |x| ≤ ε,(23)

||ψj,ε|| C1,α ≤ 2||ψj || C1,α0 ε
ν ,(24)

where ν = α0 − α > 0. The existence of such functions follows from the C1,α0 regularity
of ψ1 and ψ2, and from the fact that

ψj(0) = ψ′j(0) = 0.

We simply take

ψj,ε(x) =


ψj(x), |x| < ε,

2ψj(±ε)− ψj(±2ε− x), ε ≤ ±x ≤ 2ε

2ψj(±ε), ±x > 2ε.

Let 0 < α < α0 ≤ 1. Throughout the paper, we set for ϕ ∈ C0,α(Γ2)

φ(y) = Eϕ(y)
√

1 + [ψ′2,ε(y)]2.

It is easy to check that this function has regularity C0,α(R) and that

||φ||0,α ≤ (1 + Cε)(1 + ε0)||ϕ|| C0,α(Γ2),(25)

with Cε → 0 as ε→ 0.
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2εε

(x, (x))

(x,ψ
2

x

Γ  =2 ψ
2

,ε
(x))

0

F 3. A possible contruction of ψ2,ε: the part between (ε, 2ε) is obtained by
rotating the part between (0, ε) around the point (ε, ψ2(ε)).

Let δ ≥ 0 andϕ ∈ C0,α(Γ2). ForX ∈ Γ1 with first coordinate x, we setXε = (x, ψ1,ε(x)).
We also set Γ2,ε = {Y = (y, ψ2,ε(y)), y ∈ R}. We then define

(26)

Kε,δ
2 ϕ(X) =

−1

2π

∫
Γ2

ν(X) · (X − Y − δe2)

|X − Y − δe2|2
ϕ(Y ) dσY

+
1

2π

∫
Γ2,ε

ν(Xε) · (Xε − Y − δe2)

|Xε − Y − δe2|2
Eϕ(Y ) dσY .

More explicitely, the second term in the above expression has the form

1

2π
√

1 + [ψ′1,ε(x)]2

∫
R

(
−ψ′1,ε(x)

1

)
·

(
x− y

ψ1,ε(x)− ψ2,ε(y)− δ

)
(x− y)2 + (δ + ψ2,ε(y)− ψ1,ε(x))2

φ(y)dy.

We remark that the two integrands in the definition of Kε,δ
2 coincide when |y| ≤ ε and

|x| ≤ ε, as Y = (y, ψ2(y)) = (y, ψ2,ε(y)) and X = (x, ψ1(x)) = (x, ψ1,ε(x)) in this case. We
further define for |X| ≤ R0, and δ > 0 or X 6= 0

(27)
Jε,δ2 ϕ(X) =

∫
R

(δ + ψ2,ε(y)− ψ1,ε(x))− ψ′1,ε(x)(y − x)

(x− y)2 + (δ + ψ2,ε(y)− ψ1,ε(x))2
φ(y)dy

−
∫
R

(δ + ψ2,ε(x)− ψ1,ε(x))− ψ′1,ε(x)(y − x)

(x− y)2 + (δ + ψ2,ε(x)− ψ1,ε(x))2
φ(y)dy,

and for δ = 0 and X = 0

Jε,02 ϕ(0) =

∫
R

ψ2,ε(y)

y2 + ψ2,ε(y)2
φ(y)dy.

Note that the integral in the expression above is well-defined as ψ2,ε(y) = O(|y|1+α) when
y → 0. Finally, for |X| ≤ R0, and δ > 0 or X 6= 0, we define

Iε,δ2 ϕ(X) =

∫
R

(δ + ψ2,ε(x)− ψ1,ε(x))− ψ′1,ε(x)(y − x)

(x− y)2 + (δ + ψ2,ε(x)− ψ1,ε(x))2
φ(y)dy,(28)

and

Iε,02 ϕ(0) = πϕ(0).(29)

4 e SÉRIE – TOME 48 – 2015 – No 2



ELLIPTIC ESTIMATES 465

The expression 1

2π
√

1+(ψ′1,ε)
2
Iε,δ2 represents the form one would (locally) have obtained

for Lδ2, if Γ2 were a flat boundary at distance δ + ψ2,ε(x)− ψ1,ε(x) from Γ1, see Figure 2.

Using the above definitions and recalling the definition (20) of χ, we may now decompose
the off-diagonal operator Lδ2, δ > 0, as follows

Lδ2ϕ(X) = χ(X)Lδ2ϕ(X) + (1− χ(X))Lδ2(X)(30)

= χ(X)

Kε,δ
2 +

1

2π
√

1 + [ψ′1,ε(x)]2
(Jε,δ2 + Iε,δ2 )

ϕ(X)(31)

+(1− χ(X))Lδ2ϕ(X).(32)

In a similar manner, we define operatorsKε,δ
1 , Jε,δ1 , Iε,δ1 from C0,α(Γ1) into C0,α(Γ2), that

help decompose the operator Lδ1

Lδ1 = χ(X)

Kε,δ
1 +

1

2π
√

1 + [ψ′2,ε(x)]2
(Jε,δ1 + Iε,δ1 )

ϕ(X) + (1− χ(X))Lδ1ϕ(X),

for 0 ≤ ε ≤ ε0.

The integral equation system (17) may now be written

T δ

(
ϕ1

ϕ2

)
= Λε,δ

(
ϕ1

ϕ2

)
+ Cε,δ

(
ϕ1

ϕ2

)
,(33)

with

Λε,δ =

 λI χ

2π
√

1+[ψ′1,ε(x)]2
(Jε,δ2 + Iε,δ2 )

χ

2π
√

1+[ψ′2,ε(x)]2
(Jε,δ1 + Iε,δ1 ) λI

(34)

and

Cε,δ =

(
−K∗1 χKε,δ

2

χKε,δ
1 −K∗2

)
+ (1− χ)

(
0 Lδ2

Lδ1 0

)
.(35)

For δ = 0, and X ∈ Γ1, with |X| > ε0, the definition (18) is used to define an auxiliary
operator L̃0

2ϕ(X), i.e.,

L̃0
2ϕ(X) = − ∂

∂ν
S2ϕ(X) X ∈ Γ1, |X| > ε0.(36)

Since the single layer potential S2ϕ is infinitely regular away from the curve Γ2, we have that
L̃0

2ϕ = limδ→0 L
δ
2ϕ in C0,α(Γ1 ∩ {|X| > ε0}), and as a consequence it follows immediately

that

(1− χ)Lδ2 → (1− χ)L̃0
2, as δ → 0,
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in operator norm, fromC0,α(Γ2) toC0,α(Γ1). We also note that the operators (1−χ)Lδ2 and
(1− χ)L̃0

2 are compact. We now define a global operator by

L0
2ϕ(X) = χ(X)

Kε,0
2 +

1

2π
√

1 + [ψ′1,ε(x)]2
(Jε,02 + Iε,02 )

ϕ(X)

+ (1− χ(X))L̃0
2ϕ(X).

The operator L0
2 is independent of ε and ε0, since it is, as we shall show (in Lemma 8),

the pointwise limit of the ε, ε0-independent operator Lδ2, as δ → 0. For that same reason
L0

2ϕ(X) is also given by the formula (36) for X 6= 0. However, as we used the former
to define the latter, different notation seems appropriate. A similar approach yields an ε,
ε0-independent operator L0

1. We use the operators L0
i , i = 1, 2 to define the system

T 0

(
ϕ1

ϕ2

)
=

(
λI −K∗1 L0

2

L0
1 λI −K∗2

)(
ϕ1

ϕ2

)
.(37)

As we shall show (in Lemma 8) this is indeed the limiting system corresponding to (17)
as δ → 0. Due to the definition of T 0 it is easy to see that this operator may be decomposed
as

T 0 = Λε,0 + Cε,0,(38)

with

Λε,0 =

 λI χ

2π
√

1+[ψ′1,ε(x)]2
(Jε,02 + Iε,02 )

χ

2π
√

1+[ψ′2,ε(x)]2
(Jε,01 + Iε,01 ) λI

(39)

and

Cε,0 =

(
−K∗1 χKε,0

2

χKε,0
1 −K∗2

)
+ (1− χ)

(
0 L̃0

2

L̃0
1 0

)
.(40)

3. Main results

Our main goal is to show that the system of integral equations (17) is invertible, uniformly
with respect to δ. As already discussed, all involved operators do not converge in norm
as δ → 0, and the limiting system (37) is not of the form λ times the identity plus a compact
perturbation. The single layer potentials K∗i are compact operators on C0,α(Γi), as the
curves Γi have regularity C1,α [15]. However, the off–diagonal terms L0

i are not quite as nice,
even though their singular parts concentrate near only one point.

L 4. – The operators L0
2 and L0

1 are not compact on C0,α for any 0 < α < α0.

This result immediately implies that the compact operators (Lδ1, L
δ
2) do not converge in

norm to (L0
1, L

0
2), and this eliminates a simple proof of uniform invertibility of (17). In order

to overcome this difficulty, and still prove the uniform boundedness and convergence of the
solutions to (17), we base our analysis on the decomposition (33), and use some fairly basic
results from the theory of collectively compact operators, [6].
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D 1. – Suppose X and Y are two Banach spaces. A family of compact linear
operators Bδ : X → Y , 0 < δ < δ0, is called collectively compact if and only if the set
{Bδϕ, ||ϕ||X = 1, 0 < δ < δ0} is precompact in Y .

The next three lemmas describe some important properties of the operators in the decom-
position (33) of our system of integral equations. We only give the statements for the opera-
tors indexed by 2 (i.e., those defined on C0,α(Γ2)) but similar statements hold for the opera-
tors indexed by 1.

L 5. – Let ε be fixed with 0 < ε < ε0. The operators χKε,δ
2 : C0,α(Γ2)→ C0,α(Γ1),

0 < δ < δ0, form a collectively compact family of operators.

L 6. – Given any 0 < ε < ε0 and any 0 ≤ δ < δ0, the operator χJε,δ2 is a continuous
linear operator from C0,α(Γ2) to C0,α(Γ1), α < α0. Moreover, we have

|| χ

2π
√

1 + [ψ′1,ε]
2
Jε,δ2 || L( C0,α(Γ2), C0,α(Γ1)) ≤ C(ε),

where C(ε) converges to 0 uniformly in δ.

The operator Iε,δ2 contains the most singular part of the off-diagonal term. Lemma 7
gives a very precise estimate of its norm, so we can compare it to |λ|, and ensure that the
operators Λε,δ are invertible when ε is sufficiently small (see the proof of Theorem 1).

L 7. – Given any 0 < ε < ε0 and any 0 ≤ δ < δ0, the operator χIε,δ2 is a continuous
linear operator from C0,α(Γ2) to C0,α(Γ1), α < α0. Furthermore we have the estimate∥∥∥∥∥∥ χ

2π
√

1 + [ψ′1,ε]
2
Iε,δ2

∥∥∥∥∥∥
L( C0,α(Γ2), C0,α(Γ1))

≤ 1/2 (1 + C(ε))(1 + ε0),(41)

where C(ε)→ 0, as ε→ 0, uniformly in δ.

The next statement concerns the pointwise convergence of the operators T δ, as operators
from C0,α(Γ1)× C0,α(Γ2) to C0,α(Γ1)× C0,α(Γ2).

L 8. – Let 0 < α < α0, and fix 0 < ε < ε0. Then, as δ → 0, for all
(ϕ1, ϕ2) ∈ C0,α(Γ1)× C0,α(Γ2),

Kε,δ
1 ϕ1,K

ε,δ
2 ϕ2 −→ Kε,0

1 ϕ1,K
ε,0
2 ϕ2, in C0,α.

Additionnally, as δ → 0, for all (ϕ1, ϕ2) ∈ C0,α(Γ1)× C0,α(Γ2),{
χJε,δ1 ϕ1, χI

ε,δ
1 ϕ1 −→ χJε,01 ϕ1, χI

ε,0
1 ϕ1

χJε,δ2 ϕ2, χI
ε,δ
2 ϕ2 −→ χJε,01 ϕ2, χI

ε,0
2 ϕ2,

in C0,α′ , α′ < α.
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Consequently, since we already know that (1 − χ)Lδiϕi → (1 − χ)L̃0
iϕi, in C0,α, i = 1, 2,

it follows that as δ → 0,

Λε,δ

(
ϕ1

ϕ2

)
→ Λε,0

(
ϕ1

ϕ2

)
, in C0,α′(Γ1)× C0,α′(Γ2), α′ < α,

Cε,δ

(
ϕ1

ϕ2

)
→ Cε,0

(
ϕ1

ϕ2

)
, in C0,α(Γ1)× C0,α(Γ2),

T δ

(
ϕ1

ϕ2

)
→ T 0

(
ϕ1

ϕ2

)
, in C0,α′(Γ1)× C0,α′(Γ2), α′ < α.

By the Uniform Boundedness Principle, the operators Cε,δ are uniformly norm-bounded
in L( C0,α(Γ1)× C0,α(Γ2)).

The proofs of the lemmas stated above are given in the Appendices A through C. We now
state our main result.

T 1. – Let |λ| > 1/2 and α < α0. There exists δ0 > 0 such that the oper-
ators T δ, 0 ≤ δ < δ0, are invertible with inverses that are bounded independently of δ in
L( C0,α(Γ1) × C0,α(Γ2)), α < α0. Moreover, the operators (T δ)−1 converge pointwise
to (T 0)−1 as δ → 0 is in L( C0,α′(Γ1)× C0,α′(Γ2)), for any 0 < α′ < α.

Proof. – Step 1. – Let |λ| > 1/2. Recall that we have tuned ε0 so that |λ| > (1 + ε0)/2.
Invoking Lemmas 6 and 7, we may fix ε > 0 sufficiently small that the off-diagonal terms
of Λε,δ, being bounded in operator norm by (1+C(ε))(1+ε0)/2, are strictly smaller than |λ|
uniformly for 0 ≤ δ ≤ δ0. Consequently, Λε,δ is invertible in L( C0,α(Γ1)× C0,α(Γ2)) and

∀ 0 ≤ δ ≤ δ0, ||Λ−1
ε,δ || L( C0,α(Γ1)× C0,α(Γ2)) ≤

C

|λ| − (1 + C(ε))(1 + ε0)/2
,(42)

with C(ε) → 0, as ε → 0, uniformly in δ. Further, it follows from Lemma 8, that
for (ϕ1, ϕ2) ∈ C0,α(Γ1)× C0,α(Γ2),

Λ−1
ε,δ

(
ϕ1

ϕ2

)
→ Λ−1

ε,0

(
ϕ1

ϕ2

)
in C0,α′ , α′ < α.(43)

Step 2. – As Γ1 and Γ2 are of regularity C1,α+ν , K∗1 and K∗2 are compact operators
on C0,α(Γ1) and C0,α(Γ2) respectively (see for instance [15]). By Lemma 5 and Lemma 8,
Cε,0 is the strong limit of the collectively compact family of operators Cε,δ, and so it is also
compact. In summary the operator T 0 = Λε,0 + Cε,0 is a Fredholm operator: it is therefore
invertible if proven injective.

Step 3. – Let (ϕ1, ϕ2) ∈ C0,α(Γ1)× C0,α(Γ2), such that

T 0

(
ϕ1

ϕ2

)
= 0.(44)
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By Lemma 8, Lδ2ϕ2 → L0
2ϕ2 as δ → 0, and so∫

Γ1

L0
2ϕ2 dσ = lim

δ→0

∫
Γ1

Lδ2ϕ2 dσ

= − lim
δ→0

∫
Γ1

∂νS2ϕ
δ
2(X − δe2)dσX .

Since S2ϕ
δ
2(X−δe2) is harmonic inD1, the integrals on the last right–hand side vanish, and

so do their limits. Invoking well known results in potential theory [16], we now get∫
Γ1

[
(λI −K∗1 )ϕ1 + L0

2ϕ2

]
dσ =

∫
Γ1

(λI −K∗1 )ϕ1 dσ

= (λ− 1/2)

∫
Γ1

ϕ1 dσ.

A similar relation for (λI −K∗2 )ϕ2 +L0
1ϕ1 holds on Γ2. Thus, as a consequence of (44) and

of the fact that |λ| > 1/2, ∫
Γ1

ϕ1 dσ =

∫
Γ2

ϕ2 dσ = 0.(45)

Step 4. – Consider the function w0 defined on R2 \ (Γ1 ∪ Γ2) by

w0 = S1ϕ1 + S2ϕ2.(46)

We claim that w0 ≡ 0 in R2. Indeed, S1ϕ1 and S2ϕ2 are continuous functions on R2 and
harmonic in R2 \ Γ1 and R2 \ Γ2 respectively. The regularity of Γ1 and Γ2 implies that
∇S1ϕ1 and∇S2ϕ2 are bounded. Thus,w0 is piecewise harmonic in R2\(Γ1∪Γ2), with∇w0

piecewise continous and bounded. In particular, w0 ∈ H1
loc(R2). We note further that (44)

expresses the continuity of a0∂nw0 across Γ1 and Γ2, except possibly at 0, and consequently
w0 is a local solution to

div(a0∇w0) = 0 in R2 \ {0}.(47)

As for the behavior of w0 at infinity, a classical estimate of the Newtonian potential [16],
under condition (45), yields

w0(X) = O(|X|−1), ∇w0(X) = O(|X|−2) for |X| → ∞.(48)

Let 0 < ρ < R and let Bρ and BR denote the balls of radii ρ and R, centered at 0. We
compute ∫

BR

a0|∇w0|2 =

∫
BR\Bρ

a0|∇w0|2 +

∫
Bρ

a0|∇w0|2.(49)

As w0 is a0-harmonic away from 0, the first integral reduces to∣∣∣∣∣
∫
∂BR

a0w0∂rw0 dσ −
∫
∂Bρ

a0w0∂rw0 dσ

∣∣∣∣∣
≤ C

∫
∂BR

R−3 dσ + ||w0||L∞(∂Bρ) ||a0∇w0||L∞(∂Bρ)|∂Bρ|

≤ C R−2 + C ρ,
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where C is independent of R and ρ. We estimate the second integral by∣∣∣∣∣
∫
Bρ

a0∇w0 · ∇w0

∣∣∣∣∣ ≤ ||a0||L∞(R2) ||∇w0||2L∞(Bρ)|Bρ| ≤ Cρ2.

Letting R →∞ and ρ→ 0 in (49), we conclude that
∫
R2 a0|∇w0|2 = 0, and in view of (48)

that w0 ≡ 0.
We now use the jump conditions for the single layer potential to obtain{

ϕ1(X) = ∂νw
+
0 − ∂νw

−
0 = 0, X ∈ Γ1 \ {0}

ϕ2(X) = ∂νw
+
0 − ∂νw

−
0 = 0, X ∈ Γ2 \ {0},

which together with the continuity of theϕi’s at 0 yields thatϕ1 = ϕ2 ≡ 0, i.e., T 0 is injective.

Step 5. – At this point we have verified that Λε,0 and Λε,δ are invertible for ε sufficiently
small, the latter with inverses whose operator norms are bounded independently of δ. We
next claim that

(i) The operators Cε,δΛ−1
ε,δ are collectively compact.

(ii) Cε,0Λ−1
ε,0 is compact.

(iii) Cε,δΛ−1
ε,δ → Cε,0Λ−1

ε,0 pointwise in L( C0,α(Γ1)× C0,α(Γ2)) as δ → 0.

Under these conditions, Theorem 1.6 in [6] states that the operators (I + Cε,δΛ
−1
ε,δ)
−1 exist,

for δ sufficiently small, and are bounded uniformly in δ if and only if I+Cε,0Λ−1
ε,0 is invertible.

Moreover in that case

(I + Cε,δΛ
−1
ε,δ)
−1 → (I + Cε,0Λ−1

ε,0)−1 pointwise.(50)

Since T δ = (I + Cε,δΛ
−1
ε,δ)Λε,δ, and since we already know that T 0 and Λε,0 are invertible,

the validity of the claims (i)–(iii) will thus let us conclude that (I+Cε,δΛ
−1
ε,δ)
−1 are uniformly

norm bounded and that (50) holds. In combination with (42), (43) it follows that

(T δ)−1 = Λ−1
ε,δ(I + Cε,δΛ

−1
ε,δ)
−1

are uniformly norm bounded, and satisfy

(T δ)−1 → (T 0)−1 pointwise as δ → 0.

It therefore only remains to verify the claims (i)–(iii) in order to complete the proof of
Theorem 1. As already noticed in Step 2, it follows directly from Lemma 5 and Lemma 8 that
the operatorsCε,δ form a collectively compact family and that the limitCε,0 is compact. The
uniform bounds (42) now imply that the operatorsCε,δΛ−1

ε,δ also form a collectively compact
family. This verifies the claims (i) and (ii).

Since the operators Cε,δ are collectively compact in C0,α(Γ2) × C0,α(Γ1), and since
(Λ−1

ε,δ − Λ−1
ε,0)ϕ is uniformly bounded in C0,α(Γ2) × C0,α(Γ1), a subsequence of

Cε,δ(Λ
−1
ε,δ−Λ−1

ε,0)ϕ converges to some functionw ∈ C0,α(Γ2)× C0,α(Γ1). However, in view of

(43), and of the fact that the operatorsCε,δ are norm-bounded in L( C0,α′(Γ1)× C0,α′(Γ2)),

this subsequence must converge to 0 in C0,α′(Γ1) × C0,α′(Γ2), 0 < α′ < α. Uniqueness
of the limit implies that w ≡ 0, i.e., that Cε,δ(Λ−1

ε,δ − Λ−1
ε,0)ϕ → 0 in C0,α(Γ2) × C0,α(Γ1).

Since this is true for any subsequence, the whole sequence Cε,δ(Λ−1
ε,δ −Λ−1

ε,0)ϕ converges to 0

in C0,α(Γ2)× C0,α(Γ1).
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We then write

(Cε,δΛ
−1
ε,δ − Cε,0Λ−1

ε,0)

(
ϕ1

ϕ2

)
=
[
Cε,δ(Λ

−1
ε,δ − Λ−1

ε,0) + (Cε,δ − Cε,0)Λ−1
ε,0

](ϕ1

ϕ2

)
to conclude that Cε,δΛ−1

ε,δ converges pointwise to Cε,0Λ−1
ε,0 in C0,α(Γ2)× C0,α(Γ1) as δ → 0,

and therefore that (iii) holds.

Recall that the solution to the conduction problem where the inclusions are δ apart has the
representation (14), in terms of the solutions (ϕδ1, ϕ

δ
2) to (15) and the harmonic function Hδ

from (9). A similar relationship holds between the solution u0 to the conduction problem
with touching inclusions and the solutions (ϕ0

1, ϕ
0
2) to

T 0

(
ϕ0

1

ϕ0
2

)
=

(
∂νH0/Γ1

∂νH0/Γ2

)
,(51)

where H0 is the harmonic function from (9). This is the assertion of the following theorem.

P 1. – The solution u0, to (5), may be written

u0(X) = S1ϕ
0
1(X) + S2ϕ

0
2(X) +H0(X) X ∈ Ω,(52)

where H0 is harmonic inside Ω, and defined by (9), and where the pair (ϕ0
1, ϕ

0
2) ∈

C0,α(Γ1)× C0,α(Γ2) is the unique solution to (51).

Proof. – Since H0 is harmonic inside Ω, and since Γ1 and Γ2 are C1+α0 , the right–hand
side of (51) lies in C0,α(Γ1)× C0,α(Γ2). By Theorem 1, the integral equation (51) therefore
has a unique solution (ϕ0

1, ϕ
0
2) ∈ C0,α(Γ1) × C0,α(Γ2), for any 0 < α < α0. By Lemma 1,

∂νHδ/Γi → ∂νH0/Γi in C0,α(Γi), and so we infer from Theorem 1 that(
ϕδ1

ϕδ2

)
−

(
ϕ0

1

ϕ0
2

)
= (T δ)−1

(
∂νHδ/Γ1

∂νHδ/Γ2

)
− (T 0)−1

(
∂νH0/Γ1

∂νH0/Γ2

)

= (T δ)−1

[(
∂νHδ/Γ1

∂νHδ/Γ2

)
−

(
∂νH0/Γ1

∂νH0/Γ2

)]

+
[
(T δ)−1 − (T 0)−1

](∂νH0/Γ1

∂νH0/Γ2

)
→ 0 in C0,α′(Γ1)× C0,α′(Γ2), 0 < α′ < α.

This convergence of ϕδi immediately implies that

S1ϕ
δ
1(X +

δ

2
e2)→ S1ϕ

0
1(X), and S2ϕ

δ
2(X − δ

2
e2)→ S2ϕ

0
2(X),(53)

uniformly on compact subdomains of Ω\(Γ1∪Γ2), as δ → 0. Consider now the solution to the
conduction problem (6), uδ(X) = S1ϕ

δ
1(X+ δ

2e2)+S2ϕ
δ
2(X− δ

2e2)+Hδ(X). From Lemma 1
we know thatHδ → H0 uniformly on compact subdomains of Ω, and if we combine this with
(53) we obtain

uδ(X) = S1ϕ
δ
1(X +

δ

2
e2) + S2ϕ

δ
2(X − δ

2
e2) +Hδ(X)→ S1ϕ

0
1(X) + S2ϕ

0
2(X) +H0(X),
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uniformly on compact subdomains of Ω \ (Γ1 ∪ Γ2), as δ → 0. Since we also know that
uδ → u0 in H1(Ω), it follows from the uniqueness of the limit that u0 = S1ϕ

0
1 + S2ϕ

0
2 +H0

on compact subdomains on Ω\(Γ1∪Γ2). Both sides of this identity are continuous functions,
and so we get u0(X) = S1ϕ

0
1(X) + S2ϕ

0
2(X) +H0(X) for all X ∈ Ω, just as desired.

The representation formula (52) of the previous theorem guarantees that u0 and its gra-
dient are piecewise smooth functions in Ωη, and uniformly bounded. This property is trans-
mitted to the solutions uδ, as expressed in the following Theorem, an entirely different proof
of which was already given in [18].

T 2. – Let η > 0 and 0 < α < α0. The solutions uδ to (6) satisfy

||uδ||C1,α(Ωη\(Dδ1∪Dδ2))
+ ||uδ||C1,α(Dδ1)

+ ||uδ||C1,α(Dδ2)
≤ C||g||L2(∂Ω).

The constant C depends on η, but is independent of δ and g.

Open question. – Can one get optimal regularity estimates, i.e., can one establish a uniform
bound for uδ in C1,α0 ? We are not able to obtain such an estimate with our technique, which
uses the fact that ||ψ1,ε||1,α and ||ψ2,ε||1,α are o(ε). This is only true for α < α0 and therefore,
we cannot reach the optimal exponent α0. This is consistent with the results of [21]. The authors
of that article derive regularity results for another type of integral operators, namely Beurling
transforms (operators defined on volumes, whereas we consider operators defined on curves).
Using the theory of quasiconformal mapping, they study the elliptic equation div(A∇u) = 0,
with det(A) = 1, in a medium containing C1,α0 inclusions. They show that ∇u is in C0,α on
each component but also only for α < α0.

Proof. – Recall that uδ has the representation

uδ(X) = S1ϕ
δ
1(X +

δ

2
e2) + S2ϕ

δ
2(X − δ

2
e2) +Hδ(X),

where (ϕδ1, ϕ
δ
2) solves (15) in C0,ᾱ(Γ1) × C0,ᾱ(Γ2), for any α < ᾱ < α0. Adapting the

arguments developed for the case of C2 contours in [14], Theorems 2.13 and 2.16, one easily
obtains that

||S1ϕ
δ
1(X +

δ

2
e2)|| C1,α(Ω\Dδ1)

+ ||S1ϕ
δ
1(X +

δ

2
e2)|| C1,α(Dδ1)

≤ C ||ϕδ1|| C0,ᾱ(Γ1),

and similarly

||S2ϕ
δ
2(X − δ

2
e2)|| C1,α(Ω\Dδ2)

+ ||S2ϕ
δ
2(X − δ

2
e2)|| C1,α(Dδ2)

≤ C ||ϕδ2|| C0,ᾱ(Γ2).

Due to Theorem 1 and the fact that (ϕδ1, ϕ
δ
2) solves (15)

||ϕδ1|| C0,ᾱ(Γ1) + ||ϕδ2|| C0,ᾱ(Γ2) ≤ C||Hδ||C1,ᾱ(Ωη),

for η sufficiently small. At the same time, due to Lemma 1,

||Hδ||C1,ᾱ(Ωη) ≤ C||g||L2(∂Ω).

A combination of these four estimates with the above representation formula for uδ imme-
diately gives the a priori estimates from the statement of this theorem.
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Appendix A

Proof of Lemma 5

To simplify our exposition, we drop the index 2 on the operators Kε,δ
2 , Jε,δ2 , Iε,δ2 . Consid-

ering the definitions of ψ1,ε, ψ2,ε, for X ∈ Γ1, |X| ≤ ε/2, the operator Kε,δ is given by

Kε,δϕ(X) = − 1

2π

∫
Γ2

ν(X) · (X − Y − δe)
|X − Y − δe|2

(1− χ(y))ϕ(Y ) dσY

− 1

2π

∫
Γ2∩{|y|>ε}

ν(X) · (X − Y − δe)
|X − Y − δe|2

χ(y)ϕ(Y ) dσY

− 1

2π
√

1 + [ψ′1(x)]2

∫
R∩{|y|>ε}

(δ + ψ2,ε(y)− ψ1,ε(x))− ψ′1,ε(x)(y − x)

(x− y)2 + (δ + ψ2,ε(y)− ψ1,ε(x))2
φ(y) dy.

Since for |y| > ε and |x| ≤ ε/2, (x − y)2 ≥ ε2/4, one easily checks that the kernels in
all the above integrals are bounded and have regularity C0,α0 , so that Kδ,ε is compact and
maps C0,α(Γ2) into C0,α(Γ1 ∩ {|X| < ε/2}), for any 0 < α < α0. An even more direct
argument works for |X| > ε/2. We also note that the bounds on the kernels are uniform
with respect to 0 ≤ δ ≤ 1. As a consequence, the operators Kε,δ, 0 ≤ δ < 1 form a family of
collectively compact operators.

Appendix B

Proof of Lemma 6

Recall that we assumed ψ1, ψ2 have regularity C0,α0 for some 0 < α0 ≤ 1. Let α < α0

with ν = α0−α > 0. Our construction of the auxiliairy functions ψ1,ε and ψ2,ε implies that
the following bound holds

||ψ1,ε||1,α, ||ψ2,ε||1,α ≤ Cεν .

In this section, we show that Jε,δ maps C0,α(Γ2) into C0,α(Γ1) for any 0 < α < α0.
Given s, x, x̂ ∈ R, we write henceforth

(54)

a = a(x) = δ + ψ2,ε(x)− ψ1,ε(x)

â = a(x̂) = δ + ψ2,ε(x̂)− ψ1,ε(x̂)

b = b(x, s) = δ + ψ2,ε(s+ x)− ψ1,ε(x)

b̂ = b(x̂, s) = δ + ψ2,ε(s+ x̂)− ψ1,ε(x̂).

B.1. Preliminary estimates

We will repeatedly have to estimate differences such as

|b− a| = |ψ2,ε(s+ x)− ψ2,ε(x)|.

The mean value theorem shows that for some θ between 0 and s

|b− a| = |ψ′2,ε(x+ θ)| |s|
≤
(
|ψ′2,ε(x)|+ |ψ′2,ε(x+ θ)− ψ′2,ε(x)|

)
|s|

≤
(
|ψ′2,ε(x)|+ ||ψ′2,ε||0,α|θ|α

)
|s|

≤
(
|ψ′2,ε(x)|+ ||ψ′2,ε||0,α|s|α

)
|s|.(55)
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Alternatively, we may bound |b− a| by

|b− a| =
(
|ψ′2,ε(s+ x)|+ ||ψ′2,ε||0,α|s|α

)
|s|.(56)

Similar estimates can be derived for |b− b̂|: setting d = |x− x̂|, we have for some θ between
x and x̂

|b− b̂| = |ψ′2,ε(s+ θ)− ψ′1,ε(θ)| d
≤
(
|ψ′2,ε(s+ x̂)|+ |ψ′1,ε(x̂)|+ |ψ′2,ε(s+ θ)− ψ′2,ε(s+ x̂)− ψ′1,ε(θ) + ψ′1,ε(x̂)|

)
d

≤
(
|ψ′2,ε(s+ x̂)|+ |ψ′1,ε(x̂)|+ dα(||ψ′2,ε||0,α + ||ψ′1,ε||0,α)

)
d.(57)

Similar estimates hold for |a− â| and |b̂− â|.
Recall also that φ(y) = Eϕ(y)

√
1 + [ψ′2(y)]2 has support in (−R0, R0). Thus, there exists

M > 0 such that for any X ∈ Γ1 with first coordinate x, the function s −→ φ(s + x) is
supported in (−M,M).

Our analysis relies on the following lower bound on |ψ1,ε|, |ψ2,ε|:

P 2. – Suppose 0 < α ≤ α0. There exists a constant C > 0, independent of ε,
such that for any x ∈ R,

|ψ′i,ε(x)| ≤ C|ψi,ε(x)|
α

1+α , i = 1, 2.(58)

Proof. – We only focus on ψ2, but the same arguments apply to ψ1. Recall that we
assume Γ2 is strictly convex, and that ψ2 is C1,α and positive, vanishing only at 0. The
function ψ2 is only defined in a neighborhood (−ε0, ε0) around 0. We may nevertheless
extend it on the whole of R, as a C1,α function that only vanishes at 0 and such that
||ψ2||1,α,R ≤ 2||ψ2||1,α,(−ε0,ε0). It follows that for any x ∈ [−M,M ] and for any θ ∈ R

ψ2(x+ θ) ≤ ψ2(x) + ψ′2(x)θ +O(|θ|1+α),

so that for some constant C > 0, independent of θ.

ψ2(x) + ψ′2(x)θ + C|θ|1+α ≥ 0.

As a function of θ, the left–hand side of the above expression is minimal when
θ0 = −(

ψ′2(x)
C(1+α) )1/α if ψ′2(x) ≥ 0, and when θ0 = (

|ψ′2(x)|
C(1+α) )1/α if ψ′2(x) < 0. In both

cases, the positivity of ψ2 yields (58) for the function ψ2.
We note that (58) is therefore satisfied by ψ2,ε when |x| < ε. It is trivially satisfied when

|x| > 2ε. Furthermore, when ε ≤ x ≤ 2ε one has

|ψ2,ε(x)| = 2ψ2(ε)− ψ2(2ε− x) ≥ ψ2(2ε− x)

≥ C|ψ′2(2ε− x)|
1+α
α = C|ψ′2,ε(x)|

1+α
α .

P 3. – For any s, t ≥ 0 and for any 0 ≤ µ ≤ 1 we have

s2 + t2 ≥ s1+µt1−µ.

Proof. – We may assume that t > 0 and µ < 1. By homogeneity, it suffices to show
that g(s) := s2 − s1+µ + 1 ≥ 0 for any s ≥ 0. One easily checks that g′ only vanishes
at s0 = ( 1+µ

2 )
1

1−µ and that

g(s0) = (
1 + µ

2
)

2
1−µ + 1− (

1 + µ

2
)

1+µ
1−µ > 0.
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B.2. Uniform bound on Jε,δ, δ > 0:

Let ϕ ∈ C0,α(Γ2), and X ∈ Γ1, |X| ≤ R0, with first coordinate x. Let

jε,δ(s, x) =

(
b(x, s)− sψ′1,ε(x)

s2 + b(x, s)2
−
a(x)− sψ′1,ε(x)

s2 + a(x)2

)
,

so that after the change of variable s = y − x,

Jε,δϕ(X) =

∫
|s|<M

jε,δ(s, x) φ(s+ x).

It follows that

|Jε,δϕ(X)| ≤
∫
|s|<M

∣∣∣∣b− sψ′1,ε(x)

s2 + b2
−
a− sψ′1,ε(x)

s2 + a2

∣∣∣∣ ||φ||0,α
≤ ||φ||0,α

∫
|s|<M

|b− a|(s2 + |ab|+ |sψ′1,ε(x)| |a+ b|)
(s2 + b2)(s2 + a2)

≤ C ||φ||0,α
∫
|s|<M

|b− a|
s2 + a2

+
|b− a|
s2 + b2

.

Recalling (55)-(56), and using Propositions 2 and 3, we see that∫
|s|<M

|b− a|
s2 + b2

+
|b− a|
s2 + a2

≤
∫
|s|<M

|s|
(
|ψ′2,ε(s+ x)|+ sα||ψ′2,ε||0,α

)
s2 + b2

+
|s|
(
|ψ′2,ε(x)|+ sα||ψ′2,ε||0,α

)
s2 + a2

≤ C
∫
|s|<M

|s| |ψ2,ε(s+ x)|
α

1+α

|s|1+µ |ψ2,ε(s+ x) + δ|1−µ
+

|s||ψ2,ε(x)|
α

1+α

|s|1+µ |ψ2,ε(x) + δ|1−µ

+ C ||ψ′2,ε||0,α
∫
|s|<M

|s|α−1.

We choose µ such that 1/(1 + α) < µ < 1, and thus α/(1 + α)− (1− µ) > 0, to obtain∫
|s|<M

|b− a|
s2 + b2

+
|b− a|
s2 + a2

≤ C ||ψ′2,ε||0,α Mα + C ||ψ2,ε||
α

1+α−(1−µ)
∞

∫
|s|<M

|s|−µ

≤ C
(
||ψ′2,ε||0,α Mα + ||ψ2,ε||

α
1+α−(1−µ)
∞ M1−µ

)
≤ C(ε),(59)

where C(ε) → 0 as ε → 0, uniformly with respect to δ, since ||ψ2,ε||1,α = O(εν). Hence,
recalling (25), we see that

|Jε,δϕ(X)| ≤ C(ε) ||ϕ||0,α,(60)

where C(ε)→ 0 as ε→ 0, uniformly with respect to δ (and X).
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B.3. Hölder continuity of Jε,δ, δ > 0

Let X, X̂ ∈ Γ1 ∩B(0, R0), with respective abcissae x, x̂ and set

d = |x− x̂| ≤ |X − X̂|.(61)

Using the notations of the previous section, we form

Jε,δϕ(X)− Jε,δϕ(X̂)

=

∫
|s|<M

(
b− sψ′1,ε(x)

s2 + b2
−
a− sψ′1,ε(x)

s2 + a2

)
[φ(s+ x)− φ(s+ x̂)]

+

∫
|s|<M

(jε,δ(s, x)− jε,δ(s, x̂)) [φ(s+ x̂)− φ(x̂)]

+ φ(x̂)

∫
|s|<M

(
b− sψ′1,ε(x)

s2 + b2
−
a− sψ′1,ε(x)

s2 + a2
−
b̂− sψ′1,ε(x̂)

s2 + b̂2
+
â− sψ′1,ε(x̂)

s2 + â2

)
=: R1 +R2 +R3.(62)

B.3.1. Control of R1. – Using (55), it follows that

|R1| =

∣∣∣∣∣
∫
|s|<M

(
b− sψ′1,ε(x)

s2 + b2
−
a− sψ′1,ε(x)

s2 + a2

)
[φ(s+ x)− φ(s+ x̂)] ds

∣∣∣∣∣
≤
∫
|s|<M

|b− a|
(
s2 + |ab|+ |s(a+ b)ψ′1,ε(x)|

)
(s2 + a2)(s2 + b2)

||φ||0,αdα

≤ C ||φ||0,α dα
∫
|s|<M

|b− a|
s2 + b2

+
|b− a|
s2 + a2

,

and we conclude from (59) that

|R1| ≤ C(ε)||φ||0,αda,(63)

with C(ε)→ 0 when ε→ 0, uniformly in δ (and X, X̂).

B.3.2. Control of R2. – We rewrite R2 as

R2 =

∫
|s|<d

(
b− sψ′1,ε(x)

s2 + b2
−
a− sψ′1,ε(x)

s2 + a2

)
[φ(s+ x̂)− φ(x̂)]

−
∫
|s|<d

(
b̂− sψ′1,ε(x̂)

s2 + b̂2
−
â− sψ′1,ε(x̂)

s2 + â2

)
[φ(s+ x̂)− φ(x̂)]

+

∫
d<|s|<M

(
b− sψ′1,ε(x)

s2 + b2
−
b̂− sψ′1,ε(x̂)

s2 + b̂2

)
[φ(s+ x̂)− φ(x̂)]

−
∫
d<|s|<M

(
a− sψ′1,ε(x)

s2 + a2
−
â− sψ′1,ε(x̂)

s2 + â2

)
[φ(s+ x̂)− φ(x̂)]

=: S1 + S2 + S3 + S4.(64)
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The first term can be estimated by

|S1| ≤ C

∫
|s|<d

(
|b− a|
s2 + b2

+
|b− a|
s2 + a2

)
|s|α ||φ||0,α

≤ ||φ||0,α
∫
|s|<d

( |s| ||ψ′2,ε||0,α
s2 + b2

+
|s| ||ψ′2,ε||0,α
s2 + a2

)
|s|α

≤ C ||φ||0,α ||ψ′2,ε||0,α
∫
|s|<d

|s|α−1

≤ C ||φ||0,α ||ψ′2,ε||0,α dα.(65)

The same estimate holds for S2.

Concerning S3, we can rewrite the term in parentheses in the integrand as

(b− b̂)(s2 − bb̂)
(s2 + b2)(s2 + b̂2)

+
s3(ψ′1,ε(x̂)− ψ′1,ε(x))

(s2 + b2)(s2 + b̂2)

+
sb2(ψ′1,ε(x̂)− ψ′1,ε(x)) + sψ′1,ε(x)(b− b̂)(b+ b̂)

(s2 + b2)(s2 + b̂2)
.

The estimate (57) then shows that

|S3| ≤
∫
d<|s|<M

|b− b̂|
s2 + min(b, b̂)2

|s|α ||φ||0,α +

∫
d<|s|<M

2
|s|1+α||ψ′1,ε||0,αdα

s2
||φ||0,α

+

∫
d<|s|<M

||ψ′1,ε||∞|b− b̂|
s2 + min(b, b̂)2

|s|α ||φ||0,α

≤ C ||φ||0,α
∫
d<|s|<M

(1 + ||ψ′1,ε||∞)

(
||ψ′2,ε||0,α + ||ψ′1,ε||0,α

)
d

s2
|s|α

+ C ||φ||0,α
∫
d<|s|<M

||ψ′1,ε||0,αdα|s|α−1

≤ C ||φ||0,α (1 + ||ψ′1,ε||∞)
(
||ψ′2,ε||0,α + ||ψ′1,ε||0,α

)(
d

∫
d<s<M

sα−2 +Mαdα
)

≤ C ||φ||0,α (1 + ||ψ′1,ε||∞)
(
||ψ′2,ε||0,α + ||ψ′1,ε||0,α

)
dα.(66)

The same argument yields a similar estimate for S4. In summary we obtain

|R2| ≤ C εν ||φ||0,α dα, ν = α0 − α.(67)

B.3.3. Control of R3. – The term R3 is the most singular in (62). We rewrite it as φ(x̂)R′3
with

R′3 =

∫
|s|<M

(
b− sψ′2,ε(s+ x)

s2 + b2
−
b̂− sψ′2,ε(s+ x̂)

s2 + b̂2

)

−
∫
|s|<M

(
a

s2 + a2
− â

s2 + â2

)
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+

∫
|s|<M

(
s(ψ′2,ε(s+ x)− ψ′1,ε(x))

s2 + b2
−
s(ψ′2,ε(s+ x̂)− ψ′1,ε(x̂))

s2 + b̂2

)
+

∫
|s|<M

(
sψ′1,ε(x)

s2 + a2
−
sψ′1,ε(x̂)

s2 + â2

)
ds

=: T1 + T2 + T3 + T4.(68)

Noting that ψ′2,ε(s+ x) = ∂sb the first term can be integrated explicitely to obtain

T1 = [arctan(
s

b(s, x)
)− arctan(

s

b(s, x̂)
)]M−M .

The mean value theorem shows that

| arctan(
M

b(M,x)
)− arctan(

M

b(M, x̂)
)| ≤

M
(
|ψ′2,ε(M + θ)|+ |ψ′1,ε(θ)|

)
M2 + b(M, θ)2

|x− x̂|

≤ C (||ψ′1,ε||0,α + ||ψ′2,ε||0,α) d,(69)

and similarly with M replaced by −M . It follows that

|T1| ≤ C(ε)d,(70)

where C(ε)→ 0 as ε→ 0, uniformly in δ.

The term T2 can be treated in the same fashion. Note also, that as s
s2+a2 is an odd function

of s, T4 = 0.

Finally, we decompose T3 as follows:

T3 =

∫
d<|s|<M

s[ψ′2,ε(s+ x)− ψ′1,ε(x)− ψ′2,ε(s+ x̂) + ψ′1,ε(x̂)]

s2 + b2

+

∫
d<|s|<M

s[ψ′2,ε(s+ x̂)− ψ′1,ε(x̂)]

(
1

s2 + b2
− 1

s2 + b̂2

)
+

∫
|s|<d

s[ψ′2,ε(s+ x)− ψ′1,ε(x)]

s2 + b2
−
∫
|s|<d

s[ψ′2,ε(s+ x̂)− ψ′1,ε(x̂)]

s2 + b̂2

=: U1 + U2 + U3 + U4.(71)

Estimate for U1. – The fact that ψ′1,ε and ψ′2,ε are C0,β for any α < β ≤ α0 gives

|U1| ≤ dβ(||ψ′1,ε||0,β + ||ψ′2,ε||0,β)

∫
d<|s|<M

|s|
s2 + (ψ1,ε(x)− δ)2

≤ dβ(||ψ′1,ε||0,β + ||ψ′2,ε||0,β) [ln(s2 + (ψ1,ε(x)− δ)2)]Md

≤ C dβ(||ψ′1,ε||0,β + ||ψ′2,ε||0,β) | ln(d2)|,

for d sufficiently small. Thus, we have

|U1| ≤ C (||ψ′1,ε||0,β + ||ψ′2,ε||0,β)dβ | ln(d)|
≤ C εα0−β dα,(72)

for any α < β ≤ α0. This shows that

|U1| ≤ C εν dα,

for any 0 < ν < α0 − α, where C is independent of ε, d and δ.
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Estimate for U2. – To estimate U2 we proceed as follows:

|U2| ≤
∫
d<|s|<M

|s|
∣∣ψ′2,ε(s+ x̂)− ψ′1,ε(x̂)

∣∣ |b− b̂| |b+ b̂|
(s2 + b2)(s2 + b̂2)

≤
∫
d<|s|<M

∣∣ψ′2,ε(s+ x̂)− ψ′1,ε(x̂)
∣∣( |b− b̂|

s2 + b̂2
+
|b− b̂|
s2 + b2

)

≤
∫
d<|s|<M

∣∣ψ′2,ε(s+ x̂)− ψ′1,ε(x̂)
∣∣ |b− b̂|
s2 + b̂2

+

∫
d<|s|<M

∣∣ψ′2,ε(s+ x)− ψ′1,ε(x)
∣∣ |b− b̂|
s2 + b2

+

∫
d<|s|<M

∣∣ψ′2,ε(s+ x̂)− ψ′1,ε(x̂)− ψ′2,ε(s+ x) + ψ′1,ε(x)
∣∣ |b− b̂|
s2 + b2

.

Recalling (57) we obtain

|U2| ≤
∫
d<|s|<M

∣∣ψ′2,ε(s+ x̂)− ψ′1,ε(x̂)
∣∣ d (||ψ′1,ε||0,α + ||ψ′2,ε||0,α

)
dα

s2 + b̂2

+

∫
d<|s|<M

∣∣ψ′2,ε(s+ x̂)− ψ′1,ε(x̂)
∣∣ d (|ψ′2,ε(s+ x̂)|+ |ψ′1,ε(x̂)|

)
s2 + b̂2

+

∫
d<|s|<M

∣∣ψ′2,ε(s+ x)− ψ′1,ε(x)
∣∣ d (||ψ′1,ε||0,α + ||ψ′2,ε||0,α

)
dα

s2 + b2

+

∫
d<|s|<M

∣∣ψ′2,ε(s+ x)− ψ′1,ε(x)
∣∣ d (|ψ′2,ε(s+ x̂)|+ |ψ′1,ε(x̂)|

)
s2 + b2

+

∫
d<|s|<M

(
||ψ′2,ε||0,α + ||ψ′1,ε||0,α

)2 dα+1

s2 + b2

=: V1 + V2 + V3 + V4 + V5.

The first term can be estimated by

V1 ≤ C (||ψ′1,ε||0,α + ||ψ′2,ε||0,α)2 d1+α

∫
d<s<M

s−2

≤ C (||ψ′1,ε||0,α + ||ψ′2,ε||0,α)2 dα.

We easily obtain a similar estimate for V3 and V5.
To control V2, we use once again Propositions 2 and 3

V2 ≤ C

∫
d<s<M

d
(
|ψ′2,ε(s+ x̂)|2 + |ψ′1,ε(x̂)|2

)
s2 + b̂2

≤ C d

∫
d<s<M

max(|ψ2,ε(s+ x̂)|, |ψ1,ε(x̂)|)
2α

1+α

s1+µ b̂1−µ
.

Choosing 1− µ = α yields

max(|ψ2,ε(s+ x̂)|, |ψ1,ε(x̂)|)
2α

1+α

s1+µ b̂1−µ
≤ max(|ψ2,ε(s+ x̂)|, |ψ1,ε(x̂)|)[ 2α

1+α−(1−µ)] sα−2

≤ (||ψ1,ε||0,α + ||ψ2,ε||0,α)
α(1−α)

1+α sα−2.
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From (24), it follows that V2 ≤ C(ε) dα. The same argument applies to V4. In summary we
conclude that

|U2| ≤ C(ε) dα,(73)

where C(ε)→ 0 as ε→ 0, uniformly in δ.

Estimates for U3 and U4. – Both terms can be treated in the same fashion. We only present
the case of U3. Using the fact that

∫
|s|<d

s
s2+a2 = 0, we have

U3 =

∫
|s|<d

s[ψ′2,ε(s+ x)− ψ′1,ε(x)]

s2 + b2

=

∫
|s|<d

s[ψ′2,ε(s+ x)− ψ′2,ε(x)]

s2 + b2
+ [ψ′2,ε(x)− ψ′1,ε(x)]

∫
|s|<d

(
s

s2 + b2
− s

s2 + a2

)
=: W1 +W2.

The first term can be estimated by

|W1| ≤ C

∫
0<s<d

s1+α||ψ′2,ε||0,α
s2

≤ C ||ψ′2,ε||0,α dα.

As for the other term, we have by (55)-(56)

|W2| ≤
∣∣ψ′2,ε(x)− ψ′1,ε(x)

∣∣ ∫
|s|<d

|b− a| |s| |a+ b|
(s2 + a2)(s2 + b2)

≤
∣∣ψ′2,ε(x)− ψ′1,ε(x)

∣∣ ∫
|s|<d

|b− a|
s2 + a2

+

∫
|s|<d

∣∣ψ′2,ε(s+ x)− ψ′1,ε(x)
∣∣ |b− a|
s2 + b2

+

∫
|s|<d

∣∣ψ′2,ε(s+ x)− ψ′2,ε(x)
∣∣ |b− a|
s2 + b2

≤ |ψ′2,ε(x)− ψ′1,ε(x)|
∫

0<s<d

||ψ′2,ε||0,αs1+α + s|ψ′2,ε(x)|
s2 + a2

+

∫
0<s<d

|ψ′2,ε(s+ x)− ψ′1,ε(x)|
||ψ′2,ε||0,αs1+α + s|ψ′2,ε(s+ x)|

s2 + b2

+

∫
0<s<d

||ψ′2,ε||0,α sα
s ||ψ′2,ε||0,α
s2 + b2

≤ C ||ψ′2,ε||20,α
∫

0<s<d

sα−1

+ C

∫
0<s<d

smax(|ψ′1,ε(x)|, |ψ′2,ε(x)|)2

s2 + a2

+ C

∫
0<s<d

smax(|ψ′1,ε(x)|, |ψ′2,ε(s+ x)|)2

s2 + b2
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≤ C ||ψ′2,ε||20,αdα + C

∫
0<s<d

smax(|ψ1,ε(x)|, |ψ2,ε(x)|)
2α

1+α

s1+µ a1−µ

+ C

∫
0<s<d

smax(|ψ1,ε(x)|, |ψ2,ε(s+ x)|)
2α

1+α

s1+µ b1−µ
.

Choosing again 1− µ = α yields

|W2| ≤ C
(
||ψ′2,ε||20,α + max(||ψ1,ε||0,α, ||ψ2,ε||0,α)

α(1−α)
1+α

)
dα.

It follows that

|U3| ≤ C(ε)dα,(74)

where C(ε)→ 0 as ε→ 0, uniformly in δ. By a combination of (68)–(74) it now follows that

|R3| ≤ C(ε) dα,(75)

where C(ε)→ 0 as ε→ 0, unifomly in δ.

B.3.4. End of the proof of Lemma 6: Hölder continuity of Jε,δ for δ > 0. – Collecting the
estimates (60), (62), (63), (67) and (75), we obtain that for any α < α0, for any ϕ ∈ C0,α(Γ2),
and for any X, X̂ ∈ Γ1, |X|, |X̂| ≤ R0,{

|Jε,δϕ(X)| ≤ C(ε)

|Jε,δ(X)− Jε,δ(X̂)| ≤ C(ε) dα,

where limε→0 C(ε) = 0, uniformly with respect to δ. Lemma 6, for δ > 0, follows imme-
diately.

B.4. Lemma 6, the case δ = 0

Recall that for X ∈ Γ1 ∩B(0, R0), Jε,0ϕ has the form

Jε,0ϕ(X) =


∫
|s|<M

(
b0−sψ′1,ε(x)

s2+b20
− a0−sψ′1,ε(x)

s2+a2
0

)
φ(s+ x) if X 6= 0∫

|s|<M
ψ2,ε(s)

s2+ψ2,ε(s)2φ(s) if X = 0,

where a0 = ψ2,ε(x) − ψ1,ε(x), b0 = ψ2,ε(s + x) − ψ1,ε(x). When X 6= 0, the esti-
mates of Section B.2 remain valid, since the denominators of the kernel are always greater
than |ψ1,ε(x)| > 0. When X = 0, we have

|Jε,0ϕ(0)| ≤
∫
|s|<M

||ψ2,ε||1,α|s|1+α

s2
||φ||∞

≤ ||ψ2,ε||1,α ||φ||∞Mα ≤ C εν ||φ||∞.

It follows that

||Jε,0ϕ||L∞(Γ1∩B(0,R0)) ≤ C(ε)||ϕ||0,α,

where limε→0 C(ε) = 0.
As for Hölder estimates, when both X and X̂ are different from 0, the quantities

|Jε,0ϕ(X) − Jε,0ϕ(X̂)| can be estimated exactly as in B.3, again because the denomi-
nators of all the kernels involved in these estimates never vanish. Therefore, we only need to
examine |Jε,0ϕ(X)− Jε,0ϕ(0)| when X 6= 0.
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A careful analysis of the previous estimates shows that only the terms S2 in Section B.3.2
and T1+T2 in Section B.3.3 require a modified treatment compared to the case δ > 0. Indeed,
we only used the fact that the denominators in the integrands are greater than s2 to control
the terms S3, S4 and T3.

The term S2. – When X̂ = 0, this term reduces to (see (64))

S2 = −
∫
|s|<d

ψ2,ε(s)

s2 + ψ2,ε(s)2
[φ(s)− φ(0)] ,

(here d = |x|) which can be bounded by

|S2| ≤ ||φ||0,α
∫
|s|<d

sα|ψ2,ε(s)− ψ2,ε(0)|
s2 + ψ2,ε(s)2

≤ ||φ||0,α ||ψ2,ε||1,0
∫
|s|<d

sα−1

≤ C(ε) ||φ||0,α dα.

The term T1 + T2. – When X̂ = 0, this expression reduces to

T1 + T2 =

∫
|s|<M

b0 − sψ′2,ε(s+ x)

s2 + b20
−
ψ2,ε(s)− sψ′2,ε(s)
s2 + ψ2

2,ε(s)
− a0

s2 + a2
0

.

Note that since ψ2,ε(s) = O(s1+α), and ψ′2,ε(s) = O(sα), the second term is integrable with
an integral equal to

lim
ρ→0

∫ M

ρ

ψ2,ε(s)− sψ′2,ε(s)
s2 + ψ2

2,ε(s)
+

∫ −ρ
−M

ψ2,ε(s)− sψ′2,ε(s)
s2 + ψ2

2,ε(s)

= lim
ρ→0

[
arctan(

M

ψ2,ε(M)
)− arctan(

ρ

ψ2,ε(ρ)
)− arctan(

−M
ψ2,ε(−M)

) + arctan(
−ρ

ψ2,ε(−ρ)
)

]
= arctan(

M

ψ2,ε(M)
)− arctan(

−M
ψ2,ε(−M)

)− π.

It now follows that

T1 + T2 =

[
arctan(

M

b0(x,M)
)− arctan(

M

ψ2,ε(M)
)

]
−
[
arctan(

−M
b0(x,−M)

)− arctan(
−M

ψ2,ε(−M)
)

]
−
[

arctan(
M

a0
)− arctan(

−M
a0

)

]
+ π.

Arguing as in (69), the absolute value of the first two terms are easily bounded by C(ε)|x|.
As for the last terms, one has∣∣∣∣∓ arctan(

±M
a0

) +
π

2

∣∣∣∣ ≤ a0

M
≤ C ||ψ2,ε − ψ1,ε||1,α |x|1+α.

It follows that |T1 + T2| ≤ C(ε) |x|, and Lemma 6 also holds in the case δ = 0.
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Appendix C

Proof of Lemma 7

We first note that due to (25), and since Suppχ ⊂ B(0, R0), ||χ||∞ ≤ 1, ||χ′||∞ ≤ ε0 and
||ψ′1,ε||0,α ≤ εν (which can be made smaller than ε0 by taking ε sufficiently small), we only
need to show that

(76) max

 sup
|X|≤R0

∣∣∣Iε,δ2 ϕ(X)
∣∣∣ , sup
|X|,|X̂|≤R0

∣∣∣Iε,δ2 ϕ(X)− Iε,δ2 ϕ(X̂)
∣∣∣

|X − X̂|α

 ≤ π(1 +C(ε)) ||φ||0,α.

C.1. The case δ > 0

ForX, X̂ ∈ Γ1∩B(0, R0) with abcissae x and x̂, we split the expression of Iε,δ2 as I 2− I 1

with

I 1(x) =

∫ R0

−R0

ψ′1,ε(x)(y − x)

(x− y)2 + (δ + ψ2,ε(x)− ψ1,ε(x))2
φ(y) dy,

I 2(x) =

∫ R0

−R0

(δ + ψ2,ε(x)− ψ1,ε(x))

(x− y)2 + (δ + ψ2,ε(x)− ψ1,ε(x))2
φ(y) dy,

and next estimate the L∞ and Hölder semi–norm of these two operators.

L∞ estimate of I 1. – Since φ has compact support, changing variables to s = y − x yields

| I 1(x)| =
∣∣∣∣ ∫

R

sψ′1,ε(x)

s2 + a2
φ(s+ x) ds

∣∣∣∣ .
Noting that s

s2+a2 is an odd function of s, we see that

| I 1(x)| =
∣∣∣∣ ∫

R

sψ′1,ε(x)

s2 + a2
(φ(s+ x)− φ(x)) ds

∣∣∣∣
≤ ||ψ′1,ε||∞

∫
0<s≤M

s1+α||φ||0,α
s2 + a2

ds

≤ C εν ||φ||0,α,(77)

where C only depends on ε0,M and ψ1, but is independent on ε and δ.

Hölder estimate of I 1. – We form

I 1(x)− I 1(x̂) =

∫
R

s[ψ′1,ε(x)− ψ′1,ε(x̂)]

s2 + a2
φ(s+ x) ds

+ ψ′1,ε(x̂)

∫
R

(
s

s2 + a2
− s+ d

(s+ d)2 + â2

)
φ(s+ x) ds,(78)
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with d := x − x̂. The first integral above is easily estimated using (24) and the fact that
s→ s

s2+a2 is an odd function: it is bounded by

||ψ′1,ε||0,α |x− x̂|α
∣∣∣∣ ∫

R

s

s2 + a2
[φ(s+ x)− φ(x)] ds

∣∣∣∣
≤ ||ψ′1,ε||0,α |x− x̂|α||φ||0,α

∫
|s|<M

s1+α

s2 + a2
ds

≤ C εν ||φ||0,α |x− x̂|α, ν = α0 − α.(79)

To treat the second term, let us assume (without loss of generality) that d = x − x̂ ≥ 0

and rewrite the integral factor in this term as∫
R

(
s

s2 + a2
− s+ d

(s+ d)2 + â2

)
φ(s+ x) ds

=

∫
|s|<4d

s

s2 + a2
[φ(s+ x)− φ(x)] −

∫
|s|<4d

s+ d

(s+ d)2 + â2
[φ(s+ x)− φ(x− d)] ds

−
∫
|s|<4d

s+ d

(s+ d)2 + â2
[φ(x− d)− φ(x)] ds

+

∫
|s|>4d

(
s

s2 + a2
− s+ d

(s+ d)2 + â2

)
[φ(s+ x)− φ(x)]

= i1 + i2 + i3 + i4.

Here we have used the fact that s
s2+a2 and s+d

(s+d)2+â2 are odd functions of s and s + d

respectively. We estimate i1 by

|i1| =

∣∣∣∣∣
∫
|s|<4d

s

s2 + a2
[φ(s+ x)− φ(x)] ds

∣∣∣∣∣
≤ ||φ||0,α

∫
|s|<4d

s1+α

s2 + a2
ds ≤ C ||φ||0,α dα.

The second term i2 can be estimated in the same way, as |φ(s+x)−φ(x−d)| ≤ ||φ||0,α(s+d)α.
For i3 we have

|i3| = |φ(x− d)− φ(x)|

∣∣∣∣∣
∫
|s|<4d

s+ d

(s+ d)2 + â2
ds

∣∣∣∣∣
≤ ||φ||0,α dα

∣∣∣∣∣
∫ 5d

−3d

σ

σ2 + â2
dσ

∣∣∣∣∣ ≤ ||φ||0,α dα
∫ 5d

3d

σ

σ2 + â2
dσ

= ||φ||0,α dα 1/2 ln(
25d2 + â2

9d2 + â2
) ≤ ln(

5

3
) ||φ||0,α dα.

Finally, the remaining term, i4, can be bounded as follows:

|i4| =

∣∣∣∣∣
∫
|s|>4d

(
s

s2 + a2
− s+ d

(s+ d)2 + â2

)
[φ(s+ x)− φ(x)] ds

∣∣∣∣∣
=

∣∣∣∣∣
∫
|s|>4d

s2d+ sd2 + s(â− a)(a+ â)− a2d

(s2 + a2) ((s+ d)2 + â2)
[φ(s+ x)− φ(x)] ds

∣∣∣∣∣
4 e SÉRIE – TOME 48 – 2015 – No 2



ELLIPTIC ESTIMATES 485

≤ C
∫
|s|>4d

(
d

s2
+
d2

s3
+
|a− â|
s2

)
|s|α ||φ||0,α ds

≤ C
∫
|s|>4d

(
d

s2
+
d2

s3
+
d||ψ′2,ε − ψ′1,ε||∞

s2

)
|s|α ||φ||0,α ds

≤ C ||φ||0,α dα.

It follows that the second term in (78) can be bounded by C ||ψ′1,ε||∞ ||φ||0,α |x− x̂|α. In
combination with (79), we conclude that

| I 1(x)− I 1(x̂)| ≤ C εν ||φ||0,α |x− x̂|α.(80)

L∞ estimate of I2. – Changing variables from y to s = y− x, and then to t = s/a, which is
well defined since a = (δ + ψ2,ε(x)− ψ1,ε(x)) ≥ δ > 0, we easily see that

| I 2(x)| =
∣∣∣∣ ∫

R

a

s2 + a2
φ(s+ x) ds

∣∣∣∣
= ||φ||∞

∫
R

1

1 + t2
dt

= π ||φ||∞.(81)

Hölder estimate of I2. – Let X, X̂ ∈ Γ1 ∩ B(0, R0), with respective abcissae x and x̂. We
form

I 2(x)− I 2(x̂) =

∫
R

a

s2 + a2
φ(s+ x) ds−

∫
R

â

s2 + â2
φ(s+ x̂) ds

=

∫
R

1

1 + t2
φ(at+ x) dt−

∫
R

1

1 + t2
φ(ât+ x̂) dt.

It follows that

| I 2(x)− I 2(x̂)| ≤
∫
R

1

1 + t2
|φ(at+ x)− φ(ât+ x̂)| dt

≤ ||φ||0,α |x− x̂|α
∫
R

1

1 + t2

∣∣∣∣ a− âx− x̂
t+ 1

∣∣∣∣α dt
≤ ||φ||0,α |x− x̂|α

∫
R

1

1 + t2

∣∣∣∣ (ψ2,ε − ψ1,ε)(x)− (ψ2,ε − ψ1,ε)(x̂)

x− x̂
t+ 1

∣∣∣∣α dt
≤ ||φ||0,α |x− x̂|α

∫
R

1

1 + t2
(C εν |t|+ 1)α dt.

By the Lebesgue dominated convergence Theorem, the last integral converges to∫
R

1
1+t2 dt = π as ε→ 0. It follows that

| I 2(x)− I 2(x̂)| ≤ (π + C(ε)) ||φ||0,α |x− x̂|α,(82)

with C(ε)→ 0, as ε→ 0.

The estimate (76) follows from a combination of (77), (80), (81), and (82). This completes
the proof of Lemma 7 in the case δ > 0.
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C.2. The case δ = 0

We remark that the estimates of I 1(x), I 2(x), I 1(x)− I 1(x̂), I 2(x)− I 2(x̂) of Section C.1
remain valid when δ = 0 if both X 6= 0 and X̂ 6= 0, since in this case, the denominators of
the kernels do not vanish. Thus, to establish the lemma when δ = 0, we only need to check
that |Iε,0ϕ(0)| ≤ (π+C(ε))||φ||0,α and that |Iε,0ϕ(X)−Iε,0ϕ(0)| ≤ (π+C(ε))||φ||0,α |X|α,
with limε→0 C(ε) = 0. The first inequality is a straightforward consequence of the definition
of Iε,0ϕ(0) and of the fact that φ(0) = ϕ(0).

To prove the second estimate, we form

|Iε,0ϕ(X)− Iε,0ϕ(0)| ≤

∣∣∣∣∣
∫
|s|<M

a0

s2 + a2
0

φ(s+ x)− πφ(0)

∣∣∣∣∣
+

∣∣∣∣∣
∫
|s|<M

sψ′1,ε(x)

s2 + a2
0

φ(s+ x)

∣∣∣∣∣
≤
∣∣∣∣ ∫

R

1

1 + t2
φ(a0t+ x)−

∫
R

1

1 + t2
φ(0)

∣∣∣∣
+

∣∣∣∣∣
∫
|s|<M

sψ′1,ε(x)

s2 + a2
0

[φ(s+ x)− φ(x)]

∣∣∣∣∣
The C0,α regularity of ψ′1,ε implies that the second term can be estimated by

|ψ′1,ε(x)| ||φ||0,α
∫
|s|<M

s1+α

s2 + a2
0

≤ C||ψ1,ε||1,α |x|α ||φ||0,α

≤ C εν ||φ||0,α |X|α.

As for the first term, we write it as∣∣∣∣ ∫
R

1

1 + t2
[φ(a0t+ x)− φ(0)]

∣∣∣∣ ≤ ||φ||0,α ∫
R

1

1 + t2

∣∣∣∣ψ2,ε(x)− ψ1,ε(x)

x
t+ 1

∣∣∣∣α |x|α
≤ |X|α ||φ||0,α

∫
R

1

1 + t2
|Cενt+ 1|α.

It easily follows from the Lebesgue dominated convergence theorem that the integral above
(which is independent of x) converges to π as ε→ 0. Combining the two previous estimates
we obtain

|Iε,δϕ(X)− Iε,δϕ(0)| ≤ (π + C(ε)) ||φ||0,α |X|α,

with limε→0 C(ε) = 0, as desired.

Appendix D

Proof of Lemma 8

In this section, we show that for fixed ε,

∀ ϕ ∈ C0,α(Γ2), lim
δ→0

Kε,δϕ = Kε,0ϕ in C0,α(Γ1).

We then show a similar result for Iε,δ, Jε,δ, but it is not as strong: For these operators, we are
only able to show pointwise convergence in C0,α′(Γ1) for all 0 < α′ < α, whenϕ ∈ C0,α(Γ2).
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The case of Kε,δ is the easiest. Since Γ2 ∩ {|x| ≤ ε} = Γ2,ε ∩ {|x| ≤ ε} the denominators
are bounded away from 0 in the expression (26) (this also holds for δ = 0). Hence,Kε,δ is an
integral operator with a C1+α kernel, and one can take limits in the integrand to obtain

lim
δ→0

Kε,δϕ = Kε,0ϕ,

in the sense of C0,α(Γ1).

Let ϕ ∈ C0,α(Γ2) and 0 < α′ < α. Assume that χIε,δϕ does not converge to χIε,0ϕ
in C0,α′(Γ1). Then for some ρ > 0 there is a sequence which satisfies

||χIε,δnϕ− χIε,0ϕ||0,α′ > ρ.(83)

Lemma 7 implies that χIε,δnϕ is uniformly bounded in C0,α(Γ1). Since C0,α(Γ1) is com-
pactly embedded in C0,α′(Γ1), we may assume, after extraction of a subsequence, that
(χIε,δnϕ) converges to some function ξ ∈ C0,α′(Γ1). We show in Proposition 5 below that
χIε,δϕ converges uniformly to χIε,0ϕ. Uniqueness of the limit implies that ξ ≡ χIε,0ϕ,
which contradicts (83), and proves the statement of Lemma 8 concerning χIε,δ.

Using Lemma 6, the same argument shows that χJε,δϕ converges to χJε,0ϕ in C0,α′(Γ1).
Here, we use Proposition 4 below which shows that Jε,δϕ(X) converges pointwise to Jε,0ϕ(X),
for X ∈ Γ1 ∩B(0, R0).

D.1. Pointwise convergence of Jε,δϕ(X) as δ → 0

We prove the following:

P 4. – Let ϕ ∈ C0,α(Γ2). Then for any ε ≤ ε0/2 and anyX ∈ Γ1∩B(0, R0),
limδ→0 J

ε,δ(X) = Jε,0ϕ(X).

Proof. – Recall that a0 and b0 denote the quantities

a0 = ψ2,ε(x)− ψ1,ε(x)

b0 = ψ2,ε(s+ x)− ψ1,ε(x).

For X ∈ Γ1 ∩B(0, R0), X 6= 0, the kernel

jε,δ(s, x) =
b− sψ′1,ε(x)

s2 + b2
−
a− sψ′1,ε(x)

s2 + a2
,

converges as δ → 0 a.e. s ∈ (−M,M), to

ψ2,ε(s+ x)− ψ1,ε(x)− sψ′1,ε(x)

s2 + (ψ2,ε(s+ x)− ψ1,ε(x))2
− ψ2,ε(x)− ψ1,ε(x)− sψ′1(x)

s2 + (ψ2,ε(x)− ψ1,ε(x))2

=
b0 − sψ′1,ε(x)

s2 + b20
−
a0 − sψ′1,ε(x)

s2 + a2
0

.

Since we also have

|jε,δ(s, x)| ≤
|b− sψ′1,ε(x)|
s2 + ψ1,ε(x)2

+
|a− sψ′1,ε(x)|
s2 + ψ1,ε(x)2

,
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which is integrable on (−M,M), the Lebesgue dominated convergence theorem implies that,
for any X ∈ Γ1 ∩B(0, R0), X 6= 0,

lim
δ→0

Jε,δϕ(X) =

∫
|s|<M

(
b0 − sψ′1,ε(x)

s2 + b20
−
a0 − sψ′1,ε(x)

s2 + a2
0

)
φ(s+ x)

= Jε,0ϕ(X).

When X = 0, the expression of Jε,δϕ(X) reduces to

Jε,δϕ(0) =

∫
|s|<M

(
ψ2,ε(s) + δ

s2 + (ψ2,ε(s) + δ)2
− δ

s2 + δ2

)
φ(s)

=

∫
|s|<M

(
ψ2,ε(s) + δ

s2 + (ψ2,ε(s) + δ)2
− δ

s2 + δ2

)
[φ(s)− φ(0)]

+ φ(0)

∫
|s|<M

ψ2,ε(s) + δ − sψ′2,ε(s)
s2 + (ψ2,ε(s) + δ)2

+ φ(0)

∫
|s|<M

sψ′2,ε(s)

s2 + (ψ2,ε(s) + δ)2

− φ(0)

∫
|s|<M

δ

s2 + δ2

=: T1 + T2 + T3 + T4.

The term T2 can be integrated explicitely to obtain

T2 = φ(0) [arctan(
s

ψ2,ε(s) + δ
)]M−M

→ φ(0) [arctan(
M

ψ2,ε(M)
)− arctan(

−M
ψ2,ε(−M)

)], as δ → 0.

We remark that since ψ2,ε(s) = O(|s|1+α),

lim
ρ→0±

∫ ±M
ρ

ψ2,ε(s)− sψ′2,ε(s)
s2 + ψ2

2,ε(s)
= arctan(

±M
ψ2,ε(±M)

)− lim
ρ→0±

arctan(
ρ

ψ2,ε(ρ)
)

= arctan(
±M

ψ2,ε(±M)
)∓ π/2.

It follows that

lim
δ→0

T2 = φ(0)

∫ M

−M

ψ2,ε(s)− sψ′2,ε(s)
s2 + ψ2

2,ε(s)
+ πφ(0).(84)

It is easily checked that the integrands in T1 and T3 converge a.e. s ∈ (−M,M) to the
corresponding expression with δ = 0. Furthermore, the integrand in T1 is bounded by(

ψ2,ε(s) + δ

2|s| (ψ2,ε(s) + δ)
+

δ

2|s| δ

)
||φ||0,α |s|α ≤ ||φ||0,α |s|α−1,

which is integrable on (−M,M). The integrand in T3 can be bounded using Propositions 2
and 3 ∣∣∣∣ sψ′2,ε(s)

s2 + (ψ2,ε(s) + δ)2

∣∣∣∣ ≤ C|s||ψ2,ε(s)|
α

1+α

|s|1+µ |ψ2,ε(s) + δ|1−µ
.
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Choosing 1 − µ = α
1+α , i.e., 0 < µ = 1

1+α < 1, we see that the above term is smaller
thanCs−µ which is also integrable on (−M,M). An application of the Lebesgue dominated
convergence shows that

lim
δ→0

T1 =

∫
|s|<M

ψ2,ε(s)

s2 + ψ2,ε(s)2
[φ(s)− φ(0)](85)

lim
δ→0

T3 = φ(0)

∫
|s|<M

sψ′2,ε(s)

s2 + ψ2,ε(s)2
.(86)

The term T4 can be integrated explicitely and

lim
δ→0

T4 = − lim
δ→0

φ(0) [arctan(
s

δ
)]M−M

= −πφ(0).(87)

Gathering (84)-87, we see

lim
δ→0

Jε,δϕ(0) =

∫
|s|<M

ψ2,ε(s)

s2 + ψ2,ε(s)2
[φ(s)− φ(0)]

+ φ(0)

∫
|s|<M

ψ2,ε(s)− sψ′2,ε(s)
s2 + ψ2,ε(s)2

+ φ(0)

∫
|s|<M

sψ′2,ε
s2 + ψ2,ε(s)2

=

∫
|s|<M

ψ2,ε(s)

s2 + ψ2,ε(s)2
φ(s)

= Jε,0ϕ(0),

which completes the proof of Proposition 4.

D.2. Convergence of χIε,δϕ in L∞(Γ1), as δ → 0

P 5. – Let ϕ ∈ C0,α(Γ2). Then, for any ε ≤ ε0/2, we have

lim
δ→0
||χIε,δϕ− χIε,0ϕ||∞ = 0.

Proof. – We again split Iε,δ in two parts I ε,δ2 ϕ − I ε,δ1 ϕ as in the proof of Lemma 7. In
particular, when X ∈ Γ1 ∩B(0, R0) and δ = 0,

I ε,01 ϕ(X) =


∫
|s|<M

sψ′1,ε(x)

s2+a2
0
φ(s+ x) if X 6= 0

0 if X = 0

I ε,02 ϕ(X) =

{ ∫
|s|<M

a0

s2+a2
0
φ(s+ x) if X 6= 0

πφ(0) if X = 0.

We first examine the convergence of I ε,δ1 . For X 6= 0, X ∈ Γ1 ∩ B(0, R0), since the
integrand is an odd function of s, we have

I ε,δ1 ϕ(X)− I ε,01 ϕ(X) =

∫
|s|<M

sψ′1,ε(x)

(
1

s2 + a2
− 1

s2 + a2
0

)
[φ(s+ x)− φ(x)]
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=

∫
|s|<δ

sψ′1,ε(x)

(
1

s2 + a2
− 1

s2 + a2
0

)
[φ(s+ x)− φ(x)]

+

∫
δ<|s|<M

sψ′1,ε(x)

(
1

s2 + a2
− 1

s2 + a2
0

)
[φ(s+ x)− φ(x)]

=: T1 + T2.

The term T1 can be estimated by

|T1| ≤ |ψ′1,ε(x)| ||φ||0,α
∫
|s|<δ

s1+α

∣∣∣∣ 1

s2 + a2
− 1

s2 + a2
0

∣∣∣∣
≤ |ψ′1,ε(x)| ||φ||0,α

∫
|s|<δ

sα−1

≤ C |ψ′1,ε(x)| ||ϕ||0,α δα.(88)

As for T2, we have

|T2| ≤ ||φ||0,α
∫
δ<|s|<M

|ψ′1,ε(x)| |s|1+α

∣∣∣∣ 1

s2 + a2
− 1

s2 + a2
0

∣∣∣∣ .
Applying the mean value theorem, we see that for any s ∈ R,

1

s2 + a2
− 1

s2 + a2
0

=
−2(a0 + θδ)δ

(s2 + (a0 + θδ)2)2
,

for some 0 ≤ θ ≤ 1, so that

|ψ′1,ε(x)||s|1+α

∣∣∣∣ 1

s2 + a2
− 1

s2 + a2
0

∣∣∣∣ ≤ δ
|s|α|ψ′1,ε(x)|
s2 + a2

0

.

Using once again Propositions 2 and 3, we can estimate the above right-hand side by

C δ
|s|α|ψ1,ε(x)|

β
1+β

s1+ 1
1+β |ψ1,ε(x)|1−

1
1+β

≤ C δ |s|α−1− 1
1+β ,

for any β < α0. Thus, we obtain

|T2| ≤ C ||φ||0,α
∫
δ<|s|<M

δ |s|α−1− 1
1+β

≤ δα C ||φ||0,α
∫
δ<|s|<M

|s|−
1

1+β

≤ C ||ϕ||0,α δα.

The above inequality together with (88), and the fact that I ε,δ1 ϕ(0) = I ε,01 ϕ(0) = 0, imply
that

||χ I ε,δ1 ϕ− χ I ε,01 ϕ||∞ ≤ C ||ϕ||0,α δa.(89)

Next, we consider the convergence of I ε,δ2 . AssumingX 6= 0, X ∈ Γ1∩B(0, R0), we have

| I ε,δ2 ϕ(X)− I ε,02 ϕ(X)| =

∣∣∣∣∣
∫
|s|<M

a

s2 + a2
φ(s+ x)−

∫
|s|<M

a0

s2 + a2
0

φ(s+ x)

∣∣∣∣∣
=

∣∣∣∣ ∫
R

1

1 + t2
[φ(at+ x)− φ(a0t+ x)]

∣∣∣∣ .
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Recalling that a = a0 + δ, it follows that

| I ε,δ2 ϕ(X)− I ε,02 ϕ(X)| ≤ ||φ||0,α
∫
R

δαtα

1 + t2

≤ C ||ϕ||0,α δα.(90)

When X = 0, we have

| I ε,δ2 ϕ(0)− I ε,02 ϕ(0)| =

∣∣∣∣∣
∫
|s|<M

δ

s2 + δ2
φ(s)− πφ(0)

∣∣∣∣∣
=

∣∣∣∣ ∫
R

1

1 + t2
[φ(δt)− φ(0)]

∣∣∣∣
≤ ||φ||0,α

∫
R

δαtα

1 + t2
,

which, in view of (90), shows that

||χ I ε,δ2 ϕ− χ I ε,02 ϕ||∞ ≤ C ||ϕ||0,α δα.(91)

A combination of (89) and (91) now completes the proof of the proposition.

Appendix E

Proof of Lemma 4

In this section we show that the off-diagonal term Lδ2 : C0,α(Γ2) → C0,α(Γ1) is not a
compact operator when δ = 0, for any 0 < α < 1. For simplicity, we only consider the case
when Γ2 is flat around the contact point, i.e., we assume thatψ2(y) = 0 for |y| < y0. Note that
in this caseD2 is not strictly convex. The general case can be reduced to the case of a flat Γ2,
by using a decomposition of the operator similar to that of Section 2.3. Letχ ∈ C∞c (−y0, y0),
with 0 ≤ χ ≤ 1 and χ(y) ≡ 1 for |y| ≤ y0/2. For X = (x, ψ1(x)) ∈ Γ1, we write

Lδ2(ϕ) = Lδ2((1− χ(|Y |))ϕ) + Lδ2(χ(|Y |)ϕ).

The first operator on the right–hand side has a kernel that remains uniformly bounded with
respect to δ, and is thus compact from C0,α(Γ2) to C0,α(Γ1) in the limit δ = 0. Setting
φ(y) = χ(y)ϕ(y, 0), the second operator writes for |X| ≤ ε0

Rδϕ(X) :=
1

2π

∫
R

(δ − ψ1(x)− ψ′1(x)(y − x)

(x− y)2 + (ψ1(x)− δ)2
φ(y) dy

=
1

2π

∫
R

(x− y)ψ′1(x)

(x− y)2 + (ψ1(x)− δ)2
φ(y) dy +

1

2π

∫
R

φ(t[δ − ψ1(x)] + x)

t2 + 1
dt,

where we have changed to the variable t = (y − x)/(δ − ψ1(x)). As δ → 0, Rδ formally
reduces to Rϕ = 1/2π(R1 +R2)ϕ with

R1ϕ(X) =

∫
R

(x− y)ψ′1(x)

(x− y)2 + ψ1(x)2
φ(y) dy

R2ϕ(X) =

∫
R

φ(t|ψ1(x)|+ x)

t2 + 1
dt.
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It is not difficult to make this convergence argument rigorous, and this shows that
L0

2 − 1
2π (R1 + R2) is C0,α-compact. Proceeding as in Section (C), one can check that

both R1 and R2 are continuous from C0,α(Γ2) to C0,α(Γ1), for any 0 < α < α0.

We now show that R1 + R2 is not compact. We can always assume that the support of
the cut–off function χ is sufficiently large to contain y = 1. Let ζ ∈ C1

c(R), such that
Supp(ζ) ⊂ (−y0, y0), ζ(1) 6= 0 and ζ(0) = 0. For n ≥ 1 and Y = (y, 0) ∈ Γ2, we define

ϕn(Y ) = 2−nαζ(2ny).

Note that χϕn = ϕn.

Claim 1. – The sequence ϕn is uniformly bounded in C0,α(Γ2).

We first note that since ζ ∈ C1
c(R), we have for any 0 < µ < 1, and any (y, y′) ∈ supp(ζ)2,

|ζ(y)− ζ(ŷ)|
|y − ŷ|µ

≤ ||ζ||1 |y − ŷ|1−µ ≤ ||ζ||1 2y1−µ
0 .

It immediately follows that ζ ∈ C0,µ(R) with a norm that is bounded by 2y1−µ
0 ||ζ||1 for any

0 < µ < 1.

Next, ||ϕn||∞ ≤ 2−nα||ζ||∞ tends to 0, while for y, ŷ ∈ R we have

|ϕn(y)− ϕn(ŷ)| = 2−nα|ζ(2ny)− ζ(2nŷ)| ≤ 2−nα||ζ||0,α |2ny − 2nŷ|α

= ||ζ||0,α |y − ŷ|α,

which shows the uniform boundedness of (ϕn) in C0,α(Γ2).

Claim 2. – R1ϕn → 0 in C0(Γ1 ∩ {|X| ≤ ε0}).

For |X| ≤ ε0, we compute

R1ϕn(X) = −2−nα
∫
R

sψ′1(x)

s2 + ψ1(x)2
ζ(2n(s+ x)) ds

= −2−nα
∫ M

−M

sψ′1(x)

s2 + ψ1(x)2
[ζ(2n(s+ x))− ζ(2nx)] ds,

where M is an upper bound on the support of ζ(2n(· + x)) which is uniform in n and
in X ∈ Γ1, |X| ≤ ε0. Using the fact that ζ ∈ C0,α/2(R) to control ζ(2n(s+ x))− ζ(2nx) in
the integral above, we obtain

|R1ϕn(X)| ≤ 2−nα/2 C |ψ′1(x)|
∫ M

0

s1+α/2

s2 + ψ2
1(x)

≤ 2−nα/2 C||ψ′1||∞,

which proves the claim.

Claim 3. – limn→∞
|R1ϕn(Xn)−R1ϕn(0)|

|Xn−0|α = 0, where Xn := (2−n, ψ1(2−n)).

Indeed, denoting again byM a bound on the support of s→ ζ(2ns+1) which is uniform
in n, we form

|R1ϕn(Xn)−R1ϕn(0)|
2−nα

=

∣∣∣∣∣
∫ M

−M

sψ′1(2−n)

s2 + ψ1(2−n)2
ζ(2ns+ 1) ds

∣∣∣∣∣
≤
∫ M

−M

|sψ′1(2−n)|
s2 + ψ1(2−n)2

|ζ(2ns+ 1)− ζ(1)| ds.
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For s 6= 0, the integrand is bounded by

2||ζ||∞ |ψ′1(2−n)| |s|−1 ≤ 2||ζ||∞ ||ψ1||1,α 2−nα|s|−1,

and so it tends to 0 a.e. Moreover, since ψ1(0) = ψ′1(0) = 0, the integrand is bounded by

|ψ′1(2−n)| |s|
s2 + ψ1(2−n)2

||ζ||0,α 2nα|s|α ≤ ||ψ1||1,α ||ζ||0,α |s|α−1,

which is integrable on (0,M). The claim then follows from the Lebesgue dominated conver-
gence Theorem.

Claim 4. – R2ϕn → 0 in C0(Γ1 ∩ {|X| ≤ ε0}).
Indeed, we have for X = (x, ψ1(x)) ∈ Γ1 ∩ {|X| ≤ ε0},

|R2ϕn(X)| ≤
∫
R

1

t2 + 1
|ϕn(t|ψ1(x)|+ x, 0)| dt

= 2−nα
∫
R

1

t2 + 1
|ζ(2nt|ψ1(x)|+ 2nx)| dt ≤ C 2−nα

∫
R

1

1 + t2
,

which proves the claim.

Claim 5. – limn→∞
|R2ϕn(Xn)−R2ϕn(0)|

|Xn−0|α = π|ζ(1)| 6= 0, where Xn = (2−n, ψ1(2−n)).
Indeed, we have

R2ϕn(Xn)−R2ϕn(0)

|2−n − 0|α
=

∫
R

ζ(2nt|ψ1(2−n)|+ 1)

t2 + 1
dt.

Since ψ1 has regularity C1,α and since ψ1(0) = ψ′1(0) = 0, we see that

|2nψ1(2−n)| ≤ C2n(2−n)1+α = C2−nα,

so that as n→∞,

(92)


1

t2+1ζ(2nt|ψ1(2−n)|+ 1) → ζ(1)
t2+1 a.e. t ∈ R,

∣∣∣ 1
t2+1ζ(2nt|ψ1(2−n)|+ 1)

∣∣∣ ≤ ||ζ||∞
t2+1 ,

and the Lebesgue dominated convergence Theorem now shows that

|R2ϕn(Xn)−R2ϕn(0)|
|Xn − 0|α

∼ |R2ϕn(Xn)−R2ϕn(0)|
|2−n − 0|α

→ |ζ(1)|
∫
R

1

1 + t2
= π |ζ(1)| 6= 0,

as n→∞, which proves the claim.
We thus have exhibited a sequence (ϕn)n≥1, bounded in C0,α(Γ2), such that (R1 +R2)ϕn

converges to 0 in C0(Γ1 ∩ {|X| ≤ ε0}), albeit no subsequence of (R1 + R2)ϕn converges
to 0 in C0,α(Γ1 ∩ {|X| ≤ ε0}). Therefore no subsequence of (R1 + R2)ϕn converges
in C0,α(Γ1 ∩ {|X| ≤ ε0}), and so R1 + R2 is not a compact operator from C0,α(Γ2)

to C0,α(Γ1 ∩ {|X| ≤ ε0}). Since L0
2 − 1

2π (R1 +R2) is C0,α compact, it immediately follows
that L0

2 is not a compact operator from C0,α(Γ2) to C0,α(Γ1) for any α < α0.
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