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ON THE SPECTRAL THEORY OF GROUPS
OF AFFINE TRANSFORMATIONS

OF COMPACT NILMANIFOLDS

 B BEKKA  Y GUIVARC’H

A. – Let N be a connected and simply connected nilpotent Lie group, Λ a lattice
in N , and Λ\N the corresponding nilmanifold. We characterize the countable subgroups of the
group Aff(Λ\N) of affine transformations of Λ\N whose action on L2(Λ\N) has a spectral gap:
these are the groups H for which there exists no proper H-invariant subtorus S of the maximal torus
factor T of Λ\N such that the projection of H on Aut(T/S) is a virtually abelian group.

The result is first established when Λ\N is a torus. The problem for a general nilmanifold is reduced
to the torus case, using Kirillov’s theory of unitary representations of nilpotent Lie groups and decay
properties of the metaplectic representation of the symplectic group. Our methods show that the action
of H ⊂ Aff(Λ\N) on Λ\N is ergodic (or the action of H ⊂ Aut(Λ\N) on Λ\N is strongly mixing) if
and only if the corresponding action of H on T has the same property.

R. – Soit N un groupe de Lie nilpotent, connexe et simplement connexe; soient Λ un réseau
dans N et Λ\N la nilvariété correspondante. Nous donnons une caractérisation des sous-groupes
dénombrables du groupe Aff(Λ\N) des transformations affines de Λ\N dont l’action sur L2(Λ\N)

possède un trou spectral : ce sont les groupes H pour lesquels le tore quotient maximal T de Λ\N
ne possède aucun sous-tore propre et H-invariant S tel que la projection de H sur Aut(T/S) soit un
groupe virtuellement abélien.

Les outils principaux de la preuve sont la théorie de Kirillov des représentations unitaires des
groupes de Lie nilpotents et l’étude du comportement asymptotique des coefficients matriciels de
la représentation métaplectique du groupe symplectique qui permettent de ramener le cas géné-
ral à celui des tores dont l’étude est préalablement menée. Nos méthodes montrent que l’action
de H ⊂ Aff(Λ\N) sur Λ\N est ergodique (ou celle de H ⊂ Aut(Λ\N) sur Λ\N est fortement
mélangeante) si et seulement si l’action induite de H sur T possède la même propriété.

The first author acknowledges the support of the French Agence Nationale de la Recherche (ANR) for the
projects ANR-2010-BLANC GGAA and ANR-2009-BLANC AGORA..
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608 B. BEKKA AND Y. GUIVARC’H

1. Introduction

Let H be a countable group acting measurably on a probability space (X, ν) by measure
preserving transformations. Let U : h 7→ U(h) denote the corresponding Koopman
representation of H on L2(X, ν). We say that the action of H on X has a spectral gap if
the restriction U0 of U to the H-invariant subspace

L2
0(X, ν) = {ξ ∈ L2(X, ν) :

∫
X

ξ(x)dν(x) = 0}

does not have almost invariant vectors, that is, there is no sequence of unit vectors ξn
in L2

0(X, ν) such that limn ‖U0(h)ξn− ξn‖ = 0 for all h ∈ H. A useful equivalent condition
for the existence of a spectral gap is as follows. Let µ be a probability measure on H and
U0(µ) the convolution operator defined on L2

0(X, ν) by

U0(µ)ξ =
∑
h∈H

µ(h)U0(h)ξ for all ξ ∈ L2
0(X, ν).

Observe that we have ‖U0(µ)‖ ≤ 1 and hence r(U0(µ)) ≤ 1 for the spectral radius r(U0(µ))

ofU0(µ). Assume that µ is aperiodic (that is, supp(µ) is not contained in the coset of a proper
subgroup of H). Then the action of H on X has a spectral gap if and only if r(U0(µ)) < 1

and this is equivalent to ‖U0(µ)‖ < 1.
Ergodic theoretic applications of the existence of a spectral gap (or of the stable spectral

gap; see below for the definition) to random walks (such as the rate of L2-convergence
in the random ergodic theorem, pointwise ergodic theorem, analogues of the law of large
numbers and of the central limit theorem, etc.) are given in [8], [9], [16], [18] and [19].
Another application of the spectral gap property is the uniqueness of ν asH-invariant mean
on L∞(X, ν); for this as well as for further applications, see [5], [31], [39], [42].

Recall that a factor (Y,m,H) of the system (X, ν,H) is a probability space (Y,m)

equipped with anH-action by measure preserving transformations together with aH-equiv-
ariant mesurable mapping Φ : X → Y with Φ∗(ν) = m. Observe that L2(Y,m) can be
identified with an H-invariant closed subspace of L2(X, ν).

By a result proved in [28, Theorem 2.4], no action of a countable amenable group by
measure preserving transformations on a non-atomic probability space has a spectral gap.
As a consequence, if there exists a non-atomic factor (Y,m,H) of the system (X, ν,H)

such that H acts as an amenable group on Y , then the action of H on X has no spectral
gap. Our main result (Theorem 1) shows in particular that this is the only obstruction for
the existence of a spectral gap when H is a countable group of affine transformations of a
compact nilmanifold X.

Let N be a connected and simply connected nilpotent Lie group. Let Λ be a lattice in N ;

the associated nilmanifold Λ\N is known to be compact. The group N acts by right trans-
lations on Λ\N : every n ∈ N defines a transformation ρ(n) on Λ\N given by Λx 7→ Λxn.
Denote by Aut(N) the group of continuous automorphisms of N and by Aut(Λ\N) the
subgroup of continuous automorphisms ϕ of N such that ϕ(Λ) = Λ. The group Aut(N) is
a linear algebraic group defined over Q and Aut(Λ\N) is a discrete subgroup of Aut(N).
An affine transformation of Λ\N is a mapping Λ\N → Λ\N of the form ϕ ◦ ρ(n) for
some ϕ ∈ Aut(Λ\N) and n ∈ N . The group Aff(Λ\N) of affine transformations of Λ\N is
the semi-direct product Aut(Λ\N) nN .
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GROUPS OF AFFINE TRANSFORMATIONS OF NILMANIFOLDS 609

Every g ∈ Aff(Λ\N) preserves the translation invariant probability measure νΛ\N in-
duced by a Haar measure on N . The action of Aff(Λ\N) on Λ\N is a natural generaliza-
tion of the action of SLn(Z) n Tn on the torus Tn = Rn/Zn. In fact, let T = Λ[N,N ]\N
be the maximal torus factor of Λ\N . Then, given a subgroup H of Aff(Λ\N), the nilsys-
tem (Λ\N,H) can be viewed as the result, starting with T , of a finite sequence of extensions
by tori, with induced actions of H on every stage.

Actions of higher rank lattices by affine transformations on nilmanifolds arise in Zimmer’s
programme as one of the standard actions for such groups (see the survey [14]). The action
of a single affine transformation (or a flow of such transformations) on a nilmanifold have
been studied by W. Parry from the ergodic, spectral or topological point of view (see [36],
[37], [38]; see also [2] for the case of translations).

Let V be a finite dimensional real vector space and ∆ a lattice in V . As is well-known,
T = V/∆ is a torus and ∆ defines a rational structure on V . Let W be a rational linear
subspace of V . Then S = W/(W ∩ ∆) is a subtorus of T and we have a torus fac-
tor T = T/S. Let H be a subgroup of Aff(T ) and assume that W is invariant under pa(H),
where pa : Aff(T )→ Aut(T ) is the canonical projection. Then H leaves S invariant and
the induced action of H on T is a factor of the action of H on T . We will say that T is an
H-invariant factor torus of T . Here is our main result.

T 1. – Let Λ\N be a compact nilmanifold with associated maximal torus factor T .
Let H be a countable subgroup Aff(Λ\N). The following properties are equivalent:

(i) The action of H on Λ\N has a spectral gap.
(ii) The action of H on T has a spectral gap.

(iii) There exists no non-trivial H-invariant factor torus T of T such that the projection
of pa(H) on Aut(T ) is a virtually abelian group (that is, it contains an abelian subgroup
of finite index).

To give an example, let T = Rd/Zd be the d-dimensional torus. Observe that Aut(T )

can be identified with GLd(Z). Let H be a subgroup of Aff(T ) = GLd(Z) n T . Assume
that pa(H) is not virtually abelian and that pa(H) acts Q-irreducibly on Rd (that is, there is
no non-trivial pa(H)-invariant rational subspace of Rd). Then the action of H on T has a
spectral gap. For more details, see Corollary 6 and Example 7 below.

The result above is new even in the case where Λ\N is a torus; see however [16, Theo-
rem 6.5.ii] for a sufficient condition for the existence of a spectral gap for groups of torus
automorphisms. Our result shows, in particular, that the spectral gap property for a count-
able subgroupH of Aff(Λ\N) is equivalent to the spectral gap property for its automorphism
part pa(H), where pa : Aff(Λ\N)→ Aut(Λ\N) is the canonical projection.

The proof of Theorem 1 breaks into two parts. We first establish the result in the case
where Λ\N is a torus (see Theorem 5 below). Our proof is based here on the existence of
appropriate invariant means on finite dimensional vector spaces. A crucial tool will be (a
version of) Furstenberg’s result on stabilizers of probability measures on projective spaces
over local fields. In the case of a general nilmanifold Λ\N with associated maximal torus fac-
tor T , we show that (ii) implies (i) by studying the asymptotic behavior of matrix coefficients
of the Koopman representation U of H restricted to the orthogonal complement of L2(T )

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



610 B. BEKKA AND Y. GUIVARC’H

in L2(Λ\N); for this, we will use decay properties of the metaplectic representation of sym-
plectic groups due to R. Howe and C. C.Moore [25]. The equivalence of (i) and (ii) was proved
in [6] in the special case of a group of automorphisms of Heisenberg nilmanifolds.

Actions of countable amenable groups on a non-atomic probability space fail to have a
property which is weaker than the spectral gap property. Recall that the action of a countable
group H by measure preserving transformations on a probability space (X, ν) is said to be
strongly ergodic in Schmidt’s sense (see [43], [44]) if every sequence (An)n of measurable sub-
sets ofX which is asymptotically invariant (that is, which is such that limn ν(gAn 4An) = 0

for all g ∈ H) is trivial (that is, limn ν(An)(1−ν(An)) = 0). It is easy to see that if the action
ofH onX has a spectral gap, then the action is strongly ergodic (see, for instance, [5, Propo-
sition 6.3.2]). The converse does not hold in general (see Example (2.7) in [44]). As shown
in [44], no action of a countable amenable group by measure preserving transformations on
a non-atomic, probability space can be strongly ergodic.

An interesting feature of strong ergodicity (as opposed to the spectral gap property) is
that this notion only depends on the equivalence relation on X defined by the partition
of X into H-orbits. Our result shows that the existence of a spectral gap for subgroups
of Aff(Λ\N) is equivalent to strong ergodicity.

C 2. – The action of a countable subgroup of Aff(Λ\N) on a compact nilmani-
fold Λ\N has a spectral gap if and only if it is strongly ergodic.

We suspect that the previous corollary is true for every countable group of affine transfor-
mations of the quotient of a Lie group by a lattice. In fact, the following stronger statement
could be true. Let G be a connected Lie group and Γ a lattice of G. Let H be a countable
subgroup of Aff(Γ\G). Assume that the action ofH on Γ\G does not have a spectral gap. Is
it true that there exists a non-trivial H-invariant factor Γ\G of Γ\G such that the closure of
the projection of H on Aff(Γ\G) is an amenable group?

As our result shows, this is indeed the case if G is a nilpotent Lie group; it is also the case
if G is a simple non-compact Lie group with finite centre (see Theorem 6.10 in [16]). It is
worth mentioning that the corresponding statement in the framework of countable standard
equivalence relations has been proved in [27].

Let again H be a countable group acting by measure preserving transformations on a
probability space (X, ν). The following useful strengthening of the spectral gap property has
been considered by several authors ([3], [4], [16], [39]). Following [39], let us say that the action
of H has a stable spectral gap if the diagonal action of H on (X ×X, ν ⊗ ν) has a spectral
gap (see Lemma 3.2 in [39] for the rationale of this terminology). The following result is an
immediate consequence of Theorem 1 above and of the corresponding result for groups of
torus automorphisms obtained in [16, Theorem 6.4].

C 3. – If the action of a countable subgroup of Aff(Λ\N) on a compact nilman-
ifold Λ\N has a spectral gap, then it is has stable spectral gap.

Next, we turn to the question of the ergodicity or mixing of the action of a (not necessarily
countable) subgroupH of Aff(Λ\N) on Λ\N . As a consequence of our methods, we will see
that this reduces to the same question for the action of H on the associated torus.
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Recall that an action of a group H on a probability space (X, ν) is weakly mixing if
the Koopman representation U of H on L2(X, ν) has no finite dimensional subrepre-
sentation, and that the action of of a countable group H is strongly mixing if the matrix
coefficients g 7→ 〈U(g)ξ, η〉 vanish at infinity for all ξ, η ∈ L2

0(X, ν).

T 4. – LetH be a group of affine transformations of the compact nilmanifold Λ\N .
Let T be the maximal T torus factor associated to Λ\N .

(i) If the action of H on T is ergodic (or weakly mixing), then its action on Λ\N is ergodic
(or weakly mixing).

(ii) Assume that H is a subgroup of Aut(Λ\N). If the action of H on T is strongly mixing,
then its action on Λ\N is strongly mixing.

Part (i) of the previous theorem has been independently established in [8] with a different
method of proof. In the case of a single affine transformation (that is, in the case of H = Z),
the result is due to W. Parry (see [36], [37]). Also, [8] gives an example of a group of auto-
morphisms H acting ergodically on a nilmanifold Λ\N for which no single automorphism
from H acts ergodically on Λ\N , showing that the previous theorem does not follow from
Parry’s result.

This article is organized as follows. Sections 1-7 are devoted to the proof our main
result Theorem 1 in the case where Λ\N is a torus. The proof of the extension to general
nilmanifold is given in Sections 8-14. Theorem 4 is treated in Section 15.

Acknowledgements. – We are grateful to J.-P. Conze, A. Furman, and A. Gamburd for useful
discussions.

2. Spectral gap property for groups of affine transformations of a torus:
statement of the main result

Let V be a finite dimensional real vector space of dimension d ≥ 1 and let ∆ be a lattice
in V . Let T be the torus T = V/∆. The group of affine transformations of T is the semi-direct
product Aff(T ) = Aut(T ) n T .

The aim of this section is to state the following result, which will be proved in the next two
sections. Recall that pa denotes the canonical homomorphism Aff(T )→ Aut(T ).

T 5. – Let H be a countable subgroup of Aff(T ). The following properties are
equivalent:

(i) The action of H on T does not have a spectral gap.
(ii) There exists a non-trivial H-invariant factor torus T such that the projection of pa(H)

on Aut(T ) is amenable.
(iii) There exists a non-trivial H-invariant factor torus T 0 such that the projection of pa(H)

on Aut(T 0) is virtually abelian.

The following corollary is an immediate consequence of the implication (i)⇒ (iii) in the
previous theorem.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



612 B. BEKKA AND Y. GUIVARC’H

C 6. – Let T = V/∆ be a torus. Let H be a countable subgroup of Aff(T ) such
that pa(H) ⊂ Aut(T ) is not virtually abelian. Assume that the action ofH onV is Q-irreducible
for the rational structure on V defined by ∆. Then the action of H on T has a spectral gap.

This last result was proved in [16, Theorem 6.5.ii] for a subgroup H of Aut(T ) under the
stronger assumption that the action of H on V is R-irreducible. We give an example of a
subgroupH of automorphisms of a 6-dimensional torus T = V/∆ which acts Q-irreducibly
but not R-irreducibly on V and which has a spectral gap on T .

E 7. – Let q be the quadratic form on R3 given by

q(x) = x2
1 + x2

2 −
√

2x2
3,

and let SO(q,R) ⊂ GL3(R) be the orthogonal group of q. Set

H = SL3(Z[
√

2]) ∩ SO(q,R).

Let σ be the non-trivial automorphism of the field Q[
√

2]. For every g ∈ SO(q,R), the
matrix gσ, obtained by conjugating each entry of g, preserves the conjugate form qσ of q
under σ. The mapping

Q[
√

2]→ R×R, x 7→ (x, σ(x))

induces an isomorphism between Z[
√

2]3 and a lattice ∆ in R3 × R3. It induces also an
isomophism γ 7→ (γ, γσ) between H and a lattice Γ in SO(q,R) × SO(qσ,R). Moreover,
H leaves Z[

√
2]3 invariant and Γ leaves ∆ invariant. We obtain in this way an action ofH on

the torus T = R6/∆.
Since SO(qσ,R) ∼= SO(3) is compact,H is a lattice in SO(q,R). This implies (Borel den-

sity theorem) that the Zariski closure of H in SL3(R) is the simple Lie group SO(q,R), so
that the action of H on R3 is R-irreducible and hence Q-irreducible for the usual rational
structure on R3. It follows that the action ofH on R6 is Q-irreducible for the rational struc-
ture defined by the lattice ∆ of R6. Observe that the action of H on R6 is not R-irreducible
since Γ leaves invariant each copy of R3 in R6 = R3 ⊕ R3. Moreover, H is not virtually
abelian as it is a lattice in SO(q,R) ∼= SO(2, 1). As a consequence of the previous corollary,
the action of H on T has a spectral gap.

Concerning the proof of Theorem 5, we will first treat the case of groups of toral auto-
morphisms.

Choosing a basis for the Z-module ∆, we identify V with Rd and ∆ with Zd. By means of
the standard scalar product on Rd, we identify the dual group V̂ of V (that is, the group of
unitary characters of V ) with V . The dual action of an element g ∈ GL(V ) on V̂ corresponds
to the action of (g−1)t on V . Since T = V/∆, the dual group T̂ can be identified with ∆.
Let W be a rational linear subspace of V . The dual group of the quotient V/W corresponds
to the orthogonal complement W⊥ of W , which is also a rational linear subspace of V . The
dual group of the torus factor T = (V/W )/((W + ∆)/W ) corresponds to W⊥ ∩∆.

The discussion above shows that, in the case of a group of toral automorphisms, Theo-
rem 5 is equivalent to the following theorem.

T 8. – Let H be a subgroup of GLd(Z). The following properties are equivalent.

(i) The action of H on T = Rd/Zd does not have a spectral gap.
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GROUPS OF AFFINE TRANSFORMATIONS OF NILMANIFOLDS 613

(ii) There exists a non-trivial rational subspace W of Rd which is invariant under the
subgroup Ht of GLd(Z) and such that the image of Ht in GL(W ) is an amenable group.

(iii) There exists a non-trivial rational subspaceW of Rd which is invariant underHt and such
that the image of Ht in GL(W ) is a virtually abelian group.

Observe that the implication (iii) =⇒ (ii) is obvious and that the implication (ii) =⇒ (i)

follows from the result in [28] quoted in the introduction. Therefore, it remains to show that
(i) implies (ii) and that (ii) implies (iii).

3. A canonical amenable group associated to a linear group

Let V be a finite-dimensional real vector space. (Although we will consider only real
vector spaces, the results in this section are valid for vector spaces over any local field.)
Let g ∈ GL(V ) and W a g-invariant linear subspace of V . We denote by gW ∈ GL(W )

the automorphism of W given by the restriction of g to W . If W ′ is another g-invariant
subspace contained in W , we will denote by gW/W ′ ∈ GL(W/W ′) the automorphism
of W/W ′ induced by g. Also, if H is a subgroup of GL(V ) and W ′ ⊂ W are H-invariant
subspaces of V , we will denote byHW andHW/W ′ the corresponding subgroups ofGL(W )

and GL(W/W ′), respectively.

For a subgroup H of GL(V ), we denote by H its closure for the usual locally compact
topology on GL(V ). The aim of this section is to prove the following result.

P 9. – LetH be a subgroup ofGL(V ). There exists a largestH-invariant linear
subspace V (H) of V such that the group HV (H) is amenable. More precisely, let V (H) be the
subspace of V generated by the union of the H-invariant subspaces W ⊂ V for which HW is
amenable. Then HV (H) is amenable.

A more explicit description of V (H) will be given later (Proposition 15). For the proof of
the proposition above, we will need the following elementary lemma.

L 10. – LetH be a closed subgroup ofGL(V ) andW anH-invariant subspace of V .
Then H is amenable if and only if HW and HV/W are amenable.

Proof. – Since HW and HV/W are closures of quotients of H, both are amenable if H is
amenable.

Assume that HW and HV/W are amenable. Let L be the closed subgroup consisting of
the elements g ∈ GL(V ) leaving W invariant and for which gW belongs to HW and gV/W
belongs to HV/W . The mapping

ϕ : L→ HW ×HV/W , g 7→ (gW , gV/W )

is a continuous homomorphism. It is clear that ϕ is surjective. Moreover, U = Ker(ϕ) is a
unipotent closed subgroup of L. SinceHW ×HV/W and U are amenable, L is amenable. The
closed subgroup H of L is therefore amenable.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



614 B. BEKKA AND Y. GUIVARC’H

Proof of Proposition 9. – We can write V (H) =
∑r
i=1Wi as a sum of finitely manyH-in-

variant subspaces W1, . . . ,Wr of V such that HWi
is amenable for every 1 ≤ i ≤ r.

We show by induction on s ∈ {1, . . . , r} that HW s is amenable, where W s =
∑s
i=1Wi.

The case s = 1 being obvious, assume that HW s is amenable for some s ∈ {1, . . . , r − 1}.
The group

GL(W s+1/W s) = GL((W s +Ws+1)/W s)

is canonically isomorphic to GL(Ws+1/(W
s ∩ Ws+1) and HW s+1/W s corresponds

to HWs+1/(W s∩Ws+1) under this isomorphism. Now, HWs+1/(W s∩Ws+1) is amenable since
HWs+1

is amenable. Hence, HW s+1/W s is amenable. Moreover, HW s is amenable by the
induction hypothesis. The previous lemma implies that HW s+1 is amenable.

4. Invariant means supported by rational subspaces

Let G be a locally compact group. There is a well-known relationship between weak
containment properties of the trivial representation 1G ofG and existence on invariant means
on appropriate spaces (see below). We will need to make this relationship more precise in the
case where G is a subgroup of toral automorphisms.

By a unitary representation (π, H ) of G, we will always mean a strongly continuous
homomorphism π : G→ U( H ) from G to the unitary group of a complex Hilbert space H .
Recall that, for every finite measure µ of G, the operator π(µ) ∈ B( H ) is defined by the
integral

π(µ)ξ =

∫
G

π(g)ξdµ(g) for all ξ ∈ H .

Assume that G is a discrete group and π and ρ are unitary representations of G; then π is
weakly contained in ρ if and only if ‖π(µ)‖ ≤ ‖ρ(µ)‖ for every finite measure µ on G (see
Section 18 in [11]). Recall also that, if π is a unitary representation of G and µ an aperiodic
probability measure on G, then ‖π(µ)‖ = 1 if and only if the trivial representation 1G
is weakly contained in π (see Proposition G.4.2 and Remark G.4.3 in [5]). Since this last
condition does not depend on the chosen aperiodic probability measure, it follows that,
if ‖π(µ)‖ = 1, then ‖π(ν)‖ = 1 for every aperiodic probability measure ν on G.

Let X be a topological space and Cb(X) the Banach space of all bounded contin-
uous functions on X equipped with the supremum norm. Recall that a mean on X

is a linear functional m on Cb(X) such that m(1X) = 1 and such that m(ϕ) ≥ 0 for
every ϕ ∈ Cb(X) with ϕ ≥ 0. A mean is automatically continuous. When X is discrete,
we will often write m(A) instead of m(1A) for a subset A of X.

Observe that the means on a compact space X are the probability measures on X.
Let H be a group acting on X by homeomorphisms. Then H acts naturally on Cb(X).

A mean m on X is H-invariant if m(h.ϕ) = m(ϕ) for all ϕ ∈ Cb(X) and h ∈ H.
Let Y be another topological space and f : X → Y a continuous mapping. For every

mean m on X, the push-forward f∗(m) of m is the mean on Y defined by ϕ 7→ m(ϕ ◦ f)

for ϕ ∈ Cb(Y ).
We will consider invariant means on two kinds of topological spaces:
• X is a set with the discrete topology and endowed with an action of a group H. It is

well-known (see Théorème on page 44 in [13]) that there exists an H-invariant mean on X if
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and only if the natural unitary representation U of H on `2(X) almost has invariant vectors
(that is, if and only if U weakly contains the trivial representation 1H of H).

• X = V \ {0}, where V is a finite dimensional real vector space. Let H be a subgroup
ofGL(V ). Ifm is anH-invariant mean on V \{0}, then π∗(m) is anH-invariant probability
measure on the projective space P(V ), where π : V \{0} → P(V ) is the canonical projection.

The following result is a version of Furstenberg’s celebrated lemma (see [17] or [46, Corol-
lary 3.2.2]) on stabilizers of probability measures on projective spaces. We will need later (in
Section 5) the more precise form we give for this lemma (see also the proof of Theorem 6.5 (ii)
in [16]).

For a subgroupH ofGL(V ), we denote by Zc(H) the closure ofH in the Zariski topology
and by Zc(H)0 the connected component of Zc(H) in the Zariski topology. As is well-known,
Zc(H)0 has finite index in Zc(H).

L 11. – LetH be a closed subgroup ofGL(V ). Assume thatH stabilizes a probability
measure ν onP(V ) which is not supported on a proper projective subspace. Then the commutator
subgroup [H0, H0] ofH0 is relatively compact, whereH0 is the normal subgroup of finite index
H ∩ Zc(H)0 of H. In particular, H is amenable.

Proof. – We can find finitely many positive measures (νi)1≤i≤r on P(V ) with ν =
∑

1≤i≤r νi
such that ν(Vi ∩ Vj) = 0 for i 6= j and such that supp(νi) ⊂ π(Vi) for every i ∈ {1, . . . , r},
where Vi is a linear subspace of V of minimal dimension with νi(π(Vi)) > 0. The H-orbit
of Vi and hence the H-orbit of νi is finite (see Proof of Corollary 3.2.2 in [46]). Since
stabilizers of probability measures on P(V ) are algebraic (see Theorem 3.2.4 in [46]), it
follows that H0 stabilizes each Vi and each νi. Now νi, viewed as measure on P(Vi), is
zero on every proper projective subspace of P(Vi). Hence (see Corollary 3.2.2 in [46]), the
image of the restriction H0

i of H0 to Vi is a relatively compact subgroup of PGL(Vi),
for every i ∈ {1, . . . , r}. Since [H0

i , H
0
i ] is contained in SL(Vi), it follows that [H0

i , H
0
i ] is

compact in GL(Vi). This implies that [H0, H0] is compact. As H0/[H0, H0] is abelian, it
follows that H0 (and hence H) is amenable.

R 12. – The conclusion of the previous lemma does not hold in general if we
replace H0 by an arbitrary subgroup of finite index of H. For example, let V = Re1 ⊕Re2

and let H ⊂ GL2(R) be the stabilizer of the measure ν = (δπ(e1) + δπ(e2))/2 on P(V ).
Then [H,H] = H is not bounded; however, H0 is the subgroup of index two consisting of
the diagonal matrices in H and [H0, H0] is trivial.

P 13. – Let H be a subgroup of GL(V ) and V (H) the largest H-invariant
susbpace of V such that HV (H) is amenable.

(i) Assume H stabilizes a mean m on V \ {0}. Then V (H) 6= {0}.
(ii) Let ∆ be a lattice in V and m a mean on ∆ \ {0}. Assume H leaves ∆ invariant and

stabilizes m. Then m(V (H) ∩∆) = 1. In particular, the R-linear span of V (H) ∩∆ is
a non-trivial rational subspace of V (for the rational structure defined by ∆).
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Proof. – (i) Let π : V \ {0} → P(V ) be the canonical projection and ν = π∗(m). Then ν
is an H-invariant probability measure on P(V ). Let W be the linear span of π−1(supp(ν)).
Then W is non-trivial and ν is not supported on a proper projective subspace of π(W ). It
follows from Lemma 11 applied to the closed subgroupHW ofGL(W ) thatHW is amenable.
Hence, V (H) 6= {0}, by the definition of V (H).

(ii) Set V = V/V (H). Since V (H) is H-invariant, we have an induced action of H on V .
Denote by p : V → V the canonical projection. We consider the mean m = (p|∆)∗(m) on
the set ∆ := p(∆) equipped with the discrete topology. Observe that m is H-invariant, since
H stabilizes m.

Assume, by contradiction, that m(V (H) ∩∆) < 1. Then

m({0}) = m(V (H) ∩∆) < 1.

Setting α = m(V (H) ∩∆), we define an H-invariant mean m1 on ∆ \ {0} by

m1(ϕ) =
1

1− α
m(ϕ) for all ϕ ∈ `∞(∆ \ {0}).

Let i∗(m1) be the mean on V \{0} induced by the canonical injection i : ∆\{0} → V \{0}.
Observe that i∗(m1) is H-invariant. Hence, by (i), we have V (H) 6= {0}. This implies that
V (H) is a proper subspace of the vector space W := p−1(V (H)). On the other hand, HW is
amenable, by Lemma 10. This contradicts the definition of V (H).

At this point, we can give the proof of the fact that (i) implies (ii) in Theorem 5 (or,
equivalently, in Theorem 8) in the case of a group of automorphisms.

Proof of (i) =⇒ (ii) in Theorem 8. – LetH be a countable subgroup ofGLd(Z). Assume
that the action of H on T = Rd/Zd does not have a spectral gap. Then the unitary
representation of the transposed subgroup Ht on `2(Zd \ {0}) weakly contains the trivial
representation 1Ht . Hence, there exists anHt-invariant mean on Zd\{0}. By Proposition 13,
the linear span W of V (Ht) ∩ Zd is a non-trivial Ht-invariant rational subspace of Rd.
Morever, Ht

W = Ht
W is amenable.

5. Proof of (ii) =⇒ (iii) in Theorem 8

For the proof of (ii) =⇒ (iii) in Theorem 8, we will need a precise description of the
subspace V (H) associated to a subgroup H of GL(V ) and introduced in Proposition 9. For
this, we will use the following result which appears as Lemma 1 and Lemma 2 in [7]. Since
the arguments in [7] are slightly incomplete, we give the proof of this lemma.

L 14. – Let V be a finite-dimensional real vector space and let H be a subgroup
of GL(V ) such that the action of H on V is completely reducible.

(i) Assume that the eigenvalues of every element inH all have modulus 1. ThenH is relatively
compact.

(ii) Assume that there exists an integerN ≥ 1 such that the eigenvalues of every element inH
are all N -th roots of unity. Then H is finite.
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Proof. – By hypothesis, we can decompose V into a direct sum V =
⊕

1≤i≤r Vi of
irreducible H-invariant subspaces Vi. Let V C = V ⊗R C be the complexification of V . The
action ofH on each Vi extends to a representation ofH on V C

i which either is irreducible or
decomposes as a direct sum of two irreducible (mutually conjugate) representations of H. It
suffices therefore to prove the following

Claim. – LetH be a subgroup ofGLd(C) acting irreducibly on Cd. Then the conclusion (i)
and (ii) hold.

For every h ∈ H, we consider the linear functional ϕh on the algebra Md(C) of complex
(d × d)-matrices defined by ϕh(x) = Tr(hx). Since H acts irreducibly, it follows from
Burnside theorem that the algebra generated byH coincides withMd(C). Hence, there exists
a basis {h1, . . . , hd2} of the vector space Md(C) contained in H. Then {ϕh1

, . . . , ϕhd2} is a
basis of the dual space of Md(C).

Assume that the eigenvalues of every element inH all have modulus 1. Then the ϕhi ’s are
bounded onH by d. It follows that the matrix coefficients of the elements inH are bounded.
Hence, H is relatively compact subset of Md(C).

Assume that, for a fixed N ≥ 1, the eigenvalues of every element in H are N -th roots of
unity. Then the ϕhi ’s take only a finite set of values on H. It follows that H is finite subset
of Md(C).

P 15. – Let V be a finite-dimensional real vector space and H a subgroup
of GL(V ). Set H0 = H ∩ Zc(H)0. Let V 1 be the largest H-invariant linear subspace of V
such that, for every h ∈ [H0, H0], the eigenvalues of the restriction of h to V 1 all have modulus
1. Then V (H) = V 1.

Proof. – Let us first show that V (H) ⊂ V 1. Since HV (H) is amenable, there exists an
H-invariant probability measure ν on P(V (H)) ⊂ P(V ). LetW be the smallestH-invariant
subspace such that ν is supported on P(W ). It follows from Lemma 11 that [H0, H0]

acts isometrically on W , with respect to an appropriate norm on W . We can apply the
same argument to the group HV (H)/W acting on the quotient space V (H)/W . Hence, by
induction, we obtain a flag

{0} = W0 ⊂W = W1 ⊂W2 ⊂ · · · ⊂Wr = V (H)

ofH-invariant subspaces such that [H0, H0] acts isometrically on each quotientWi+1/Wi. It
follows from this that the eigenvalues of the restriction to V (H) of any element h ∈ [H0, H0]

have all modulus 1. Hence, V (H) ⊂ V 1.
To show that V 1 ⊂ V (H), we have to prove that HV 1 is amenable. Recall that H/H0 is

finite and observe thatH0
V 1/[H0

V 1 , H0
V 1 ] is abelian. Hence, it suffices to show that [H0

V 1 , H0
V 1 ]

is amenable.
Let

{0} = W0 ⊂W1 ⊂ · · · ⊂Wr = V 1

be a Jordan-Hölder sequence for the [H0
V 1 , H0

V 1 ]-module V 1, that is, every Wi is an
[H0

V 1 , H0
V 1 ]-invariant subspace of V 1 and [H0

V 1 , H0
V 1 ] acts irreducibly on every quotient

Wi+1/Wi. By Lemma 14.i, the image of [H0, H0] inGL(Wi+1/Wi) is relatively compact for
every i ∈ {0, . . . , r − 1}.
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LetN be the unipotent subgroup ofGL(V 1) consisting of the elements inGL(V 1) which
act trivially on every quotient Wi+1/Wi.

We can choose a scalar product on V 1 such that, denoting byW⊥i the orthogonal comple-
ment of Wi in Wi+1, every h ∈ [H0, H0] can be written in the form h = kh0, where h0 ∈ N
and where k leaves W⊥i invariant and acts isometrically on W⊥i for every i ∈ {0, . . . , r − 1},
This shows that [H0

V 1 , H0
V 1 ] can be embedded as a closed subgroup of K n N ⊂ GL(V 1),

where K is the product of the the orthogonal groups of the W⊥i ’s. Since K nN is amenable,
the same is true for [H0

V 1 , H0
V 1 ].

We will need the following corollary of (the proof of) the previous proposition.

C 16. – Let Γ be a subgroup of GLd(Z). Assume that the eigenvalues of
every γ ∈ Γ all have modulus 1. Then Γ contains a unique maximal unipotent subgroup Γ0 of
finite index. In particular, Γ0 is a characteristic subgroup of Γ.

Proof. – As in the proof of the previous proposition, we consider a Jordan-Hölder
sequence for the Γ-module Rd

{0} = W0 ⊂W1 ⊂ · · · ⊂Wr = Rd

and letN be the subgroup of all g ∈ GL(V ) which act trivially on everyWi+1/Wi. We choose
a scalar product on Rd such that Γ embeds as a subgroup of the semi-direct product K nN

for K =
∏d
i=1O(W⊥i ), where W⊥i is the orthogonal complement of Wi in Wi+1.

Let γ ∈ Γ. For every l ≥ 1, the l-th powers of the eigenvalues of γ are roots of the same
monic polynomial with integer coefficients and of degree d. Since the eigenvalues of γ are all
of modulus 1, the coefficients of this polynomial are bounded by a number only depending
on d. By a standard argument (see e.g., the proof of Lemma 11.6 in [45]), it follows that all
the eigenvalues of γ are roots of unity of a fixed order which only depends on d.

Let Γ be the projection of Γ in K. The action of Γ is completely reducible, since the W⊥i ’s
are irreducible, and it follows from Lemma 14.ii that Γ is finite. Hence, Γ ∩N is a unipotent
normal subgroup of finite index in Γ.

We have therefore proved that Γ contains a unipotent normal subgroup of finite index.
We claim that Γ0 := Γ ∩ Zc(Γ)0 is the unique maximal unipotent normal subgroup of finite
index in Γ.

Indeed, let Γ1 be a unipotent normal subgroup of finite index in Γ. Set U := Zc(Γ1). Ob-
serve that the connected component ofU coincides with Zc(Γ)0, since Γ1 has finite index in Γ.
On the other hand, as is well-known, U is connected since it is a unipotent algebraic group.
(Indeed, the Zariski closure of the subgroup generated by a unipotent element u ∈ GL(Rd)

contains the one-parameter subgroup through u; see e.g., 15.1. Lemma C in [26].) It follows
that Zc(Γ)0 = U is unipotent. Moreover, since Γ1 ⊂ U , we have Γ1 ⊂ Γ0 and the claim is
proved.

We can now complete the proof of Theorem 8.
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Proof of (ii) =⇒ (iii) in Theorem 8. – Let T = V/∆ be a torus and H a subgroup
of Aut(T ) ⊂ GL(V ). Assume that there exists a non-trivial rational subspace W of V
which is H-invariant and such that the restriction HW of H to W is an amenable group. In
particular, we have W ⊂ V (H).

Set H0 = H ∩ Zc(H)0. By Proposition 15, for every h ∈ [H0, H0], all the eigenvalues of
the restriction of h to W have modulus 1. Since W is rational, by the choice of a convenient
basis ofW , we can assume that Γ := [H0, H0]W is a subgroup ofGLd(Z), where d = dimW .
It follows from Corollary 16 that Γ contains a unipotent subgroup Γ0 of finite index which
is moreover characteristic. Let W1 be the space of the Γ0-fixed vectors in W . Then W1 is
a rational and non-trivial linear subspace of W . Moreover, W1 is H-invariant, since Γ0 is
characteristic.

We claim that HW1 is virtually abelian. For this, it suffices to show that G := H0
W1
⊂ GL(W1)

is virtually abelian. Observe first that [G,G] = ΓW1 is finite, since it is a quotient of the finite
group Γ/Γ0. Since [Zc(G),Zc(G)] ⊂ Zc([G,G]), it follows that [Zc(G),Zc(G)] is finite. On
the other hand, the group [Zc(G)0,Zc(G)0] is connected (see e.g., Proposition 17.2 in [26]).
Hence, Zc(G)0 is abelian. The subgroupG∩Zc(G)0 has finite index inG and is abelian.

6. Herz’s majoration principle for induced representations

Unitary representations of a separable locally compact group G induced by a closed
subgroup H will appear several times in the sequel. We review their definition when the
homogeneous space H\G has a G-invariant measure. This will always be the case in the
situations we will encounter. (Induced representations are still defined in the general case,
after appropriate change; see [33] or [5].)

Let ν be a non-zero G-invariant measure on H\G. Let (σ, K ) be a unitary represen-
tation of H. We will use the following model for the induced representation IndGHσ.
Choose a measurable section s : H\G → G for the canonical projection G → H\G.
Let c : (H\G)×G→ H be the corresponding cocycle defined by

s(x)g = c(x, g)s(xg) for all x ∈ H\G, g ∈ G.

The Hilbert space of IndGHσ is the space L2(H\G, K ) of all square-integrable measurable
mappings ξ : H\G→ K and the action of G on L2(H\G, K ) is given by

(IndGHσ)(g)ξ(x) = σ(c(x, g))ξ(xg), g ∈ G, ξ ∈ L2(H\G, K ), x ∈ G/H.

In the sequel, we will use several times a well-known strengthening of Herz’s majoration
principle from [20] concerning norms of convolution operators under an induced represen-
tation. For an even more general version, see [1, 2.3.1]. For the convenience of the reader, we
give the short proof.

P 17 (Herz’s majoration principle). – Let H be a closed subgroup of G such
that H\G has a G-invariant Borel measure ν and let (σ, K ) be a unitary representation of H.
For every positive finite measure µ on the Borel subsets of G, we have

‖(IndGHσ)(µ)‖ ≤ ‖ρG/H(µ)‖,

where ρG/H = IndGH1H is the natural representation of G on L2(H\G, ν).
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Proof. – Let c : H\G → H be the cocycle defined by a Borel section of H\G → G.
For unit vectors ξ, η ∈ L2(H\G, K , ν), define functions ϕ,ψ in L2(H\G, ν) with L2-norm 1

by ϕ(x) = ‖ξ(x)‖, ψ(x) = ‖η(x)‖. Using Cauchy-Schwarz inequality, we have∣∣∣〈IndGHσ)(µ)ξ, η〉
∣∣∣ =

∣∣∣∣∣
∫
H\G
〈(IndGH(µ)ξ)(x), η(x)〉dν(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
H\G

∫
G

〈σ(c(x, g))ξ(xg), η(x)〉dµ(g)dν(x)

∣∣∣∣∣
≤
∫
H\G

∫
G

‖σ(c(x, g))ξ(xg)‖‖η(x)‖dµ(g)dν(x)

=

∫
H\G

∫
G

‖ξ(xg)‖‖η(x)‖dµ(g)dν(x)

= 〈(IndGH1H)(µ)ϕ,ψ〉 ≤ ‖(IndGH1H)(µ)‖.

We will also need (in Section 10) a precise description of the kernel of an induced repre-
sentation.

L 18. – With the notation as in the previous proposition, let π = IndGHσ. Then
Ker(π) =

⋂
g∈G gKer(σ)g−1, that is, Ker(π) coincides with the largest normal subgroup of G

contained in Kerσ.

Proof. – Let c : H\G × G → H be the cocycle corresponding to a measurable section
s : H\G→ G with s(H) = e. Let a ∈ Ker(π). Then, for every ξ ∈ L2(H\G, K ), we have

σ(c(x, a))ξ(xa) = ξ(x) for all x ∈ H\G.

Taking for ξ mappings supported on a neighbourhood of Ha, we see that a ∈ H. Hence
c(H, a) = a. Taking for ξ continuous mappings with ξ(H) 6= 0 and evaluating at H, we
obtain that a ∈ Ker(σ). Since Ker(π) is normal in G, it follows that gag−1 ∈ Ker(σ) for
all g ∈ G.

Conversely, let a ∈ G be such that gag−1 ∈ Ker(σ) for all g ∈ G. Since

s(x)a = (s(x)as(x)−1)s(x),

we have c(x, a) = s(x)as(x)−1 for all x ∈ H\G. Hence, for every ξ ∈ L2(H\G, K ) and
x ∈ H\G, we have

(π(a)ξ)(x) = σ(c(x, a))ξ(xa) = σ(s(x)as(x)−1)ξ(x) = ξ(x).

This shows that a ∈ Ker(π) and the claim is proved.

7. Proof of Theorem 5

Let T = V/∆ be a torus and H a countable subgroup of Aff(T ) = Aut(T ) n T . The
implication (iii) =⇒ (ii) is obvious and the implication (ii) =⇒ (i) follows from [28]. The
fact that (ii) implies (iii) has been proved in Theorem 8. Therefore, it remains to show that
(i) implies (ii). Again by Theorem 8, it suffices to show that if the action of H on T has no
spectral gap, then the same is true for the action of pa(H) on T , where pa is the projection
from Aff(T ) to Aut(T ). This will be an immediate consequence of the next proposition.
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For a probability measure µ on Aff(T ), we denote by pa(µ) the probability measure
on Aut(T ) which is the image ofµ under pa. LetU0 be the Koopman representation of Aff(T )

on L2
0(T ).

P 19. – For every probability measure µ on Aff(T ), we have

‖U0(µ)‖ ≤ ‖U0(pa(µ))‖.

Proof. – Set Γ = Aut(T ). Let T̂ ∼= Zd be the dual group of T . The Fourier transform sets

up a unitary equivalence between U0 and the representation V of Aff(T ) on `2
(
T̂ \ {1T }

)
given by

(∗) V (γ, a)χ = χ(a)χγ for all χ ∈ T̂ \ {1T }, γ ∈ Γ, a ∈ T,

where χγ ∈ T̂ is defined by χγ(x) = χ(γ−1(x)).

Choose a set of representatives S for the Γ-orbits in T̂ \ {1T }. Then `2
(
T̂ \ {1T }

)
decomposes as the direct sum of Aff(T )-invariant subspaces

`2
(
T̂ \ {1T }

)
=
⊕
χ∈S

`2( Oχ),

where Oχ is the orbit of χ ∈ S under Γ.

It follows from Formula (∗) above that the restriction Vχ of V to `2( Oχ) is equivalent to
the induced representation IndΓnT

ΓχnT χ̃, where Γχ is the stabilizer of χ in Γ and where χ̃ is the
extension of χ to Γχ n T given by

χ̃(γ, a) = χ(a) for all γ ∈ Γχ, a ∈ T.

The proposition will be proved if we can show that, for all χ ∈ S, we have

(∗∗) ‖Vχ(µ)‖ ≤ ‖Vχ(pa(µ))‖.

Now, the restriction of Vχ to Γ is equivalent to the natural representation of Γ in `2( Oχ),
which is the induced representation IndΓnT

ΓχnT 1Γ. Observe that IndΓnT
ΓχnT 1Γ is equivalent

to
(

IndΓ
Γχ1Γ

)
◦ pa. Hence, Inequality (∗∗) follows from Herz’s majoration principle (Propo-

sition 17) and the proof of Theorem 5 is complete.

The following corollary gives a more precise information about the spectral structure
of the Koopman representation associated to the action on T of a countable subgroup
of Aff(T ).

C 20. – Let H be a countable subgroup of Aff(T ) and Γ = pa(H). There exists
a Γ-invariant torus factor T of T such that the projection of H in Aff(T ) is an amenable group
and which is the largest one with this property: every other Γ-invariant torus factor S of T for
which the projection of H in Aff(S) is amenable is a factor of T . Moreover, the torus factor T
has the following properties:

(i) the projection of Γ on Aut(T ) is a virtually polycyclic group;
(ii) the restriction to L2(T )⊥ of the Koopman representation of H does not weakly contain

the trivial representation 1H .
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Proof. – As for the proof of Theorem 5, we proceed by duality, using Fourier analysis
and identifying V and ∆ with their dual groups.

Let Vrat(Γ) be the subspace generated by the union of Γ-invariant rational subspaces W
of V for which ΓW is amenable. Then Vrat(Γ) is a Γ-invariant rational subspace and, by
Proposition 9, ΓVrat(Γ) is amenable.

We claim that the natural unitary representation of Γ on `2(∆ \ (Vrat(Γ) ∩∆)) does not
weakly contain 1Γ. Indeed, assume by contradiction that this is not the case. Then there exists
a Γ-invariant mean m on ∆ \ (Vrat(Γ) ∩∆)). We consider the vector space V = V/Vrat(Γ)

with the lattice ∆ = p(∆), where p : V → V is the canonical projection. Then p∗(m)

is a Γ-invariant mean on ∆ \ {0}. Hence, by Proposition 13, there exists a non-trivial
Γ-invariant rationalW subspace of V such that the image of Γ inGL(W ) is amenable. Then
W = p−1(W ) is a Γ-invariant rational subspace of V for which ΓW is amenable. This is a
contradiction since Vrat(Γ) is a proper subspace of W .

Let Γ0 = Γ∩Zc(Γ)0. By Proposition 15, the eigenvalues of the restriction of every element
in [Γ0,Γ0] to Vrat(Γ) are all of modulus 1. Hence, by Corollary 16, the image of [Γ0,Γ0]

in GL(Vrat(Γ)) is virtually nilpotent. It follows that ΓVrat(Γ) is virtually polycyclic.

8. Some basic facts on Kirillov’s theory and
on decay of matrix coefficients of unitary representations

We first recall some basic facts from Kirillov’s theory of unitary representations of nilpo-
tent Lie groups.

For a locally compact second countable group G, the unitary dual Ĝ of G is the set of
classes (for unitary equivalence) of irreducible unitary representations of G.

Let N be a connected and simply connected nilpotent Lie group with Lie algebra n.
Kirillov’s theory provides a parametrization of N̂ in terms of the co-adjoint orbits in the dual
space n∗ = HomR(n,R) of n. We will review the basic features of this theory.

Fix l ∈ n∗. There exists a polarization m for l, that is, a Lie subalgebra m such that
l([m,m]) = 0 and which is of maximal dimension; the codimension ofm is 1

2 dim(Ad∗(N)l),
where Ad∗(N)l is the orbit of l under the co-adjoint representation Ad∗ of N . The induced
representation IndNMχl is irreducible, where M = exp(m) and χl is the unitary character
of M defined by

χl(expX) = e2πil(X), X ∈ m.
The unitary equivalence class of IndNMχl only depends on the co-adjoint orbit Ad∗(N)l of l.
We obtain in this way a mapping

n∗/Ad∗(N)→ N̂ , O 7→ π O

called the Kirillov mapping, from the orbit space n∗/Ad∗(N) of the co-adjoint representa-
tion to the unitary dual N̂ of N . The Kirillov mapping is in fact a bijection. For all of this,
see [29] or [10].

We have to recall a few general facts about decay of matrix coefficients of unitary group
representations, following [25] and [22].
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Let (π, H ) be a unitary representation of the locally compact group G. The projective
kernel of π is the normal subgroup Pπ of G defined by

Pπ = {g ∈ G : π(g) = λπ(g)I for some λπ(g) ∈ C}.

Observe that the mapping g 7→ λπ(g) defines a unitary character λπ ofPπ. Observe also that,
for ξ, η ∈ H , the absolute value of the matrix coefficient

Cπξ,η : g 7→ 〈π(g)ξ, η〉

is constant on cosets modulo Pπ. For a real number p with 1 ≤ p < +∞, the representa-
tion π is said to be strongly Lp modulo Pπ, if there is dense subspace D ⊂ H , such that,
for every ξ, η ∈ D, the function |Cπξ,η| belongs to Lp(G/Pπ). Observe that then π is strongly
Lq modulo Pπ for any q > p, since Cπξ,η is bounded.

Moreover, if π is strongly L2 modulo Pπ, then π is contained in an infinite multiple
of IndGPπλπ (this can be shown by a straightforward adaptation of Proposition 1.2.3 in
Chapter V of [23]).

We will also use the notion of a projective representation. Recall that a mapping
π : G→ U( H ) from G to the unitary group of the Hilbert space H is a projective
representation of G if the following hold:

– π(e) = I,
– for all g1, g2 ∈ G, there exists c(g1, g2) ∈ C such that

π(g1g2) = c(g1, g2)π(g1)π(g2),

– the function g 7→ 〈π(g)ξ, η〉 is measurable for all ξ, η ∈ H .

The mapping c : G×G→ S1 is a 2-cocycle with values in the unit cercle S1. The projective
kernel of π is defined in the same way as for an ordinary representation. Every projective
unitary representation of G can be lifted to an ordinary unitary representation of a central
extension of G (for all this, see [33] or [32]).

9. Decay of extensions of irreducible representations of nilpotent Lie groups

LetN be a connected and simply connected nilpotent Lie group with Lie algebra n. (Recall
that N can be realized as unipotent algebraic group over R; see e.g., [34, p.148].)

The group Aut(N) of continuous automorphisms of N can be identified with the group
Aut(n) of automorphisms of the Lie algebra n of N , by means of the mapping ϕ 7→ deϕ,
where deϕ : n → n is the differential of ϕ ∈ Aut(N) at the group unit. In this way, Aut(N)

becomes an algebraic subgroup of GL(n). Therefore, the group Aff(N) = Aut(N) n N of
affine transformations of N is also an algebraic group over R.

Set G := Aff(N). In the following, we view N as a normal subgroup of G. The group G
acts by inner automorphisms on N and hence by automorphisms on n, n∗, and N̂ ; observe
that, for g ∈ G and l ∈ n∗, we have

(Ad∗(n)l)g = Ad∗(gng−1)(lg) for all n ∈ N.

This shows that g permutes the orbits of the co-adjoint representation, mapping the orbit
of l onto the orbit of lg. Let π ∈ N̂ with corresponding co-adjoint orbit O. The representa-
tion πg ∈ N̂ , defined by πg(n) = π(gng−1), corresponds to the orbit Og.
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For a co-adjoint orbit O in n∗, we denote by G O the stabilizer of O in G. Similarly,

Gπ = {g ∈ G : πg is equivalent to π}

is the stabilizer in G of π ∈ N̂ . Observe that, if π is the representation corresponding to the
co-adjoint orbit O in Kirillov’s picture, then Gπ = G O. Observe also that N is contained
in Gπ.

The following elementary fact will be crucial for the sequel.

P 21. – Let π be an irreducible unitary representation ofN . The stabilizerGπ
of π is an algebraic subgroup of G. Moreover, for every l in the co-adjoint orbit corresponding
to π, we have Gπ = GlN where Gl is the stabilizer of l in G

Proof. – The co-adjoint orbit O associated to π is an algebraic subvariety of n∗ (see
Theorem 3.1.4 in [10]). It follows that Gπ = G O is an algebraic subgroup of G. Moreover,
since N acts transitively on O, it is clear that G O = GlN for every l ∈ O.

Let π be an irreducible unitary representation of N , with Hilbert space H . It is a well-
known part of Mackey’s theory of unitary representations of group extensions that there
exists a projective unitary representation π̃ of Gπ on H which extends π. Indeed, for
every g ∈ Gπ, there exists a unitary operator π̃(g) on H such that

π(g(n)) = π̃(g)π(n)π̃(g)−1 for all n ∈ N.

One can choose π̃(g) such that g 7→ π̃(g) is a projective unitary representation of Gπ which
extends π (see Theorem 8.2 in [32]). Observe that, since π is irreducible, π̃ is unique, up to
scalars: any other projective unitary representation π̃′ ofGπ extending π is the form π̃′ = λπ̃

for a measurable function λ : Gπ → S1.

The following proposition, which will play a central rôle in our proofs, is a consequence
of arguments from [25] concerning decay properties of unitary representations of algebraic
groups.

P 22. – Let π be an irreducible unitary representation of N on H and let π̃ be
a projective unitary representation of Gπ which extends π. There exists a real number p ≥ 1,
only depending on the dimension of G, such that π̃ is strongly Lp modulo its projective kernel.

Proof. – All projective unitary representations of Gπ which extend π have the same
projective kernel (by the remark above concerning the uniqueness of π̃ up to scalars).

We will need to give an explicit construction of a projective representation of Gπ extend-
ing π. This representation will lift to an ordinary representation of a two-fold cover of Gπ.

We denote by O the co-adjoint orbit associated to π and we fix throughout the proof a
linear functional l in O.

Set H = Aut(N) so that G = H n N . Let Hl be the stabilizer of l in H. As shown in
Proposition 21, Gπ is an algebraic subgroup of G and Gπ = HlN . It is clear that Hl is also
an algebraic subgroup of G. Let Ul be the unipotent radical of Hl. Then U = UlN is the
unipotent radical of Gπ.
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First step. – We claim that π can be extended to an ordinary unitary representation σ of U .
Indeed, let ul be the Lie algebra ofUl. We extend l to a linear functional l̃ on the Lie algebra

u = ul ⊕ n of U by defining l̃(X) = 0 for all X ∈ ul.
Letm ⊂ n be a polarization for l. We claim that m̃ := ul⊕m is a polarization for l̃. Indeed,

we have l̃([m̃, m̃]) = 0 since [X,Y ] ∈ n and (expX)l = l for allX ∈ ul and Y ∈ m. Moreover,
the codimension of m̃ in u coincides with the codimension of m in n and the dimension of
the co-adjoint orbit of l̃ under Ad∗(U) coincides with the dimension of Ad∗(N)l. Since the
codimension of m in n∗ is 1

2 dim(Ad∗(N)l), it follows that the codimension of m̃ in u∗ is
1
2 dim(Ad∗(U)l̃). Hence, m̃ is a polarization for l̃.

Recall that π is unitarily equivalent to the induced representation IndNMχl, where
M = exp(m) and χl is the unitary character of M defined by

χl(expX) = e2πil(X) for all X ∈ m.

Let M̃ be the closed subgroup ofU corresponding to m̃. The unitary character χl̃ of M̃ given
by l̃ coincides with χl on M . Since a fundamental domain for M\N is also a fundamental
domain for M̃\U , we see that IndU

M̃
χl̃ can be realized on the Hilbert space of IndNMχl and

that σ := IndU
M̃
χl̃ extends π = IndNMχl.

Second step. – We claim that Gσ = Gπ.
It is obvious that Gσ ⊂ Gπ. Let Hl = RUl be a Levi decomposition of Hl, where R is a

reductive subgroup of Gl. In order to show that Gπ ⊂ Gσ, it suffices to prove that R ⊂ Gσ,
since Gπ = RU . Now, R leaves ul and n invariant and fixes l. Hence, R fixes the extension l̃
of l defined above and the claim follows.

Coda. – As a result, upon replacing N by U , we can assume that N is the unipotent radical
ofGπ. Since the connected component ofGπ has finite index, we can also assume thatGπ is
connected.

As shown above, we have a Levi decomposition Gπ = RN with R a reductive subgroup
contained in Gl. According to [24], we can find in N algebraic subgroups K1 ⊂ P1 ⊂ N1

with the following properties:

– K1, P1, and N1 are normalized by R;

– K1 and P1 are normal in N1 and N1/K1 is a Heisenberg group with centre P1/K1;

– there exists a unitary character λ of P1/K1 such that π is equivalent to the induced rep-
resentation IndNN1

π1, where π1 is the lift toN1 of the unique irreducible representation
of the Heisenberg group N1/K1 with central character λ.

The action of R on N1/K1 defines a homomorphism from R to the symplectic group
Sp(N1/P1) of the vector space N1/P1; as a result, we have a homomorphism ϕ : RN1 →
Sp(N1/P1) n (N1/K1). The representation π1 of N1/K1 extends to a projective repre-
sentation ω of Sp(N1/P1) n (N1/K1), called the metaplectic (or oscillator, or Shale-Weil)
representation; more precisely, there exists a two-fold cover S̃p of Sp(N1/P1) and a unitary
representation ω of S̃pn (N1/K1) on the Hilbert space of π1 which extends π1.

We can lift ϕ to a homomorphism ϕ̃ : R̃N1 → S̃p n (N1/K1) for a two-fold cover R̃
of R. Then ρ := ω ◦ ϕ̃ is a unitary representation of R̃N1 on the Hilbert space of π1 which
extends π1.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



626 B. BEKKA AND Y. GUIVARC’H

Set π̃ := IndR̃N
R̃N1

ρ. Then π̃ is a unitary representation of the two-fold cover G̃π := R̃N

of Gπ = RN ; moreover, π̃ extends π, since π is equivalent to IndNN1
π1, and ρ extends π1.

Observe that G̃π is in general not an algebraic group. Let p : G̃π → Gπ be the covering
map. Let us say that a connected subgroup H of G̃π is reductive if p(H) is a reductive
subgroup of Gπ. We claim that G̃π has no non-trivial reductive normal subgroup. Indeed,
letH be a reductive normal subgroup of G̃π. SinceGπ = RN is a Levi decomposition ofGπ,
the normal subgroup p(H) of Gπ is conjugate to a subgroup of R and therefore p(H) ⊂ R.
Hence, p(H) centralizes N . It follows that p(H) is trivial since p(H) ⊂ Aut(N).

Now, the same arguments as those on pages 87–93 in [25] show that there exists an inte-
ger k such that the k-fold tensor power π̃⊗k of π is square integrable modulo the projective
kernel Pπ̃ of π̃. For instance, let us check how the first step in [25] towards this claim carries
over to our situation. For an integer k, we are interested in the tensor power π̃⊗k. In order to
apply Mackey’s tensor product theorem (see [33, Theorem 3.6]), we have to show that (R̃N1)k

and the diagonal subgroup ∆G̃π of G̃kπ = G̃π×· · ·×G̃π (k times) are regularly related. Now,
the quotient space G̃kπ/(R̃N1)k can be canonically identified with Gkπ/(RN1)k, and the ac-
tion of ∆G̃π on G̃kπ/(R̃N1)k corresponds, via the covering mapping p : G̃π → Gπ, to the
action of ∆Gπ on Gkπ/(RN1)k. Since ∆Gπ and (RN1)k are algebraic subgroups of Gkπ, the
claim follows.

R 23. – According to [25, p.93], a crude bound for the number p in Proposi-
tion 22 is

p ≤ (dim(Gπ) + 1)2.

The generalized metaplectic representation π̃ which appears in the proof above has been
studied by several authors (see [12], [24], [30]).

10. Rational unitary representations of a nilpotent Lie group

As in the previous section, letN be a connected and simply connected nilpotent Lie group
and

G := Aff(N) = Aut(N) nN.

Let π be an irreducible unitary representation of N and Gπ the stabilizer of π in G. Let π̃
be a projective unitary representation of Gπ extending π. In the following proposition, we
describe the projective kernel Pπ̃ of π̃.

P 24. – Let Lπ be the connected component of Ker(π). Set N = N/Lπ and
let p : N → N be the canonical projection. For g = (h, n) ∈ Gπ with h ∈ Aut(N) and n ∈ N ,
the following conditions are equivalent:

(i) g ∈ Pπ̃;
(ii) h leaves Lπ invariant and the automorphism of N induced by h coincides with the inner

automorphism Ad(p(n)−1).
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Proof. – Assume that g = (h, n) ∈ Pπ̃. By definition ofPπ̃, we have π̃(h) = λπ(g)π(n−1).
It follows that, for every x ∈ N

π(h(x)) = π̃(h)π(x)π̃(h)−1 = π(n−1)π(x)π(n) = π(n−1xn),

that is,
h(x)n−1x−1n ∈ Ker(π) for all x ∈ N.

Since N is connected, this is equivalent to

h(x)n−1x−1n ∈ Lπ for all x ∈ N.

As Lπ is normal in N , this shows that Lπ is invariant under h and that the automorphism
induced by h on N is Ad(p(n)−1).

Conversely, suppose that Lπ is invariant under h and that the automorphism h induced
by h on N coincides with Ad(p(n)−1). Observe that π factorizes to a representation σ of N .
Let σ̃ be an extension of σ to the stabilizer of σ in Aut(N) nN . Then

σ̃(h)σ(p(x))σ̃(h)−1 = σ(p(n))−1σ(p(x))σ(p(n)) for all x ∈ N,

that is, σ(p(n))σ̃(h) commutes with σ(p(x)) for all x ∈ N . Since π is irreducible, it follows
that σ(p(n))σ̃(h) and hence π(n)π̃(h) is a scalar operator. This means that g = (h, n) ∈ Pπ̃.

Next, we review some well-known facts about rational structures on n (see [10], [40]).
Recall first that a lattice Γ in a locally compact group G is a discrete subgroup such that

the translation invariant measure induced by a Haar measure on G on the homogeneous
space Γ\G is finite.

The Lie algebra n (or the corresponding nilpotent Lie group N = exp(n)) has a rational
structure if there is a Lie algebra nQ over Q such that n ∼= nQ ⊗Q R. If n has a rational
structure given by nQ, then N contains a cocompact lattice Λ such that log Λ ⊂ nQ. Con-
versely, if N contains a lattice Λ, then Λ is cocompact and n has a rational structure given
by nQ = Q− span(log Λ).

Assume from now on that N has a rational structure nQ and let Λ be a lattice inducing
this rational structure. We say that an R-subspace h of n is rational if h = R− span(h∩nQ).
All subalgebras in the ascending or ascending series as well as the centre of n are rational. A
connected closed subgroupH ofN is said to be rational if the corresponding subalgebra Lie
algebra h is rational. This is equivalent to the fact that H ∩ Λ is a lattice in H.

Let H be a rational connected normal closed subgroup of N with Lie algebra h. Then
N/H has a canonical rational structure (n/h)Q induced by the lattice ΛH/H of N/H.

There is a unique rational structure n∗Q on the dual space n∗ defined as follows: a func-
tional l ∈ n∗ belongs to n∗Q if and only if l(X) ∈ Q for all X ∈ nQ.

An important role will be played later (in Section 12) by irreducible unitary representa-
tions of N which are rational in the sense of the following definition.

D 25. – An irreducible unitary representation π of N is rational if its co-
adjoint orbit Oπ is rational, that is, if Oπ ∩ n∗Q 6= ∅.

We fix for the rest of this section a rational irreducible unitary representation π of N .
We first establish the rationality of the kernel of π.
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P 26. – The connected componentLπ of Ker(π) is a rational normal subgroup
of N . As a consequence, Λ = ΛLπ/Lπ is a lattice in N/Lπ.

Proof. – Since π is rational, the corresponding co-adjoint orbit in n∗ contains a func-
tional l ∈ n∗Q. The representation π is unitarily equivalent to IndGMχl, where m is a polar-
ization for l, M = exp(m), and χl is the unitary character of M corresponding to l.

Recall from Lemma 18 that Ker(π) coincides with the largest normal subgroup of N
contained in Ker(χl). For the ideal l corresponding to Ker(π), we have therefore

l =
⋂
n∈N

Ker(Ad∗(n)l) =
⋂

X∈nQ

Ker(Ad∗(expX)l).

Since Ker(Ad∗(expX)l) is rational for all X ∈ nQ, it follows that l is rational. Thus, the
connected component Lπ of Ker(π) is rational, by definition.

The set Aut(Λ\N) consisting of the automorphisms γ ∈ Aut(N) with γ(Λ) = Λ is a
discrete subgroup of the algebraic group Aut(N).

Let Gπ be the stabilizer of π in G and π̃ a projective unitary representation of Gπ extend-
ing π. Set

Γπ = Gπ ∩Aut(Λ\N).

The projective kernel Pπ̃ of π̃ was determined in Proposition 24 . We will need to have a
precise description of Pπ̃ ∩ (Γπ nN).

As before, let Lπ be the connected component of Ker(π), N = N/Lπ, p : N → N the
canonical projection, and Λ = p(Λ). Observe that g(Lπ) = Lπ for all g ∈ Gπ ∩ Aut(N).
Consider the induced continuous homomorphism

ϕ : Gπ → Aff(N) = Aut(N) nN.

P 27. – Let Norm(Λ) be the normalizer of Λ in N .

(i) We have

Pπ̃ ∩ (Γπ nN) = ϕ−1
(
{(Ad(x), x−1) : x ∈ Norm(Λ)}

)
.

(ii) Let ∆ := {(Ad(x), x−1z) : x ∈ Λ, z ∈ Z(N)}, where Z(N) is the centre of N . Then
ϕ−1(∆) ∩ (Γπ nN) is a subgroup of finite index in Pπ̃ ∩ (Γπ nN).

Proof. – (i) By Proposition 24, we have

Pπ̃ = ϕ−1
(
{(Ad(x), x−1) : x ∈ N}

)
.

Let g = (γ, n) ∈ Pπ̃ ∩ (Γπ nN). Then ϕ(g) = (Ad(x), x−1) for some x ∈ N . Since γ(Λ) = Λ,
we have Ad(x)(Λ) = Λ, that is, x ∈ Norm(Λ). Conversely, it is obvious that, if g = (Ad(x), x−1)

for some x ∈ Norm(Λ), then g ∈ Pπ̃ ∩ (Γπ nN).
(ii) In view of (i), it suffices to prove that the subgroup ΛZ(N) has finite index in Norm(Λ).
To show this, recall that Λ is a cocompact lattice in N (Proposition 26). Let Norm(Λ)0 be

the connected component of Norm(Λ). Since Norm(Λ)0 normalizes Λ and since Λ is discrete,
Norm(Λ)0 lies in the centralizer of every element of Λ. As Λ is Zariski dense in N (see e.g.,
Theorem 2.1 in [40]), it follows that Norm(Λ)0 = Z(N). Since the projection of Λ has finite
covolume in the discrete group Norm(Λ)/Norm(Λ)0, the claim follows.
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The next proposition will allow us to deduce decay properties of representations of Gπ
restricted to Γπ nN .

P 28. – The subgroup (Γπ nN)Pπ̃ is closed in Gπ.

Proof. – Using Proposition 24, we see that

Pπ̃N = ϕ−1
(
Ad(N) nN

)
and hence

(Γπ nN)Pπ̃ = ϕ−1
(
(ϕ(Γπ)Ad(N)) nN

)
.

It therefore suffices to show that ϕ(Γπ)Ad(N) is closed in Aut(N).

Observe that, for every γ ∈ Γπ, we have γ(Λ) = Λ (since Γπ ⊂ Aut(Λ\N)) and hence
ϕ(Γπ) ⊂ Aut(Λ\N).

Let (γi)i and (xi)i be sequences in Γπ and in Ad(N) such that

lim
i
ϕ(γi)xi = g ∈ Aut(N).

Since Ad(Λ) is a cocompact lattice in Ad(N), there exists a compact subset D of Ad(N)

such that xi = δidi for some δi ∈ Ad(Λ) and di ∈ D. As D is compact, we can assume
that lim di = d ∈ Ad(N) exists. Then limi ϕ(γi)δi = gd−1. Now,

Ad(Λ) = ϕ(Ad(Λ)) ⊂ ϕ(Γπ)

and ϕ(Γπ) is a subgroup of the discrete group Aut(Λ\N). It follows that gd−1 ∈ ϕ(Γπ), that
is, g ∈ ϕ(Γπ)Ad(N). Hence, ϕ(Γπ)Ad(N) is closed in N .

C 29. – Let ∆ = {(Ad(x), x−1z) : x ∈ Λ, z ∈ Z(N)} and ϕ : Gπ → Aff(N)

the canonical projection, where N = N/Lπ. The restriction of π̃ to Γπ n N is strongly Lp

modulo ϕ−1(∆) ∩ (Γπ nN) for the real number p appearing in Proposition 22.

Proof. – We know from Proposition 27 that ϕ−1(∆) ∩ (Γπ n N) has finite index
in Pπ̃ ∩ (Γπ nN). Hence, it suffices to prove that the restriction of π̃ to Γπ n N is strongly
Lp modulo Pπ̃ ∩ (Γπ nN).

By Proposition 28, (Γπ n N)Pπ̃ is closed in Gπ. Therefore, (Γπ n N)Pπ̃/Pπ̃ is homeo-
morphic as a (Γπ nN)-space to (Γπ nN)/(Pπ̃ ∩ (Γπ nN)). It follows from Proposition 22
(see the proof of Proposition 6.2 in [25]) that the restriction of π̃ to Γπ n N is strongly
Lp modulo Pπ̃ ∩ (Γπ nN).

11. A general estimate for norms of convolution operators

Let G be a locally compact group. For a unitary representation (π, H ) of G, the contra-
gredient (or conjugate) representation π acts on the conjugate Hilbert space H . Recall that,
for an integer k ≥ 1, the k-fold tensor product π⊗k of π is a unitary representation of G
acting on the tensor product Hilbert space H ⊗k.

We will need in a crucial way the following estimate which appears in the proof of Theo-
rem 1 in [35].
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P 30. – Let µ be a probability measure on the Borel subsets of G. Let (π, H )

be a unitary representation of G. For every integer k ≥ 1, we have

‖π(µ)‖ ≤ ‖ (π ⊗ π)
⊗k

(µ)‖1/2k.

Proof. – Denote by µ̌ the probability measure on G defined by µ̌(A) = µ(A−1) for every
Borel subset A of G.

Using Jensen’s inequality, we have for every vector ξ ∈ H ,

‖π(µ)ξ‖4k = |〈π(µ̌ ∗ µ)ξ, ξ〉|2k

=

∣∣∣∣∫
G

〈π(g)ξ, ξ〉d(µ̌ ∗ µ)(g)

∣∣∣∣2k
≤
∫
G

〈|π(g)ξ, ξ〉|2kd(µ̌ ∗ µ)(g)

=

∫
G

|〈(π ⊗ π)(g)(ξ ⊗ ξ), ξ ⊗ ξ〉|kd(µ̌ ∗ µ)(g)

=

∫
G

〈(π ⊗ π)⊗k(g)(ξ ⊗ ξ)⊗k, (ξ ⊗ ξ)⊗k〉d(µ̌ ∗ µ)(g)

= |〈(π ⊗ π)⊗k(µ̌ ∗ µ)(ξ ⊗ ξ)⊗k, (ξ ⊗ ξ)⊗k〉|

= ‖(π ⊗ π)⊗k(µ)(ξ ⊗ ξ)⊗k‖2

and the claim follows.

12. Analysis of the Koopman representation of the affine group of a nilmanifold

Let N be a connected and simply connected nilpotent Lie group and Λ a lattice in N .
There is a unique translation invariant probability measure on the Borel subsets Λ\N and it
is induced by a Haar measure on N . This measure is also invariant under Aut(Λ\N).

We fix throughout this section a subgroup Γ of Aut(Λ\N). The Koopman representa-
tion U of ΓnN associated to the action of ΓnN on Λ\N is the representation on L2(Λ\N)

given by

U(γ, n)ξ(x) = ξ(γ−1(x)n) for all γ ∈ Γ, n ∈ N, ξ ∈ L2(Λ\N), x ∈ Λ\N.

In particular, we have

(1) U(γ−1)U(n)U(γ) = U(γ−1(n)) for all γ ∈ Γ, n ∈ N.

Recall that T = Λ[N,N ]\N is the maximal factor torus associated to Λ\N . The action
of Aff(Λ\N) on Λ\N induces an action of Aff(Λ\N) on T . We identify L2(T ) with a closed
subspace of L2(Λ\N).

More generally, let L be a connected closed subgroup of N which is both rational and
invariant under Γ. Then Λ ∩ L is a lattice in L and Λ = ΛL/L is a lattice in N = N/L.
There is an induced action of Γ n N on the subnilmanifold (Λ ∩ L)\L and on the factor
nilmanifold Λ\N . The canonical mapping p : Λ\N 7→ Λ\N is Γ n N -equivariant and
presents Λ\N as a fibre bundle over Λ\N with fibres diffeomorphic to (Λ ∩ L)\L. The
Hilbert space L2(Λ\N) can be identified, as ΓnN -representation, with the ΓnN -invariant
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closed subspace ofL2(Λ\N) consisting of the square-integrable functions on Λ\N which are
constant on the fibres of p.

We write
L2(Λ\N) = L2(T )⊕ H ,

where H is the orthogonal complement of L2(T ) on L2(Λ\N), and observe that H is
invariant under Γ nN .

We are going to show that the restriction of U to H has a canonical decomposition into
a direct sum of induced representations from the stabilizers in Γ n N of certain represen-
tations π ∈ N̂ ; this decomposition can be viewed as generalization of the decomposition
of L2(T ) which appears in the proof of Proposition 19.

Since Λ is cocompact inN , we can consider the decomposition of H into itsN -isotypical
components: we have

H =
⊕
π∈Σ

H π,

where Σ is a certain set of infinite-dimensional pairwise non-equivalent irreducible unitary
representations ofN ; for everyπ ∈ Σ, the space H π is the union of the closedU(N)-invariant
subspaces K of H for which the corresponding representation of N in K is equivalent to π.
According to [34, Corollary2], every π ∈ Σ is rational in the sense of Section 10. Every H π

is a direct sum of finitely many irreducible unitary representations; therefore, the restriction
ofU(N) to H π is unitarily equivalent to a tensor product π⊗I acting on K π⊗ Lπ, where K π

is the Hilbert space of π and where Lπ is a finite dimensional Hilbert space. (For a precise
computation of the dimension of Lπ, see [21] and [41]; the fact that Lπ is finite-dimensional
will not be relevant for our arguments.)

Let γ be a fixed automorphism in Γ. Let Uγ be the conjugate representation of U by γ,
that is, Uγ(g) = U(γgγ−1) for all g ∈ Γ n N . On the one hand, for every π ∈ Σ, the
subspace H πγ−1 is the isotypical component of Uγ |N corresponding to π. On the other
hand, relation (1) shows that U(γ) provides a unitary equivalence between U |N and Uγ |N .
It follows that

U(γ)( H π) = H πγ for all γ ∈ Γ.

In summary, we see that Γ permutes the H π’s among themselves according to its action on N̂ .

Write Σ =
⋃
i∈I Σi, where the Σi’s are the Γ-orbits in Σ, and set

H Σi =
⊕
π∈Σi

H π.

Every H Σi is invariant under Γ nN and we have an orthogonal decomposition

H =
⊕
i

H Σi .

Fix i ∈ I. Choose a representation πi in Σi and set H i = H πi . Let Γi denote the stabilizer
of πi in Γ. The space H i is invariant under ΓinN . Let Vi be the corresponding representation
of Γi nN on H i.

Choose a set Si of representatives for the cosets in

Γ/Γi = (Γ nN)/(Γi nN)
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with e ∈ Si. Then Σi = {πsi : s ∈ Si} and the Hilbert space H Σi is the sum of mutually
orthogonal spaces:

H Σi =
⊕
s∈Si

H s
i .

Moreover, H s
i is the image under U(s) of H i for every s ∈ Si. This exactly means that the

restriction Ui of U to H Σi of the Koopman representation U of Γ n N is equivalent to the
induced representation IndΓnN

ΓinNVi.
As we have seen above, we can assume that H i is the tensor product

H i = K i ⊗ Li

of the Hilbert space K i of πi with a finite dimensional Hilbert space Li, in such a way that

(2) Vi(n) = πi(n)⊗ I Li for all n ∈ N.

Let g ∈ Γi nN . By (1) and (2) above, we have

(3) Vi(g) (πi(n)⊗ I Li)Vi(g)−1 = πi(gng
−1)⊗ I Li for all n ∈ N,

where we have viewed N as subgroup of Γi nN . On the other hand, let Gi be the stabilizer
of πi in Aff(N); then πi extends to an irreducible projective representation π̃i of Gi (see the
remark just before Proposition 22). Since

π̃i(g)πi(n) π̃i(g
−1) = πi(gng

−1) for all n ∈ N,

it follows from (3) that the operator
(
π̃i(g

−1)⊗ I Li

)
Vi(g) commutes with πi(n)⊗I Li for all

n ∈ N . Since πi is irreducible, there exists a unitary operator Wi(g) on Li such that

Vi(g) = π̃i(g)⊗Wi(g).

It is clear that Wi is a projective unitary representation of Γi n N , since Vi is a unitary
representation of Γi nN .

13. Proof of Theorem 1: first step

We summarize the discussion from the previous section. We have a first orthogonal de-
composition into Aff(Λ\N)-invariant subspaces

L2(Λ\N) = L2(T )⊕ H ,

where T is the maximal torus factor of Λ\N . Let Γ be a subgroup of Aut(Λ\N). There
exists a sequence of Γ-invariant sets (Σi)i∈I of rational infinite dimensional unitary irre-
ducible representations of N such that we have a decomposition into mutually orthogo-
nal Γ nN -invariant subspaces

H =
⊕
i∈I

H Σi

with the following property: for every i, the representation Ui of Γ n N defined on H Σi is
equivalent to

IndΓnN
ΓinN (π̃i ⊗Wi) ,

where πi is a representation from Σi, where π̃i is the restriction to Γi n N of an extension
of πi to the stabilizer Gi of πi in G = Aff(N), and where Wi is some (finite dimensional)
projective unitary representation of Γi nN .
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We need to recall the decomposition of the representation Utor of Γ on L2
0(T ) from

Section 7. Let T̂ ∼= Zd be the dual group of T and let S be a set of representatives for the
Γ-orbits in T̂ \ {1T }. Then

(4) Utor
∼=
⊕
χ∈S

λΓ/Γχ ,

where Γχ is the stabilizer of χ in Γ and λΓ/Γχ is the natural representation of Γ on `2(Γ/Γχ).

In the following result, we establish a link between the restrictions to H and to L2
0(T ) of

the Koopman representation of Γ. This result, which is a consequence of the discussion above
and of results from Section 10, is a major step in our proof of Theorem 1.

Recall that pa denotes the canonical projection Aff(Λ\N)→ Aut(Λ\N). For a probabil-
ity measure µ on Aff(Λ\N), let pa(µ) be the probability measure on Aut(Λ\N) which is the
image of µ under pa.

P 31. – There exists an integer k ≥ 1 only depending on dimN with the
following property. Let π be an irreducible representation of N appearing in the decomposition
H =

⊕
π∈Σ H π of H into isotypical components under N . Let Γ be the stabilizer of π

in Aut(Λ\N). Then, for every probability measure µ on Γ nN , we have

‖Uπ(µ))‖ ≤ ‖Utor(pa(µ))‖1/2k,

whereUπ andUtor are the restrictions of the Koopman representation of ΓnN to H π andL2
0(T )

respectively.

Proof. – LetGπ be the stabilizer of π inG = Aff(N). Let π̃ be a projective representation
of Gπ extending π.

As we have seen above, Uπ is equivalent to (π̃|ΓnN ) ⊗ W for some finite dimensional
projective unitary representation W of Γ n N . Let P denote the projective kernel of Uπ.
Observe that P = P1 ∩ P2, where P1 and P2 are the projective kernels of π̃|ΓnN and W .

Denote by Lπ the connected component of Ker(π) and N = N/Lπ. As in Section 10,
let ϕ : Gπ → Aff(N) be the corresponding homomorphism and

∆ = {(Ad(x), x−1z) : x ∈ Λ, z ∈ Z(N)},

where Λ is the lattice ΛLπ/Lπ in N and Z(N) the centre of N . Then

Q := ϕ−1(∆) ∩ (Γ nN)

is a subgroup of finite index of P1 (Proposition 27). By Corollary 29, there exists a real
number p ≥ 1 only depending on the dimension of Aut(N) n N such that π̃|ΓnN is
strongly Lp modulo Q.

We claim that Q is contained in P . Indeed, for g ∈ Q, we have

ϕ(g) = (Ad(x), x−1z)

for some x ∈ Λ and z ∈ Z(N). Hence ϕ(g) acts as the right translation by z on L2(Λ\N).
Observe that H π is contained in L2(Λ\N) and that g acts as ϕ(g) on H π. Since N acts as
a multiple of the irreducible representation π on H π, it follows that g ∈ P and the claim is
proved.
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As a consequence, we see that Q is a subgroup of finite index in P . In particular, Q is
contained in P2 and hence Uπ = (π̃|ΓnN ) ⊗ W is strongly Lp modulo Q. It follows that
Uπ is strongly Lp modulo P .

Let k be an integer with k ≥ p/4. Then the tensor power
(
Uπ ⊗ Uπ

)⊗k
is strongly L2

moduloP . Hence, as discussed in Section 8,
(
Uπ ⊗ Uπ

)⊗k
is contained in an infinite multiple

of the induced representation IndΓnN
P λπ, for the associated unitary character λπ of P . It

follows that, for every probability measure µ on Γ nN , we have

‖
(
Uπ ⊗ Uπ

)⊗k
(µ)‖ ≤ ‖

(
IndΓnN

P λπ

)
(µ)‖

and hence, using Proposition 30,

‖Uπ(µ)‖ ≤ ‖
(

IndΓnN
P λπ

)
(µ)‖1/2k.

On the other hand, observe that PN = p−1
a (pa(P )) is closed in Aff(Λ\N), as Aut(Λ\N)

is discrete. Since, by induction by stages,

IndΓnN
P λπ = IndΓnN

PN

(
IndPNP λπ

)
,

we have, using Herz’s majoration principle (Proposition 17),

‖
(

IndΓnN
P λπ

)
(µ)‖ ≤ ‖λ(ΓnN)/PN (µ)‖.

Now, λ(ΓnN)/PN =
(
λΓ/pa(P )

)
◦ pa and hence

‖λ(ΓnN)/PN (µ)‖ = ‖λΓ/pa(P )(pa(µ))‖.

As a consequence, the proposition will be proved if we establish the following inequality

(5) ‖λΓ/pa(P )(pa(µ))‖ ≤ ‖Utor(pa(µ))‖.

To show this, recall (see (4) above) that Utor is equivalent to the direct sum
⊕

χ∈S λΓ/Γχ ,

where S is set of representatives for the Γ-orbits in T̂ \{1T }. As a consequence, Inequality (5)
will be proved if we can show that there exists χ ∈ T̂ \ {1T } such that

‖λΓ/pa(P )(pa(µ))‖ ≤ ‖λΓ/Γχ(µ)‖.

By Herz’s majoration principle again, it suffices to show that there exists χ ∈ T̂ with
χ 6= 1T such that pa(P ) ⊂ Γχ. For this, recall that, for every g ∈ P ⊂ P1, there exists x ∈ N
such that γ = pa(g) acts as Ad(x) onN (Proposition 27). For every unitary character χ ofN ,
we have

χ(ϕ(γ)(y)) = χ(xyx−1) = χ(y) for all y ∈ N.
Thus, pa(P ) fixes every unitary character of N .

Observe that N is non-trivial, since π 6= 1N . Choose a non-trivial unitary character of N
which is constant on the cosets of Λ and denote again by χ its lift to N . Then χ ∈ T̂ \ {1T }
and χ is fixed by pa(P ).

R 32. – With Remark 23, we see that a rough estimate for the integer k appearing
in the statement of Proposition 31 is

k ≤ 1

4
(dim (Aut(N) nN) + 1)

2
+ 1 ≤ 1

4
((dim(N))3 + 1)2 + 1.
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E 33. – Let N = H2n+1(R) be the (2n + 1)-dimensional Heisenberg group
(over R) and let Λ be a lattice in N . Then Aut(Λ\N) contains a subgroup of finite index Γ

consisting of automorphisms which fix every infinite dimensional representation π ∈ N̂
(see [15]). LetH be a countable subgroup of Aff(Λ\N). Assume that the action ofH on Λ\N
does not have a spectral gap. It follows from Proposition 31 that there is a subgroup H1

of finite index in H, such that the action of pa(H1) on T does not have a spectral gap.
Therefore, using Theorem 5, the action of H1 and hence the action of H on T does not have
a spectral gap. This result generalizes Theorem 3 in [6] to groups of affine transformations
of Heisenberg nilmanifolds.

14. Proof of Theorem 1: completion of the proof

We are now in position to give the proof of Theorem 1. In view of Theorem 5, we only
need show that (ii) implies (i).

We will use several times the following general fact already mentioned at the beginning
of Section 4: if π is a unitary representation of a discrete group G and ‖π(µ)‖ = 1 for
some aperiodic probability measure µ onG, then ‖π(ν)‖ = 1 for every aperiodic probability
measure ν on G.

Let H be a countable subgroup of Aff(Λ\N). Assume, by contraposition, that the action
of H on Λ\N does not have a spectral gap. We have to prove that the action of H on T does
not have a spectral gap.

Set Γ = pa(H). By Theorem 5, it suffices to prove that the action on T of some subgroup
of finite index in Γ does not have a spectral gap. LetU H be the representation of Aff(Λ\N) on
the orthogonal complement H of L2(T ) in L2(Λ\N) and Utor the representation on L2

0(T ).
Our theorem will be proved if we can show the following

Claim. – Let µ be an aperiodic probability measure onH. Assume that ‖U H (µ)‖ = 1. Then
there exists a subgroup ∆ of finite index in Γ and an aperiodic probability measure ν on ∆

such that ‖Utor(ν)‖ = 1.
To prove this claim, we proceed by induction on the dimension of the Zariski closure Zc(Γ)

of Γ in Aut(N).
If dim Zc(Γ) = 0, then Γ is finite and there is nothing to prove.
Assume that dim Zc(Γ) ≥ 1 and that the claim above is proved for every countable

subgroup of H1 of Aff(Λ\N) for which dim Zc(pa(H1)) < dim Zc(Γ).
Recall from Sections 12 and 13 that, as ΓnN -representation, U H is equivalent to a direct

sum ⊕
i∈I

IndΓnN
ΓinNVi,

where Γi is the stabilizer in Γ of a rational representation πi ∈ N̂ and Vi is a unitary
representation of Γi nN .

Let Ifin ⊂ I be the set of all i ∈ I such that Γi has finite index in Γ and set I∞ = I \ Ifin.
Let

Ufin =
⊕
i∈Ifin

IndΓnN
ΓinNVi and U∞ =

⊕
i∈I∞

IndΓnN
ΓinNVi
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and denote by H fin and H∞ the corresponding subspaces of H defined respectively by Ufin

and U∞. Since ‖U H (µ)‖ = 1, two cases can occur.

First case. – We have ‖U∞(µ)‖ = 1. By Herz’s majoration principle, we have∥∥∥(IndΓnN
ΓinNVi

)
(µ)
∥∥∥ ≤ ∥∥λ(ΓnN)/(ΓinN)(µ)

∥∥
for every i ∈ I. Since λ(ΓnN)/(ΓinN) = λΓ/Γi ◦ pa, it follows that∥∥∥∥∥⊕

i∈I∞

λΓ/Γi(pa(µ))

∥∥∥∥∥ = 1.

Let ε > 0. We can choose i ∈ I∞ such that

(6) ‖λΓ/Γi(pa(µ))‖ ≥ 1− ε.

We claim that dim Zc(Γi) < dim Zc(Γ). Indeed, otherwise Zc(Γi) and Zc(Γ) would have
the same connected componentC0, since Zc(Γi) ⊂ Zc(Γ). As the stabilizer of πi in Aut(N) is
Zariski closed (Proposition 21),C0 would stabilize πi. Therefore, Γ∩C0 would be contained
in Γi. But Γ∩C0 has finite index in Γ. Hence, Γi would have a finite index in Γ and this would
be a contradiction, since i ∈ I∞.

Let µi be a probability measure with support equal to (Γi nN) ∩H. Then (µi + µ)/2 is an
aperiodic probability measure on H. Since ‖U H (µ)‖ = 1, we also have ‖U H ((µi + µ)/2)‖ = 1.
Therefore, ‖U H (µi)‖ = 1. Since dim Zc(Γi) < dim Zc(Γ), it follows from the induction
hypothesis that ‖Utor(µi)‖ = 1. Then, by Theorem 5, we also have ‖Utor(pa(µi))‖ = 1.

On the other hand, recall from (4) that, replacing Γ by Γi, the Γi-representation Utor

decomposes into a direct sum

Utor
∼=
⊕
χ∈S

λΓi/(Γχ∩Γi).

As a consequence, we have ∥∥∥∥∥∥
⊕
χ∈S

(λΓi/(Γχ∩Γi))(pa(µi))

∥∥∥∥∥∥ = 1.

Observe that pa(µi) is an aperiodic probability measure on Γi (in fact, the support of pa(µi)

is Γi). It follows that the Γi-representation
⊕

χ∈S λΓi/(Γχ∩Γi) weakly contains the trivial
representation 1Γi . Since

IndΓ
Γi1Γi = λΓ/Γi and IndΓ

ΓiλΓi/(Γχ∩Γi) = λΓ/(Γχ∩Γi)

it follows, by continuity of induction (see Proposition F.3.5 in [5]), that the Γ-representation⊕
χ∈S λΓ/(Γχ∩Γi) weakly contains λΓ/Γi . As a consequence, we have

‖λΓ/Γi(pa(µ))‖ ≤

∥∥∥∥∥∥
⊕
χ∈S

(λΓ/(Γχ∩Γi))(pa(µ))

∥∥∥∥∥∥ .
Observe that, by Herz’s majoration principle again, we have

‖λΓ/(Γχ∩Γi)(pa(µ))‖ ≤ ‖λΓ/Γχ(pa(µ))‖.
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Hence

‖λΓ/Γi(pa(µ))‖ ≤

∥∥∥∥∥∥
⊕
χ∈S

λΓ/Γχ(pa(µ))

∥∥∥∥∥∥
= ‖Utor(pa(µ))‖.

Using Inequality (6), it follows that

‖Utor(pa(µ))‖ ≥ 1− ε.

Since this is true for every ε > 0, we obtain that ‖Utor(pa(µ))‖ = 1.

Second case. – We have ‖Ufin(µ)‖ = 1. By the Noetherian property of the Zariski topology
on Aut(N), we can find finitely many indices i1, . . . , ir in Ifin such that

Zc(Γi1) ∩ · · · ∩ Zc(Γir ) =
⋂
i∈Ifin

Zc(Γi).

Since stabilizers of irreducible representations of N are algebraic (Proposition 21), the sub-
group ∆ := Γi1 ∩ · · · ∩ Γir stabilizes πi for every i ∈ Ifin. Moreover, ∆ has finite index in Γ,
since every Γi has finite index in Γ.

From Sections 12 and 13, we have a decomposition of H fin into ∆ n N -invariant
subspaces

H fin =
⊕
i∈Ifin

H i,

where H i is the isotypical component corresponding to πi under the action of N . Let ν be a
probability measure with support equal to (∆ nN) ∩H.Considering as above the aperiodic
measure (µ+ ν)/2 on H, we have ‖Ufin(ν))‖ = 1, since ‖Ufin(µ)‖ = 1.

On the other hand, by Proposition 31, there exists an integer k ≥ 1, which is independent
of i, such that

‖Ui(ν))‖ ≤ ‖Utor(pa(ν))‖1/2k for all i ∈ Ifin

where Ui is the representation of ∆ nN on H i. As a consequence, we have

‖Ufin(ν))‖ ≤ ‖Utor(pa(ν))‖1/2k

and it follows that ‖Utor(pa(ν))‖ = 1. Since the support of pa(ν) is the subgroup ∆ of finite
index in Γ, this completes the proof of Theorem 1.

R 34. – The proof of Theorem 1 we gave above is not effective: it does not give,
for a probability measure µ on Aut(Λ\N), a bound for the norm of µ under U H in terms
of the norm of µ under Utor and/or other “known” representations of the group generated
by µ, such as the regular representation. In the following example, such an explicit bound is
given. The crucial tool we use is Mackey’s tensor product theorem. This approach succeeds
here because of the special features of the example and we could not use this appraoch to get
explicit bounds in the most general case.
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E 35. – Let n = n3,2 be the free 2-step nilpotent Lie algebra on 3 generators
and let N = N3,2 be the corresponding connected and simply-connected nilpotent Lie
group. As is well-known, n is a 6-dimensional Lie algebra which can be realized as follows.
Set V1 = V2 = R3 and define a Lie bracket on the vector space n = V1 ⊕ V2 by

[(X1, Y1), (X2, Y2)] = (0, 2(X1 ∧X2)) for all X1, X2, Y1, Y2 ∈ R3,

where X1 ∧ X2 denotes the usual cross-product on R3. (The factor 2 appears here just for
computational ease.) The centre of n is V2 and the Lie group N is V1 ⊕ V2 with the product

(x1, y1)(x2, y2) = (x1 + x2, y1 + y2 + x1 ∧ x2) for all x1, x2, y1, y2 ∈ R3,

so that the exponential mapping exp : n→ N is the identity.
Observe that, for a matrix A ∈ GL3(R), we have

A(X) ∧A(Y ) = (detA)(At)−1(X ∧ Y ) for all X,Y ∈ R3.

The automorphism group Aut(N) of N is the subgroup of GL6(R) of matrices gA,B of the
form

gA,B =

(
A 0

B (detA)(At)−1

)
withA ∈ GL3(R) andB ∈M3(R), so that Aut(N) is isomorphic to the semi-direct product
GL3(R)nM3(R) for the action ofGL3(R) by left multiplication on the vector spaceM3(R)

of 3× 3-real matrices.
We will identify n with n∗ by means of the standard scalar product (X,Y ) 7→〈X|Y 〉 on R6.

For (x, y) and (X0, Y0) in V1⊕V2, we compute that Ad∗(x, y)(X0, Y0) = (X0 + x ∧ Y0, Y0).
It follows that the coadjoint orbit of (X0, 0) is {(X0, 0)} and, for Y0 6= 0, we have

Ad∗(N)(X0, Y0) =
{

(X0 + x ∧ Y0, Y0) : x ∈ R3
}

=
{

(X0 + Y, Y0) : Y ∈ (RY0)⊥
}

=
{

(λ0Y0 + Y, Y0) : Y ∈ (RY0)⊥
}
,

for λ0 = 〈X0|Y0〉/‖Y0‖2. The orbits which are not reduced to singletons are therefore the
two-dimensional affine planes

Oλ0,Y0
=
{

(λ0Y0 + Y, Y0) : Y ∈ (RY0)⊥
}
,

parametrized by (λ0, Y0) ∈ R× (R3 \ {0}).
The subgroup Λ = Z3 ⊕ Z3 is a lattice in N . The group Aut(Λ\N) is the subgroup

of Aut(N) of automorphisms gA,B as above given by matricesA ∈ GL3(Z) andB ∈M3(Z).
Fix (λ0, Y0) ∈ R × (R3 \ {0}). The irreducible unitary representation πλ0,Y0 of N

corresponding to the coadjoint orbit Oλ0,Y0 appears in the decomposition of L2(Λ\N) into
N -isotypical components if and only if Oλ0,Y0 ∩ (Z3 ⊕Z3) 6= ∅. This is the case if and only
if Y0 ∈ Z3 \ {0} and λ0 ∈ ‖Y0‖−2∆Y0 , where ∆Y0 is the subgroup of Z consisting of the
integers m for which mY0 ∈ (RY0)⊥ + ‖Y0‖2Z3.

Let Γ be a subgroup of Aut(Λ\N). For simplicity, we assume that Γ consists only
of automorphisms gA,0 with A ∈ SL3(Z). We identify Γ with a subgroup of SL3(Z).
For A ∈ SL3(Z), we have

A( Oλ0,Y0
) = Oβ0,(At)−1(Y0) for β0 = λ0‖Y0‖2/‖(At)−1(Y0)‖2.
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The stabilizer Γλ0,Y0
of Oλ0,Y0

(which is the stabilizer of πλ0,Y0
) in Γ is therefore

Γλ0,Y0
= {A ∈ Γ : AtY0 = Y0},

and is isomorphic to a subgroup of the semi-direct product SL2(Z) n Z2.

Let H λ0,Y0
be the isotypical component of L2(Λ\N) associated to πλ0,Y0

and Uλ0,Y0
the

corresponding representation of Γ (see Section 12); we know that Uλ0,Y0
is equivalent

to IndΓ
Γλ0,Y0

Vλ0,Y0
for a representation Vλ0,Y0

of Γλ0,Y0
which is strongly Lp modulo its

projective kernel Pλ0,Y0
for some real number p ≥ 1.

The projective kernel Pλ0,Y0 of Vλ0,Y0 coincides with the subgroup of Γ of all automor-
phisms which fix every point (X,Y ) ∈ Oλ0,Y0 ; hence, Pλ0,Y0 = {I} if λ0 = 0 and

Pλ0,Y0
= {A ∈ Γ : AtY0 = Y0 and AY = Y for all Y ∈ (RY0)⊥}

if λ0 6= 0.

Every πλ0,Y0 factorizes to a representation of a quotient of N of dimension 3 or 4, which
is isomorphic to the Heisenberg group H3 or to the direct product H3 ⊕ R. It follows that
the representation Vλ0,Y0 of Γλ0,Y0 is strongly L6+ε modulo Pλ0,Y0 for every ε > 0 (see [6]
and [25]).

Set Γ0 = Γλ0,Y0
, V = Vλ0,Y0

, and U = Uλ0,Y0
. We claim that U⊗4 is weakly contained in

the regular representation λΓ of Γ on `2(Γ).

Indeed, by Mackey’s tensor product theorem (see Theorem 3.6 in [33]), U⊗4 is weakly
equivalent to the direct sum⊕

γ1,γ2,γ3∈Γ

IndΓ
Γ0∩Γ

γ1
0 ∩Γ

γ2
0 ∩Γ

γ3
0

(V ⊗ V γ1 ⊗ V γ2 ⊗ V γ3) ,

where V ⊗ V γ1 ⊗ V γ2 ⊗ V γ3 is the tensor product of the restrictions of V, V γ1 , V γ2 and V γ3

to Γ0∩Γγ10 ∩Γγ20 ∩Γγ30 . Fix γ1, γ2, γ3 ∈ Γ. Observe that Γ0∩Γγ10 ∩Γγ20 ∩Γγ30 is the subgroup
of elements γ ∈ Γ such that γt fixes Y0, γ

t
1(Y0), γt2(Y0) and γt3(Y0). Set

Uγ1,γ2,γ3 = IndΓ
Γ0∩Γ

γ1
0 ∩Γ

γ2
0 ∩Γ

γ3
0

(V ⊗ V γ1 ⊗ V γ2 ⊗ V γ3) .

Two cases can occur.

First case. – There exists some i ∈ {1, 2, 3} such that γti (Y0) is not a multiple of Y0.
Then every element Γ0 ∩ Γγ10 ∩ Γγ20 ∩ Γγ30 fixes pointwise a plane in R3; it follows that
Γ0 ∩Γγ10 ∩Γγ20 ∩Γγ30 is abelian and hence amenable. Therefore Uγ1,γ2,γ3 is weakly contained
in λΓ.

Second case. – Every γti (Y0) is a multiple of Y0, that is, every γi belongs to the subgroup
H = {γ ∈ Γ : γt(Y0) ∈ {±Y0}}. Observe that Γ0 is a subgroup of H of index at most 2.
It can be checked that the subgroup P = Pλ0,Y0

, which is normal in Γ0, is normal in H.
It follows that the restriction of V γi to Γ0 ∩ Γγ10 ∩ Γγ20 ∩ Γγ30 is strongly L6+ε modulo P for
every i ∈ {1, 2, 3}. Hence, V ⊗V γ1⊗V γ2⊗V γ3 is stronglyL2 moduloP and hence contained

in a multiple of Ind
Γ0∩Γ

γ1
0 ∩Γ

γ2
0 ∩Γ

γ3
0

P λ. Since P is amenable, it follows that Uγ1,γ2,γ3 is weakly
contained in λΓ. As a consequence, we see that U⊗4 is weakly contained in λΓ.

Let µ be a probability measure on Γ. It follows from what we have seen that

‖U H (µ)‖ ≤ ‖λΓ(µ)‖1/4,
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where U H is the Koopman representation of Γ on H = L2(T )⊥. As a consequence, we have

‖U0(µ)‖ ≤ max{‖λΓ(µ)‖1/4, ‖Utor(µ)‖},

whereU0 andUtor are the Koopman representations of Γ onL2
0(Λ\N) andL2

0(T ). The same
estimate was established in [6, Corollary 3] in the case where N is the Heisenberg group H3.

15. Proof of Theorem 4

Let H be a subgroup of Aff(Λ\N). The following elementary proposition shows that
ergodicity of H on T is inherited by every subgroup of finite index in H.

P 36. – LetH be a subgroup of Aff(T ) andH1 a subgroup of finite index inH.
Assume thatL2

0(T ) contains a non-zeroH1-invariant function. ThenL2
0(T ) contains a non-zero

H-invariant function.

Proof. – By standard arguments involving Fourier series, there exists a unitary charac-
ter χ in T̂ \{1T } with a finite orbit under pa(H1) and such thatH2 := H1 ∩ p−1

a (Γχ) fixes χ,
where Γχ is the stabilizer of χ in Aut(T ). Then H2 has finite index in H and∑

s∈H/H2

Utor(s)χ

is a non-zero H-invariant function in L2
0(T ).

Proof of (i) in Theorem 4. – As is well-known, the action of a group H on a probability
space (X, ν) is weakly mixing if and only if the diagonal action of H on (X × X, ν ⊗ ν) is
ergodic. Since T × T is the maximal factor torus of (Λ\N)× (Λ\N), we only have to prove
the statement about ergodicity.

So, let H be a (not necessarily countable) subgroup of Aff(Λ\N) acting ergodically on T .
We have to prove that H acts ergodically on Λ\N . We can assume that N is not abelian,
otherwise there is nothing to prove.

Set Γ = pa(H). Recall from Sections 12 and 13 that we have orthogonal decompositions
into Γ nN -invariant subspaces L2(Λ\N) = L2(T )⊕ H and

H =
⊕
i

H Σi ,

such that the representation Ui of Γ n N on H Σi is equivalent to an induced representa-
tion IndΓnN

ΓπinN
V
i
, where Γπi is the stabilizer in Γ of some πi ∈ Σi. In view of the previous

proposition, it suffices to prove the following
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Claim. – Assume that, for some i, the subspace H Σi contains a non-zero H-invariant
function. Then L2

0(T ) contains a non-zero H1-invariant function for some subgroup H1 of
finite index in H.

To show this, set π = πi, Σπ = Σi,Uπ = Ui, and Vπ = Vi. Let S be a set of representatives
for the cosets in

Γ/Γπ ∼= (Γ nN)/(Γπ nN)

with e ∈ S. Then, by the definition of an induced representation, H Σπ is an orthogonal sum

H Σπ =
⊕
s∈S

K s,

where K carries the Γπ n N -representation Vπ and where K s = Uπ(s) K . It follows from
this that there exists a non-zero function in K which is invariant under H ∩ (Γπ n N) and
that Γπ has finite index in Γ.

Upon replacingH by the subgroup of finite indexH ∩ (ΓπnN), we can assume thatH is
contained in Γπ nN .

Let Lπ be the connected component of Ker(π) and N = N/Lπ. Observe that N is not
abelian, since π is not a unitary character of N . As seen in Section 10, the action of Γπ nN

on H π factorizes through the quotient nilmanifold Λ\N . Hence, we can assume that Lπ is
trivial.

By the proof of Proposition 31, there exists a real number p ≥ 1 such that the representa-
tion Vπ of Γπ nN is strongly Lp modulo ∆, where ∆ is the normal subgroup

∆ = {(Ad(x), x−1z) : x ∈ Λ, z ∈ Z(N)}.

We claim that H ∩∆ has finite index in H.
Indeed, let R = H∆ be the closure of H∆ in Γπ nN . Then the restriction of Vπ to R is

strongly Lp modulo ∆.
Observe that (Ad(x), x−1z) ∈ ∆ acts as multiplication with λπ(z) on H π, where λπ is

the central character of π. Let ξ be a non-zero Vπ(H)-invariant function in K . The function
x 7→ |〈Vπ(x)ξ, ξ〉| is non-zero, belongs to Lp(R/∆), and is R invariant. It follows that R/∆
is a compact group.

LetR0 be the connected component ofR. SinceR is a Lie group,R0 is open inR. It follows
that R0∆/∆ is an open (and hence closed) subgroup of R/∆. Since R/∆ is compact, we
conclude that R0∆/∆ ∼= R0/(R0 ∩∆) is a subgroup of finite index in R/∆.

On the other hand, observe that R0 ⊂ N , since R ⊂ Γπ n N and since Γπ is discrete.
Observe also that

R0 ∩∆ = R0 ∩ Z(N),

since Z(N) is connected (as N is simply connected). It follows that R0 ∩ ∆ is a connected
subgroup of the nilpotent simply connected Lie group R0. But R0/(R0 ∩ ∆) is compact.
Hence, R0/(R0 ∩∆) is trivial. As a consequence, we see that R/∆ is finite. This shows that
H ∩ ∆ has finite index in H. Therefore, upon replacing H by H ∩ ∆, we can assume that
H ⊂ ∆.

The centre Z(N) being a rational subgroup of N , the subgroup Λ = ΛZ(N) of the
nilpotent Lie group N = N/Z(N) is a lattice. Observe that N is non-trivial, since N is
non-abelian. The group ∆ acts trivially on the factor nilmanifold Λ\N and hence on the
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associated torus T . Since T is a ∆-invariant factor torus of T , it follows that the action of H
on T is not ergodic.

Proof of (ii) in Theorem 4. – Let H be a subgroup of Aut(Λ\N) with a strongly mixing
action on T . We have to prove that the action of H on Λ\N is strongly mixing.

With the notation as in the proof of Part (i) above, the Koopman representation U of H
on H decomposes as a direct sum U ∼=

⊕
i Ui, where Ui is equivalent to an induced repre-

sentation IndHHπi
Vi. It suffices to prove that, for every i, the matrix coefficients of Ui belong

to c0(H). This will follow if we show that the matrix coefficients of Vi belong to c0(Hπi).
Set π = πi and Vπ = Vi. Let Lπ be the connected component of Ker(π) and Λ\N the cor-

responding Hπ-invariant factor nilmanifold. Since Hπ is contained in Aut(Λ\N), the pro-
jective kernel P of Vπ coincides with the kernel of the homomorphism ϕ : Hπ → Aut(Λ\N),
by Proposition 27.

We claim that P = Ker(ϕ) is finite. Indeed, otherwise the matrix coefficients of the
Koopman representation of Hπ on the maximal factor torus T of Λ\N would not belong
to c0(Hπ) and this would imply that the action of Hπ and hence of H on T is not strongly
mixing.

Since P is finite, Vπ is strongly Lp for some p ≥ 1. It follows that the matrix coefficients
of Vπ belong to c0(Hπ). This finishes the proof of Theorem 4.
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