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FOURIER TRANSFORM OF ALGEBRAIC MEASURES

by

Vladimir Drinfeld

To Gérard Laumon on his 60th birthday

Abstract. — These are notes of a talk based on the work [AD] joint with A. Aizenbud.
Let V be a finite-dimensional vector space over a local field F of characteristic 0.

Let f be a function on V of the form x 7→ ψ(P (x)), where P is a polynomial on V and
ψ is a nontrivial additive character of F . Then it is clear that the Fourier transform
Four(f) is well-defined as a distribution on V ∗. Due to J.Bernstein, Hrushovski-
Kazhdan, and Cluckers-Loeser, it is known that Four(f) is smooth on a non-empty
Zariski-open conic subset of V ∗. The goal of these notes is to sketch a proof of this
result (and some related ones), which is very simple modulo resolution of singularities
(the existing proofs use D-module theory in the Archimedean case and model theory
in the non-Archimedean one).

Résumé(Transformation de Fourier de mesures algébriques). —Ce sont les notes d’un
exposé basé sur le travail [AD] commun avec A. Aizenbud.

Soit V un espace vectoriel de dimension finie sur un corps local F de caractéris-
tique 0. Soit f une fonction sur V de la forme x 7→ ψ(P (x)), où P est un polynome sur
V et ψ est un caractère additif non trivial de F . Alors il est clair que la transformée
de Fourier Four(f) est bien définie comme distribution sur V ∗. D’après J.Bernstein,
Hrushovski-Kazhdan et Cluckers-Loeser, il est connu que Four(f) est lisse sur un
sous-ensemble ouvert de Zariski conique de V ∗. Le but de ces notes est d’esquisser
une démonstration de ce résultat (et de résultats liés), qui est très simple modulo la
résolution des singularités (les preuves existantes utilisent la théorie des D-modules
dans le cas archimédien et la théorie des modèles dans le cas non archimédien).

These are notes of a talk based on the work [AD] joint with A. Aizenbud. The

results from [AD] are formulated in §§1–3, the proofs are sketched in §§4-5.

In Appendix A we discuss some “baby examples”; this material is not contained

in [AD].

2010Mathematics Subject Classification. — 46F, 46F10.
Key words and phrases. — Wave front set, Fourier transform, distributions, oscillating integrals,

resolution of singularities, local fields.

Partially supported by NSF grant DMS-1063470.
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314 V. DRINFELD

I thank D. Kazhdan for drawing my attention to the questions considered in these

notes. I also thank M. Kashiwara for communicating to me Example A.1 from

Appendix A.

1. A theorem on Fourier transform

Let F be a local field of characteristic 0 (Archimedean or not). Let ψ : F → C×

be a nontrivial additive character.

Let V be a finite-dimensional vector space over F and P : V → F a polynomial.

Then ψ(P (x)) is a smooth (1) C-valued function on V .

Consider ̂ψ(P (x)), i.e., the Fourier transform of the function ψ(P (x)).

Note that in the naive sense the Fourier transform is not defined because ψ(P (x))

doesn’t decay as x → ∞, rather it oscillates. However, ̂ψ(P (x)) is well-defined as a

distribution (2) on V ∗.

In the non-Archimedean case this is clear because the Fourier transform in the

sense of distributions is well-defined for any generalized function, in particular, for

any smooth function.

In the Archimedean case the Fourier transform is well-defined for generalized func-

tions of moderate growth, and of course, ψ(P (x)) has moderate growth.

Theorem 1.1. — There exists a Zariski-open U ⊂ V ∗, U 6= ∅, such that the distribu-

tion ̂ψ(P (x)) is smooth on U .

If F is Archimedean Theorem 1.1 was proved by J. Bernstein [Ber1] using D-

module theory. Moreover, he proved that ̂ψ(P (x)) satisfies a holonomic system of

linear p.d.e.’s with polynomial coefficients.

If F is non-Archimedean Theorem 1.1 was proved by Kazhdan-Hrushovski [HK]

and Cluckers-Loeser [CL] using model theory. In both articles Theorem 1.1 appears

as one of many corollaries of a general theory, and this general theory is quite different

from D-module theory used by Bernstein.

The goal of these notes is to explain another proof of Theorem 1.1 and its refine-

ments, namely the one from [AD]. It works equally well in the Archimedean and

non-Archimedean case. Unlike the older proofs, it uses resolution of singularities (3).

1. In the non-Archimedean case “smooth”means “locally constant”, in the non-Archimedean case

the word “smooth” is understood literally.
2. Our conventions are as follows: a distribution on a manifold M is a generalized measure (i.e.,

a linear functional on the space of smooth functions with compact support), while a generalized

function on M is a linear functional on the space of smooth measures with compact support. If M

is a vector space then sometimes (but not here) we do not distinguish functions from measures.
3. In my talk I said that a variant of “local uniformization” (see [Za], [ILO]) would suffice. But

the argument that I had in mind contained a gap.
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FOURIER TRANSFORM OF ALGEBRAIC MEASURES 315

On the other hand, once you believe in resolution of singularities, the rest is an exercise

in elementary analysis (with a bit of elementary symplectic geometry).

Here are some refinements of Theorem 1.1.

Refinement A. The open subset U can be chosen to be independent of ψ.

Refinement B. The open subset U can be chosen to be defined over the field K

generated by the coefficients of P .

Refinement B′. The open subset U can be chosen to work for all embeddings of K

into all possible local fields. (This makes sense by virtue of A.)

2. A theorem that implies Theorem 1.1

Let W be a finite-dimensional vector space over F . Let X be a smooth algebraic

variety over F and ϕ : X → W a proper morphism. Let ω be a regular top differential

form on X . Then we have a measure |ω| on X(F ). Set µ := ϕ∗|ω| (note that ϕ∗ is

well-defined because ϕ is proper); µ is a measure on the vector spaceW , in particular,

it is a distribution. Its Fourier transform, µ̂, is a well-defined (4) generalized function

on W ∗; it depends on the choice of ψ. The next theorem is an analog of Theorem 1.1

and its Refinements A,B,B ′.

Theorem 2.1. — There exists a non-empty Zariski-open U ⊂ W ∗, independent of ψ,

such that µ̂ is smooth on U . Moreover, if (X,ϕ, ω) is defined over a subfield K ⊂ F

then one can choose U to be defined over K and to have the required property for all

embeddings of K into all possible local fields.

Remark 2.2. — In Theorem 2.1 independence of U on ψ is equivalent to stability of U

under homotheties of W . (This was not the case in the situation of Theorem 1.1

because ψ occurred there twice: in the definition of Fourier transform and in the

expression ψ(P (x)).)

Let us show that Theorem 2.1 implies Theorem 1.1 and its refinements formulated

at the end of §1. To prove this, apply Theorem 2.1 as follows. SetW := V ⊕F = V ×F ,

X := V . Define ϕ : V → V × F by ϕ(v) := (v, P (v)). Take ω to be an invariant

differential form on V = X .

Then the generalized function µ̂ on W ∗ = V ∗ × F is equal to the continuous map

F −→ {generalized functions on V ∗}

that takes η ∈ F to the Fourier transform of ψ(η · P (x)) with respect to x ∈ V .

So Theorem 2.1 says that the Fourier transform of ψ(η ·P (x)) with respect to both

x and η (which is a priori a generalized function on V ∗ × F ) is, in fact, smooth on

some non-empty open subset U ⊂ V ∗ × F , U 6= ∅, which can be chosen to be stable

4. In the Archimedean case one has to check that µ has moderate growth. This is not hard and

well known.
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316 V. DRINFELD

with respect to homotheties (see Remark 2.2). It remains to note that such U has

non-empty intersection with the hyperplane V ∗ × {1} ⊂ V ∗ × F .

Theorem 2.1 is deduced from Theorem 3.3, which is formulated in the next section.

3. The theorem on wave front sets

3.1. Isotropic subsets of symplectic varieties. — Let M be a symplectic al-

gebraic manifold (5) over a field of characteristic 0. An algebraic subvariety (or more

generally, a constructible subset) of M is said to be isotropic if each of its smooth

subvarieties is. (As usual, a smooth subvariety of M is said to be isotropic if each

of its tangent spaces is). It is known that the closure of an isotropic subvariety is

isotropic (e.g., see [CG, Proposition 1.3.30] and [CG, §1.5.16]). So a subvariety of a

symplectic variety is isotropic if and only if its smooth locus is.

Now suppose thatM is the cotangent bundle of an algebraic manifold Y . A subset

of M = T ∗Y is said to be conic if it is stable with respect to the action of Gm on

T ∗Y . The following two statements are easy and standard.

Lemma 3.1. — A conic algebraic subvariety Z ⊂ T ∗Y is isotropic if and only if there

exists a finite collection of smooth locally closed subvarieties of Y such that Z is

contained in the union of their conormal bundles.

Corollary 3.2. — Let Z ⊂ T ∗Y be an isotropic conic algebraic subvariety. Then there

exists a dense open subset U ⊂ T ∗Y such that Z ∩ T ∗U is contained in the zero

section.

3.2. The theorem on wave fronts. — Let F be a local field of characteristic 0.

Let Y be an analytic manifold (6) over F . (If F = R one can assume Y to be a C∞

manifold.) Following L. Hörmander [Hör] and D. Heifetz [Hef], to each distribution

or generalized function ν on Y one associates a conic closed subset of T ∗Y called the

wave front set of ν. The precise definition will be recalled in §3.3 below.

In the situation of Theorem 2.1 µ̂ is a generalized function onW ∗, so its wave front

is a subset of T ∗W ∗. Note that T ∗W ∗ =W ∗ ×W carries an action of Gm ×Gm .

Theorem 3.3. — In the situation of Theorem 2.1 the wave front of µ̂ is contained in

I(F ), where I ⊂ T ∗W ∗ is some isotropic algebraic subvariety stable with respect to

Gm × Gm and defined over K (as before, K is a field of definition of our data).

Moreover, one can choose I to have the required property for all embeddings of K into

all local fields.

5. “Manifold”=“smooth variety”.
6. The words “analytic manifold” are understood in the most naive sense (not rigid-analytic or

Berkovich-analytic).
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Note that Theorem 3.3 implies Theorem 2.1. This is a consequence of Corollary 3.2

and the following key property of the wave front of a generalized function ν on a

manifold Y : the restriction of ν to an open subset U ⊂ Y is smooth if and only if the

intersection of the wave front with T ∗U is contained in the zero section.

The next subsection can be skipped by the reader.

3.3. Definition of wave front set. — The definition that we are using slightly

differs from the classical definition of L. Hörmander [Hör].

Let V be a finite-dimensional F -vector space and let ν be a distribution on an

open subset U ⊂ V . The wave front of ν is a certain closed subset in T ∗U = U × V ∗.

Namely, a point (x0, w0) ∈ U × V ∗ is not in the wave front of ν if there exists a

smooth compactly supported function ρ on V with ρ(x0) 6= 0 such that the Fourier

transform (7) of ρ · ν “vanishes asymptotically” in the direction of w0.

The precise meaning of these words is as follows: we say that a function f on

V ∗ vanishes asymptotically in the direction of w0 if there exists a smooth compactly

supported function σ on V ∗ with σ(w0) 6= 0 such that the function φ on V ∗ × F

defined by φ(w, λ) := f(λw) · σ(w) is a Schwartz function (8).

In other words, if w0 6= 0 and F is non-Archimedean we require the Fourier trans-

form of ρ·ν to become compactly supported after restricting to a small open F×-stable

neighborhood of w0. In the Archimedean case compact support is replaced by rapid

decay. If w0 = 0 we require that ρ · ν = 0.

According to [Hör] and [Hef], the above notion of wave front set is invariant with

respect to changes of variables, so it makes sense for distributions (or generalized

functions) on manifolds.

For more details, see [AD, Appendix A], [Hör], and [Hef].

3.4. Warning. — It is well known that the characteristic variety of a coherent D-

module is always coisotropic (in particular, if it is isotropic then it is Lagrangian).

On the other hand, a similar statement for wave front sets is false, see Lemma A.3

and Example A.4 from Appendix A.

4. Construction of U ⊂W ∗ and I ⊂ T ∗W ∗

In this section we construct the sets U and I whose existence is claimed in Theo-

rems 2.1 and 3.3.

Let W denote the space of lines in W ⊕ F ; in other words, W is the projective

space containing W as an open subspace. Set W∞ := W \W ; this is the hyperplane

at infinity.

7. The Fourier transform is a smooth function on V ∗.
8. Thus we understand the above word “direction” as a line. Hörmander considers F = R and

understands “direction” as a half-line (i.e., a ray).
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318 V. DRINFELD

By assumption, the differential form ω has no poles on X , but it may have zeros.

Set X◦ := {x ∈ X |ω(x) 6= 0}. In what follows we assume that X◦ is dense in X (so

X \X◦ is a divisor).

By Hironaka’s theorem, after replacing the variety X by a certain modification (9)

of it, ϕ : X →W admits a compactification to ϕ : X →W with X smooth and X \X◦

being a NC divisor (or even an SNC divisor). As usual, “NC” (resp.“SNC”) stands

for “normal crossings” (resp. “strict normal crossings”); the word “strict” means here

that each irreducible component of the divisor is smooth.

So one has a commutative diagram

(4.1) X →֒

ϕ
��

X

ϕ
��

⊃ X∞ := ϕ−1(W∞)

��

W →֒ W ⊃ W∞

Set D := X \X◦. By assumption, D is a NC divisor. Note that X∞ is a divisor

contained in X \X◦, so X∞ is also NC.

We choose the modification of the original X and its compactification to be defined

over the small field K.

The open subset U ⊂ W ∗ from Theorem 2.1 and the isotropic subvariety I from

Theorem 3.3 are constructed very explicitly in terms of the above choices, and it will

be clear that U and I are defined over K. To construct U and I, we need some

notation.

Let ν : D̂ → D be the normalization. For each r ≥ 1 let Z ′

r be the normalization

of

{x ∈ D | Card ν−1(x) ≥ r}.

In particular, Z ′

1 = D̂ and Z ′

r = ∅ if r > dimX . It is easy to see that Z ′

r is smooth.

If D is an SNC divisor with irreducible components Dj , j ∈ J , then Z ′

r is just the

disjoint union of the intersections DS :=
⋂
j∈S

Dj corresponding to all subsets S ⊂ J

of order r.

Let Zr ⊂ Z ′

r denote the disjoint union of those connected components of Zr whose

image in X is contained in X∞ . The map ϕ : X →W induces a map ϕr : Zr →W∞ .

Definition of U . — Recall that the projective spaceW∞ is the space of 1-dimensional

subspaces in W . The dual projective space W ∗

∞
equals (W ∗ \ {0})/Gm ; on the

other hand, points of W ∗

∞
can be considered as projective hyperplanes H ⊂ W∞ .

Let Ũ ⊂ W ∗

∞
denote the set of those projective hyperplanes H ⊂ W∞ that are

transversal (10) to ϕr : Zr → W∞ for each r. Finally, define U ⊂ W ∗ \ {0} to be the

preimage of Ũ .

9. A modification of X is a variety equipped with a proper morphism to X which is a birational

isomorphism.
10. Transversality means that Zr ×W∞

H is a smooth divisor in Zr .
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FOURIER TRANSFORM OF ALGEBRAIC MEASURES 319

To describe the isotropic subset I, let us recall a general construction: to a mor-

phism f : X → Y between smooth algebraic varieties one associates a conic subset

Critf ⊂ T ∗Y , namely

(4.2) Critf = {(y, ξ) ∈ T ∗Y | ∃x ∈ f−1(y) such that (dxf)
∗(ξ) = 0}.

Here we understand the quantifier ∃x in the sense of algebraic geometry (i.e., the field

of definition of x may be larger than the ground field).

It is well known that Critf is isotropic (11) (e.g., this follows from[CG, Prop. 2.7.51]

or [G, Lemma 1]). If f is proper then Critf is closed.

Definition of I. — Applying the above construction to ϕr : Zr → W∞ we get a

conic isotropic subvariety Critϕr
⊂ T ∗W∞. Set I ′ :=

⋃
r Critϕr

⊂ T ∗W∞. Note that

W∞ = (W \ {0})/Gm, so T ∗W∞ is a subquotient of T ∗(W \ {0}) = (W \ {0})×W ∗.

So I ′ defines a subset Ĩ ⊂ (W \ {0})×W ∗. Now set I = Ĩ
⋃
(W ×{0})

⋃
({0}×W ∗).

Theorem 4.1. — The sets U and I defined above have the properties required in Theo-

rems 2.1 and 3.3: namely, the generalized function µ̂ has smooth restriction to U and

the wave front of µ̂ is contained in I.

The proof will be sketched in the next section. A complete proof (under the

assumption that X \X◦ is a divisor with strict normal crossings) is given in [AD].

Note that the claim about U from Theorem 4.1 follows from the claim about I.

This is clear from the next remark.

Remark 4.2. — The subset I ′ ⊂ T ∗W∞ from the definition of I and the subset Ũ ⊂

W ∗

∞
from the definition of U are related as follows. Identifying (T ∗W∞−0)/Gm with

the incidence relation Inc ⊂ W∞ ×W ∗

∞
we get from I ′ a subset of Inc. Its image in

W ∗

∞
equals W ∗

∞
\ Ũ .

5. Sketch of the proof of Theorem 4.1

5.1. Strategy. — We are studying µ̂, where µ := ϕ∗|ω|. Let X be as in §4. De-

compose ϕ : X →W as

(5.1) X

ϕ
##
●

●

●

●

●

●

●

●

●

�

� i
// X ×W

π
��

W

Note that since ϕ is proper the map i is a closed embedding. Thus all three maps in

diagram (5.1) are proper.

We have µ := ϕ∗|ω| = π∗i∗|ω|. So µ̂ = π∗ î∗|ω|. Here i∗|ω| lives on X ×W , and

î∗|ω| is the partial Fourier transform of i∗|ω| with respect to W .

11. On the other hand, Critf is not necessarily Lagrangian, see Example A.1 from Appendix A.
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320 V. DRINFELD

The strategy is to first find an upper bound for the wave front of î∗|ω| and then to

get from it an upper bound for the wave front of µ̂. The latter is straightforward (12).

In §§5.2–5.4 below we discuss the problem of finding an upper bound for the wave

front of î∗|ω|; this problem is, of course, local with respect to X.

5.2. A calculus-style formula for î∗|ω|. — Let us get rid of the notation i∗
(which is not a part of a standard calculus course).

Let x0 ∈ X. Our ϕ : X → W extends to ϕ : X → W , and on some open subset

U ⊂ X containing x0 one can write ϕ : U →W as

ϕ(x) = (f(x) : p(x)),

where f is a W -valued regular function, p is a scalar regular function, and the two

functions have no common zeros. We claim that on U ×W ∗ one has

(5.2) î∗|ω| = ψ

(
〈f(x), ξ〉

p(x)

)
· |ω|, (x, ξ) ∈ U ×W ∗.

Here and in similar situations below we allow a slight abuse of notation: we write

simply ω to denote the pullback of ω from X to U × W ∗, and we tacitly assume

restriction from X ×W ∗ to U ×W ∗ in the l.h.s. of (5.2).

Let us explain the precise meaning of formula (5.2). To simplify the discussion, let

us fix a Haar measure (13) on W ∗, then the l.h.s. of (5.2) is a distribution on U ×W ∗.

The r.h.s. of (5.2) clearly makes sense as a distribution on a smaller set (U∩X)×W ∗

(since p has no zeros on U ∩ X we just have a smooth function times |ω|). But as

explained below, the r.h.s. of (5.2) makes sense as a distribution on the whole set

U ×W ∗, and formula (5.2) is, in fact, an equality of distributions on U ×W ∗.

Here are two equivalent ways to define the r.h.s. of (5.2) as a distribution on U×W ∗.

First way: for a smooth compactly supported test function h on U ×W ∗, interpret
∫

x,ξ

h(x, ξ) · ψ(
〈f(x), ξ〉

p(x)
) · |ω|

as
∫
x

∫
ξ

(i.e., integrate along ξ first (14)).

To explain the second way, let us assume, for simplicity, that U is so small that

there is a regular top form ω0 on U without zeros. The problem is then to define the

expression

(5.3) ψ

(
〈f(x), ξ〉

p(x)

)
·
∣∣∣ ω
ω0

∣∣∣

12. The calculus of wave fronts was developed by Hörmander precisely to make such computations

straightforward.
13. If you do not fix a Haar measure on W ∗ then the l.h.s. of (5.2) is a distribution along U and

a generalized function along W ∗.
14. After integrating along ξ one gets a smooth compactly supported function on U . Moreover,

this function vanishes on the locus p(x) = 0. In the Archimedean case all its derivatives vanish there

as well.
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FOURIER TRANSFORM OF ALGEBRAIC MEASURES 321

as a generalized function on U ×W ∗. In fact, one defines (5.3) as a map

(5.4) U −→ {generalized functions on W ∗}.

Namely, if p(x) 6= 0 then (5.3) is understood literally, and if p(x) = 0 then the

corresponding generalized function on W ∗ is defined to be zero. One checks that the

above map (5.4) is continuous, so it defines a generalized function on U ×W ∗.

5.3. Using formula (5.2). — The formula reduces the problem to finding an upper

bound for the wave front of the distribution

(5.5) ψ

(
〈f(x), ξ〉

p(x)

)
· |ω|, (x, ξ) ∈ U ×W ∗.

Recall that f and p have no common zeros. Note that the wave front of (5.5) does

not change after replacing f(x) by f(x)+p(x)w0, where w0 ∈ W is fixed. These facts

imply that without loss of generality we can assume that f has no zeros on U .

Now consider the expression

(5.6) ψ

(
η

p(x)

)
· |ω|, (x, η) ∈ U × F,

which is simpler than (5.5). Define (5.6) as a distribution on the whole U ×F (rather

than on the open subset where p(x) 6= 0) using the procedure from §5.2. The dis-

tribution (5.5) is the pullback of (5.6) with respect to the map U ×W ∗ → U × F

defined by η = 〈f(x), ξ〉 (the pullback is well-defined because f has no zeros on U ,

which implies that the map U ×W ∗ → U × F is a submersion). Thus it remains to

find an upper bound for the wave front of (5.6).

5.4. Using toric symmetry. — The good news is that f does not appear in

formula (5.6). Because of this, the toric symmetry due to the normal crossings as-

sumption becomes manifest. Let us explain more details.

5.4.1. The SNC case. — Let us first assume that the divisorX\X◦ has strict normal

crossings (this case is enough to prove Theorem 3.3). In this case we can pretend that

U = An and that p and ω from formula (5.6) are given by monomials. Then the

problem is to give an upper bound for the wave front of the generalized function (15)

(5.7) u(x, η) = ψ
( η

xα

)
· |xβ |, where x = (x1, . . . , xn) ∈ Fn, η ∈ F.

As usual, α and β are multi-indices and xα := xα1

1 xα2

2 . . . xαn

n . We assume that αi ≥ 0

and whenever αi = 0 we have βi ≥ 0; the latter assumption ensures that (5.7) is

well-defined as a generalized function.

15. Again, to define (5.7) as a generalized function on the whole space Fn×F (rather than outside

of the coordinate hyperplanes) we use the procedure from §5.2.
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Key Lemma. — The wave front of (5.7) is contained in the union of the zero section

of the cotangent bundle of Fn+1 and the conormal bundles of the coordinate planes

of dimensions 0, 1, . . . , n.

Proof. — Let W denote the wave front of u. The generalized function u is quasi-

invariant with respect to the action of the torus T := (F×)n on Fn+1 defined by

x̃i := λi · xi, η̃ := λα · η, (λ1, . . . , λn) ∈ (F×)n.

The quasi-invariance property of u implies the following property of W : suppose that

(z, α) ∈ W , where z ∈ An+1 and α ∈ T ∗

z (A
n+1); then α vanishes on the tangent

space to the T -orbit containing z. Combining this property of W with the fact that

u is smooth outside of the union of the coordinate hyperplanes, we get the desired

statement.

5.4.2. The general case. — Now let us drop the strictness assumption on the divisor

X \X◦. Then instead of (5.7) one has to consider the following generalized function

on

E1 × . . . En × F,

where E1, . . . , En are finite extensions of F :

u(x1, . . . , xn, η) = ψ

(
η

NE1/F (x1)
α1 · · · · ·NEn/F (xn)

αn

)
·
∏

i

|NEi/F (xi)|
βi ,

xi ∈ Ei , η ∈ F. An analog of the Key Lemma from §5.4.1 for this generalized function

still holds. The proof from §5.4.1 remains valid with an obvious change: instead of

the torus (F×)n one uses the torus E×

1 × · · · × E×

n .

Appendix A

How non-Lagrangian isotropic varieties appear

A.1. The isotropic subset Critf is not necessarily Lagrangian. — To a mor-

phism f : X → Y between smooth algebraic varieties one associates an isotropic

conic subset Critf ⊂ T ∗Y , see formula (4.2). The subset Critf ⊂ T ∗Y is not neces-

sarily Lagrangian, i.e., its closure may have components of dimension less than dimY .

I learned the following example of this phenomenon from M. Kashiwara.

Example A.1. — Define f : A2 → A2 by

f(t, x) = (t, tnx), n ≥ 2.

The differential of f never vanishes; it is degenerate if and only if t = 0. So far we

have used that n ≥ 1. Now using that n ≥ 2 we see that Critf is the union of the

zero section and a line in the cotangent space of (0, 0) ∈ Y .

Question A.2. — Is there a proper morphism f : X → Y between smooth algebraic

varieties such that Critf is not Lagrangian?

ASTÉRISQUE 369



FOURIER TRANSFORM OF ALGEBRAIC MEASURES 323

A.2. A distribution whose wave front is isotropic but not Lagrangian

Consider the map f : A2 → A2 from Example A.1, i.e.,

(A.1) f(t, x) = (t, y), where y = tnx, n ≥ 2.

Let F be a local field of characteristic 0 and ϕ : F → C a smooth compactly supported

function. Define a distribution u on F 2 by

(A.2) u := f∗(ϕ(x) · |dt ∧ dx|)

(the r.h.s. makes sense because the restriction of f : F 2 → F 2 to the support of the

distribution ϕ(x) · |dt∧ dx| is proper). As usual, the distribution u can be considered

as a generalized function. This function is smooth outside of the point y = t = 0; in

fact, it is easy to see that

u(t, y) = |t−n| · ϕ(y/tn) if t 6= 0; u(t, y) = 0 if t = 0, y 6= 0.

Lemma A.3. — If ϕ 6= 0 then the wave front of u is the union of the following two

sets:

a) the part of the zero section that corresponds to the support of the function

ϕ(y/tn);

b) a line in the cotangent space of the point y = t = 0.

Proof. — The calculus of wave fronts (16) tells us that the wave front of u is contained

in the set of F -points of Critf . So the description of Critf given in Example A.1 yields

an upper bound for the wave front. On the other hand, the wave front set is a conic

subset of the cotangent bundle which is not contained in the zero section (because u

is not smooth at the point y = t = 0).

Example A.4. — Here is a variant of the above construction assuming that F 6= C.

Choose a ∈ F×, a 6∈ (F×)2. Instead of the map (A.1), consider the map f : F 2 → F 2

defined by

(A.3) f(t, x) =

(
t,
x3

3
− at2x

)
.

Consider the distribution (A.2) on F 2 corresponding to the new map f : F 2 → F 2.

Then Lemma A.3 holds for this distribution (to see this, note that since a 6∈ (F×)2 the

only critical point of f : F 2 → F 2 is x = t = 0). Note that the algebraic variety Critf
corresponding to the map (A.3) is Lagrangian, but one of its irreducible components

has very few F -points.

16. E.g., see [AD, Prop. 2.3.8] and [AD, Def. 2.3.6].
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