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THE TROPICALIZATION
OF THE MODULI SPACE OF CURVES

 D ABRAMOVICH, L CAPORASO  S PAYNE

Dedicated to Joe Harris.

A. – We show that the skeleton of the Deligne-Mumford-Knudsen moduli stack of
stable curves is naturally identified with the moduli space of extended tropical curves, and that this
is compatible with the “naive” set-theoretic tropicalization map. The proof passes through general
structure results on the skeleton of a toroidal Deligne-Mumford stack. Furthermore, we construct
tautological forgetful, clutching, and gluing maps between moduli spaces of extended tropical curves
and show that they are compatible with the analogous tautological maps in the algebraic setting.

R. – On démontre que le squelette du champ des modules des courbes stables de Deligne-
Mumford-Knudsen est naturellement identifié avec l’espace des modules des courbes tropicales de
façon compatible avec l’application de tropicalisation « naïve » d’ensembles. La démonstration emploie
des résultats généraux de structure sur le squelette des champs toroïdaux de Deligne-Mumford. En
outre, on construit les morphismes tautologiques entre les espaces de modules des courbes tropicales
étendues, et on démontre qu’ils sont compatibles avec leurs analogues dans le cadre algébrique.

1. Introduction

A number of researchers have introduced and studied the moduli spaces M trop
g,n , para-

metrizing certain metric weighted graphs called tropical curves, and exhibited analogies to
the Deligne-Mumford-Knudsen moduli stacks of stable pointed curves, Mg,n, and to the
Kontsevich moduli spaces of stable maps [38, 39, 23, 22, 35, 13, 36, 11, 12, 15, 16]. The
paper [12] describes, in particular, an order reversing correspondence between the stratifica-
tion of M trop

g,n and the stratification of Mg,n, along with a natural compactification M
trop

g,n ,
the moduli space of extended tropical curves, where the correspondence persists. A seminal
precursor for all of this work is the paper of Culler and Vogtmann on moduli of graphs and

Abramovich supported in part by NSF grants DMS-0901278, DMS-1162367 and a Lady Davis fellowship.
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766 D. ABRAMOVICH, L. CAPORASO AND S. PAYNE

automorphisms of free groups, [18], in which a space of metric graphs called “outer space”
was introduced.

The analogies between moduli of curves and moduli of graphs go further than the natural
stratifications of compactifications. As we show in Section 8, the moduli spacesM

trop

g,n admit
natural maps

πtrop
g,n : M

trop

g,n+1 →M
trop

g,n , i = 1, . . . , n+ 1

associated to “forgetting the last marked point and stabilizing,” analogous to the forgetful
maps πg,n on the moduli spaces of curves. There are also clutching and gluing maps

κtrop
g1,n1,g2,n2

: M
trop

g1,n1+1 ×M
trop

g2,n2+1 →M
trop

g1+g2,n1+n2

and

γtrop
g,n : M

trop

g−1,n+2 →M
trop

g,n

covering the boundary strata ofM
trop

g,n \M trop
g,n , analogous to the corresponding clutching and

gluing maps κg1,n1,g2,n2
and γg,n on the moduli spaces of curves. When the various subscripts

g, n are evident we suppress them in the notation for these maps.
The main purpose of this paper is to develop these analogies into a rigorous and functorial

correspondence. WriteMg,n for the coarse moduli space of Mg,n. We start with set-theoretic

maps from the associated Berkovich analytic spaceM
an

g,n to the tropical moduli spaceM
trop

g,n ,
described in Definition 1.1.1 below, and use Thuillier’s construction of canonical skeletons of
toroidal Berkovich spaces [47] to show that these maps are continuous, proper, surjective, and
compatible with the tautological forgetful, clutching, and gluing maps. We work extensively
with the combinatorial geometry of generalized extended cone complexes, as presented in
Section 2.6.

To study the skeleton of Mg,n, we require a mild generalization of Thuillier’s construc-
tion, presented in Section 6, below; the main technical results are Propositions 6.1.4, 6.1.8
and 6.2.6. Given a proper toroidal Deligne–Mumford stack X with coarse moduli spaceX,
we functorially construct a generalized extended cone complex, the skeleton Σ(X ), which
is both a topological closed subspace of the Berkovich analytic space Xan associated to X,
and also the image of a canonical retraction

pX : Xan → Σ(X ).

We emphasize that the skeleton Σ(X ) depends on a toroidal structure on the stack X , but
lives in the analytification of the coarse moduli space X, which is not necessarily toroidal.

The compactified moduli space of tropical curves M
trop

g,n is similarly a generalized
extended cone complex, and one of our primary tasks is to identify the tropical moduli
space M

trop

g,n with the skeleton Σ( Mg,n). See Theorem 1.2.1 for a precise statement.

1.1. The tropicalization map

There is a natural set theoretic tropicalization map

Trop : M
an

g,n →M
trop

g,n ,

well-known to experts [48, 5, 50], defined as follows. A point [C] in M
an

g,n is represented,
possibly after a field extension, by a stable n-pointed curve C of genus g over the spectrum S

4 e SÉRIE – TOME 48 – 2015 – No 4



THE TROPICALIZATION OF THE MODULI SPACE OF CURVES 767

of a valuation ring R, with algebraically closed fraction field and valuation denoted valC .
Let G be the dual graph of the special fiber, as discussed in Section 3.2 below, where each
vertex is weighted by the genus of the corresponding irreducible component, and with legs
corresponding to the marked points. For each edge ei in G, choose an étale neighborhood
of the corresponding node in which the curve is defined by a local equation xy = fi, with fi
in R.

D 1.1.1. – The tropicalization of the point [C] ∈ M
an

g,n is the stable tropical
curve Γ = (G, `), with edge lengths given by

`(ei) = valC(fi).

See [50, Lemma 2.2.4] for a proof that the tropical curve Γ so defined is independent of the
choices of R, C, étale neighborhood, and local defining equation, so the map Trop is well
defined.

1.2. Main results

Our first main result identifies the map Trop with the projection from M
an

g,n to its skele-
ton Σ( Mg,n).

T 1.2.1. – Let g and n be non-negative integers.

1. There is an isomorphism of generalized cone complexes with integral structure

Φg,n : Σ( Mg,n)
∼−→M trop

g,n

extending uniquely to the compactifications

Φg,n : Σ( Mg,n)
∼−→M

trop

g,n .

2. The following diagram is commutative:

M
an

g,n

p Mg,n //

Trop
''

Σ( Mg,n)

Φg,n
��

M
trop

g,n .

In particular the map Trop is continuous, proper, and surjective.

The theorem is proven in Section 7.
Our second main result shows that the map Trop is compatible with the tautological

forgetful, clutching, and gluing maps.

T 1.2.2. – The following diagrams are commutative.
The universal curve diagram:

M
an

g,n+1

Trop //

πan

��

M
trop

g,n+1

πtrop

��

M
an

g,n

Trop // M
trop

g,n ,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



768 D. ABRAMOVICH, L. CAPORASO AND S. PAYNE

the gluing diagram:

M
an

g−1,n+2

Trop //

γan

��

M
trop

g−1,n+2

γtrop

��

M
an

g,n

Trop // M
trop

g,n ,

and the clutching diagram:

M
an

g1,n1+1 ×M
an

g2,n2+1

Trop×Trop //

κan

��

M
trop

g1,n1+1 ×M
trop

g2,n2+1

κtrop

��

M
an

g,n

Trop // M
trop

g,n .

Both notation and proofs are provided in Section 8.

1.3. Fans, complexes, skeletons and tropicalization

There are several combinatorial constructions in the literature relating algebraic varieties
to polyhedral cone complexes, and we move somewhat freely among them in this paper. The
following is a brief description of the key basic notions, more details will be given in the
sequel.

Classical tropicalization studies a subvariety of a torus T over a valued field by looking
at its image in NR, the real extension of the lattice of 1-parameter subgroups of the torus,
under the coordinate-wise valuation map. This basic idea has been generalized in several
ways. For algebraic subvarieties of toric varieties, there are extended tropicalization maps
to natural partial compactifications on NR [30, 42, 44]. Similar ideas about extending and
compactifying tropicalizations appeared earlier in [39, 45].

Tropicalization is closely related to several other classical constructions:

1.3.1. Fans of toric varieties. – A toric variety X with dense torus T corresponds naturally
to a fan Σ(X) inNR. These appear in [34, Section I.2], where they are called “f.r.p.p. decom-
positions”. See also [41, Section 1.1] and [21, Section 1.4]. One key feature of fans, as opposed
to abstract cone complexes, is that all of the cones in a fan come with a fixed embedding in
an ambient vector space.

1.3.2. Complexes of toroidal embeddings. – In [34, Chapter II], the construction associating
a fan to a toric variety is generalized to spaces that look locally sufficiently like toric varieties.
To each toroidal embedding without self-intersection U ⊂ X, they associate an abstract
rational polyhedral cone complex with integral structure, also denoted Σ(X). Some authors
also refer to these cone complexes as fans [32, 47], although they do not come with an embed-
ding in an ambient vector space. For a toroidal embedding U ⊂ X with self-intersections,
Thuillier constructs a generalized cone complex, obtained as a colimit of a finite diagram
of rational polyhedral cones with integral structure, which we again denote Σ(X). See
[47, Section 3.3.2]. Note that both fans and cone complexes associated to toroidal embed-
dings without self-intersection are special cases of Thuillier’s construction, so the notation
is not ambiguous.

4 e SÉRIE – TOME 48 – 2015 – No 4



THE TROPICALIZATION OF THE MODULI SPACE OF CURVES 769

1.3.3. Extended complexes and skeletons. – Thuillier also introduced natural compactifica-
tions of his generalized cone complexes; the more classical Σ(X) is an open dense subset of
this generalized extended cone complex Σ(X). The boundary Σ(X) r Σ(X), is sometimes
called the “part at infinity,” and then Σ(X) is referred to as the “finite part” of Σ(X). See
[47, Sections 3.1.2 and 3.3.2]. The generalized extended cone complex Σ(X) is also called the
skeleton of the toroidal schemeX. It is an instance of a skeleton of a Berkovich space [8, 29],
and comes with a canonical retraction

p : Xi → Σ(X)

such that p−1(Σ(X)) = Xi ∩ Uan. Here we use the notation Xan for the usual Berkovich
analytic space of X, and Xi is the subset of Xan consisting of points over valued fields
that extend to Spec of the valuation ring. Such an extension is unique when it exists, since
varieties are separated. Notice that if X is proper, then Xan = Xi. Hence p is a canonical
retraction of Xan onto the skeleton Σ(X) that maps Uan onto the cone complex Σ(X). In
Section 6, we extend these constructions to toroidal embeddings of Deligne-Mumford stacks.
This generalization is straightforward; no new ideas are needed.

1.3.4. Logarithmic geometry. – The cone complex of [34] is reinterpreted in terms of
monoids and “fans” in the logarithmic setting in [31, Section 9]. See also [24, Appendix B],
where the complex associated to a logarithmic scheme X is called the tropicalization of X.

1.3.5. Tropicalization. – Roughly speaking all of these fans, cone complexes, and skeletons
are in some sense tropicalizations of the corresponding varieties. Put another way, tropical
geometry may be interpreted as the study of skeletons of Berkovich analytifications. The
exact relation between compactifications of subvarieties of tori and classical tropicalization
is explained by the theory of geometric tropicalization, due to Hacking, Keel, and Tevelev [46,
26].

We revisit the relations between tropicalization and skeletons of toroidal embeddings in
more detail in Sections 5 and 6.

1.3.6. Recent progress. – The tropicalization of toroidal structures discussed here was
extended to logarithmic schemes in [49]. The paper [14] studies the tropicalization of Hur-
witz schemes. Spaces of stable maps in a broad non-Archimedean context, and their maps
to spaces of tropical maps, are studied in [51].

1.4. Acknowledgements

Thanks are due to M. Chan, J. Denef, J. Rabinoff, T. Schlanck, M. Temkin, I. Tyomkin,
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770 D. ABRAMOVICH, L. CAPORASO AND S. PAYNE

2. Extended and generalized cone complexes

2.1. Cones

A polyhedral cone with integral structure (σ,M) is a topological space σ, together with a
finitely generated abelian group M of continuous real-valued functions on σ, such that the
induced map σ → Hom(M,R) is a homeomorphism onto a strictly convex polyhedral cone
in the real vector space dual to M . The cone is rational if its image is rational with respect
to the dual lattice Hom(M,Z). A morphism of polyhedral cones with integral structure
(σ,M)→ (σ′,M ′) is a continuous map from σ to σ′ such that the pullback of any function
in M ′ is in M .

Throughout, all of the cones that we consider are rational polyhedral cones with integral
structure, and we refer to them simply as cones. When no confusion seems possible, we write
just σ for the cone (σ,M).

Let σ be a cone, and let Sσ be the monoid of linear functions u ∈M that are nonnegative
on σ. Then σ is canonically identified with the space of monoid homomorphisms

σ = Hom(Sσ,R≥0),

where R≥0 is taken with its additive monoid structure. A face of σ is the subset τ where some
linear function u ∈ Sσ vanishes. Each face inherits an integral structure, by restricting the
functions in M .

The category of cones with cone morphisms does not contain colimits; if we glue a cone to
a cone along a morphism, the result is not necessarily a cone. We now discuss cone complexes,
an enlargement of the category of cones with cone morphisms in which one can glue cones
along faces.

2.2. Cone complexes

A rational cone complex with integral structure is a topological space together with a finite
collection of closed subspaces and an identification of each of these closed subspaces with a
rational cone with integral structure such that the intersection of any two cones is a union
of faces of each. In other words, it is a topological space presented as the colimit of a poset
in the category of cones in which all arrows are isomorphisms onto proper faces. See [34,
Section II.1] and [43, Section 2] for further details. All of the cone complexes that we consider
are rational with integral structure, so we simply call these spaces cone complexes. We refer
to the faces of the cones in a complex as the faces of the complex.

A morphism of cone complexes f : Σ → Σ′ is a continuous map of topological spaces
such that, for each cone σ in Σ there is a cone σ′ in Σ′ such that f |σ factors through a
morphism of cones σ → σ′.

R 2.2.1. – Although we have described cone complexes topologically, one could
give an equivalent description in categorical language, as follows. Let D be a poset in the
category of cones in which each arrow is an isomorphism onto a proper face in the target. The
cone complex obtained by gluing the cones in D along these proper face morphisms is the
set-valued functor on the category of cones lim−→Hom(−,D). The category of cone complexes
is the full subcategory of the category of set-valued functors on cones consisting of such
colimits. Since the functor from cones to topological spaces is faithful, and topological spaces
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THE TROPICALIZATION OF THE MODULI SPACE OF CURVES 771

admit finite colimits, this functor extends naturally to a faithful functor from cone complexes
to topological spaces, taking a cone complex lim−→Hom(−,D) to the topological colimit of the
diagram of cones D . In particular, morphisms of cone complexes in this functor category
are determined by continuous maps of topological spaces constructed as colimits of finite
diagrams of cones, as described above.

Similar remarks apply to our topological descriptions of the categories of generalized cone
complexes and generalized extended cone complexes, described in Section 2.6 below.

Note that cone complexes differ from the fans considered in the theory of toric varieties,
[41, Section 1.1], [21, Section 1.4], in two essential ways. First, unlike a fan, a cone complex
does not come with any natural embedding in an ambient vector space. Furthermore, while
the intersection of any two cones in a fan is a face of each, the intersection of two cones
in a cone complex may be a union of several faces. The latter is similar to the distinction
between simplicial complexes and ∆-complexes in cellular topology. See, for instance, [28,
Section 2.1].

Write σi for the cones in Σ, and σ◦i for the relative interiors. By definition, σ◦i is the interior
ofσ in Hom(M,R). It is also the complement of the union of all faces of positive codimension
in σ. Every point in a cone σ is contained in the relative interior of a unique face, and this
generalizes to cone complexes in the evident way:

P 2.2.2. – Let Σ be a cone complex. Then Σ = tσ◦i is the disjoint union of the
relative interiors of its faces.

2.3. Extended cones

Let σ be a cone, with Sσ ⊂ M the additive monoid of integral linear functions that are
nonnegative on σ, so σ = Hom(Sσ,R≥0). The associated extended cone is

σ = Hom(Sσ,R≥0 t {∞}).

It is a compact space containing σ as a dense open subset. If τ is a face of σ, then the closure
of τ in σ is canonically identified with the extended cone τ , and we refer to τ as an extended
face of σ, since it is the extension of a face of σ. The complement σ r σ is the union of the
faces at infinity, defined as follows.

Let τ � τ ′ be faces of σ, and consider the locally closed subset F (τ, τ ′) in σ, consisting
of points v such that, for u ∈ Sσ,

1. 〈u, v〉 is finite if and only if u vanishes on τ ′, and
2. 〈u, v〉 is zero if and only if u vanishes on τ .

The setF (τ, τ ′) is naturally identified with the projection τ/τ ′ of τ along the linear span of τ ′.
In particular, it is a cone of dimension dim τ − dim τ ′, and we can speak of its faces and its
relative interior accordingly. Note that F (τ, 0) is τ , and its closure F (τ, 0) is the extended
face τ .

If τ ′ is not zero, then F (τ, τ ′) is disjoint from σ, and we refer to its closure F (τ, τ ′) as a
face at infinity. We refer to both the extended faces and the faces at infinity as faces of σ.

For arbitrary τ � τ ′, the face F (τ, τ ′) decomposes as a disjoint union

F (τ, τ ′) =
⊔

τ�γ�γ′�τ ′
F (γ, γ′)◦,
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772 D. ABRAMOVICH, L. CAPORASO AND S. PAYNE

and is canonically identified with the extended cone τ/τ ′. In particular, the extended cone σ
is the disjoint union of the relative interiors of the locally closed faces F (τ, τ ′).

Note that F (τ, τ) is a single point, for each face τ � σ. There is a natural simplicial
complex structure on the extended cone σ with these points as vertices. The maximal cells
in this complex are the closures of the maximal cones in the barycentric subdivision of σ.

A morphism of extended cones is a continuous map of topological spaces f : σ → σ′

whose restriction to σ is a cone morphism

f |σ : σ → F (γ, γ′),

for some pair of faces γ � γ′ of σ′. In particular, the inclusion of a face at infinity is a
morphism of extended cones.

2.4. Extended cone complexes

The skeleton of a toroidal scheme without self-intersection is a topological space obtained
by gluing extended cones along proper inclusions of extended faces.

R 2.4.1. – For the purposes of studying toroidal schemes and stacks, it is enough
to consider spaces obtained by gluing extended cones along extended faces, so this is the
approach we follow. For the study of more general spaces, such as the stable toric varieties
appearing in [3, 25], it would be natural to consider also complexes obtained by gluing
extended cones along faces at infinity.

An extended cone complex is a topological space together with a finite collection of closed
subspaces and an identification of each of these closed subspaces with an extended cone such
that the intersection of any two of these extended cones is a union of extended faces of each. A
morphism of extended cone complexes is a continuous map of topological spaces f : Σ→ Σ

′

such that, for each extended cone σ in Σ, there is an extended cone σ′ in Σ
′

such that f |σ
factors through a morphism of extended cones σ → σ′. We refer to the extended faces and
faces at infinity of the cones in Σ as the extended faces and faces at infinity of Σ, respectively.

Note that the complement of the faces at infinity in an extended cone complex is a cone
complex. Conversely, to each cone complex Σ, we associate an extended cone complex Σ

obtained by gluing the extended cones σ along the extended faces τ , whenever τ is a face
of σ in Σ.

E 2.4.2. – Let Σ be the fan in NR corresponding to a toric variety X. The
extended cone complex Σ is the skeleton of Xi, as studied in [47]. If X is complete, then
Σ is also the extended tropicalization of X, as studied in [42]. For any fixed cone τ ′ in Σ,
the cones F (τ, τ ′) in NR/span(τ ′) form a fan corresponding to the closed torus invariant
subvariety V (τ) ⊂ X.

More generally, if Σ is the cone complex corresponding to a toroidal variety X without
self-intersections, then the cones F (τ, τ ′), for fixed τ ′, are naturally identified with the cones
in the complex corresponding to the stratum Xτ ′ , with its induced toroidal structure.
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THE TROPICALIZATION OF THE MODULI SPACE OF CURVES 773

R 2.4.3. – The preceding construction gives a faithful and essentially surjective
functor from cone complexes to extended cone complexes, but this functor is not full. There
are additional morphisms of extended cone complexes that do not come from morphisms of
cone complexes, sending extended faces in the domain into faces at infinity in the target.

We write σ◦ for the complement of the union of all extended faces of positive codimension
in the extended cone σ. It is the union of the locally closed sets F (σ, τ)◦ for τ � σ. As in
Proposition 2.2.2, an extended cone complex Σ is the disjoint union over its extended faces σ
of the locally closed sets σ◦.

2.5. Barycentric subdivisions

Each extremal ray, or one-dimensional face, of a cone σ is spanned by a unique primitive
generator, i.e., a point whose image in Hom(M,R) is a primitive lattice point in Hom(M,Z).
The barycenter of σ is the ray in its relative interior spanned by the sum of the primitive gen-
erators of extremal rays. The iterated stellar subdivision along the barycenters of cones in Σ,
from largest to smallest, produces the barycentric subdivisionB(Σ) of a cone complex Σ. See
[34, Example III.2.1]. The barycentric subdivision of any cone complex is simplicial, and iso-
morphic to a fan. See [2, Lemma 8.7].

We define the barycentric subdivision B(Σ) of the extended cone complex Σ to be the
compact simplicial complex whose cells are the closures in Σ of the cones in the barycentric
subdivision of Σ. Note that the barycentric subdivision B(Σ) of Σ is not the extended cone
complex B(Σ) of the barycentric subdivision of Σ. For instance, if Σ = σ = R2

≥0 is a single
quadrant the picture is given in Figure 1.

·
(0,∞)

·
(∞,∞)

·
(0,0)

·
(∞,0)

σ

· ·

· ·
B(σ)

· ·
·
·

· ·

B(σ)

F 1. Barycentric subdivisions

2.6. Generalized cone complexes

In addition to cone complexes, we will consider spaces obtained as colimits of more
general diagrams of cones, as follows. A face morphism of cones σ → σ′ is an isomorphism
onto a face of σ′. We emphasize that the image of a face morphism is not required to be a
proper face of the target, so any isomorphism of cones is a face morphism.

A generalized cone complex is a topological space with a presentation as the colimit of an
arbitrary finite diagram of cones with face morphisms; we emphasize that the diagram need
not be a poset. Suppose D and D ′ are finite diagrams of cones with face morphisms, and
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774 D. ABRAMOVICH, L. CAPORASO AND S. PAYNE

let Σ = lim−→D and Σ′ = lim−→D ′ be the corresponding generalized cone complexes. A mor-
phism of generalized cone complexes f : Σ→ Σ′ is a continuous map of topological spaces
such that, for each cone σ ∈ D there is a cone σ′ in D ′ such that the induced map σ → Σ′

factors through a cone morphism σ → σ′.

R 2.6.1. – By construction, the category of generalized cone complexes is an
extension of the category of cone complexes that contains colimits for arbitrary finite
diagrams of cones with face morphisms and comes with a faithful functor to topological
spaces that commutes with such colimits; see Remark 2.2.1. In particular, one can glue a
cone to itself along isomorphic faces or take the quotient of a cone by a subgroup of its
automorphism group in the category of generalized cone complexes.

Similar objects were named stacky fans in [11, 16], but that term is also standard for combi-
natorial data associated to toric stacks [9].

If σ is a cone in a finite diagram D of cones with face morphisms, the image of the open
cone σ◦ in the generalized cone complex Σ = lim−→D is not necessarily homeomorphic to an
open cone. Nevertheless, the space underlying a generalized cone complex has a natural cone
complex structure, induced from the barycentric subdivisions of the cones in D . We call this
cone complex the barycentric subdivision B(Σ) of Σ.

Similarly, a generalized extended cone complex is a topological space with a presentation
as a colimit of a finite diagram of extended cones in which each arrow is an isomorphism
onto an extended face of the target.

The functor from cones to extended cones generalizes to this setting, with the natural
functor taking the colimit Σ of a diagram of cones with face maps to the colimit Σ of
the corresponding diagram of extended cones. The barycentric subdivision B(Σ) induces a
simplicial complex structure B(Σ) on Σ, in which the maximal cells are the closures of the
maximal cones in B(σ). Again, this is not the same as the extended complex B(Σ) of the
barycentric subdivision of Σ (Figure 2).

·
(∞,∞)

·
(0,0)

·
(∞,0)

σ
/

(Z/2Z)

·

· ·

B
(
σ
/

(Z/2Z)
)

·
·

· ·

B
(
σ
/

(Z/2Z)
)

F 2. The barycentric subdivision of a generalized extended cone complex is
not the extended cone complex of the barycentric subdivision. The dashed line on
the left indicates folding.

Some care is required to state the analogue of Proposition 2.2.2 for generalized cone
complexes and generalized extended cone complexes. If Σ = lim−→D is a generalized cone
complex then there may be distinct cones in D that are connected by isomorphisms, and there
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may also be arrows in D that are nontrivial automorphisms. We replace D by a diagram with
an isomorphic colimit in the category of generalized cone complexes, as follows. First, add
all faces of cones in D with their associated inclusion maps to get a diagram D ′. Then choose
a set of representatives {σi} of the equivalence classes of cones in D ′, under the equivalence
relation generated by setting σ ∼ σ′ if there is an isomorphism from σ to σ′ in D ′. Now
consider the diagram D ′′ whose objects are these representatives, and whose arrows are all
possible maps obtained as compositions of arrows in D ′ and their inverses. Note that the set
of self maps σi → σi in D ′′ is a subgroupHi of Aut(σi). Then a point of Σ is in the image of
the relative interior σ◦i of a unique cone σi, and two points in σ◦i have the same image if and
only if they are identified by the diagram, namely they are in the same orbit of Hi.

We say that a finite diagram of cones with face morphisms is reduced if every face of a
cone in the diagram is in the diagram, all isomorphisms are self-maps, and all compositions
of arrows in the diagram are included. The construction above shows that every generalized
cone complex is the colimit of a reduced diagram of cones with face morphisms. The correct
analogue of Proposition 2.2.2 is the following:

P 2.6.2. – Let Σ = lim−→D be a generalized cone complex.

1. There is a reduced diagram of cones with face morphisms D red such that lim−→D red ∼= Σ.
2. If D is a reduced diagram of cones with face morphisms then

Σ =
⊔
σ◦i /Hi and Σ =

⊔
σi/Hi,

where the union is over all cones in D , andHi is the group of arrows from σi to itself in D .

3. Algebraic curves, dual graphs, and moduli

3.1. Stable curves

Fix an algebraically closed field k. An n-pointed nodal curve (C; p1, . . . , pn) of genus g
over k is a projective curve C with arithmetic genus g = g(C) over k with only nodes as
possible singularities, along with n ordered distinct smooth points pi ∈ C(k). The curve
is stable if it is connected and the automorphism group Aut(C; p1, . . . , pn) of C fixing the
points pi is finite.

A curve C over any field is said to be stable if the base change to the algebraic closure is
stable.

3.2. The dual graph of a pointed curve

The material here can be found with slightly different notation in [4, 12]. See also [11].

Recall that to eachn-pointed curve (C; p1, . . . , pn) with at most nodes as singularities over
an algebraically closed field one assigns its weighted dual graph, written somewhat succinctly
as

GC = G = (V,E,L, h),

where

1. the set of vertices V = V (G) is the set of irreducible components of C;
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2. the set of edges E = E(G) is the set of nodes of C, where an edge e ∈ E is incident to
vertices v1, v2 if the corresponding node lies in the intersection of the corresponding
components;

3. the ordered set of legs ofL = L(G) corresponds to the marked points, where a marking
is incident to the component on which it lies;

4. the function h : V → N is the genus function, where h(v) is the geometric genus of the
component corresponding to v.

Note that a node of C that is contained in only one irreducible component corresponds to a
loop in GC .

•
l1

1
...

l2
...

•
. . .l4

. . .l3

2

F 3. A four-legged weighted graph of genus 6

R 3.2.1. – As customary, the notation suppresses some data, which are neverthe-
less an essential part of G:

1. The incidence relations between edges and vertices is omitted.
2. Consistently with [6, 4, 12] we view an edge e ∈ E(G) as a pair of distinct half-edges;

the effect of this is that if e is a loop, there is a nontrivial graph involution switching
the two half edges of e.

When we talk about a graph we will always mean a weighted graph, unless we explicitly refer
to the underlying graph of a weighted graph.

The valence nv of a vertex v ∈ V is the total number of incidences of edges and legs at v,
where each loop contributes two incidences. The graph is said to be stable if it is connected
and satisfies the following: for every v ∈ V ,

– if h(v) = 0 then nv ≥ 3; and
– if h(v) = 1 then nv ≥ 1.

Note that a pointed nodal curve C is stable if and only if the graph GC is stable.
The genus g(G) of a connected weighted graph is

h1(G,Q) +
∑
v∈V

h(v),

and for a connected pointed nodal curve C we have

g(C) = g(GC).

In essence this means that the weighth(v) can be imagined as a replacement forh(v) infinitely
small loops hidden inside v, or even an arbitrary, infinitely small graph of genus h(v) hidden
inside v.

By the automorphism group Aut(G) of G we mean the set of graph automorphisms
preserving the ordering of the legs and the genus function h.
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A weighted graph contraction π : G → G′ is a contraction of the underlying graph
(composition of edge contractions), canonically endowed with weight function h′ given by

h′(v′) = g(π−1(v′)),

for v′ in V (G′). Note that weighted graph contractions preserve the genus, and any contrac-
tion of a stable weighted graph is stable.

3.3. Strata of the moduli space of curves

We consider the moduli stack Mg,n and its coarse moduli space Mg,n. The stack Mg,n is
smooth and proper, and the boundary Mg,n \ Mg,n is a normal crossings divisor; this
endows Mg,n with a natural toroidal structure given by the open embedding Mg,n ⊂ Mg,n.
See [19, 4, 27] for generalities on moduli spaces, [34] for an introduction to toroidal embed-
dings, and Section 6 below for toroidal Deligne-Mumford stacks in general.

The toroidal structure on Mg,n induces a stratification, described as follows. Each stable
graph G of genus g with n legs corresponds to a smooth, locally closed stratum MG ⊂ Mg,n.
The curves parametrized by MG are precisely those whose dual graph is isomorphic to G.
The codimension of MG inside Mg,n is the number of edges of G, and MG is contained in
the closure of MG′ if and only if there is a graph contraction G→ G′.

3.4. Explicit presentation of MG

The stratum MG parametrizing curves with dual graph isomorphic to G has the following
explicit description in terms of moduli of smooth curves and graph automorphisms, see
[4, Section XII.10].

Recall that the valence of a vertex v ∈ V (G) is denoted nv. Consider the moduli space
M̃G =

∏
v Mh(v),nv . The stack M̃G can be thought of as the moduli stack of “disconnected

stable curves,” where the universal family C̃
dis

G is the disjoint union of the pullbacks of the
universal families Ch(v),nv → Mh(v),nv . The disconnected curves parametrized by M̃G

have connected components corresponding to V (G), no nodes, and markings in the disjoint

union L̃ =
⊔
v{pv1, . . . , pvnv}. The data of the graph G indicate a gluing map C̃

dis

G → C̃G,

and C̃G → M̃G is a family of connected curves, with irreducible components identified
with V (G), marked points identified with L(G) ⊂ L̃, nodes identified with E(G) and
branches of nodes identified with Ẽ = L̃ \ L(G). Indeed, the family of glued curves
exhibits M̃G as the moduli space of curves with graph identified with G. There are sections

M̃G → C̃G landing in the nodes, which are images of the sections M̃G → C̃
dis

G determining
the branches.

The group Aut(G) acts on C̃G → M̃G giving a map [ M̃G/Aut(G)] → MG such that
[ C̃G/Aut(G)]→ [ M̃G/Aut(G)] is the pullback of the universal family CG → MG.

P 3.4.1. – The quotient stack
[
M̃G/Aut(G)

]
is canonically isomorphic

to MG, and
[
C̃G/Aut(G)

]
is canonically isomorphic to CG.
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Proof. – In [4, Proposition XII.10.11] one obtains a description of the compactification[
M̃G /Aut(G)

]
as the normalization of the closure MG of MG in Mg,n. Since the open

moduli space MG is already normal, and since
[
C̃G/Aut(G)

]
is the universal family, the

proposition follows.

4. Tropical curves and their moduli

4.1. Tropical curves and extended tropical curves

A tropical curve is a metric weighted graph

Γ = (G, `) = (V,E, L, h, `),

where ` : E → R>0.

One can realize a tropical curve as an “extended” metric space (keeping the weights on
the vertices) by realizing an edge e as an interval of length `(e),

v1 •
`(e)

• v2

and realizing a leg as a copy of R≥0 t {∞} where 0 is attached to its incident vertex:

v • ∞•

Note that the infinite point on a leg of a tropical curve is a distinguished point which does
not correspond to a vertex. Removing these infinite points gives a usual metric graph which
is not compact.

We identify Aut(Γ) ⊂ Aut(G) as the subgroup of symmetries preserving the length
function `.

An extended tropical curve is an extended metric weighted graph Γ = (G, `) = (V,E, L, h, `),
where this time ` : E → R>0 t {∞}; we realize an extended tropical curve as an extended
metric space by realizing an edge e with `(e) =∞ as

(R≥0 t {∞}) ∪ ({−∞} t R≤0)

where the points at infinity are identified:

v1 • ∞• • v2

We again realize a leg of an extended tropical curve as a copy of R≥0 t {∞}, with
0 ∈ R≥0 t {∞} attached to its incident vertex.

Two tropical curves are said to be (tropically) equivalent if they can be obtained from one
another by adding or removing 2-valent vertices of weight 0 (without altering the underlying
metric space), or 1-valent vertices of weight 0 together with their adjacent edge. When
studying moduli of tropical curves with 2g − 2 + n > 0 we can (and will) restrict our
attention to curves whose underlying weighted graph G is stable, as in every equivalence class
of tropical curves there is a unique representative whose underlying weighted graph is stable,
see [12, Section 2] for details; sometimes such tropical curves are referred to as “stable”.
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4.2. Moduli of tropical curves: fixed weighted graph

The open cone of dimension |E|

σ◦G = (R>0)E

parametrizes tropical curves together with an identification of the underlying graph with G,
where each coordinate determines the length of the corresponding edge. There is a natural
universal family over σ◦G (see for instance [37, Section 5]), so we view it as a fine moduli space
for tropical curves whose underlying graphs are identified with G.

•
Γ`

......

◦
•

......

��

◦ • ......
`∈R>0

Example: G = • • σ◦G = R>0.

Tropical curves whose underlying graphs are isomorphic to G are parametrized by

M trop
G = σ◦G/Aut(G),

since the identification of the underlying graph with G is defined only up to automorphisms
of G. Note that M trop

G is not even homeomorphic to an open cone, in general. However, the
set σ◦G/Aut(G) is naturally identified with a union of relative interiors of cones in a cone
complex, as follows. The action of Aut(G) permutes the cones in the barycentric subdivision
of G, and no point is identified with any other point in the same cone. Therefore, each cone
in the barycentric subdivision B(σG) is mapped bijectively onto its image in the quotient.
This induces a cone complex structure on

B(σG)/Aut(G).

Then σ◦G/Aut(G) is the union of the relative interiors of those cones inB(σG)/Aut(G) that
are images of cones in B(σG) meeting σ◦G. Note that in general the universal family of σ◦G
does not descend to the quotient, but there is a natural complex over σG/Aut(G) whose fiber
over a point [Γ] is canonically identified with Γ/Aut(Γ). See Section 8.2.

Similarly, the extended cone σ◦G = (R>0 t {∞})E is a fine moduli space for extended
tropical curves whose underlying graph is identified with G, and the quotient

M
trop

G = σ◦G/Aut(G)

coarsely parametrizes extended tropical curves whose underlying graph is isomorphic to G.
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◦
Γ`/Aut(Γ`)
•

......

��

◦ • ......
`∈R>0

G = •
h h

• M trop
G = R>0.

4.3. Moduli of tropical curves: varying graphs

Here we construct the moduli of tropical curves by taking the topological colimit of a
natural diagram of cones, in which the arrows are induced by contractions of stable weighted
graphs. This approach is not original; it is quite similar, for instance, to the constructions
in [36].

As one passes to the boundary of the cone σ◦G parametrizing tropical curves whose
underlying graph is identified with G, the lengths of some subset of the edges go to zero.
The closed cone σG then parametrizes tropical curves whose underlying graph is identified
with a weighted contraction of G, as defined in Section 3.2. If $ : G → G′ is a weighted
contraction, then there is a canonical inclusion

$ : σG′ ↪→ σG

identifying σG′ with the face of σG where all edges contracted by $ have length zero.
The cone σG has a natural integral structure, determined by the integer lattice in (R≥0)E

parametrizing tropical curves with integer edge-lengths.

As a topological space, the coarse moduli space of tropical curves M trop
g,n is the colimit

of the diagram of cones σG obtained by gluing the cones σG along the inclusions $ for all
weighted contractions $:

(1) M trop
g,n = lim−→ (σG, $) .

It is therefore canonically a generalized cone complex. Note that every automorphism of a
weighted graph G is a weighted contraction, so the map from σG to the colimitM trop

g,n factors
through σG/Aut(G). Furthermore, two points are identified in the colimit if and only if
they are images of two points in some open cone σ◦G that differ by an automorphism of G.
Therefore, M trop

g,n decomposes as a disjoint union

M trop
g,n =

⊔
G

M trop
G =

⊔
G

σ◦G/Aut(G),

over isomorphism classes of stable weighted graphs of genus g with n legs. This is not a cell
decomposition, but M trop

g,n does carry a natural cone complex structure, induced from the
barycentric subdivisions of the cones σG, in which eachM trop

G is a union of relative interiors
of cones. There is also a “universal family,” whose fiber over a point [Γ] is canonically
identified with Γ/Aut(Γ). Again, see Section 8.2.
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Similarly, the coarse moduli space of extended tropical curves M
trop

g,n is the generalized
extended cone complex

M
trop

g,n = lim−→ (σG, $) ,

which decomposes as a disjoint union

M
trop

g,n =
⊔
G

M
trop

G =
⊔
G

σ◦G/Aut(G).

R 4.3.1. – As in Section 2, while M trop
g,n inherits a cone complex structure from

its barycentric subdivision B(M trop
g,n ), the compactification M

trop

g,n has a simplicial struc-

ture in the form B(M
trop

g,n ), which is not the same as the associated extended cone com-

plex B(M trop
g,n ).

5. Thuillier’s skeletons of toroidal schemes

Here we recall the basic properties of cone complexes associated to toroidal embeddings,
and Thuillier’s treatment of their natural compactifications as analytic skeletons.

5.1. Thuillier’s retraction

We begin by briefly discussing Thuillier’s construction of the extended cone complex and
retraction associated to a toroidal scheme without self-intersection, an important variation
on Berkovich’s fundamental work on skeletons of pluristable formal schemes [8]. Recall that
a toroidal scheme is a pair U ⊂ X that étale locally looks like the inclusion of the dense
torus in a toric variety: every point p ∈ X has an étale neighborhood α : V → X which
admits an étale map β : V → Vσ to an affine toric variety, such that β−1T = α−1U ,
where T ⊂ Vσ is the dense torus. It is a toroidal embedding without self-intersection if each
irreducible component of the boundary divisor X r U is normal, in which case V can be
taken to be a Zariski open subset of X. For further details, see [34, 47].

R 5.1.1. – Thuillier defines toroidal embeddings in terms of étale charts, whereas
in [34] they are defined in terms of formal completions. In [34, IV.3.II, p. 195] the approaches
are shown to be equivalent for toroidal embeddings without self-intersection. A short argu-
ment of Denef [20] shows that the approaches are equivalent in general.

We work over an algebraically closed field k, equipped with the trivial valuation, which
sends k∗ to zero. The usual Berkovich analytic space associated with a variety X over k is
denotedXan. One also associates functorially another nonarchimedean analytic space in the
sense of Berkovich, denoted Xi. Here, i is the Hebrew letter bet.

D 5.1.2. – The space Xi is the compact analytic domain in Xan whose
K-points, for any valued extension K|k with valuation ring R ⊂ K, are exactly those
K-points of X that extend to SpecR.
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In particular, we have natural identifications

Xi(K) = X(R),

for all such valued extensions. If X is proper, then every K-point of X extends to SpecR,
and Xi is equal to Xan. See [47, Sections 1.2–1.3].

E 5.1.3. – Let X be a toric variety with dense torus T , corresponding to a fan Σ

in NR. A K-point x of T extends to a point of X over SpecR if and only if Trop(x) is
contained in the fan Σ. In other words, Xi ∩ T an is precisely the preimage of Σ under the
classical tropicalization map. The extended tropicalization map from [42] takesX(K) into a
partial compactification of NR, and the closure of Σ in this partial compactification is the
extended cone complex Σ. The preimage of Σ under the extended tropicalization map is
exactly Xi.

Given a toroidal embedding U ⊂ X over k, Thuillier defines a natural continuous, but
not analytic, idempotent self-map pX : Xi → Xi.

D 5.1.4. – The skeleton Σ(X) ⊂ Xi is the image of the map pX .

The map pX is referred to as the retraction of Xi to its skeleton; we write simply p when no
confusion seems possible.

If U ⊂ X is a toroidal embedding without self-intersection then the image of Uan ∩Xi

is canonically identified with the cone complex Σ(X) associated to the toroidal embedding,
as constructed in [34]. Then Σ(X) is the closure of Σ(X) inXi, and is canonically identified
with the extended cone complex of Σ(X). The toroidal structure determines local monomial
coordinates on each stratum of X rU , and the target of the retraction Σ(X) is the space of
monomial valuations in these local coordinates; see [10, Section 1.4] for details on monomial
valuations. Thuillier shows, furthermore, that p is naturally a deformation of the identity
mapping on Xi, giving a canonical strong deformation retraction of Xi onto Σ(X).

R 5.1.5. – There is a natural order reversing bijection between the strata of the
boundary divisorXrU and the cones in Σ(X), generalizing the order reversing correspon-
dence between cones in a fan and the boundary strata in the corresponding toric variety, as
follows. Let x be a point of Xi over a valued extension field K|k whose valuation ring is R.
Then x is naturally identified with an R-point of X. We write x for the reduction of x over
the residue field. Then p(x) is contained in the relative interior σ◦ of a cone σ if and only if
the reduction x is in the corresponding locally closed boundary stratum Xσ in X, over the
residue field, and x is in U . In other words, the preimage of σ◦ is the subset ofXi∩Uan con-
sisting of points over valued fields whose reduction lies in the corresponding stratum ofXrU
over the residue field.

R 5.1.6. – The order reversing bijection between strata in X r U and cones
in Σ(X) described in Remark 5.1.5, which comes from the reduction map on Xi, should
not be confused with the order preserving bijection between strata in X r U and strata
in Σ(X)rΣ(X). Quite simply, the preimage under p of a boundary stratum in Σ(X)rΣ(X)

is a stratum in the boundary divisor (X r U)an.
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5.2. Explicit realization of the retraction

In this section we describe Thuillier’s retraction to the extended cone complex more
explicitly in local coordinates, for a toroidal embedding U ⊂ X without self-intersection.

The toroidal scheme without self-intersections X is covered by Zariski open toric charts

Vσ V
βoo � � α // X .

Recall that the cone σ can be described in terms of monoid homomorphisms, as follows.
Let M be the group of Cartier divisors on V supported in the complement of U , and
let Sσ ⊂M be the submonoid of such Cartier divisors that are effective. Then the cone σ is
the space of monoid homomorphisms to the additive monoid of nonnegative real numbers,

σ = Hom(Sσ,R≥0),

equipped with its natural structure as a rational polyhedral cone with integral structure. The
associated extended cone σ is

σ = Hom(Sσ,R≥0 t {∞}).

Let x be a point in Xi. Then x is represented by a point of X over a valuation ring R
with valuation val. Let x be the reduction of x, which is a point of X over the residue field
of R, and let V ⊂ X be an open subset that contains x and has a toric chart V → Vσ. Then
p(x) ∈ σ is the monoid homomorphism that takes an effective Cartier divisor D on V with
support in the complement of U and local equation f at x to

(2) p(x)(D) = val(f).

This is clearly a monoid homomorphism to R≥0 t {∞}, and it is nonnegative because
D is effective. It is also independent of the choice of chart, the choice of extension field
over which x is rational, and the choice of defining equation for D. See [47, Lemma 2.8,
Proposition 3.11]. This describes p as a projection to a natural extended cone complex; we
now explain how this cone complex may be seen as a subset of Xi.

First, we may assume that the open setV ⊂ X is affine. ThenV an is the space of valuations
on the coordinate ring k[V ] that extend the given trivial valuation on k [7, Remark 3.4.2], and
V i is the subspace of valuations that are nonnegative on all of k[V ]. Here, a valuation on a
k-algebra R is a map

val : R→ R ∪ {∞}
such that val(fg) = val(f) + val(g) and val(f + g) ≥ min{val(f), val(g)}, for all f and g
in R, val(0) =∞, and val(a) = 0 for all a ∈ k×. In particular, val(f) may be equal to∞ for
some nonzero f ∈ R.

Shrinking the toric variety Vσ, if necessary, we may assume that there is a point x in V
mapping to a point xσ in the closed orbit Oσ ⊂ Vσ; note that the following construction
is independent of the choice of x. Since V → Vσ is étale, the completed local ring ÔX,x is

identified with ÔVσ,xσ , which is a formal power series ring

kJy1, ..., yrK JSσK,

with exponents in Sσ and coefficients in a formal power series ring in r parameters. Here,
r is the dimension of Oσ. For each function f ∈ k[V ], let

∑
u∈Sσ au(f)zu be the image of f
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in this power series ring. Then, to each point v in σ, we associate the monomial valuation
valv : k[V ]→ R ∪ {∞} taking f to

(3) valv(f) = min{〈u, v〉 | au(f) 6= 0}.

Since v is in the extended dual cone of Sσ, the valuation valv is nonnegative on k[V ], so
this construction realizes σ as a subset of V i. As V ranges over an open cover of X, the
subsets V i coverXi, and the union of the cones σ, one for each stratum inX, is the extended
cone complex Σ(X) ⊂ Xi.

R 5.2.1. – From this description of p, we see that p(x) is contained in the relative
interior σ◦ of σ as defined in Section 2.4 if and only if the reduction x is contained in the
smallest stratum of V . Also, p(x) is contained in the boundary σ r σ if and only if x itself
is contained in the boundary of V . These two properties of p determine both the order
reversing correspondence between cones of Σ(X) and strata of X, and the order preserving
correspondence between boundary strata in Σ(X) r Σ(X) and boundary strata in X r U ,
discussed in Remarks 5.1.5 and 5.1.6, above.

We recall that Thuillier also constructs a canonical homotopy HV : V i × [0, 1] → V i,
such that

HV × {0} = idV : V i → V i,

and

HV × {1} = pV : V i → ΣV ,

giving a strong deformation retraction of V i onto the skeleton Σ(V ) ⊂ Xi, and that this
construction is functorial for étale morphisms of toroidal schemes. Our goal in Section 6 is
to show that a similar construction applies to toroidal Deligne-Mumford stacks.

5.3. Functoriality

A morphism X → Y of toroidal embeddings is toroidal if for each x ∈ X there is a
commutative diagram

Vσ

��

VXoo //

��

X

��
Vτ VYoo // Y

where the top row is a toric chart at x, the bottom row is a toric chart at f(x), and the arrow
Vσ → Vτ is a dominant torus equivariant map of toric varieties; this is a so called toric chart
for the morphism X → Y . Toroidal morphisms were introduced in [1, Section 1]; separable
toroidal morphisms coincide with the logarithmically smooth maps of [32].

More generally, we say that a morphism X → Y as above is sub-toroidal if Vσ → Vτ is
only assumed to dominate a torus invariant subvariety of Vτ . A key example is whenX → Y

is the normalization of a closed toroidal stratum X ′ ⊂ Y .
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P 5.3.1. – The formation of Σ(X) is functorial for sub-toroidal mor-
phisms: If f : X → Y is a sub-toroidal morphism of toroidal embeddings without self-
intersections, and fi : Xi → Y i is the associated morphism of Berkovich spaces, then
fi restricts to a map of generalized extended cone complexes Σ(f) : Σ(X)→ Σ(Y ). In
particular pY ◦ fi = Σ(f) ◦ pX , and if Y → Z is another sub-toroidal morphism, then
Σ(g) ◦ Σ(f) = Σ(g ◦ f).

Proof. – We first prove the result for toroidal morphisms, and then indicate the changes
necessary for sub-toroidal morphisms.

The result is local, so we may assume there is a toric chart for f which covers X and Y ,
in which case Σ(X) = σ and Σ(Y ) = τ . If Sσ and Sτ are the monoids of effective
Cartier divisors on X and Y supported away from UX and UY , then we have a pullback
homomorphism Sτ → Sσ, which is evidently compatible with composition with a further
toric morphism Y → Z. This induces a map Σ(f) : σ → τ compatible with compositions.
By Equation (2) of Section 5.2 we have pY ◦ fi = Σ(f) ◦ pX . By Equation (3) we also have
Σ(f) = fi|σ, as needed.

For sub-toroidal morphisms we only need to replace Sσ by S′σ := Sσ t{∞} and similarly
for S′τ . We define f∗ : S′τ → S′σ by declaring that f∗(∞) = ∞ and, if f(X) ⊂ D for some
nonzero divisor D ∈ S′τ , then also f∗D = ∞. The induced map σ → τ maps σ to a face at
infinity of τ (see [47, Proposition 2.13]), and the rest of the proof works as stated.

R 5.3.2. – If the map Vσ → Vτ in the definitions of toroidal and sub-toroidal
is only assumed to be torus equivariant, but not necessarily dominating a torus invariant
subvariety, then the restriction of fi does not necessarily map Σ(X) into Σ(Y ). However,
composing fi with pY still induces a map of generalized extended cone complexes, factoring
through pX , and the argument above shows that this construction is functorial with respect
to such morphisms.

6. Skeletons of toroidal Deligne-Mumford stacks

Here we generalize Thuillier’s retraction of the analytification of a toroidal scheme onto its
canonical skeleton to the case of toroidal Deligne-Mumford stacks. We follow the construc-
tion of [47, Section 3.1.3], where toroidal embeddings with self-intersections are treated.

6.1. Basic construction

Let X be a separated connected Deligne-Mumford stack over k, with coarse moduli
space X, which is a separated algebraic space, by [33, Theorem 1.1]. Let U ⊂X be an open
substack and, for any morphism V →X , let UV ⊂ V be the preimage of U .

D 6.1.1. – The inclusion U ⊂ X is a toroidal embedding of Deligne-Mumford
stacks if, for every étale morphism from a schemeV →X , the inclusionUV ⊂ V is a toroidal
embedding of schemes.
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When U is understood, we refer to X as a toroidal Deligne-Mumford stack. The property
of being a toroidal embedding is étale local on schemes, so the inclusionU ⊂X is a toroidal
embedding if and only if, for a single étale covering V → X , the embedding UV ⊂ V is
toroidal.

Let X be a toroidal Deligne-Mumford stack with coarse moduli spaceX, andV →X an
étale covering by a scheme, whereUV ⊂ V is a toroidal embedding without self-intersections.
We write V2 = V ×X V . Then V2

−→−→V → X is a right-exact diagram of algebraic spaces.

The analytificationXan of a separated algebraic spaceX is defined in [17]. Using the same
notation as in Definition 5.1.2 we set the following:

D 6.1.2. – Let X be a separated algebraic space. The space Xi is the com-
pact analytic domain in Xan whose K-points, for any valued extension K|k with valuation
ring R ⊂ K, are exactly those K-points of X that extend to SpecR.

L 6.1.3. – The induced diagram V i
2
−→−→V i → Xi is right-exact on the underlying

topological spaces.

Proof. – First we claim that this is a right-exact diagram of sets. We use the descrip-
tion of the point-set of Xi as the set of equivalence classes of X(R), where R runs over
valuation rings extending k with algebraically closed valued fraction fields K, and equiva-
lence is determined by extensions of such valuation rings. Let R be such a valuation ring,
and x ∈ X(R). Since X is the coarse moduli space of X and K is algebraically closed,
there is a lift x̃ ∈X (R) of x, unique up to isomorphisms. Consider the base change along
x̃ : SpecR→X ,

(V2 ×X SpecR) −→−→ (V ×X SpecR) → SpecR

The special fiber x of x is a point of X over the residue field κ of R. Since X is the coarse
moduli space of X and κ is algebraically closed, X(κ) is the quotient of V (κ) by the
equivalence relation V2(κ). In particular, x lifts to a point y ∈ V (κ). Since V → X is flat,
(V ×X SpecR) → SpecR is also flat, and hence y is the special fiber of a point y in V (R).
Therefore, x is in the image of V (R), and V i → Xi is surjective. A similar argument shows
that any pair of points in V i that map to the same point in Xi are in the image of V i

2 , so
V i

2
−→−→V i → Xi is right-exact on the underlying sets, as claimed

The topological spaces V i
2 , V i, andXi are all compact Hausdorff and the maps between

them are continuous, since they are in fact analytic. The map V i → Xi has finite fibers. If
Q is the topological quotient space of V i

2
−→−→V i, then we have a continuous factorization

V i → Q → Xi. So V i → Q also has finite fibers. The equivalence relation determined by
the image of V i

2 in the topological product V i ×Top V i is closed, since V i
2 is compact and

V i is Hausdorff. Since Q is the quotient of the compact Hausdorff topological space V i by
a closed equivalence relation with finite orbits it is also compact Hausdorff. The continuous
mapQ→ Xi is bijective by the previous paragraph. SinceQ andXi are compact Hausdorff

spaces, the map is a homeomorphism, as needed.
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P 6.1.4. – Let X be a separated connected Deligne-Mumford stack with
coarse moduli space X. Then there is a canonical continuous map HX : [0, 1] × Xi → Xi

connecting the identity to an idempotent self-map pX . Writing Σ(X ) for the image of pX ,
we have a commutative diagram of topological spaces

V i
2

//
//

pV2

��

V i

pV

��

// Xi

pX

��
Σ(V2)

//
// Σ(V ) // Σ(X ),

with right-exact rows. In particular, Xi is contractible and Σ(X ) is the topological colimit of
the diagram Σ(V2)−→−→Σ(V ).

Proof. – Since V i
2
−→−→V i → Xi is topologically right-exact it follows that the continu-

ous map HX : [0, 1]×Xi → Xi making the diagram

[0, 1]× V i //

HV
��

[0, 1]×Xi

HX
��

V i // Xi

commutative exists and is unique. To check that the map is independent of the choice of V
it suffices to consider a different étale cover by a scheme V ′ → X that factors through
V → X . This induces a map H ′X : [0, 1] × Xi → Xi commuting with HV ′ as in the
preceding diagram, and a map p′X : Xi → Σ(X ) commuting with pV ′ as in the first
diagram. By [47, Lemma 3.38] we also have a commutative diagram

[0, 1]× V ′i //

HV ′
��

[0, 1]× V i

HV
��

V ′
i // V i.

It follows that HX = H ′X , and necessarily p′X = pX .
This shows thatXi admits a deformation retraction onto Σ(X ). It remains to show that

Σ(X ) is contractible. The natural cell complex structure on Σ(X ) has one vertex for each
face of Σ(X ), and one k-face for each chain of length k in the poset of faces. In other words,
Σ(X ) is homeomorphic to the geometric realization of the poset of faces of Σ(X ). As X

is connected this poset has a minimal element, the unique zero-dimensional face of Σ(X );
its geometric realization is contractible, as required.

R 6.1.5. – One can define Σ(X ) as the topological colimit of the diagram
Σ(V2)−→−→Σ(V ), describe it explicitly as in Proposition 6.2.6, and prove its functorial prop-
erties as in Proposition 6.1.8, without recourse to Berkovich analytification, similarly to the
work of [34] or [24]. However Part (2) of Theorem 1.2.1 requires the analytic context.

R 6.1.6. – Citing a similar argument, Thuillier notes that the skeleton Σ(X) of
a toroidal embedding with self-intersection inherits the structure of a cell complex. We
mention one minor gap in the proof of this claim, which is easily corrected. Lemma 3.33
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in [47] states that every cone of Σ(V ) maps isomorphically to its image in Σ(X), which
is not true in general, as seen in Example 6.1.7. Nevertheless, Thuillier’s argument does
show that cones of the barycentric subdivision of Σ(V ) map isomorphically to their images
in Σ(X), so the topological space Σ(X) inherits the structure of a cone complex, induced
from this barycentric subdivision. The same holds for a toroidal Deligne-Mumford stack X :
the skeleton Σ(X ) inherits a simplicial complex structure induced from the barycentric
subdivision of Σ(V ).

E 6.1.7. – ConsiderX = A3\{y = 0} and letU be the complement of the divisor

D = {x2y − z2 = 0}.

Since D is a normal crossings divisor, the inclusion U ⊂ X is a toroidal embedding. Note
that D is irreducible but not normal, so X is a toroidal variety with self-intersection. More-
over, the preimage of the singular locus in the normalization of D is irreducible. Roughly
speaking, this is because the fundamental group of the singular locus acts transitively on the
branches ofD at the base point. This phenomenon of monodromy is discussed systematically
in Section 6.2.

We now consider a toric chart on X. Let V = A3 \ {u = 0} and

DV = V (x2u2 − z2) ⊂ V ;

there is a degree 2 étale cover V → X given by u2 = y. Now V is a toroidal embedding
without self-intersections. The coordinate change z1 = z/u gives the equation x2 = z2

1 , so
V is isomorphic to A2 × Gm with its standard toric structure. The toric divisors on V are
{x = z1} and {x = −z1} and the corresponding cone is σ = R2

≥0. The groupZ/2Z acts freely
on V , by interchanging the sheets of the étale cover, with quotient X; the involution sends
(x, u, z1) to (x,−u,−z1). The fiber product V2 = V ×X V is therefore V × Z/2Z, and the
étale equivalence relation V2

−→−→V has quotientX. Now the skeleton Σ(V2) is σ × Z/2Z, and
the equivalence relation Σ(V2)−→−→Σ(V ) identifies σ with itself by the reflection that switches
the two coordinates, since the toric divisors {x = z1} and {x = −z1} are interchanged by
the involution. It follows that Σ(X) is the quotient σ/(Z/2Z).

·
(0,∞)

·
(∞,∞)

·
(0,0)

·
(∞,0)

Σ(V ) = σ

·
(∞,∞)

·
(0,0)

·
(∞,0)

Σ(X) = σ
/

(Z/2Z)

The image of σ◦ is not homeomorphic to the relative interior of any cone, but the cones of
the barycentric subdivision of Σ(V ) map isomorphically to their images, giving Σ(X) the
structure of a cone complex, as in Figure 2 of Section 2.6.

The functorial properties of retraction to the skeleton also carry over to toroidal stacks:
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P 6.1.8. – The construction of pX is functorial: if f : X → Y is
a sub-toroidal morphism of toroidal Deligne-Mumford stacks, then fi : Xi → Y i

restricts to a map of generalized extended cone complexes Σ(f) : Σ(X)→ Σ(Y ). In par-
ticular, p Y ◦ fi = Σ(f) ◦ pX , and if g : Y → Z is another sub-toroidal morphism, then
Σ(g) ◦ Σ(f) = Σ(g ◦ f).

Proof. – Let V → Y and W → V × Y X be étale coverings by schemes such that the
induced toroidal embeddings are without self-intersection. Then in the diagram

Wi //

��

&&
Xi

��

&&
V i //

��

Y i

��
Σ(W ) //

%%
Σ(X )

%%
Σ(V ) // Σ( Y)

the dotted arrow exists since fi(Σ(X )) lies in the image of Σ(V ). It is a morphism of gener-
alized extended cone complexes, since it is covered by the morphism of extended cone com-
plexes Σ(W ) → Σ(V ). Now all but the right square are already known to be commuta-
tive, and the horizontal arrows are surjective, therefore the right square is commutative as
well.

R 6.1.9. – When constructing skeletons of toroidal Deligne-Mumford stacks, it
may be tempting to take colimits of diagrams of cone complexes in the category of topolog-
ical stacks rather than in the category of topological spaces. We avoid this for three reasons.
First, the cone complex Σ(X ) is a subset ofXan that lies over the generic point ofX; if v is in
the coneσ then the corresponding monomial valuation is finite on every nonzero function, by
Formula (3) in Section 5.2. If X does not have generic stabilizers, then no point of Σ(X ) has
stabilizers, when considered as a point of X an. Next, the same distinction between the col-
imit in the category of topological stacks and the colimit in the category of topological spaces
appears already for toroidal embeddings of varieties with self-intersection, even when the
underlying toroidal space has no nontrivial stack structure, as seen in Example 6.1.7. Finally,
the colimit of the diagram Σ(V2)−→−→Σ(V ) in the category of topological stacks depends on
the choice of étale cover, while the colimit in the category of topological spaces is indepen-
dent of all choices. The following example illustrates this possibility.

E 6.1.10. – Let U ⊂ X be a toroidal scheme, so the embedding of U × Gm

in X ×Gm is also toroidal. Fix an integer n ≥ 2. Then X ×Gm has a natural étale cover V
induced by z 7→ zn on Gm. The resulting diagram Σ(V2)−→−→Σ(V ) realizes Σ(X) as the
quotient of Σ(V ) by the trivial action of a cyclic group of order n. In particular, the colimit in
the category of topological spaces is Σ(V ), whereas the colimit in the category of topological
stacks has a nontrivial stabilizer at every point that depends on the choice of n.

The issue seems to come from the fact that the underlying topological space of a scheme
or a Berkovich space should come with a stack structure; possibly points should be replaced
by the classifying stacks of appropriate Galois groups. This seems compatible with results
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of [16]. The simplicial space giving the étale topological type of Xi and its restriction
to Σ(X) may provide an appropriate formalism.

6.2. Monodromy of toroidal embeddings

Let U ⊂ X be a toroidal Deligne-Mumford stack. For each étale morphism from a
scheme V →X , let MV be the group of Cartier divisors on V that are supported on the
boundary V r UV , and let SV ⊂MV be the submonoid of effective divisors. LetM and S be
the étale sheaves associated to these presheaves, respectively. In the language of logarithmic
geometry, S is the characteristic monoid sheaf associated to the open embedding U ⊂X ,
and M is the characteristic abelian sheaf.

P 6.2.1. – The sheaves S and M are locally constant in the étale topology on
each stratum W ⊂X .

Proof. – It suffices to check this for M , and it is enough to exhibit an étale cover on W
where the sheaf M is constant. Since X has an étale cover by a toroidal embedding of
schemes without self-intersections, this follows from the fact that M is constant on each
stratum of any toroidal embedding without self-intersection [34, Lemma II.1.1, p. 60].

Fix a stratum W ⊂X and a geometric point w of W . The stalk Mw is the group of étale
local germs of Cartier divisors atw supported on X rU , and Sw is the submonoid of germs
of effective Cartier divisors. Note thatMw is a finitely generated free abelian group and Sw is
a sharp, saturated, and finitely generated submonoid that generates Mw as a group. Hence
the dual cone σw, the additive submonoid of linear functions on Mw that are nonnegative
on Sw, is a strictly convex, full-dimensional, rational polyhedral cone in Hom(Mw,R). Since
Mw is étale locally constant, there is a natural action of πet1 (W,w) onMw that preserves Sw.
See [40] for details on étale fundamental groups of Deligne-Mumford stacks.

D 6.2.2. – The monodromy group Hw is the image of πet1 (W,w) in Aut(Mw).

The action of πet1 (W,w) on Mw is determined by the induced permutations of the extremal
rays of σw. In particular, the monodromy group Hw is finite.

R 6.2.3. – Note that any two geometric points w and w′ in the same stratum
W ⊂X have isomorphic monodromy groups, where the isomorphism is well-defined up
to conjugation. Similarly, the cones σw and σw′ are isomorphic, by isomorphisms that are
compatible with the actions of Hw and Hw′ , and well-defined up to conjugation by these
actions. In particular, the quotient σw/Hw depends only on the stratum W , and not on the
point w.

To study the monodromy group Hw at a point w in a stratum W ⊂X , we therefore
study local charts given by étale covers by toroidal embeddings of schemes without self-
intersection, where the monodromy is trivialized.

D 6.2.4. – An étale morphismV →X from a scheme V to a toroidal Deligne-
Mumford stack U ⊂X is a small toric chart around a geometric point w of X if

1. the toroidal embedding UV ⊂ V is without self-intersections,
2. there is a unique closed stratum W̃ ⊂ V , and
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3. the image of W̃ contains w.

Fix a small toric chart V → X and a point w̃ of W̃ lifting w. Since V is without self-
intersection, the étale sheavesM andS are constant on W̃ , so πet1 (W̃ , w̃) acts trivially onMw.
The skeleton Σ(V ) is simply the extended cone

σV = Hom(SV ,R≥0 t {∞}).

R 6.2.5. – The monodromy group Hw can be detected from a single small
toric chart V around w, as follows. Let V2 = V ×X V . Consider a point y ∈ V2 lying
over x1, x2 ∈ W̃ , mapping to w ∈W . Since M is constant on W̃ , we can identify
Mx1

' H0(W̃V ,M) 'Mx2
. On the other hand, pulling back we get Mx2

'My 'Mx1
.

This determines an automorphism of Mw, and every element of Hw occurs in this way.

We now state and prove the main technical result of this section, which says that the
skeleton of an arbitrary toroidal embedding of Deligne-Mumford stacks decomposes as
a disjoint union of extended open cones, one for each stratum, modulo the action of the
respective monodromy groups.

P 6.2.6. – Let W1, . . . ,Ws be the strata of a toroidal Deligne-Mumford
stack X , and let wi be a point in Wi. Write σi for the dual cone of Swi and Hi for the mono-
dromy group at wi. Let σ◦i be the relative interior of σi. Then we have natural decompositions

Σ(X ) = σ◦1/H1 t · · · t σ◦s/Hs,

and
Σ(X ) = σ◦1/H1 t · · · t σ◦s/Hs.

Furthermore, if Vi → X is a small toric chart around wi, with V ′ = V1 t · · · t Vs and
V ′2 = V ′ ×X V ′, then the natural map

lim−→
(

Σ(V ′2)−→−→Σ(V ′)
)
→ Σ(X )

is an isomorphism of generalized cone complexes, and

lim−→
(

Σ(V ′2)−→−→Σ(V ′)
)
→ Σ(X )

is an isomorphism of generalized extended cone complexes.

Proof. – First, note that it suffices to prove the statements for Σ(X ). The decomposition
statement for Σ(X ) follows from the one for Σ(X ), because σ◦i = σ◦i ∩Σ(X ). Similarly, the
isomorphism statement for Σ(X ) follows from the one for Σ(X ) because Σ(V ′) and Σ(V ′2)

are the preimages of Σ(X ) in Σ(V ′) and Σ(V ′2), respectively.
Since each Vi is a small toric chart, its skeleton is the single extended cone Σ(Vi) = σi,

and hence
Σ(V ′) = σ1 t · · · t σs.

We write Im(σ◦i ) for the image of σ◦i in Σ(X ). First, we show that σ◦1 t · · · t σ◦s surjects
onto Σ(X ). This does not follow from the definition of the skeleton, since V1t· · ·tVs need
not surject onto X . However, suppose V ∗ →X is a small toric chart around a point inWi.
Then V ∗×X Vi contains a small toric chart, whose skeleton maps isomorphically by the two
projections to σV ∗ and σi, see [47, Lemma 3.28 (2)]. Hence the natural map σV ∗ → Σ(X )

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



792 D. ABRAMOVICH, L. CAPORASO AND S. PAYNE

factors through an isomorphism to σi. Therefore, we can extend V1t· · ·tVs to a cover of X

by small toric charts and conclude that σ1 t · · · t σs surjects onto Σ(X ). Finally, each face
of σi corresponds to a stratum of X whose closure containsWi, so the image of each face of
positive codimension in σi is also in the image of a lower dimensional cone, and we conclude
that σ◦1 t · · · t σ◦s surjects onto Σ(X ).

Next, we observe that the images of σ◦1, . . . , σ
◦
s are disjoint, since a point of σ◦i , considered

as a point of Xi, extends to a point over SpecR whose reduction lies in Wi. This shows
Σ(X ) = Im(σ◦1) t · · · t Im(σ◦s).

To prove the decomposition statement, it remains to show Im(σ◦i ) = σ◦i /Hi. Shrinking Vi
if necessary and writing W̃i ⊂ Vi for the closed stratum, we may assume that the étale map
of strata W̃i → Wi is finite onto its image. Say W ′i ⊂ Wi is the image of W̃i. Since each
stratum Wi is smooth, the fundamental group πet1 (W ′i , wi) surjects onto πet1 (Wi, wi). The
sheaves M and S are trivial on W ′i , so every monodromy operator g ∈ Hi is induced by
some geometric point y of Wi ×X Wi over a pair of points w and w′ in W ′i that lie over wi.
Let V ′i be the component of Vi ×X Vi containing y. Then the projections σV ′i

−→−→σi induce

the identification g : σi
∼−→ σi Therefore, two points in σ◦i that differ by an element ofHi have

the same image in Σ(X ). Conversely, if v and v′ are points in σ◦i that have the same image
in Xi, then we can consider each as a point of V i

i , and consider a point y in V i
i ×X V i

i

lying over v and v′. Then the monodromy operator associated to the reduction of y maps v
to v′ in σ◦i . This proves the decomposition statement.

We now turn to the isomorphism statement. As discussed in Section 2, the category of
generalized extended cone complexes is an extension of the category of extended cones in
which any finite diagram of extended cones with face morphisms has a colimit. Furthermore,
the functor taking an extended cone to its underlying topological space extends to a faithful
functor on generalized extended cone complexes that commutes with colimits. We have seen
that the natural map

lim−→
(

Σ(V ′2)−→−→Σ(V ′)
)
→ Σ(X )

is surjective. Let X ′ ⊂X be the image of V ′. Then

lim−→
(

Σ(V ′2)−→−→Σ(V ′)
)
→ Σ(X ′)

is an isomorphism. In particular, it is injective. Composing with the inclusions Σ(X ′) ⊂ X ′i

andX ′i ⊂ Xi shows that the map from the colimit to Σ(X ) is injective, and hence bijective.
Being a continuous bijection between compact Hausdorff spaces, it is a homeomorphism.
Finally, since all of the maps in the diagram are face maps, the natural integral structures
are preserved, and the homeomorphism is an isomorphism of generalized extended cone
complexes.

7. The skeleton of Mg,n

In this section, we interpret the general construction of the retraction of a toroidal
Deligne-Mumford stack onto its canonical skeleton in the special case of Mg,n ⊂ Mg,n and

show that Σ( Mg,n) is naturally identified with the tropical moduli space M
trop

g,n .
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7.1. Versal deformation spaces

We begin by recalling some facts about deformations of stable curves [4, Chapters XI–
XII]. Fix a point p in Mg,n corresponding to a stable curve C. Then p has an étale neighbor-
hood Vp → Mg,n in which the locus parametrizing deformations of C in which the node qi
persists is a smooth and irreducible principal divisor Di with defining equation fi, and the
collection of divisors corresponding to all nodes of C has simple normal crossings. Shrink-
ing Vp if necessary, we may assume that the locus in Vp parametrizing singular curves is the
union of these divisors and, for each collection of nodes {qi}i∈I , the corresponding intersec-
tion

WI =
⋂
i∈I

Di

is irreducible. The completion of Vp at p is a formal affine scheme and the fi are a subset of a
system of formal local coordinates. Furthermore, the dual graph of any curve in the family
parametrized by Vp is a contraction of the dual graph G of C.

The curves parametrized by Di are exactly those having dual graphs in which the edge ei
corresponding to the node qi is not contracted. More generally, the locally closed stratum

W ◦I ⊂WI ,

consisting of points that are in Di if and only if i ∈ I, parametrizes those curves whose dual
graph is G/E′ , the graph in which the edges in E′ are contracted and only the edges {ei}i∈I
remain, where E′ = {ej}j /∈I .

Since the defining equation fi of Di on Vp measures deformations of the node qi ∈ C, it
has the following interpretation in terms of the local defining equations of the curve at the
node. Consider a valuation ring R and a morphism φ : SpecR → Vp, corresponding to a
curve CR over SpecR. Assume the closed point in SpecR maps into the stratum W ◦I . Then,
for i ∈ I, the node qi in the special fiber ofCR has an étale neighborhood inCR with defining
equation xy = fi, where we identify fi with its image in R.

7.2. Monodromy on Σ( Mg,n)

Let V → Mg,n be a small toric chart around a point p in the stratum MG, such as the
versal deformation spaces discussed above. Then the skeleton Σ(V ) is a single copy of the
extended cone σG. By Proposition 6.2.6, the image of σ◦G in Σ( Mg,n) is the quotient of σ◦G
by the monodromy group HG. Recall that, by definition, HG is the image of πet1 ( MG, p)

in Aut(σG).

P 7.2.1. – The monodromy group HG is the image of Aut(G) in the set of
permutations of E(G).

Proof. – To compute the monodromy group HG, we consider the Galois cover
M̃G → MG, with Galois group Aut(G), from Section 3.4. The pullbacks of the sheaves M
and S are trivial on M̃G because, by construction, the cover M̃G → MG trivializes the
locally constant sheaves of sets on MG whose stalk at a point x is the set of nodes of the
corresponding curve Cx. By the discussion of versal deformations above, these sets form a
group basis for M and a monoid basis for S. The action of πet1 ( MG, p) therefore factors
through its quotient Aut(G), acting in the natural way on σG.
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C 7.2.2. – The skeleton Σ( Mg,n) decomposes as a disjoint union

Σ( Mg,n) =
⊔
G

σ◦G/Aut(G).

7.3. Proof of Theorem 1.2.1

We have seen that both the skeleton Σ( Mg,n) and the tropical moduli space M
trop

g,n

decompose naturally as disjoint unions over isomorphism classes of stable graphs of genus g
with n legs

Σ( Mg,n) =
⊔
G

σ◦G/Aut(G) = M
trop

g,n .

We now show that these bijections induce an isomorphism of generalized extended cone
complexes and are compatible with the naive set theoretic tropicalization map from Defini-
tion 1.1.1.

Choose a small toric chart VG → Mg,n around a point in each stratum MG. Let

V =
⊔
G

VG,

with its étale map V → Mg,n. Then Σ(V ) =
⊔

G σG and, by Proposition 6.2.6, the skele-
ton Σ( Mg,n) is naturally identified with the colimit of the diagram Σ(V2)−→−→Σ(V ), where
V2 = V ×Mg,n V . By Proposition 2.6.2, we can replace this diagram with one in which each
cone σG appears exactly once. By Proposition 7.2.1, the self-maps σG → σG in this dia-
gram are exactly those induced by an automorphism of G. Furthermore, by the discussion
of versal deformations in Section 7.1, the closure in Mg,n of any stratum corresponding to
a contraction of G contains MG, so the proper inclusions of faces  : σG′ → σG in this dia-
gram are exactly those corresponding to graph contractions $ : G→ G′.

The same diagram of extended cones is considered in Section 4.3, where its colimit is
identified with M

trop

g,n , giving an isomorphism Φg,n of generalized extended cone complexes,
which restricts to an isomorphism of generalized cone complexes Φg,n : Σ( Mg,n)→M trop

g,n ,
as required.

It remains to check that this identification agrees with the naive set theoretic tropical-
ization map. Suppose C = Cp is a curve over a valued field K that extends to a curve CR
over SpecR, and let G be the dual graph of the special fiber. Then the point p has an étale
neighborhood in Mg,n in which each node qi of the reduction of C is defined by an equa-
tion xy = fi, with fi in R. The naive set theoretic tropicalization map takes p to the metric
graph with underlying weighted graph G in which the length of the edge ei corresponding
to qi is valC(fi); see Definition 1.1.1. By the discussion of versal deformations in Section 7.1,
the divisors Di = (fi) also give a basis for the monoid Sp. The explicit description of the
retraction to the skeleton, from Section 5.2, then shows that this retraction takes p to the
same metric graph, and the theorem follows.

R 7.3.1. – We note that our proof of Part (1) of Theorem 1.2.1 is based on
the observation that Σ( Mg,n) and M

trop

g,n are put together in the same way from the same
extended cones, and does not require the analytic interpretation of Σ( Mg,n) as a skeleton.
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8. Tropical tautological maps

8.1. Curves and tropical curves: the analogy of strata

As discussed in Section 3.3, the strata in Mg,n correspond to stable graphs G, and the
codimension of the stratum MG is the number of edges in G. Furthermore, MG is contained
in MG′ if and only if there is a graph contraction G→ G′.

The natural stratification of the tropical moduli space M trop
g,n is similar, but the inclu-

sions are reversed, as seen in Section 4.3. The stratum M trop
G parametrizing stable tropical

curves with underlying graph G is contained inM trop
G′ if and only if there is a graph contrac-

tion G′ → G. As the orders are reversed, dimension and codimension are also interchanged;
the dimension of M trop

G is equal to the number of edges in G; see [12, Theorem 4.7].

This order reversing correspondence between stratifications may be seen as a consequence
of Theorem 1.2.1. The tropical moduli space is the finite part of the skeleton of the moduli
space of curves, and there is a natural order reversing correspondence between strata in a
toroidal space and cones in the associated complex. See Remark 5.1.5.

8.2. Tropical forgetful maps and their sections

Assume as usual 2g − 2 + n > 0. In the algebraic situation there is a natural forgetful
morphism

π = πg,n : Mg,n+1 −→ Mg,n

obtained functorially by forgetting the last marked point and replacing the curve by its
stabilization, if necessary. It was shown by Knudsen that this exhibits Mg,n+1 as the
universal curve over Mg,n. On the level of coarse moduli spaces, we have that the fiber
of Mg,n+1 →Mg,n over the point [(C; p1, . . . , pn)] is the quotient C/Aut(C; p1, . . . , pn).

The forgetful map πg,n has n tautological sections, σ1, . . . , σn, corresponding to the
marked points. Knudsen identified the image of σi as the locus in Mg,n+1 where the marked
points pi and pn+1 lie on a smooth rational component meeting the rest of the curve in a
unique point, and containing no other marked point.

Let us construct a natural forgetful map in the tropical setting.

πtrop
g,n = πtrop : M

trop

g,n+1 −→M
trop

g,n .

Given a tropical curve Γ ∈ M
trop

g,n+1, denote by v the vertex where the (n + 1)st leg of Γ is
attached; let us remove this leg and denote by Γ∗ the resulting tropical curve. If Γ∗ is not
stable, then h(v) = 0 and the valence of v in Γ∗ is 2; it is clear that one of the two following
cases occurs. Case (1): adjacent to v there are a leg l and an edge e1, whose second endpoint
we denote by v1. Case (2): adjacent to v there are two edges e1, e2, the second endpoint of
which we denote by v1 and v2 respectively. In these cases we replace Γ∗ by a stable tropical
curve, Γ̂∗, as follows.

In case (1) we remove e1 and v, and reattach a leg l′ at v1, as in the following picture.

Γ∗ = · · · • e1

v1 v
◦ l

∞• Γ̂∗ = · · · • l′

∞•
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In case (2) we define Γ̂∗ to be the graph obtained by removing v, e1, e2 from Γ∗, and adding
an edge e′ with endpoints v1, v2 and length equal to `(e1) + `(e2):

Γ∗ = · · · • e1

v1 v
◦ e2

v2
• · · · Γ̂∗ = · · · •

v1 v2

e′ • · · ·

Notice that in both cases we have a canonical point (not a vertex), pv, on Γ̂∗ corresponding
to v. Indeed, in case (1), if the length of e1 is finite, pv is the point on l′ at distance `(e1)

from v1. If `(e1) is infinite, then pv is the infinity point on the new leg l′.
In case (2), if the edge e1 (say) has finite length, then the point pv is the point of e′ at

distance `(e1) from v1. If `(e1) = `(e2) = ∞, then pv is defined to be the infinity point
on the new edge e′.

We thus obtain a continuous cellular map, πtrop : M
trop

g,n+1 → M
trop

g,n sending Γ to Γ∗ if

stable, and to Γ̂∗ otherwise.
Let us now show that the tropical forgetful map realizes M

trop

g,n+1 as the coarse universal

curve over M
trop

g,n .

P 8.2.1. – Let Γ ∈M trop

g,n and let FΓ be the fiber of πtrop : M
trop

g,n+1 →M
trop

g,n

over Γ. Then FΓ is homeomorphic to Γ/Aut(Γ). Moreover, if Γ ∈M trop
g,n then FΓ is isometric

to Γ/Aut(Γ).

Proof. – We have a map FΓ → Γ/Aut(Γ) by sending a tropical curve with n + 1 legs
(the last of which adjacent to the vertex v) to the point pv corresponding to v. To obtain the
inverse, we identify Γ/Aut(Γ) to the space of points p ∈ Γ up to isometries preserving the
weights on the vertices. Then by attaching a leg at pwe obtain a tropical curve, Γp, with n+1

marked points. More precisely, we have the following possibilities. If p is a vertex of Γ then
we simply add a leg adjacent to p. If p is not a vertex of Γ, then we declare p to be a vertex of
weight zero, and attach a leg at it; the new vertex p has thus valency 3, and hence the tropical
curve Γp is stable.

It is clear that as p varies in its Aut(Γ)-orbit, the isomorphism class of Γp does not change.
So the above construction descends to a map Γ/Aut(Γ) → FΓ, which is the inverse of the
map defined before.

It is clear that this map is a homeomorphism, and an isometry if all edges of Γ have finite
length.

R 8.2.2. – It would be interesting to develop the theory on a stack level in such a
way that the fiber is exactly the curve.

E 8.2.3. – Consider M
trop

1,1 . It has two strata, one of dimension zero and one of
dimension one. The dimension zero stratum corresponds to the (unique) curve Γ0 with one
vertex v of weight 1, no edges, and a leg attached to v. Thus Aut(Γ0) = 0.

Figure 4 represents FΓ0
⊂ M

trop

1,2 and its isometry with Γ0; at the top we have the three
types of curves parametrized by FΓ0

, and, at the bottom, the corresponding point of Γ0.
Notice that the curves on the right and on the left are unique, whereas in the middle they
vary with ` ∈ R>0. The one-dimensional stratum of M

trop

1,1 is a copy of R>0 t {∞}; it
parametrizes curves Γd whose graph has one vertex of weight zero, one loop-edge of length
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FΓ0 : •

l2

v l1
•
v

` ◦

l2

l1
•
v

∞ ◦

l2

l1

_

��

?

��

�

��

Γ0 = •
v p

`
• ∞•

F 4. Fiber of πtrop over the smallest stratum of M
trop
1,1

d ∈ R>0 ∪ {∞}, and one leg. Then Aut(Γd) = Z/2Z where the involution corresponds to
switching the orientation on the loop-edge. The quotient Γd/Aut(Γd) is drawn below

oo d
2

//

Γd =

d

◦
v l1 ∞• Γd/AutΓd = •

p0
◦
v l1 ∞•

The following Figure 5 represents at the top one-dimensional families of curves of FΓd ;
the curves on the left vary with 0 < ` < d

2 , while on the right with `′ ∈ R>0. The middle row
represents the three remaining points of FΓd .

◦l1

`

d−`

◦ l2 ◦d
`′ ◦

l1

l2

]

��

\

��

◦l1
d
2

d
2

◦ l2 ◦d

l1

l2 ◦d
∞ ◦

l1

l2

_

��

_

��

_

��

Γd/AutΓd = •
p0 p

`
• ◦

p′v

`′
• ∞•

oo d
2

//

F 5. Fiber of πtrop over [Γd] ∈M
trop
1.1 with d > 0.

Finally, Figure 6 depicts the forgetful map from M
trop

1,2 to M
trop

1,1 .
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• • •

M
trop

1,2 =

•
Γ0

•

d
2

Γd/AutΓd

•
Γ∞/AutΓ∞

•

πtrop
1,1

�� •

M
trop

1,1 = •
Γ0

•
Γd Γ∞

•

F 6. The forgetful map πtrop
1,1 .

Proof of the commutativity of the first diagram of Theorem 1.2.2. – Having defined the
map πtrop we can consider the diagram

M
an

g,n+1

Trop //

πan

��

M
trop

g,n+1

πtrop

��

M
an

g,n

Trop // M
trop

g,n

where πan is the morphism canonically associated to the algebraic forgetful map
π : Mg,n+1 −→ Mg,n (explicitly described below). Let [C] be a geometric point of M

an

g,n+1,
so that [C] is represented by a pair

(valC : K −→ R t {∞}, µC : SpecR −→Mg,n+1),

whereK ⊃ k is an algebraically closed extension field, valC is a valuation onK that extends
the trivial valuation on k, and R ⊂ K is the valuation ring. The morphism µC corresponds
to a family of stable curves, C → SpecR; we write Cs and CK for its special and generic
fiber. Now set [C ′] := πan([C]) ∈Man

g,n; this point is represented by the pair

(valC : K −→ R t {∞}, π ◦ µC : SpecR −→Mg,n).

It is clear that the special fiber C ′s of C ′ → SpecR is equal to π(Cs).

Denote by G the dual graph of Cs. Recall that we have Trop([C]) = (G, `C) where
the length function `C is determined by the valuation valC , and by the local geometry of
the family C → SpecR at the nodes of its special fiber, Cs; see Definition 1.1.1. Similarly,
writing G′ = GC′s

, we have

Trop(πan([C])) = Trop([C ′]) = (G′, `C′).
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Now, by our description of the map πtrop, it is clear that the graph underlying
πtrop(Trop([C])) = πtrop(G, `C) is equal to the dual graph of the algebraic curve π(Cs);
on the other hand π(Cs) = C ′s. We conclude that the graph underlying Trop(πan([C]))

and πtrop(Trop([C])) is the same. It remains to prove that the length functions of these two
points are the same. Let us write

πtrop(Trop([C])) = πtrop(G, `C) = (G′, ˜̀)

where ˜̀ is determined by πtrop, as explained before the statement of Proposition 8.2.1. To
show that `C′ = ˜̀, notice that they depend on the same valuation, namely valC ; hence we
have to analyze the total spaces of the families locally at the nodes of their special fibers.

If the curve Cs remains stable after removing its (n+1)-st marked point, then the total
space of the family C ′ → SpecR (regardless of its marked points) is exactly the same as that
of C → SpecR, and the dual graph of C ′s is obtained from G by removing one leg; so the
edges are the same and `C′ and ˜̀are both equal to `C .

Now suppose Cs is not stable after the removal of its last marked point. The situation
is identical to the one we had in the tropical setting, when defining the map πtrop; as on
that occasion, we now distinguish two cases. In case (1) the removal of the last marked point
fromCs creates a “one-pointed rational tail,” i.e., a smooth rational component,E, attached
to the rest of Cs at only one node, and having only one marked point on it. In the family
C ′ → SpecR the componentE is contracted to a smooth point ofC ′s, and the local geometry
of C ′ near the rest of C ′s is the same. So, the graph G′ has one fewer edge than G and both
`C′ and ˜̀coincide with the restriction of `C to the edges of G′.

The remaining case (2) is more interesting. Here the removal of the last marked point
creates an “unpointed exceptional component,” i.e., a smooth rational component, E, with
no marked points and such that

E ∩ Cs r E = {q1, q2},

with q1 and q2 nodes of Cs. Let xy = fi be the local equation of C at qi. Then, denoting
by ei ∈ E(G) the edge corresponding to qi, we have

(4) `C(ei) = valC(fi), i = 1, 2.

The curve C ′s is obtained from Cs by collapsing E to a node; its dual graph is obtained from
the dual graph ofCs by removing the last leg (adjacent to the vertex, v, corresponding toE),
removing v, and “merging” e1 and e2 into a unique edge e′. Now, the total space ofC ′, locally
at the node of C ′s corresponding to e′, has equation xy = f1f2 and hence

`C′(e
′) = valC(f1f2) = valC(f1) + valC(f2).

On the other hand, by definition of πtrop, we have˜̀(e′) = `C(e1) + `C(e2) = valC(f1) + valC(f2)

by (4). Hence `C′(e′) = ˜̀(e′). Of course, all the remaining edges of G′ are naturally identified
with edges of G, and the values of `C′ and ˜̀on them is equal to the value of `C . The proof
of the commutativity of the first diagram in Theorem 1.2.2 is complete.
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We now proceed to define the tautological sections of the forgetful maps, in analogy with
the algebraic case. Let Γ = (V,E, L, h, `) be a tropical curve inM

trop

g,n . For i ∈ {1, . . . , n} we
define the tropical curve

Γi = (V i, Ei, Li, hi, `i)

as follows. Let li ∈ L be the i-th leg of Γ and v ∈ V its endpoint. Γi is obtained by
attaching an edge e0 at v whose second endpoint we denote by v0. We set V i = V ∪ {v0}
and Ei = E ∪ {e0}; the weight function hi is the extension of h such that hi(v0) = 0; the
length function `i is the extension of ` such that `i(e0) =∞. Finally we remove the leg li and
attach two legs at v0, denoted by l′i and ln+1; summarizing Li = Lr {li} ∪ {l′i, ln+1}. Here
is a picture with i = n = 1:

Γ = • •
v l1

Γ1 = • • e0

v
◦

l2

v0 l′1

Now we can state

P 8.2.4. – The tropical forgetful map πtrop : M
trop

g,n+1 → M
trop

g,n admits n

continuous sections σtrop
i : M

trop

g,n → M
trop

g,n+1, with σtrop
i (Γ) := Γi for every Γ ∈ M

trop

g,n .
The diagram

M
an

g,n

σan
i

��

Trop // M
trop

g,n

σtrop
i

��

M
an

g,n+1

Trop // M
trop

g,n+1

is commutative.

Proof. – It is clear that Γi ∈ M trop

g,n+1 and that the map σtrop
i is continuous. We need to

prove that πtrop(Γi) = Γ. Indeed removing the last leaf from Γi gives a tropical curve (Γi)∗

which is not stable, as the vertex v0 has valency 2. Hence πtrop(Γi) = (̂Γi)∗; as (̂Γi)∗ = Γ the
first statement is proven. The proof of commutativity is identical to the proof of commuta-
tivity of the clutching diagram below.

8.3. Tropical clutching maps

In the algebro-geometric setting, if g = g1 + g2 and n = n1 + n2, always assuming
2gi − 2 + ni > 0, we have the so-called clutching maps κ = κg1,n1,g2,n2

Mg1,n1+1 × Mg2,n2+1
κ−→ Mg,n

(C1; p1
1, . . . , p

1
n1+1) , (C2; p2

1, . . . , p
2
n2+1) 7→ (C; p1, . . . , pn).

These are obtained by gluing C1 with C2 by identifying p1
n1+1 = p2

n2+1 in such a way that
in C the intersection of C1 with C2 consists of exactly one (separating) node. We also write κ
for the induced clutching map on coarse moduli schemes Mg1,n1+1 ×Mg2,n2+1

κ−→Mg,n.
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We now construct the analogous maps in the tropical setting, always keeping the numer-
ical assumptions of the algebraic case. To define the tropical clutching map,

κtrop : M
trop

g1,n1+1 ×M
trop

g2,n2+1 −→M
trop

g,n

Γ1,Γ2 7→ Γ,

we attach the last leg of Γ1 (adjacent to the vertex v1) to the last leg of Γ2 (adjacent to v2) by
identifying their infinite points

· · · •
v1 ∞1

• ! •∞2
• · · ·
v2

to form an edge e of Γ with endpoints v1 and v2:

· · · •
v1 v2

e • · · ·

The length of e is, quite naturally, set to be equal to∞. Since the new edge e is a bridge (i.e., a
disconnecting edge) of the underlying graph, we have that the genus of Γ is equal to the sum
of the genera of Γ1 and Γ2. Hence we have that the image of κtrop lies inM

trop

g,n . Observe that
this image is entirely contained in the locus of extended tropical curves having at least one
bridge of infinite length.

Proof of the commutativity of the clutching diagram of Theorem 1.2.2
We begin by reviewing the map κan of our diagram, obtained by passing to coarse moduli

spaces and then taking analytifications:

M
an

g1,n1+1 ×M
an

g2,n2+1

Trop×Trop //

κan

��

M
trop

g1,n1+1 ×M
trop

g2,n2+1

κtrop

��

M
an

g,n

Trop // M
trop

g,n .

The map κan is defined by functoriality of analytification, and can be understood as follows.
Fix again an algebraically closed field K with valuation val : K → R t {∞}, valuation
ring R and special point s. Consider a K-point [C1, C2] ∈Man

g1,n1+1×M
an

g2,n2+1. The point
is simply a morphism SpecK → Mg1,n1+1 × Mg2,n2+1; since the coarse moduli space is
proper it extends to a morphism we denote

µ1 × µ2 : SpecR→Mg1,n1+1 ×Mg2,n2+1.

For i = 1, 2 the two projections provide us with K valued points [Ci] ∈ M
an

gi,ni+1

represented by
µi : SpecR→Mgi,ni+1,

giving two stable pointed curves Ci → SpecR.
Write κan([C1, C2]) = [C] ∈Man

g,n; it is represented by the composition

κ ◦ (µ1 × µ2) : SpecR→Mg,n,

gluing the two families of curves Ci → SpecR along the two sections σni+1 : SpecR→ Ci.

Now, Trop × Trop([C1, C2]) =
(
(G1, `1), (G2, `2)

)
with Gi = GCis

and `i defined in
Definition 1.1.1. Next

κtrop(Trop× Trop([C1, C2])) = (G, ˜̀)
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where, according to our description above, G is obtained from G1 and G2 by merging their
respective last legs into one edge, denoted by e (which is thus a bridge of G). The definition
of ˜̀is as follows:

˜̀(ẽ) =

{
`i(ẽ) if ẽ ∈ E(Gi), i = 1, 2.

+∞ otherwise i.e., if ẽ = e.

Consider now [C] and its associated family, C → SpecR. We have a diagram

C1 t C2 η //

%%

C

��
SpecR

where the map η glues together the last marked points of C1 and C2; let us write C∗ = C1 t C2

for simplicity.

The special fiber of C is Cs = κ([C1
s , C

2
s ]) and hence its dual graph is equal to G.

Let us look at the local geometry at a node ofCs. Pick the node corresponding to the new
edge e, then the generic fiber CK has a node specializing to it (the node corresponding to the
gluing of the last marked point of C1

K with the last marked point of C2
K) and hence the local

equation at this node is xy = 0. Therefore `C(e) =∞ = ˜̀(e), as required.

Consider now a node corresponding to an edge ẽ 6= e; without loss of generality this
edge ẽ corresponds to a node of C1

s , at which the local equation of C1 is xy = f with f ∈ R.
This also serves as a local equation of C∗ at the corresponding node, and since it is disjoint
from σn+1, also a local equation of C. Therefore

`C(ẽ) = val(f) = ˜̀(ẽ)
and we are done.

8.4. Tropical gluing maps

In the algebraic setting, for g > 0 there is a map

γ : Mg−1,n1+2 → Mg,n

obtained by gluing the last two marked points. We also write γ for the induced gluing map
on coarse moduli spaces γ : Mg−1,n1+2 →Mg,n. We now define the tropical gluing maps

γtrop : M
trop

g−1,n+2 −→M
trop

g,n

(always assuming g > 0). The procedure is similar to the definition of the tropical clutching
map; γtrop maps a tropical curve Γ with n + 2 legs to the tropical curve Γ′ obtained by
attaching the last two legs of Γ, so as to form an edge e′ of infinite length for Γ′. It is clear
that Γ′ has now only n legs, and its genus is gone up by one, as the new edge e′ is not a bridge
of Γ′.
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Proof of the commutativity of the gluing diagram of Theorem 1.2.2

The diagram whose commutativity we must prove is the following.

M
an

g−1,n+2

Trop //

γan

��

M
trop

g−1,n+2

γtrop

��

M
an

g,n

Trop // M
trop

g,n .

The proof follows the same pattern used to prove the commutativity of the first diagram in
the theorem. Let [C] ∈Man

g−1,n+2 be represented by the pair

(valC : K −→ R t {∞}, µC : SpecR −→Mg−1,n+2).

Denote by G the dual graph ofCs. Now set γan([C]) = [C ′] ∈Man

g,n, represented by the pair

(valC : K −→ R t {∞}, γ ◦ µC : SpecR −→Mg,n).

The special fiber C ′s of C ′ → SpecR is equal to γ(Cs). It is clear that the graph underlying
Trop(γan([C])) and the graph underlying γtrop(Trop([C])) are isomorphic to the dual graph
of γ(Cs), denoted by G′. It remains to show the length functions onE(G′) of Trop(γan([C]))

and γtrop(Trop([C])) coincide.

Recall that G′ is obtained from G by adding a new edge, e′, joining the endpoints
of the last two legs (and removing these two legs). The length of e′ in the tropical curve
γtrop(Trop([C])) is set to be equal to ∞, whereas the length of every other
edge e ∈ E(G′) r {e′} = E(G) is `C(e).

Now consider Trop(γan([C])) = (G′, `C′ ); recall that `C′ depends on the local geometry
of C ′ → SpecR near the nodes of C ′s. Consider the node q′ corresponding to the new
edge e′; the generic fiber of C ′ → SpecR also has a node specializing to q′, therefore the
local equation of C ′ at q′ is xy = 0. Hence

`C′(e
′) = valC(0) =∞

just as in γtrop(Trop([C])). Locally at every other node of C ′s we have that C and C ′ are
isomorphic, hence on the corresponding edges of G′ we have `C′ = `C . The proof is now
complete.

8.5. Functorial interpretation of the maps

We have defined tropical forgetful, clutching and gluing maps, as well as sections, using
the modular meaning of M

trop

g,n . Theorem 1.2.1 allows us to interpret these maps in terms of
the functorial properties of the maps p.

First note that all the algebraic tautological maps are sub-toroidal: the map π is toroidal
since it is a family of nodal curves, see [1, Section 2.6]. The section σi is an isomorphism onto
a toroidal substack, and the clutching and gluing maps factor through an étale covering of
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degree one or two followed by a normalization map, by [4, Proposition XII.10.11], so they
are indeed sub-toroidal. By Proposition 6.1.8 we have a commutative diagram

M
an

g,n+1

p //

πan

��

Σ( Mg,n+1)

Σ(π)

��
M

an

g,n

p // Σ( Mg,n)

and similarly for the maps σi, γ, κ. Theorem 1.2.1 extends this to a commutative diagram

M
an

g,n+1 p
//

πan

��

Trop

**
Σ( Mg,n+1)

Σ(π)

��

Φ

∼ // M
trop

g,n+1

��

M
an

g,n

p //

Trop

44Σ( Mg,n)
Φ

∼
// M

trop

g,n+1.

Since the two arrows designated by Φ are isomorphisms, there is necessarily a unique
arrow Φ ◦ Σ(π) ◦ Φ

−1
making the diagram commutative; it therefore must coincide with the

map πtrop we defined above. The same holds for the maps σi, γ, and κ.

8.6. Variations on the tropical gluing and clutching maps

In the algebro-geometric situation, the clutching and gluing maps together cover the entire
boundary of Mg,n, since the result of desingularizing a node while adding its two branches
as marked points is either the disjoint union of two stable curves with suitable genera g1, g2,
and suitable n1 + 1 and n2 + 1 marked points, or one curve of genus g−1 with n+ 2 marked
points. The situation is quite different in the tropical setting, indeed we have the following
fact.

L 8.6.1. – InM
trop

g,n the union of the image of γtrop
g,n with the images of all the clutching

maps κtrop
g1,n1,g2,n2

is equal to M
trop

g,n rM trop
g,n , i.e., to the locus of tropical curves having at least

one edge of infinite length.

Proof. – We just need to prove that a point of Γ ∈ M trop

g,n rM trop
g,n lies in the image of a

clutching or gluing map. Let e be an edge of Γ having infinite length, write v1 and v2 for its
(possibly equal) endpoints. Let Γ′ be the tropical curve obtained by removing e and attaching
a leg l1 at v1 and a leg l2 at v2. If e is not a bridge, Γ′ is easily seen to be a stable tropical curve
of genus g− 1 with n+ 2 marked points (which we order so that l1 and l2 are the last ones);
it is clear that the image of Γ′ via the gluing map is Γ.

If e is a bridge, then Γ′ = Γ1 t Γ2, with Γi containing the vertex vi; it is clear that
Γi is a stable tropical curve whose last leg we set equal to li, for i = 1, 2. Then Γ is equal
to κtrop(Γ1,Γ2).
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The locus of smooth algebraic curves in Mg,n corresponds in the tropical moduli space to

the smallest stratum, that is the single point •g,n ∈ M
trop

g,n parametrizing the tropical curve
whose graph has a unique vertex of weight g (and no edges). Hence the boundary of Mg,n

corresponds to the open subset M
trop

g,n r {•g,n}.

In this sense, a tropical counterpart of the fact that the clutching and gluing maps cover
the boundary of Mg,n should be that some generalized tropical gluing and clutching maps

cover M
trop

g,n r {•g,n}.

We shall now define a generalization of the previously defined gluing and clutching maps
having that goal in mind.

We denote R+ = R>0 t {∞}. For every pair (x, y) ∈ R+ × R+, we have a new tropical
gluing map γtrop[x, y]

γtrop[x, y] : M
trop

g−1,n+2 →M
trop

g,n

constructed as follows. Denote by ln+1 and ln+2 the last two legs of Γ′ ∈ M
trop

g−1,n+2, and
by vn+1 and vn+2 the vertex they are adjacent to. As in the definition of γ in the previous
section, we send Γ′ to a curve in Γ ∈ M trop

g,n by merging ln+1 and ln+2 into one edge e of Γ.
The difference is that now the new edge will have length equal to `(e) = x+y. This is obtained
by fixing on ln+1 a point pn+1 of distance x from vn+1, and “clipping off” the remaining
infinite line; similarly, we fix a point pn+2 of distance y from vn+2, on ln+2 and disregard
the rest of the leg; then we glue pn+1 to pn+2 obtaining an edge between vn+1 and vn+2 of
length x + y. It is clear that γtrop[x, y] is continuous. Observe that γtrop[x, y] depends only
on x + y (and hence it is symmetric) and that the “more natural” gluing map γtrop defined
before is obtained as

γtrop = γtrop[∞, x] = γtrop[∞,∞].

Summarizing, we have defined a continuous family of maps

γtrop[ , ] : M
trop

g−1,n+2 × R+ × R+ −→M
trop

g,n .

In a completely analogous way we define the following generalized clutching maps
κtrop[ , ] = κtrop

g1,n1,g2,n2
[ , ]:

κtrop[ , ] : M
trop

g1,n1+1 ×M
trop

g2,n2+1 × R+ × R+ −→M
trop

g,n .

As before, κtrop[x, y] = κtrop[x, y] and the original clutching map is recovered as

κtrop = κtrop[x,∞] = κtrop[∞,∞].

R 8.6.2. – It is clear that the union of the image of γtrop
g−1,n+2[ , ] with the images

of the maps κtrop
g1,n1,g2,n2

[ , ] is equal to M
trop

g,n r {•g,n}.

R 8.6.3. – These generalized clutching and gluing maps naturally lift to Berkovich
analytic spaces in the following way, as suggested by a referee. We describe the construction
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for the clutching map; the gluing map may be handled similarly. Factor the algebraic
clutching map κ as

Mg,n+1

π

��
Mg1,n1+1 × Mg2,n2+1

κ′
55

κ // Mg,n

by setting κ′([C1], [C2]) = [C1 ∪ P1 ∪ C2] where P1 is a projective line attached at 0 to the
(n1+1)st point ofC1, attached at∞ to the (n2+1)st point ofC2, and having the new (n+1)st
marked point at 1 ∈ P1.

Let U ⊂Man

g,n+1 be the open subset parametrizing curves whose reduction is in the image
of κ′. Then U is the preimage of an open subset of Σ(Mg,n+1) which is naturally identified

withM
trop

g1,n1+1×M
trop

g2,n2+1×R+×R+. Composing with the forgetful map gives U →M
an

g,n,
and the induced map on skeletons is precisely κtrop[ , ].
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