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EIGENFAMILIES, CHARACTERS AND MULTIPLICITIES

by

James Arthur

Abstract. — We give a simplified description of a recent classification of automorphic

representations of quasisplit orthogonal and symplectic groups. There are three sec-

tions, indexed by the three words in the title, which begin with the fundamental

notion of an automorphic family of Hecke eigenvalues, and conclude in a description

of the main multiplicity formula for the automorphic representations in the discrete

spectrum.

Résumé(Familles propres, caractères et multiplicités). —On donne une description sim-

plifiée d’une récente classification des représentations automorphes des groupes or-

thogonaux et symplectiques quasi-déployés. L’article comprend trois sections qui cor-

respondent aux trois parties du titre. Elles commencent avec la notion fondamentale

de famille automorphe de valeurs propres de Hecke et se concluent par une descrip-

tion de la principale formule de multiplicité pour les représentations automorphes du

spectre discret.

Foreword

This article is expository. It consists of a short description of the main results

of [A2], namely a characterization of the automorphic discrete spectrum of a quasisplit

orthogonal or symplectic group G. The article [A3] also contains a summary of

the results of [A2]. However, we simplified the discussion there by defining global

parameters in terms of the hypothetical global Langlands group LF . Our focus here

will be somewhat different. In particular, we shall formulate the global parameters

we need as in the original monograph, simplified somewhat, but still without recourse

to the undefined group LF .

We are assuming for the moment that the field F is global (of characteristic 0).

We recall that the global Langlands group LF is a hypothetical, locally compact

2010Mathematics Subject Classification. — 22E50, 22E55, 58C40.

Key words and phrases. — Global Langlands group, automorphic eigenfamilies, local characters,

global multiplicities.
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2 J. ARTHUR

extension of the global Weil group WF by a subgroup KF that is compact, con-

nected and (if we are prepared to be optimistic) even simply connected. It would

be characterized by the property that its irreducible, unitary, N -dimensional repre-

sentations parametrize unitary cuspidal automorphic representations of the general

linear group GL(N) over F . However, its existence is far deeper than any theorems

now available. The present role of LF is therefore confined to one of motivation and

guidance.

The global parameters ψ in [A2] were in fact defined crudely in terms of cuspidal

automorphic representations of general linear groups (rather than irreducible finite

dimensional representations of the hypothetical group LF ). This leads to a workable

substitute Lψ for LF . But as the notation suggests, it has the unfortunate property

of being dependent on ψ. We would be better off having a group that at the very

least is independent of ψ. I had originally planned to include the construction of

such a group in this paper. It is a locally compact group L̃∗
F over WF that is indeed

independent of ψ, and which for the purposes of [A2] should serve as a substitute for

the universal group LF . It amounts to an extension of the group L̃∗
F,reg introduced

in [A2, §8.5]. However, the construction of L̃∗
F is related to questions in base change

and automorphic induction that, for me at least, require some further thought. Rather

than take the time here, I shall leave it for another paper.

This article will therefore be restricted to our brief survey of results from [A2]. It

consists of three sections, each devoted to its own general theme. We have chosen

the title to reflect these themes, and to draw attention to another difference from

the survey [A3]. We have tried here to motivate the results from a more elementary

and explicit point of view. Each theme leads naturally to the next, until we end

in §3 with the global multiplicity formula for G. I hope that the two surveys will

be complementary, despite inevitably having much in common. In this article we

have emphasized the underlying context of the results (including the role of LF and

its possible substitutes), while [A3] was designed more as a guide to their proofs.

In particular, there will be no discussion here of the trace formula for G and its

stabilization, or the twisted trace formula for GL(N), and its conditional stabilization

on which the results still depend.

In §1, we describe automorphic families

c = {cv : v 6∈ S}

of Hecke eigenvalues for G. The general transfer of these objects is perhaps the

most concrete and fundamental manifestation of Langlands’s principle of functoriality.

However, the endoscopic transfer of Hecke eigenfamilies leads immediately to the more

complex question of how automorphic spectra behave under transfer. This question

cannot be framed in the absence of further local information. It forces us to provide

a corresponding local theory of endoscopic transfer.

In §2, we describe the classification of irreducible representations of a localization

G(Fv) of G. These results will be formulated explicitly in terms of irreducible char-

acters, and the transfer factors of Kottwitz, Langlands and Shelstad. We will then

ASTÉRISQUE 369



EIGENFAMILIES, CHARACTERS AND MULTIPLICITIES 3

be able to state the main global theorem in §3. It gives a decomposition of the auto-

morphic discrete spectrum

L2
disc

(
G(F )\G(A)

)

of G in terms of global,“square integrable”parameters ψ ∈ Ψ̃2(G). The data ψ are the

global objects that would be defined naturally in terms of the hypothetical group LF ,

but which must in practice be constructed in a more prosaic manner.

The results described in §1–§3 are special cases of Langlands’s conjectural theory

of endoscopy. They also give special cases of the broader principle of functoriality.

However, they occupy a special niche within the general theory. This is because a

global parameter ψ ∈ Ψ̃2(G) is uniquely determined by its associated Hecke eigen-

family

c(ψ) =
{
cv(ψ) = c(ψv) : v 6∈ S

}
,

regarded in fact as a family of conjugacy classes in a complex general linear group

GL(N,C). In other words, the automorphic representation theory of G is governed

by the concrete objects introduced early in §1. This circumstance is also behind the

construction of the group L̃∗
F , which we have postponed for now.

We conclude the introduction with a review of the relevant groups. We take F to be

a local or global field of characteristic 0, and G to be a quasisplit, special orthogonal

or symplectic group over F . (We assume always that G is “classical”, in the sense

that it is not an outer twist of the split group SO(8) by a triality automorphism.) For

the first three sections of this paper, we follow the conventions from the beginning

of [A3]. Then G has a complex dual group Ĝ, and a corresponding L-group

LG = Ĝ⋊ ΓE/F .

We are taking ΓE/F = Gal(E/F ) to be the Galois group of a suitable finite exten-

sion E/F . If G is split, for example, the absolute Galois group Γ = ΓF = ΓF/F acts

trivially on Ĝ, and we often take E = F .

There are three general possibilities for G, whose description we take from page 2

of [A3]. They correspond to the three infinite families of simple groups Bn, Cn and

Dn, and are as follows.

Type Bn: G = SO(2n+ 1) is split, and Ĝ = Sp(2n,C) = LG.

Type Cn: G = Sp(2n) is split, and Ĝ = SO(2n+ 1,C) = LG.

Type Dn: G = SO(2n) is quasisplit, and Ĝ = SO(2n,C). In this case, we can

take LG to be the semidirect product of SO(2n,C) with ΓE/F , where E/F is an

arbitrary extension of degree 1 or 2 whose Galois group acts by outer automor-

phisms on SO(2n,C) (which is to say, by automorphisms that preserve a fixed

splitting of SL(2n,C)). The nontrivial outer automorphism of SO(2n,C) is in-

duced by conjugation by some element in its complement in O(2n,C).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



4 J. ARTHUR

The other infinite family of simple groups is of course An. We regard the split

(reductive) group GL(N), with N = n+1, as our representative from this family. Its

role is different. For we are treating the representations of GL(N) as known objects,

in terms of which we want to classify the representations of G. We write

θ̃(N) : x −→ J̃(N) tx−1J̃(N)−1, J̃(N) =




0 1

−1

. .
.

(−1)N+1 0


 ,

for the outer automorphism of GL(N) that stabilizes the standard splitting, and

G̃(N)+ = GL(N)⋊
〈
θ̃(N)

〉

for the semidirect product of GL(N) with the group (of order 2) generated by θ̃(N).

It is a union of the connected component

G̃(N) = GL(N)⋊ θ̃(N)

and the identity component G̃(N)0 = GL(N). Of special interest are the irreducible

representations of GL(N) that are θ̃(N)-stable, which is to say that they extend to

the group G̃(N)+.

We have introduced the “minimal” L-group LG = Ĝ ⋊ ΓE/F above for simplicity.

It suffices for many purposes. However, one is sometimes forced to take the Galois

extension E/F to be large. For this, it is easiest just to take the “maximal”L-group,

either its Galois form
LG = Ĝ⋊ ΓF ,

or its Weil form
LG = Ĝ⋊WF .

The former will be used at some point in §3, while the latter is used for the Langlands

group LF and its approximation L̃∗
F .

The integers n of course refer to the number of vertices in the relevant Coxeter-

Dynkin diagrams. In the expository interests of this article, we will generally focus

on a given orthogonal or symplectic group G, rather than the set of G attached as

twisted endoscopic data to a given general linear group. In other words, we will

usually fix G, and then take the general linear group GL(N) attached to the standard

representation of LG. It will thus be understood implicitly that N equals 2n, 2n+ 1

and 2n in the three cases Bn, Cn and Dn. Note that if G is of type Cn, and we

happen to be working with the maximal, Galois form

LG = Ĝ⋊ ΓF = SO(2n+ 1,C)⋊ ΓF

of the L-group, the standard representation is understood to be trivial on the Galois

factor ΓF . This represents the canonical twisted endoscopic datum for GL(N), whose

complement would be given by the set of embeddings parametrized by characters of

ΓF of order 2. (See [A2, §1.2].)

ASTÉRISQUE 369



EIGENFAMILIES, CHARACTERS AND MULTIPLICITIES 5

1. Hecke eigenfamilies

In this section, we take the field F to be global. Our theme will be the families

of Hecke eigenvalues, Hecke eigenfamilies, at the heart of automorphic representa-

tions. They are conjectured to carry information that would characterize much of the

arithmetic word, according to a basic premise of the Langlands program.

We begin with the general linear group GL(N). We shall recall two fundamental

theorems for this group. These are the global foundation for the study of automorphic

representations of the other three families of groups G.

Given N , we consider the set Ψsim(N) = Ψsim

(
GL(N)

)
of triplets consisting of:

(i) a decomposition N = mn, for positive integers m and n;

(ii) an irreducible, unitary, cuspidal automorphic representation µ of the group

GL(m);

(iii) the unique irreducible representation ν of the group SU(2) of dimension n.

Theorem 1.1(Moeglin-Waldspurger [MW ]). — There is a canonical bijection

(1.1) ψ −→ πψ , ψ ∈ Ψsim(N),

from Ψsim(N) onto the set of irreducible unitary representations of GL(N,A) that

occur in the automorphic, relative discrete spectrum L2
disc

(
GL(N,F )\GL(N,A)

)
of

GL(N). Moreover, for any ψ, πψ occurs in the relative discrete spectrum with multi-

plicity one.

Moeglin and Waldspurger construct πψ explicitly as a multi-residue of a cuspidal

Eisenstein series attached to µ. More precisely, a certain Eisenstein multi-residue

provides an intertwining operator from a global Langlands quotient, the global Speh

representation πψ obtained by parabolic induction from the nonunitary representation

(1.2) x −→ µ(x1)| detx1|
n−1
2 ⊗ µ(x2)| det x2|

n−3
2 ⊗ · · · ⊗ µ(xn)| detxn|

−n−1
2

of the standard Levi subgroup

MP (A) =
{
x = (x1, . . . , xn) : xi ∈ GL(m,A)

}

of GL(N,A), to a constituent of the relative discrete spectrum. The deepest part of

the theorem is to show that there is nothing further in the relative discrete spectrum.

This entails a sustained analysis of Chapter 7 of Langlands’s monograph [L1], and

the various supplementary residues that can arise from it.

Corollary 1.2. — Let Ψ(N) = Ψ
(
GL(N)

)
be the set of pairs consisting of

(i) a partition N = N1 + · · ·+Nr of N ;

(ii) a formal unordered sum

ψ = ψ1 ⊞ · · ·⊞ ψr, ψi ∈ Ψsim(Ni).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



6 J. ARTHUR

There is then a bijection

ψ −→ πψ , ψ ∈ Ψ(N),

from Ψ(N) onto the set of irreducible constituents of the full automorphic spectrum

L2
(
GL(N,F )\GL(N,A)

)
of GL(N).

The corollary is a consequence of Langlands’s general construction of automor-

phic spectra from relative discrete spectra of Levi subgroups. For the given element

ψ ∈ Ψ(N), πψ is given by parabolic induction of the unitary representation

πψ1
(x1)⊗ · · · ⊗ πψr (xr)

of the standard Levi subgroup

MP (A) =
{
x = (x1, . . . , xr) : xi ∈ GL(Ni,A)

}

of GL(N,A).

If we had the hypothetical Langlands group LF at our disposal, Ψ(N) could be

identified with the set of unitary, N -dimensional representations

(1.3) ψ : LF × SU(2) −→ GL(N,C)

of the product of LF with SU(2). The subset Ψsim(N) would then be identified with

the set of irreducible representations in Ψ(N). As matters stand here, the irreducible

representation of ν of SU(2) attached to an element ψ ∈ Ψsim(N) is not explicit in the

construction. One sees only its weights, which are represented by the quasicharacters

| · |
n−1
2 , | · |

n−3
2 , . . . , | · |−

n−1
2

in (1.2). We often write Φbdd(N) for the subset of elements φ = ψ in Ψ(N) whose

simple factors ψi come with the trivial representation νi = 1 of SU(2). They would

of course correspond to representations (1.3) that are trivial on the factor SU(2).

Suppose that π is an irreducible (admissible) representation of GL(N,A). Then π

is unramified at almost all valuations v of F . We recall that for any v, the Satake

transform gives a canonical bijection

πv −→ c(πv)

from the set of unramified irreducible representations πv of GL(N,Fv) to the set of

semisimple conjugacy classes cv in the dual group GL(N,C) of GL(N). The given

global representation π thus gives rise to a family

c(π) =
{
cv(π) = c(πv) : v 6∈ S

}

of semisimple conjugacy classes in GL(N,C), parametrized by a cofinite set of val-

uations v, and taken up to the equivalence relation obtained by setting c ∼ c′ if

cv = c′v for almost all v. We will call c(π) a Hecke eigenfamily. It represents a set of

simultaneous eigenvalues for the action of the factors of the restricted tensor product

HSun(N) =

∼⊗

v 6∈S

Hv,un(N)

ASTÉRISQUE 369



EIGENFAMILIES, CHARACTERS AND MULTIPLICITIES 7

of local unramified Hecke algebras

Hv,un(N) = C∞
c

(
GL(N,Ov)\GL(N,Fv)/GL(N,Ov)

)
,

relative to the hyperspecial maximal compact subgroup

KS(N) =
∏

v 6∈S

Kv(N) =
∏

v 6∈S

GL(N,Ov)

of GL(N,AS), on the space of KS(N)-invariant vectors of π.

Suppose that ψ belongs to the set Ψ(N) defined in Corollary 1.2. We then obtain

a Hecke eigenfamily

(1.4) c(ψ) = c(πψ) =
{
cv(ψ) = c(πψ,v) : v 6∈ S

}

from the irreducible representation πψ of GL(N,A). This is to be regarded as a

concrete datum, which is attached to the formal object ψ through the automorphic

representation πψ. According to the remarks following the statements of Theorem 1.1

and Corollary 1.2, c(ψ) is given explicitly in terms of the Hecke eigenfamilies

c(µi) =
{
cv(µi) : v 6∈ S

}
, 1 ≤ i ≤ r,

of the cuspidal components of the constituents ψi of ψ. More precisely, if ψ ∈ Ψsim(N)

is as in Theorem 1.1, then

(1.5) cv(ψ) = cv(µ)⊗ cv(ν) = cv(µ)q
n−1

2
v ⊕ · · · ⊕ cv(µ)q

− n−1
2

v ,

while if ψ ∈ Ψ(N) is a general element as in Corollary 1.2, we have

(1.6) cv(ψ) = cv(πi)⊕ · · · ⊕ cv(πr).

These objects represent explicit conjugacy classes in GL(N,C).

We write

(1.7) C(N) =
{
c(ψ) : ψ ∈ Ψ(N)

}

for the set of Hecke eigenfamilies attached to elements in Ψ(N).

Theorem 1.3(Jacquet-Shalika[JS]). — The mapping

ψ −→ c(ψ), ψ ∈ Ψ(N),

is a bijection from Ψ(N) to C(N).

Historically, Theorem 1.3 predated Theorem 1.1. It applied to a class of auto-

morphic representations of GL(N) Langlands introduced in [L2], and called isobaric.

At the time, it was not known whether these included the constituents of the auto-

morphic discrete spectrum. Theorem 1.1 implies that these constituents are distinct

and isobaric. It therefore yields the interpretation above of the original theorem of

Jacquet and Shalika.

The injectivity of the mapping is of course the point of Theorem 1.3. It implies

that any information that might be contained in a constituent πψ of the automor-

phic spectrum of GL(N) ought to be reflected somehow in the corresponding Hecke

eigenfamily c(ψ). Since c(ψ) appears to contain less information, the ramified local

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



8 J. ARTHUR

constituents of πψ being an obvious gap, and since it is itself just a concrete set of

complex parameters, the assertion is quite remarkable. What about the other half of

the problem? Can one characterize the image C(N) of the mapping within the set of

all Hecke eigenfamilies? The question is too broad as stated, and would not be ex-

pected to have a reasonable answer. Langlands’s point of view was to look instead for

reciprocity laws between Hecke eigenfamilies in C(N) and data obtained from other

sources. It is in this context that we can frame the classification of automorphic

representations of the groups G.

The transition from general linear groups GL(N) to our classical groups G begins

with the contragredient involution

π −→ π∨(x) = π(tx−1) ∼=
(
π ◦ θ̃(N)

)
(x), x ∈ GL(N,A),

on irreducible representations π of GL(N,A). This operation also defines a natural

involution ψ → ψ∨ on Ψ(N) such that

πψ∨ = π∨
ψ .

It follows from the definitions that

c∨(ψ)
def
= c(ψ∨) =

{
c∨v (ψ) = cv(ψ)

−1 : v 6∈ S
}
.

We write

Ψ̃(N) =
{
ψ ∈ Ψ(N) : ψ∨ = ψ

}

and

C̃(N) =
{
c ∈ C(N) : c∨ = c

}

for the subsets of self-dual elements in Ψ(N) and C(N). They are in bijection under

the mapping of the last theorem. As we will see, the automorphic representation

theory of the groups G is governed by these sets.

Suppose that G is a quasisplit special orthogonal or symplectic group over F , as

at the end of the foreword. Satake transforms and unramified local Hecke algebras

are again defined for G, as they are for any connected reductive group over F . An

irreducible (admissible) representation π of G(A) then yields a Hecke eigenfamily

c(π) =
{
cv(π) = c(πv) : v 6∈ S

}
.

Its components cv(π) are semisimple classes in the L-group LG, which we define as

usual by Ĝ-conjugacy in the case Bn and Cn. If G is of type Dn, however, we

agree to define the classes in LG by O(2n,C) conjugacy (rather than conjugacy by

the subgroup Ĝ = SO(2n,C) of index 2). We continue to regard the family as an

equivalence class under the relation c ∼ c′ defined as for GL(N) above.

Given G, we write C̃(G) for the set of Hecke eigenfamilies c(π), where π ranges

over irreducible representation of G(A) that occur in the automorphic spectrum of

L2
(
G(F )\G(A)

)
.

Theorem 1.4. — The embedding of LG into GL(N,C) gives a canonical mapping

(1.8) C̃(G) −→ C̃(N).

ASTÉRISQUE 369



EIGENFAMILIES, CHARACTERS AND MULTIPLICITIES 9

The theorem asserts that the Hecke eigenfamily for GL(N) attached to an auto-

morphic Hecke eigenfamily for G is automorphic for GL(N). This is essentially Propo-

sition 3.4.1 of [A2], particularly the ensuing Corollary 3.4.3. The corollary actually

applies to the discrete spectrum of G, but an easy comparison of Levi subgroups

of G and GL(N), together with Langlands’s construction of continuous spectra by

Eisenstein series, leads to the general result.

It is easy to see that the mapping (1.8) is injective. (See the elementary analysis of

[A2, §1.2], with the group ΛF there taken to be infinite cyclic.) We can there-

fore regard C̃(G) as a subset of C̃(N). One can actually characterize this subset. To

do so, however, would require some of the deeper results of [A2], so we shall put the

matter aside for the moment.

Our main focus is the automorphic representation theory of G. We have just seen

that the Hecke eigenfamilies attached to automorphic representations of G are among

the automorphic Hecke eigenfamilies for GL(N). This is a reciprocity law of the

sort mentioned earlier. It represents a proof of a small part of Langlands’s principle

of functoriality (so called “weak functoriality” for the pair G and GL(N), and the

standard embedding of LG into GL(N,C)).

To understand the automorphic representation theory of G, we need to supplement

the reciprocity law. We would like to make it the foundation for a broader description

of the contribution of any element c in C̃(N) (a set whose objects we are regarding as

known) to the automorphic spectrum of G. It is enough just to consider the discrete

spectrum, by the theory of Eisenstein series. We can therefore pose the problem more

precisely as follows. Given any element ψ ∈ Ψ̃(N), and any irreducible representation

π in the set {
π ∈ Π

(
G(A)

)
: c(π) = c(ψ)

}
,

find an explicit formula for the multiplicity

mψ(π) = mG,ψ(π)

of π in the automorphic discrete spectrum of G. This of course would give information

about the subset C̃(G) of Ψ̃(N). For if mψ(π) is nonzero for any such π, the Hecke

eigenfamily c(ψ) lies in C̃(G). However, the most significant implication of the problem

is that it demands an understanding of local representation theory.

In the next section we will describe the local theory of endoscopy for the completions

G(Fv) of G. We will formulate results for irreducible representations πv of G(Fv)

explicitly in terms of their characters. This will allow us to describe the answer of the

multiplicity question in §3.

2. Local character relations

Throughout this section, we take the field F to be local. We fix a quasisplit special

orthogonal or symplectic group G, as at the end of the foreword. The local Langlands

group LF is given by a simple prescription, unlike its hypothetical global counterpart.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



10 J. ARTHUR

By definition, we have

LF =

{
WF , if F is archimedean,

WF × SU(2), if F is p-adic,

where WF is the (local) Weil group of F . We are therefore free to define local param-

eters as L-homomorphisms from LF to the L-group LG.

In [A3, §1], we introduced four families of local parameters for G, and four fam-

ilies of irreducible representations of G(F ). These give four pairs
(
Φ(G),Π(G)

)
,(

Φ̃(G), Π̃(G)
)
,
(
Φ̃bdd(G), Π̃temp(G)

)
and

(
Ψ̃(G), Π̃unit(G)

)
of loosely associated objects.

In the first pair, Φ(G) is the set of L-homomorphisms

φ : LF −→
LG,

taken up to Ĝ-conjugacy, and Π(G) is the set of irreducible representations of G(F ),

taken up to the usual notion of equivalence. The second pair is a quotient

(
Φ̃(G), Π̃(G)

)
=

(
Φ(G)/ ∼, Π(G)/ ∼

)

of the first. The equivalence relation ∼ is trivial in case G is of type Bn or Cn, and

is defined by conjugation of LG by O(2n,C) and G(F ) by O(2n, F ) (rather than by

SO(2n,C) and SO(2n, F )) in case G is of type Dn. In the third pair, Φ̃bdd(G)

is the set of (equivalence classes of) parameters in Φ̃(G) of bounded image,

and Π̃temp(G) is the set of (equivalence classes of) tempered representations in

Π̃(G). In the fourth pair, Ψ̃(G) is the set of equivalence classes of L-homomorphisms

(2.1) ψ : LF × SU(2) −→ LG

such that the restriction of ψ to LF lies in Φ̃bdd(G), and Π̃unit(G) is the subset of

unitary representations in Π̃(G).

Parameters ψ in the last set Ψ̃(G) can be extended analytically to the larger domain

LF × SL(2,C). For any such ψ, we write

φψ(u) = ψ


u,


|u|

1
2 0

0 |u|−
1
2




 , u ∈ LF ,

where |u| is the pullback to LF of the canonical absolute value on WF . We obtain a

mapping

ψ −→ φψ , ψ ∈ Ψ̃(G),

from Ψ̃(G) to Φ̃(G), which is easily seen to be injective. Since we can regard Φ̃bdd(G)

as the subset of parameters in Ψ̃(G) that are trivial on the factor SU(2), we obtain

canonical embeddings

Φ̃bdd(G) ⊂ Φ̃(G) ⊂ Φ̃(G).
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Similar definitions apply to the group GL(N). We write Φ(N) = Φ
(
GL(N)

)
,

Φbdd(N) = Φbdd

(
GL(N)

)
, Π(N) = Π

(
GL(N)

)
, Πtemp(N) = Πtemp

(
GL(N)

)
, and

so on. The quotient sets (for groups of type Dn) denoted by a tilde are not relevant

to general linear groups. We shall instead use the notation as in §1 to denote subsets

of self-dual objects for GL(N).

Theorem 2.1(Langlands [L3], Harris-Taylor [HT], Henniart [He], Scholze[Sch])
There is a unique bijection

φ −→ πφ, φ ∈ Φ(N),

from Φ(N) onto Π(N) that is compatible with Rankin-Selberg L-functions and

ε-factors, with the automorphism θ̃(N) of GL(N), and with tensor products by

1-dimensional representations, and that transforms determinants to central charac-

ters. Furthermore, the mapping restricts to a bijection between the subsets Φbdd(N)

and Πtemp(N) of Φ(N) and Π(N), and restricts further to a bijection between

the subsets Φ̃bdd(N) and Π̃temp(N) of self-dual elements in Φbdd(N) and Πtemp(N).

Theorem 2.1 establishes a strong form of the local Langlands correspondence for

the group GL(N). For us, it will be the starting point of a local theory of endoscopy

for the group G. In this regard, its role amounts to a local analogue of that played

by the two global Theorems 1.1 and 1.3.

We return to our groupG over F . For any parameter ψ in the subset Ψ̃(G) of Ψ̃(N),

we can define the centralizer

(2.2) Sψ = Cent
(
im(ψ), Ĝ

)

in Ĝ of its image, a complex reductive subgroup of Ĝ. We can then form the quotient

(2.3) Sψ = Sψ/S
0
ψZ(Ĝ)

ΓE/F

where Z(Ĝ)ΓE/F is the subgroup of ΓE/F -invariants in the centre of Ĝ. For our group

G here, Sψ is a finite, abelian 2-group.

Theorem 2.2

(a) For any ψ ∈ Ψ̃(G), there is a finite “multi-set” Π̃ψ in Π̃unit(G) (or more pre-

cisely, a finite set over Π̃unit(G)), together with a canonical mapping

π −→ 〈·, π〉, π ∈ Π̃ψ,

from Π̃ψ to the group Ŝψ of linear characters on Sψ, both determined by twisted

character relations from GL(N).

(b) Suppose that ψ = φ lies in the subset Φ̃bdd(G) of Ψ̃(G). Then the elements in

Π̃φ are tempered and multiplicity free (so that Π̃φ is a subset of Π̃temp(G)).

Moreover, the mapping from Π̃φ to Ŝφ is injective, and bijective if F is p-adic.

Finally, the set Π̃temp(G) is a disjoint union over φ ∈ Φ̃bdd(G) of the packets Π̃φ.
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12 J. ARTHUR

The theorem is stated in [A2, §1.5] as Theorem 1.5.1. It is proved together with

its quantitive analogue, which we will state here as Theorem 2.3, in Chapters 6 and 7

of [A2]. The methods are global, specifically, a multifaceted comparison of global trace

formulas. However, Theorem 2.1 for GL(N) is an indispensable local ingredient. It

allows us to attach representations of GL(N,F ) to parameters ψ ∈ Ψ̃(G) through the

mapping

Ψ̃(G) −→ Ψ̃(N),

which is defined by the embedding of LG intoGL(N,C). Since the mapping is injective

(see [A2, §1.2]), we can identify Ψ̃(G) with a subset of Ψ̃(N), and hence with a set

of self-dual unitary representations of GL(N,F ). This transforms the proof of the

theorem to a series of questions in harmonic analysis, which centre around the problem

of attaching packets of representations of G(F ) to certain self-dual representations of

GL(N,F ).

Part (b) of Theorem 2.2 is essentially the local Langlands correspondence for G,

while part (a) is a weaker assertion for the more general parameters ψ ∈ Ψ̃(G). Taken

as a whole, the theorem is to be regarded as a qualitative theory of local endoscopy

for G. To have an explicit form of the theory, however, we need to specify the

endoscopic character relations of (a). These will be formulated as the quantitative

supplement Theorem 2.3 mentioned above.

Characters are remarkable objects, which are at the heart of local harmonic analy-

sis. Their importance is of course tied to the fact that they determine the representa-

tions from which they are derived. As functions that are complex valued rather than

matrix valued, they are more explicit, and more amenable to techniques in harmonic

analysis.

Character theory for groups over local fields is a centrepiece of the work of Harish-

Chandra. Suppose that π is an irreducible (admissible) representation of G(F ).

Harish-Chandra proved first that the mapping

f −→ fG(π) = tr
(
π(f)

)
, f ∈ C∞

c

(
G(F )

)
,

is defined, and is a distribution on G(F ). He then established the much deeper

theorem that it is a function [Ha1, Ha4]. More precisely,

fG(π) =

∫

G(F )

ΘG(π, x)f(x) dx,

for a locally integrable function

ΘG(π, x), x ∈ G(F ),

whose restriction to the open dense subset Greg(F ) of (strongly) regular

points in G(F ) is analytic. It is this function that is the character of π.

Its integral against any f depends only on its restriction to Greg(F ), which is
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in turn invariant under conjugation. We can therefore write

(2.4) fG(π) =

∫

Γreg(G)

IG(π, γ)fG(γ) dγ, f ∈ C∞
c

(
G(F )

)
,

where Γreg(G) is the set of G(F )-conjugacy classes in Greg(F ), equipped with the

measure dγ defined by a set of Haar measures on the maximal tori

Gγ(F ) = Cent
(
γ,G(F )

)
,

while

(2.5) IG(π, γ) = |D(γ)|
1
2ΘG(π, γ),

for the Weyl discriminant D(γ) of G, and

fG(γ) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx) dx

is the orbital integral of f at γ, defined by the quotient dx of a fixed Haar measure

on G(F ) and the chosen measure on Gγ(F ).

The function IG(π, γ) is known as the normalized character of π. We have included

it in the discussion in order to make a point. We are trying to demonstrate that the

theorems we quote describe interesting, concrete objects, which can sometimes be

quite explicit. This is particularly so for normalized characters. Suppose for example

that F is archimedean and that π is tempered. Then Harish-Chandra shows that if γ

is restricted to a connected component in the intersection of Greg(F ) with a maximal

torus in G over F , then IG(π, γ) is a linear combination of exponential functions of γ,

with complex coefficients that can be described explicitly [Ha2], [Ha3]. This may

be regarded as an analogue of the Weyl character formula for compact connected

groups, which is particularly striking if we replace the irreducible character by a

stable character (2.11). If F is p-adic, the normalized character IG(π, γ) is deeper. It

seems to be some combination of a finite germ expansion near the singular set (with

coefficients and germs of functions concrete but highly complex objects), modulated by

some unknown Gauss sums at intermediate distance from the singular set, followed by

a function that in some cases is again like an analogue of the Weyl character formula.

All of this is very interesting, but unlike the archimedean case, far from known. Our

view of normalized p-adic characters will sometimes be more like that of global Hecke

eigenfamilies. Rather than trying to calculate them explicitly, we would search for

reciprocity laws among normalized characters on different groups.

There are three variants of these definitions we need to mention. The first is the

normalized character

(2.6) ĨG(π, γ) =
∑

π∗

IG(π∗, γ), π ∈ Π̃(G), γ ∈ Γ̃reg(G),

of an element π ∈ Π̃(G). It is a sum of irreducible characters, taken over the set

Π(π) (of order 1 or 2) of irreducible representations π∗ in the equivalence class π. The
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summands depend on γ as an element in Γreg(G), but the sum itself can be regarded

as a function of γ in the obvious geometric analogue

Γ̃reg(G) = Γreg(G)/ ∼

of the spectral quotient Π̃(G) = Π(G)/ ∼. Once again, ĨG(π, γ) equals IG(π, γ) unless

G is of type Dn.

The second variant is a twisted character on GL(N). Suppose that ψ belongs

to Ψ̃(N). Then Theorem 2.1 gives rise to a representation πψ of GL(N,F ) that is

self-dual, and that therefore has an extension π̃ψ to the group G̃(N,F )+ generated

by G̃(N,F ). There is in fact a canonical extension determined by the theory of

Whittaker models. (If ψ = φ lies in the subset Φ̃bdd(N) of Ψ̃(N), for example, one

takes Π̃ψ to be the extension that stabilizes a Whittaker vector for πψ . In general, πψ
does not have a Whittaker model, but one can still work with the standard induced

representation of which πψ is the Langlands quotient. See [A2, §2.2].) Clozel has

extended the Harish-Chandra character theorem to nonconnected reductive groups.

One can therefore write the distribution

f̃N (ψ) = tr
(
π̃ψ(f̃)

)
, f̃ ∈ C∞

c

(
G̃(N,F )

)
,

as

(2.7) f̃N (ψ) =

∫

Γ̃reg(N)

ĨN (π̃ψ , γ̃)f̃N (γ̃)dγ̃,

for a smooth function ĨN (π̃ψ, γ̃) of γ̃ in the set Γ̃reg(N) of strongly regular,

GL(N,F )-orbits in G̃(N,F ). This function is the normalized twisted character of π̃ψ .

The third variant is a stable character for G. Suppose that ψ belongs to the subset

Ψ̃(G) of Ψ̃(N). We then define a smooth function

(2.8) S̃G(ψ, δ) =
∑

γ̃∈Γ̃reg(N)

ĨN (π̃ψ , γ̃)∆(δ, γ̃)

of δ in the stable version

∆̃reg(G) = ∆reg(G)/ ∼

of the set Γ̃reg(G). The elements in ∆reg(G) are thus stable conjugacy classes in

G(F ). In other words, they are the equivalence classes under the relation on Γreg(G)

defined by G(F )-conjugacy (rather than the relation of G(F )-conjugacy that defines

Γreg(G)). The coefficients

∆(δ, γ̃), δ ∈ ∆̃reg(G), γ̃ ∈ Γ̃reg(N),

in the sum are Kottwitz-Shelstad twisted transfer factors [KS], for the automorphism

θ̃(N) of GL(N) and the twisted endoscopic group G. They are functions that are

simple enough to be quite explicit, yet deep enough to be very interesting.
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There is one other point, which for us pertains to ordinary endoscopy for G (rather

than twisted endoscopy for the group GL(N)). It concerns a bijective correspondence

(2.9) (G′, ψ′) ←→ (ψ, s), ψ ∈ Ψ̃(G), s ∈ Sψ,ss,

where G′ is an endoscopic group for G, and ψ′ belongs to the corresponding set Ψ̃(G′).

This entirely elementary construction can be regarded as an implicit foundation for

the theory. If s belongs to the set Sψ,ss of semisimple elements in the centralizer Sψ,

G′ has the property that

Ĝ′ = Cent(s, Ĝ)0.

The Galois action on Ĝ′ that suffices to define G′ as a quasisplit group over F is

then determined in a natural way by the parameter ψ. Once we have G′, the corre-

sponding parameter ψ′ is defined as the natural preimage of ψ. Now the connected

centralizer Ĝ′ is a product of general linear groups with a pair of complex special or-

thogonal or symplectic groups. The quasisplit group G′ is therefore given by a similar

product. The stable character

S̃′(φ′, δ′) = S̃G
′

(φ′, δ′), δ′ ∈ ∆̃G-reg(G
′),

on G′(F ) attached to φ′ is consequently a product of functions of the kind we have

defined. Indeed, the factors for the orthogonal or symplectic components of Ĝ′ are

given by analogues of (2.8), while the factor for any general linear group, in which

stable conjugacy reduces to ordinary conjugacy, is just an irreducible character.

Ordinary endoscopy of course also comes with transfer factors

∆(δ′, γ), δ′ ∈ ∆̃G-reg(G
′), γ ∈ Γ̃reg(G).

These are the original factors of Langlands and Shelstad [LS]. They were suggested

by Shelstad’s earlier work for real groups, which was in turn motivated by Harish-

Chandra’s work [Ha2, Ha3] on characters and orbital integrals. Like their twisted

variants above, they are also defined by very interesting, explicit formulas.

For simplicity, we shall state our refined supplement of Theorem 2.2 for parameters

ψ = φ in the subset Φ̃bdd(G) of Ψ̃(G).

Theorem 2.3. — Suppose that φ is a local parameter in the set Φ̃bdd(G), that ξ is a

character on the abelian 2-group Sφ, and that π is the element in the packet Π̃φ such

that

ξ(x) = 〈x, π〉, x ∈ Sφ.

Then the character of π is given by the formula

(2.10) Φ̃G(π, γ) = |Sφ|
−1

∑

x∈Sφ

∑

δ′∈∆̃reg(G′)

ξ(x)−1S̃′(φ′, δ′)∆(δ′, γ),

for any γ ∈ Γ̃reg(G). On the right hand side, (G′, φ′) is the preimage of (φ, s), for

any s ∈ Sφ,ss that maps to the given index of summation x ∈ Sφ, while S̃
′(φ′, δ′) is

the corresponding stable character, and ∆(δ′, γ) is the Langlands-Shelstad transfer

factor for G and G′.
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16 J. ARTHUR

It is clear that Theorem 2.3 characterizes the objects of Theorem 2.2 uniquely in

terms of the characters Φ̃G(π, γ). If F equals R, the result was established for general

groups by Shelstad. (See [S2].) In this case, the mapping from Π̃φ to Ŝφ is only

injective. If ξ lies in the complement of its image, π is to be interpreted simply as 0,

and the assertion of the lemma becomes a vanishing formula.

It is also clear that the theorem gives reciprocity laws among local characters on

different groups. It relates characters on G with twisted characters on general linear

groups. In fact, it does more. If we sum each side of (2.10) over ξ ∈ Ŝφ, we observe

that the summand of any x 6= 1 on the right vanishes. Since the transfer factor for

the endoscopic group G′ = G can be taken to be 1, this gives the familiar formula

(2.11) S̃G(φ, δ) =
∑

π∈Π̃φ

ĨG(π, δ)

for a stable character. If we substitute its analogue for G′ back into (2.10), and apply

Fourier inversion for the group Sφ, we obtain reciprocity laws among characters on G

and its endoscopic groups G′.

Theorem 2.3 is essentially Theorem 2.2.1 of [A2], with its interpretation [A2, §8.3]

in terms of normalized characters. It is actually the special case for elements ψ = φ in

the subset Φ̃bdd(G) of Ψ̃(G). However, one can easily state the general result, again

in terms of normalized characters. The character formula (2.10) will remain valid for

an arbitrary element ψ ∈ Ψ̃(G) provided that we make two small changes. We must

replace the irreducible character π on the left hand side by the reducible sum

σ =
⊕

π

π

over the preimage in Π̃ψ of the given character ξ ∈ Ŝψ; we also must replace the factor

ξ(x)−1 on the right hand side with its translate ξ(sψx)
−1 by the point

sψ = ψ

(
1,

(
−1 0

0 −1

))

in Sψ. The general form of Theorem 2.3 is then just the amended version

(2.12) Φ̃G(σ, γ) = |Sψ |
−1

∑

x∈Sψ

∑

δ′∈∆̃reg(G′)

ξ(sψx)
−1S̃′(ψ′, δ′)∆(δ′, γ)

of (2.10). We observe that the analogue for the stable character of ψ of the sum (2.11),

whose value at ψ′ appears on the right hand side of the general form (2.12) of (2.10),

becomes

S̃G(ψ, δ) =
∑

σ

〈sψ, σ〉ĨG(σ, γ) =
∑

π∈Π̃ψ

〈sψ, π〉ĨG(π, δ).

We also note that the representations σ above are indeed often reducible. However,

in the p-adic case, Moeglin [M] has shown that the packet Π̃ψ is a subset of Π̃(G),

so the reducible representations σ are at least multiplicity free.
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We make one other observation on Theorem 2.3, in preparation for the global

discussion of the next section. It represents a straightforward extension of the theo-

rem, needed to account for the possible failure of the generalized Ramanujan conjec-

ture for GL(N).

Let Ψ̃+(G) be the set of equivalence classes of all L-homomorphisms (2.1). It is thus

composed of mappings ψ whose restriction to LF need not lie in the subset Φ̃bdd(G).

Using complex parameters in Ĝ, one sees that Ψ̃+(G) is a complex manifold, of which

Ψ̃(G) is a real submanifold. One observes also that the preimage Ψ̃+
S (G) in Ψ̃+(G) of

any complex reductive subgroup S of Ĝ (taken up to conjugacy), under the mapping

ψ −→ Sψ, ψ ∈ Ψ̃+(G),

is a locally closed submanifold of Ψ̃+(G). If Ψ̃+
S (G) is nonempty, its subset

Ψ̃S(G) = Ψ̃+
S (G) ∩ Ψ̃(G)

is a nonempty, real analytic submanifold of Ψ̃+
S (G). Suppose that ξ is a character on

the abelian 2-group

S = S/S0Z(Ĝ)ΓE/F .

Each side of (2.12) is then defined as a real analytic function of ψ ∈ Ψ̃S(G), which

can be analytically continued to the larger space Ψ̃+
S (G). The formula (2.12) therefore

holds for any ψ ∈ Ψ̃+
S (G), and hence for any parameter in the general set Ψ̃+(G). The

price we pay for this extension is that the constituents of a more general packet Π̃ψ
become representations induced from a nonunitary parameter, which no longer need

to be irreducible or unitary. (See the more explicit description in [A2, p. 45–46].) We

will use this extended form of Theorem 2.3 to construct global packets in the next

section.

3. Global multiplicities

In this section we return to the case that the field F is global. We shall state the

global multiplicity formula in terms of objects formulated in the first two sections.

The set Ψ(N) is again the family of global objects attached to GL(N) in the statement

of Corollary 1.2. For each valuation v of F , we write Ψv(N), Πv(N), Ψ+
v (N), etc. for

the sets of local objects attached to Fv in the last section.

For any v, there is a localization mapping

ψ −→ ψv, ψ ∈ Ψ(N),

from Ψ(N) to the local set Ψ+
v (N). It is given by the composition

ψ −→ πψ −→ πψ,v −→ ψv,

where the left hand arrow is the bijection of Corollary 1.2, the middle arrow is given

by the local Fv-constituent of the representation πψ, and the right hand arrow is the

inverse of the bijection of Theorem 2.1 (or rather, its extension to the larger domain

Ψ+
v (N)). We are interested in the analogue of this mapping for our quasisplit special

orthogonal or symplectic group G over F .
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We have not yet attached a global subset Ψ̃(G) of Ψ̃(N) to G. For the moment,

we introduce only the smaller set

(3.1) Ψ̃sim(G) =
{
ψ ∈ Ψ̃sim(N) : c(ψ) ∈ C̃(G)

}
.

This is the essential case. We did define the local set Ψ̃(Gv) in §2. We also noted that

the mapping of Ψ̃(Gv) into Ψ̃v(N) given by the embedding of LGv into GL(N,C) is

itself an embedding. The same also being true of the larger sets Ψ̃+(Gv) and Ψ̃+
v (N),

we can regard the local set Ψ̃+(Gv) as a subset Ψ̃+
v (N).

Proposition 3.1. — If ψ belongs to the subset Ψ̃sim(G) of Ψ̃(N), its localization ψv lies

in the subset Ψ̃+(Gv) of Ψ̃+
v (N). In other words, ψv maps the group LFv × SU(2)

into the subgroup LGv of GL(N,C).

This is essentially Theorem 1.4.2 of [A2]. Along with its purely global companion

Theorem 1.4.1, it is the starting point for many of the constructions of [A2], including

that of the sets Ψ̃(G). Theorems 1.4.1 and 1.4.2 are carried as induction hypotheses

throughout [A2]. These induction assumptions are not completely resolved until §8.2

of [A2], at which point one would finally be able to see how the set Ψ̃(G) constructed

in [A2, §1.4] is related to the set C̃(G) of Hecke eigenfamilies we have defined in §1

here.

To describe the automorphic discrete spectrum of G, we need to introduce a global

subset Ψ̃2(G) of Ψ̃(N) that contains Ψ̃sim(G). It consists of the set of formal, un-

ordered direct sums

ψ = ψ1 ⊞ · · ·⊞ ψr, ψi ∈ Ψsim(Ni),

as in the statement of Corollary 1.2, but which satisfy the following three supplemen-

tary conditions:

(i) the constituents ψi of ψ are self-dual and distinct ;

(ii) for each i, ψi lies in the subset Ψ̃sim(Gi) of Ψ̃sim(Ni) attached to a special

orthogonal or symplectic group Gi over F , such that Ĝi and Ĝ are of the same

type, either both orthogonal or both symplectic;

(iii) The central character ηψ of the automorphic representation πψ of GL(N) equals

the product

ηψ1
· · · ηψr

of the central character of the representations πψi of GL(Ni).

If we were using the inductive definition of the subset Ψ̃(G) of Ψ̃(N) from [A2, §1.4],

it would follow immediately that Ψ̃2(G) is contained in this subset. We will return to

the question after stating the next theorem.

Suppose that ψ belongs to Ψ̃2(G). There is then a canonical embedding

Ĝ1 × · · · × Ĝr −֒→ Ĝ,

up to conjugation by Ĝ in the cases Bn and Cn and by the group O(2n,C) in case

Dn. This follows from condition (ii). The condition (iii) leads to an embedding of
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L-groups. However, we must formulate it in terms of the broader form

LG = Ĝ⋊ ΓF , Γ = ΓF = ΓF/F ,

of the L-group, rather than the abbreviated version introduced for simplicity at the

end of the introduction. (The action on Ĝ of the absolute Galois group ΓF factors

through the quotient ΓE/F of ΓF of order 1 or 2, which is why the simpler version of

the L-group suffices for many purposes.) The L-group of the product G1 × · · · ×Gr
becomes a fibre product

L(G1 × · · · ×Gr) =

r∏

i=1

( LGi −→ ΓF )

of L-groups over ΓF . The condition (iii) then implies that the embedding of dual

groups above extends to an L-embedding

(3.2) L(G1 × · · · ×Gr) −֒→
LG

of L-groups.

The embedding (3.2) of L-groups leads directly to an object that governs the global

multiplicity formula. It is the centralizer

(3.3) Sψ = Cent
(
L(G1 × · · · ×Gr), Ĝ

)

in Ĝ of the image of the embedding. This is a finite abelian 2-group, as is the quotient

(3.4) Sψ = Sψ/Z(Ĝ)
Γ = Sψ/Z(Ĝ)

ΓE/F .

If v is any valuation, we can apply Proposition 3.1 to any of the groups Gi. We

see that the localization ψv of ψ maps the product LFv × SU(2) into the subgroup
L(G1 × · · · × Gr) of

LG. In particular, ψv belongs to the subset Ψ̃+(Gv) of Ψ̃
+
v (N).

We thus obtain a mapping

x −→ xv, x ∈ Sψ ,

from Sψ to the centralizer quotient attached in the last section to the localization ψv.

Letting v vary, we form a global packet

(3.5) Π̃ψ =

{
π =

∼⊗

v

πv : πv ∈ Π̃ψv

}
,

where the restricted tensor product is over products π such that the character 〈·, πv〉

on Sψv equals 1 for almost all v. Any π ∈ Π̃ψ then restricts to a character

(3.6) 〈x, π〉 =
∏

v

〈xv, πv〉, x ∈ Sψ ,

on Sψ .

The global packet Π̃ψ is a set of irreducible representations of G(A) if G is of type

Bn or Cn. If G is of type Dn, however, the global packet is a set of global objects

whose local constituents are elements in the set Π̃ψv over Π̃(Gv), which means that

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



20 J. ARTHUR

they are to be regarded as orbits of irreducible representations of G(Fv) under the

group

O(N,Fv)/ SO(N,Fv) ∼= Z/2Z, N = 2n.

The underlying reason for this (and the other variants we have already encountered)

is the comparison with GL(N), which we will not discuss in this paper, but which

is nonetheless at the heart of the proofs. It leads naturally to representations of

the group O(N,Fv) rather than SO(N,Fv), which amount to orbits of representa-

tion of SO(N,F ). To describe the decomposition of the discrete spectrum, we have

consequently to introduce the locally symmetric Hecke algebra

H̃(G) =

∼⊗

v

H̃(Gv).

It consists of functions on G(A) in the ordinary Hecke algebra

H(G) =

∼⊗

v

H(Gv)

that on each subgroup G(Fv) are unrestricted in the cases Bn and Cn, but that

are symmetric under the automorphism θ̃(N) in case G is of type Dn. We recall

that H(Gv) equals the algebra C∞
c

(
G(Fv)

)
of smooth (which is to say, locally con-

stant) functions of compact support if Fv is nonarchimedean, but is the subalgebra of

Kv-finite functions in C
∞
c

(
G(Fv)

)
if Fv is archimedean. Our use of the Hecke algebra

rather than C∞
c

(
G(A)

)
is a minor matter in this context, which need not concern us.

Theorem 3.2. — There is an H̃(G)-module isomorphism

(3.7) L2
disc

(
G(F )\G(A)

)
∼=

⊕

ψ∈Ψ̃2(G)

⊕

π∈Π̃ψ(εψ)

mψπ,

where mψ equals 1 or 2, while

εψ : Sψ −→ {±1}

is a linear character defined explicitly in terms of symplectic ε-factors, and

(3.8) Π̃ψ(εψ) =
{
π ∈ Π̃ψ : 〈·, π〉 = εψ

}

is the subset of the global packet Π̃ψ attached to εψ.

This is Theorem 1.5.2 of [A2], which was not established completely until near

the end [A2, §8.2] of the volume. It asserts that any constituent of the automorphic

discrete spectrum of G must lie in a global packet of the form

Π̃ψ, ψ ∈ Ψ̃2(G).

It also asserts that for any such packet, an element π ∈ Π̃ψ occurs in the discrete

spectrum if and only if the associated character 〈·, π〉 on Sψ equals εψ, in which case

π occurs with multiplicity 1 or 2. The objects εψ and mψ have explicit formulas,

which we shall discuss presently.
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At the suggestion of the referee, let me add a further comment on the case of Dn.

If G belongs to the complementary cases of type Bn and Cn, the assertion of the

theorem is clear. It is a precise formula for the multiplicity of a given irreducible

representation π in the automorphic discrete spectrum of G. But if G is of type Dn,

the formula is slightly weaker. In this case, it gives only a sum of multiplicities, taken

over all irreducible representations π′ of G(A) in the equivalence class

π =
⊗

v

πv, πv ∈ Π̃(Gv),

defined by products of orbits (of order 1 or 2) in G(A). The equivalence class could

contain infinitely many irreducible representations π′, but only finitely many of them

will occur with nonzero multiplicity. The question is related to the integer mψ, on

which we will comment at the end of the paper.

We have not been emphasizing proofs in this article. In fact, we have sometimes

left out critical remarks on a given proof in our attempt to state the result as vividly

as possible. The multiplicity formula (3.7) is a case in point. It is closely related to

another fundamental global result, which we call the stable multiplicity formula [A2,

Theorem 4.1.2], and which we apply to the preimage (G′, ψ′) of a global pair

(ψ, s), ψ ∈ Ψ̃2(G), s ∈ Sψ,ss,

under the global analogue of the bijective correspondence discussed briefly in the last

section. Combined with the global transfer of functions from G to G′, this leads to a

formula [A2, Corollary 4.1.3] that includes reciprocity laws among Hecke eigenfamilies

for G and its elliptic endoscopic groups G′. These complement the reciprocity laws

between Hecke eigenfamilies for G and GL(N) given by Theorem 1.4.

The global arguments are complex. But very roughly speaking, the multiplicity for-

mula (3.7) follows from the stable multiplicity formula (as expressed in Corollary 4.1.3

of [A2]), and the ψ-component of the stabilization of the trace formula of G, for any

element ψ ∈ Ψ(N) [A2, (4.1.2)]. As we have said, they are resolved only in §8.2

of [A2].

Theorem 1.5.2 could perhaps be regarded as the central result of [A2], especially

considering that it requires the local results even to state. Formulated as Theorem 3.2,

it is certainly the culmination of the discussion in this paper. It is the third and

last step in our attempt to present the classification of automorphic representations

of G. We recall that the first step was the reciprocity law of Theorem 1.4. It tells

us that the Hecke eigenfamily attached to any automorphic representation of G is

among the automorphic Hecke eigenfamilies for GL(N), objects we are taking to be

understood. This raised the question we have just answered with Theorem 3.2, given

its interpretation as an explicit description of the contribution of a Hecke eigenfamily

to the discrete spectrum of G. The theorem was in turn founded on the results

of §2. As we recall, they consist of the explicit local transfer of characters provided

by Theorems 2.2 and 2.3.
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In §1, we raised the question of describing the set C̃(G), as defined prior to

Theorem 1.4, explicitly as a subset of C̃(N). We can now give an answer. Let us first

define the subset Ψ̃(G) of global objects in Ψ̃(N) that are attached to G.

A general (standard) Levi subgroup of G takes the form

M ∼= GL(N ′
1)× · · · ×GL(N

′
r′)×G−,

for positive integers N ′
1, . . . , N

′
r′ and N− such that

2N ′
1 + · · ·+ 2N ′

r′ +N− = N.

The factor G− is a special orthogonal or symplectic group relative to GL(N−)

such that Ĝ− and Ĝ are of the same type, either both orthogonal or both symplectic,

and such that the quadratic character ηG−
that defines G− as a quasisplit outer twist

equals its analogue ηG for G. Given M , we write Ψ̃M (G) for the set of elements

(3.9) ψ = (ψ1 ⊞ · · ·⊞ ψr′ ⊞ ψ∨
r′ ⊞ · · ·⊞ ψ∨

1 )⊞ ψ−,

where ψi ∈ Ψsim(Ni) and ψ− ∈ Ψ̃2(G−). We then define Ψ̃(G) to be the union over

M of the subsets Ψ̃M (G) of Ψ̃(N). This becomes quite explicit if we take account

Theorem 1.5.3 of [A2], an important global result we have not yet mentioned. It

characterizes the subset Ψ̃sim(G) of simple objects ψ ∈ Ψ̃sim(N) in terms of their

self-dual cuspidal components µ, according to whether it is the symmetric square

L-function or the skew-symmetric L-function of µ that has a pole at s = 1. (See the

remarks on p. 33–34 of [A2] as well as the statement of Theorem 1.5.3.) Applied to the

simple summands of ψ−, this gives an explicit description of the subset Ψ̃2(G) of Ψ̃(G).

The general definition (3.9) then leads to an explicit characterization of the subset

Ψ̃(G) of Ψ̃(N).

The set Ψ̃(G) is obviously closely related to the subset C̃(G) of C̃(N). We might ex-

pect that C̃(G) is just the set

(3.10)
{
c(ψ) : ψ ∈ Ψ̃(G)

}
,

but this is not quite the case. For it is conceivable that there could be elements ψ in

Ψ̃2(G) such that the set Π̃ψ(εψ) of Theorem 3.2 is empty. There would then be no

contribution of ψ to the discrete spectrum of G, and by application of Theorem 1.3

to the definition (3.9), no contribution of ψ to any part of the spectrum. Examples of

this phenomenon were found some years ago by Cogdell and Piatetskii-Shapiro [CP],

by different methods. The general question depends of course on the definition of

the sign character, which we have not yet discussed. In any case, the function (3.6)

represents a mapping

(3.11) Π̃ψ −→ Ŝψ

of the global packet of ψ to the finite group of linear characters on Sψ. We write

Ψ̃2,aut(G) for the subset of elements ψ ∈ Ψ̃2(G) such that the sign character εψ lies

in the image of this mapping. It is then clear that the collection

C̃2(G) =
{
c(ψ) : ψ ∈ Ψ̃2,aut(G)

}
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is the subset of Hecke eigenfamilies in Ψ̃(N) of the form c(π), where π ranges over

irreducible representations of G(A) that occur in the automorphic discrete spectrum

of G. More generally, the original set from Theorem 1.4 is given by

(3.12) C̃(G) =
{
c(ψ) : ψ ∈ Ψ̃(G), ψ− ∈ Ψ̃2,aut(G−)

}
.

It can be characterized explicitly as a subset of Ψ̃(N) according to the remarks above.

The slightly ungainly description (3.12) is forced on us by the definition of C̃(G)

prior to the statement of Theorem 1.4. We could instead have defined C̃(G) simply as

the larger set (3.10). This would make sense from the perspective of the volume [A2],

where the family Ψ̃(G) was defined [A2, §1.4] early in the process. The understanding

would then be that for some elements c = c(ψ) in C̃2(G) say, every element π in

the corresponding global packet Π̃ψ could have multiplicity 0 in the automorphic

discrete spectrum of G. However, such a convention would not be in keeping with

this article, and our emphasis on the reciprocity laws satisfied by Hecke eigenfamilies.

The point does not arise if ψ = φ lies in the subset Φ̃bdd(G) of Ψ̃(G). For there is

always an element πv ∈ Π̃ψv such that 〈 ·, πv〉 = 1, for any v, and it is easy to see

that εψ = εφ = 1 in this case. The discrepancy, which is relatively rare in any case,

can only occur then if the global parameter ψ is among those for which Ramanujan’s

conjecture is known to fail.

Incidentally, the image of the mapping (3.11) is related to a completely different

question from the volume [A2]. It concerns the refinements for groups of type Dn

studied in §8.4 of [A2]. The problem is to characterize the irreducible representations

π′ of G(A) in an orbit π from a global packet Π̃ψ that occur in the automorphic

discrete spectrum of G. The problem was solved in the special case that ψ = φ lies

in the subset Φ̃bdd(G), and the mapping (3.11) is surjective, and in fact, under the

weaker condition that the mapping

Sφ −→ SφA
=

∏

v

Sφv

is injective.

It remains to say something about mψ and εψ, the essential numerical ingredients

of the theorem. The integer mψ is easily defined. It equals 1 unless G equals SO(2n)

and the integers Ni attached to the constituents ψi of ψ are all even, in which case

mψ = 2. This integer obviously bears on the question of the multiplicity with which

an irreducible representation π′ occurs in the automorphic discrete spectrum, but

one also needs information about the local packets Π̃ψv attached to ψ. For a full

statement, once again in the case that ψ = φ lies in the subset Φ̃bdd(G) of Ψ̃(G),

see [A3, §3 (vii)].

The sign character εψ would also be straightforward to define, except that we would

first have to describe some internal structure of the group L(G1 × · · · ×Gr) we used

to define Sψ. In [A2, §1.4], we attached a complex group Lψ over ΓF to the cuspidal

factors µi of the constituents ψi. There is then an L-embedding

Lψ × SL(2,C) −→
L(G1 × · · · ×Gr),
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the centralizer in Ĝ of whose image in LG equals that of L(G1 × · · · × Gr), namely

the group Sψ. The character εψ is defined [A2, §1.5 and §4.6] in terms of global

Rankin-Selberg L-functions L(s, µi × µj) that are symplectic.
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Added in proof

1. Langland’s hypothetical group LF is often called the automorphic Galois group,
in analogy with Grothendieck’s hypothetical motivic Galois group.

2. An automorphic family c = {cv} consists of semisimple conjugacy classes in LG.
It is suggestive to call them Frobenius-Hecke conjugacy classes (F-H classes),
as proposed by Langlands, since this emphasizes both their historical roots and
their actual construction.
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