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HYPERCONTRACTIVITY FOR FREE PRODUCTS

 M JUNGE, C PALAZUELOS, J PARCET,
M PERRIN  É RICARD

A. – In this paper, we obtain optimal time hypercontractivity bounds for the free
product extension of the Ornstein-Uhlenbeck semigroup acting on the Clifford algebra. Our approach
is based on a central limit theorem for free products of spin matrix algebras with mixed commuta-
tion/anticommutation relations. With another use of Speicher’s central limit theorem, we can also
obtain the same bounds for free products of q-deformed von Neumann algebras interpolating between
the fermonic and bosonic frameworks. This generalizes the work of Nelson, Gross, Carlen/Lieb and
Biane. Our main application yields hypercontractivity bounds for the free Poisson semigroup acting
on the group algebra of the free group Fn, uniformly in the number of generators.

R. – Cet article s’intéresse à des estimations hypercontractives pour des semi-groupes
obtenus comme produits libres. Notre approche est basée sur un théorème de la limite centrale
pour des produits libres d’algèbres de spin ou autres. Nous obtenons un temps optimal d’hypercon-
tractivité Lp → Lq pour les produits libres des semi-groupes d’Orstein-Uhlenbeck sur les algèbres
q-déformées (−1 ≤ q ≤ 1) qui interpolent entre les fermions (q = −1) et les bosons (q = 1). Ces
résultats s’inspirent des travaux de Nelson, Gross, Carlen/Lieb et Biane et les généralisent. Comme
application, nous déduisons un temps d’hypercontractivité Lp → Lq pour le semi-groupe de Poisson
libre sur l’algèbre du groupe libre à une infinité de générateurs.

Introduction

Hypercontractivity is a way to quantify the regularizing effect of certain well behaved
semigroups in terms of Lp integrability. More precisely, let (Ω,Σ, µ) be a probability space
and consider a Markov semigroup of operators ( St)t≥0 acting on Σ-measurable functions.
This roughly means that St is self-adjoint on L2(Ω) and preserves constant functions and
positivity. The Ornstein-Uhlenbeck process on Rn equipped with the Gaussian measure is a
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862 M. JUNGE, C. PALAZUELOS, J. PARCET, M. PERRIN AND É. RICARD

model example. The hypercontractivity problem for 1 < p ≤ q <∞ consists in determining
the optimal time tp,q > 0 above which the following inequality holds(∫

Ω

∣∣ Stf(ω)
∣∣q dµ(ω)

) 1
q ≤

(∫
Ω

∣∣f(ω)
∣∣p dµ(ω)

) 1
p

for all t ≥ tp,q.

The existence of such value tp,q is suggested by elementary semigroup theory. Namely, given
a Markov semigroup as above one can find nonnegative numbers (ψ(k))k≥1 and eigenfunc-
tions (fk)k≥1 so that Stfk = e−tψ(k)fk. Given f in the span of the fk’s, this shows why
Stf gains integrability for t large.

The phenomenon of hypercontractivity was discovered independently and almost simul-
taneously in harmonic analysis and quantum field theory. In the context of harmonic
analysis, Bonami [6] introduced hypercontractivity for classical Poisson semigroups moti-
vated by the relation between the integrability of a function and the decay properties of its
Fourier coefficients. On the other hand, Nelson [30] considered hypercontractivity for clas-
sical Ornstein-Uhlenbeck semigroups to bound from below certain Hamiltonians arising
in quantum field theory. In the first case the eigenfunctions are given by the trigonometric
system, and in the second by Gaussian chaos, see below for further details. The work of
Gross [15] establishes an intimate connection between hypercontractivity and the loga-
rithmic Sobolev inequalities, a limiting dimension-free form of Sobolev embedding.

The starting point in this subject is the so-called two-point inequality, which was first
proved by Bonami and rediscovered years later by Gross [6, 15]. This inequality was also
instrumental in Beckner’s theorem on the optimal constants for the Hausdorff-Young
inequality [2] and Gross used it as a key step towards his logarithmic Sobolev inequalities.
More recently, the two-point inequality has also produced very important applications in
computer science and in both classical and quantum information theory [8, 11, 21, 22].
If 1 < p ≤ q <∞ and α, β ∈ C, Bonami-Gross inequality can be written as follows( ∑

ε=±1

∣∣∣ (1 + εe−t)α+ (1− εe−t)β
21+ 1

q

∣∣∣q) 1
q ≤

( |α|p + |β|p

2

) 1
p ⇔ t ≥ 1

2
log

q − 1

p− 1
.

Under Bonami’s viewpoint, this inequality means that the “Poisson semigroup” on the group
Z2 is hypercontractive with optimal constant. Gross understood it as the optimal hypercon-
tractivity bound for the Ornstein-Uhlenbeck semigroup on the Clifford algebra with one gen-
erator C(R). Although the two-point inequality can be generalized in both directions, har-
monic analysis has evolved towards other related norm inequalities in the classical groups—
like Λp sets in Z—instead of analyzing hypercontractivity over the compact dual of other
discrete groups. Namely, to the best of our knowledge only hypercontractivity for the Carte-
sian products of Z2 and Z has been understood so far, see [42]. Motivated by the recent devel-
opment of noncommutative analysis and free probabilities, the first goal of this paper is to
replace Cartesian products by free products, and thereby obtain hypercontractivity inequal-
ities for the free Poisson semigroups acting on the group von Neumann algebras associated
to Fn = Z ∗ Z ∗ · · · ∗ Z and Gn = Z2 ∗ Z2 ∗ · · · ∗ Z2.

Let G denote any of the free products considered above and let λ : G→ B(`2(G))

stand for the corresponding left regular representation. The group von Neumann alge-
bra L(G) is the weak operator closure of the linear span of λ(G). If e denotes the identity
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HYPERCONTRACTIVITY FOR FREE PRODUCTS 863

element of G, the algebra L(G) comes equipped with the standard trace τ(f) = 〈δe, fδe〉.
Let Lp( L(G), τ) be the Lp space over the noncommutative measure space ( L(G), τG)—the
so called noncommutativeLp space—with norm ‖f‖pp = τ |f |p. We invite the reader to check
that Lp( L(G), τ) = Lp(T) for G = Z after identifying λZ(k) with e2πik·. In the general
case, the absolute value and the power p are obtained from functional calculus for this
(unbounded) operator on the Hilbert space `2(G), see [35] for details. If f =

∑
g f̂(g)λ(g),

the free Poisson semigroup on G is given by the family of linear maps

PG,tf =
∑
g∈G

e−t|g|f̂(g)λ(g) with t ∈ R+.

In both cases G ∈ {Fn,Gn}, |g| refers to the Cayley graph length. In other words, |g| is
the number of letters (generators and their inverses) which appear in g when it is written
in reduced form. It is known from [17] that PG = ( PG,t)t≥0 defines a Markov semigroup
on L(G). In particular, PG,t defines a contraction on Lp( L(G)) for every 1 ≤ p ≤ ∞. In
our first result we provide new hypercontractivity bounds for the free Poisson semigroups
on those group von Neumann algebras. If g1, g2, . . . , gn stand for the free generators of Fn,
we will also consider the symmetric subalgebra Ansym of L(Fn) generated by the self-adjoint
operators λ(gj) + λ(gj)

∗. In other words, we set

Ansym =
〈
λ(g1) + λ(g1)∗, . . . , λ(gn) + λ(gn)∗

〉′′
.

T A. – If 1 < p ≤ q <∞, we find :

i) Optimal time hypercontractivity for Gn∥∥PGn,t : Lp( L(Gn))→ Lq( L(Gn))
∥∥ = 1 ⇔ t ≥ 1

2
log

q − 1

p− 1
.

ii) Hypercontractivity for Fn over twice the optimal time∥∥PFn,t : Lp( L(Fn))→ Lq( L(Fn))
∥∥ = 1 if t ≥ log

q − 1

p− 1
.

iii) Optimal time hypercontractivity in the symmetric algebra Ansym∥∥ PFn,t : Lp( Ansym ) → Lq( Ansym )
∥∥ = 1 ⇔ t ≥ 1

2
log

q − 1

p− 1
.

Theorem A i) extends Bonami’s theorem for Zn2 to the free product case with optimal time
estimates. According to the applications in complexity theory and quantum information of
Bonami’s result, it is conceivable that Theorem A could be of independent interest in those
areas. These potential applications will be explored in further research. Theorem A ii) gives
the first hypercontractivity estimate for the free Poisson semigroup on Fn, where a factor 2 is
lost from the expected optimal time. This is related to our probabilistic approach to the
problem and a little distortion must be done to make Fn fit in. Theorem A iii) refines this,
providing optimal time estimates in the symmetric algebra Ansym. We also obtain optimal
time Lp → L2 hypercontractive estimates for linear combinations of words with length less
than or equal to one. Apparently, our probabilistic approach in this paper is limited to go
beyond the constant 2 in the general case. We managed to push it to 1+ 1

4 log 2 ∼ 1.173 in the
last section. Actually, we have recently found in [19] an alternative combinatorial/numerical
method which yields optimal L2 → Lq estimates for q ∈ 2Z for F2 and other groups, and
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also reduces the general constant to log 3 ∼ 1.099 for 1 < p ≤ q < ∞. The drawback of
this method is the numerical part: the larger is the number of generators n, the harder is to
implement and test certain pathological terms in a computer. In this respect, Theorem A ii) is
complementary since—at the price of a worse constant—we obtain uniform estimates in n.
After our results here and in [19], this line of research has been recently streamlined in [36].
Our result for symmetric words above is the key tool there to get optimal estimates in Fn
for q ≥ 4.

As we have already mentioned, it is interesting to understand the two-point inequality
as the convergence between the trigonometric point of view outlined above and the Gaus-
sian point of view, which was developed along the extensive study of hypercontractivity
carried out in the context of quantum mechanics and operator algebras. The study of hyper-
contractivity in quantum mechanics dates back to the work of Nelson [30] who showed
that semiboundedness of certain Hamiltonians H associated to a bosonic system can be
obtained from the (hyper)contractivity of the semigroup e−tAγ : L2(Rd, γ) → L2(Rd, γ),
where Aγ is the Dirichlet form operator for the Gaussian measure γ on Rd. After some
contributions [12, 39, 38] Nelson finally proved in [31] that the previous semigroup is con-
tractive from Lp(Rd, γ) to Lq(Rd, γ) if and only if e−2t ≤ p−1

q−1 ; thus obtaining the same
optimal time as in the two-point inequality. By that time a new deep connection was shown
by Gross in [15], who established the equivalence between the hypercontractivity of the
semigroup e−tAµ , where Aµ is the Dirichlet form operator associated to the measure µ,
and the logarithmic Sobolev inequality verified by µ. During the next 30 years hypercon-
tractivity and its equivalent formulation in terms of logarithmic Sobolev inequalities have
found applications in many different areas of mathematics like probability theory, statistical
mechanics or differential geometry. We refer the survey [16] for an excellent exposition of
the topic.

The extension of Nelson’s theorem to the fermonic case started with Gross’ papers [13, 14].
Namely, he adapted the argument in the bosonic case by considering a suitable Clifford
algebra C(Rd) on the fermion Fock space and noncommutative Lp spaces on this algebra
after Segal [37]. In particular, hypercontractivity makes perfectly sense in this context by
considering the corresponding Ornstein-Uhlenbeck semigroup

Ot := e−tN0 : L2( C(Rd), τ)→ L2( C(Rd), τ).

Here N0 denotes the fermion number operator, see Section 1 for the construction of the
Clifford algebra C(Rd) and a precise definition of the Ornstein-Uhlenbeck semigroup on
fermion algebras. After some partial results [14, 26, 27], the optimal time hypercontractivity
bound in the fermionic case was finally obtained by Carlen and Lieb in [9]∥∥ Ot : Lp( C(Rd))→ Lq( C(Rd))

∥∥ = 1 ⇔ t ≥ 1

2
log

q − 1

p− 1
.

The proof deeply relies on the optimal 2-uniform convexity for matrices from [1], which is a
noncommutative generalization of the two-point inequality.

Beyond its own interest in quantum mechanics, these contributions represent the start-
ing point of hypercontractivity in the noncommutative context. This line was continued by
Biane [4], who extended Carlen and Lieb’s work and obtained optimal time estimates for the
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q-Gaussian von Neumann algebras Γq introduced by Bozejko, Kümmerer and Speicher [7].
These algebras interpolate between the bosonic and fermonic frameworks, corresponding
to q = ±1. The semigroup for q = 0 acts diagonally on free semi-circular variables—instead
of free generators as in the case of the free Poisson semigroup—in the context of Voiculescu’s
free probability theory [41]. We also refer to [18, 20, 23, 24, 25] for related results in this line.
On the other hand, the usefulness of the two-point inequality in the context of computer
science has motivated some other extensions to the noncommutative setting more focused
on its applications to quantum computation and quantum information theory. In [3], the
authors studied extensions of Bonami’s result to matrix-valued functions f : Zn2 →Mn(C),
finding optimal estimates for q = 2 and showing some applications to coding theory. In [29],
the authors introduced quantum boolean functions and obtained hypercontractivity esti-
mates in this context with some consequences in quantum information theory, see also the
recent work [28].

The very nice point here is that, although our main motivation to study the Poisson semi-
group comes from harmonic analysis, we realized that a natural way to tackle this problem
is by means of studying the Ornstein-Uhlenbeck semigroup on certain von Neumann alge-
bras. In particular, a significant portion of Theorem A follows from our main result, which
extends Carlen and Lieb’s theorem to the case of free product of Clifford algebras. The pre-
cise definitions of reduced free products which appear in the statement will be recalled for
the non-expert reader in the body of the paper.

T B. – Let Mα = C(Rdα) be the Clifford algebra with dα generators for
any 1 ≤ α ≤ n and construct the corresponding reduced free product von Neumann
algebra M = M1 ∗ M2 ∗ · · · ∗ Mn. If Oα = ( Oα,t)t≥0 denotes the Ornstein-Uhlenbeck
semigroup acting on Mα, consider the free product semigroup OM = ( OM,t)t≥0 given
by OM,t = O1,t ∗ O2,t ∗ · · · ∗ On,t. Then, we find for 1 < p ≤ q <∞∥∥ OM,t : Lp( M)→ Lq( M)

∥∥ = 1 ⇔ t ≥ 1

2
log

q − 1

p− 1
.

It is relevant to point out a crucial difference between our approach and the one fol-
lowed in [6, 9, 31]. Indeed, in all those cases the key point in the argument is certain basic
inequality—like Bonami’s two-point inequality or Ball/Carlen/Lieb’s convexity inequality
for matrices—and the general result follows from an inductive argument due to the tensor
product structure of the problem. However, no tensor product structure can be found in
our setting (Theorems A and B). In order to face this problem, Biane showed in [4] that
certain optimal hypercontractive estimates hold in the case of spin matrix algebras with
mixed commutation/anticommutation relations, and then applied Speicher’s central limit
theorem [40]. In this paper we will extend Biane’s and Speicher’s results by showing that
a wide range of von Neumann algebras can also be approximated by these spin systems.
Namely, the proof of Theorem B will show that the same result can be stated in a much more
general context. As we shall explain, we may consider the free product of Biane’s mixed
spins algebras which in turn gives optimal hypercontractivity estimates for the free products
of q-deformed algebras with q1, q2, . . . , qn ∈ [−1, 1].
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1. Preliminaries

In this section we briefly review the definition of the CAR algebra and the Ornstein-
Uhlenbeck semigroup acting on it. We also recall the construction of the reduced free product
of a family of von Neumann algebras and introduce the free Ornstein-Uhlenbeck semigroup
on a reduced free product of Clifford algebras.

1.1. The Ornstein-Uhlenbeck semigroup

The standard way to construct a system of d fermion degrees of freedom is by means of the
antisymmetric Fock space. Let us consider the d-dimensional real Hilbert space H R = Rd

and its complexification H C = Cd. Define the Fock space

F ( H R) = CΩ⊕
∞⊕
m=1

H ⊗mC

for some fixed unit vector Ω ∈ H C called the vacuum. If Sm denotes the symmetric group
of permutations over {1, 2, . . . ,m} and i(β) the number of inversions of the permutation β,
we define the Hermitian form 〈·, ·〉 on F ( H R) by 〈Ω,Ω〉 = 1 and the following identity〈

f1 ⊗ · · · ⊗ fm, g1 ⊗ · · · ⊗ gn
〉

= δmn
∑
β∈Sm

(−1)i(β)〈f1, gβ(1)〉 · · · 〈fm, gβ(m)〉.

It is not difficult to see that the Hermitian form 〈·, ·〉 is non-negative. Therefore, if we consider
the completion of the quotient by the corresponding kernel, we obtain a Hilbert space that
we will call again F ( H R). Let us denote by (ej)

d
j=1 the canonical basis of H R = Rd. Then,

we define the j-th fermion annihilation operator acting on F ( H R) by linearity as cj(Ω) = 0

and

cj(f1 ⊗ · · · ⊗ fm) =

m∑
i=1

(−1)i−1〈fi, ej〉 f1 ⊗ · · · ⊗ fi−1 ⊗ fi+1 ⊗ · · · ⊗ fm.

Its adjoint c∗j is called the j-th fermion creation operator on F ( H R). It is determined
by c∗j (Ω) = ej and c∗j (f1⊗· · ·⊗fm) = ej⊗f1⊗· · ·⊗fm. It is quite instrumental to observe
that cicj + cjci = 0 and cic∗j + c∗jci = δij1. The basic free Hamiltonian on F ( H R) is the
fermion number operator

N0 =

d∑
j=1

c∗jcj .

It generates the fermion oscillator semigroup (exp(−tN0))t≥0. Then, one defines the config-
uration operators xj = cj + c∗j for 1 ≤ j ≤ d. Denote by C(Rd) the unit algebra generated
by them. Note that these operators verify the canonical anti-commutation relations (CAR)

xixj + xjxi = 2δij and x∗j = xj .
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It is well-known that C(Rd) can be concretely represented as a subalgebra of the matrix
algebra M2d by considering d-chains formed by tensor products of Pauli matrices. The key
point for us is that the 2d distinct monomials in the xj ’s define a basis of C(Rd) as a vector
space. Indeed, given any subset A of [d] := {1, 2, . . . , d} we shall write xA = xj1xj2 · · ·xjs
where (j1, j2, . . . , js) is an enumeration of A in increasing order. If we also set x∅ = 1, it
turns out that {xA | A ⊂ [d]} is a linear basis of C(Rd). In particular, any X ∈ C(Rd) has
the form

X = α∅1 +

d∑
s=1

∑
1≤j1<···<js≤d

αj1,...,jsxj1 · · ·xjs .

The vacuum Ω defines a tracial state τ on C(Rd) by τ(X) = 〈XΩ,Ω〉. We denote by
Lp( C(Rd), τ) or just Lp( C(Rd)) the associated non-commutative Lp-space. The map
X 7→ XΩ defines a continuous embedding of C(Rd) into F (Rd) which extends to a unitary
isomorphism L2( C(Rd)) ' F (Rd). Then, instead of working on the Fock space F (Rd)
and with the semigroup exp(−tN0), we can equivalently consider C(Rd) and the Ornstein-
Uhlenbeck semigroup on C(Rd) defined by

Ot(X) = α∅1 +

d∑
s=1

e−ts
∑

1≤j1<···<js≤d

αj1,...,jsxj1 · · ·xjs .

If 1 < p ≤ q <∞, the main result in [9] yields∥∥ Ot : Lp(C(Rd))→ Lq(C(Rd))
∥∥ = 1 ⇔ t ≥ 1

2
log

q − 1

p− 1
.

1.2. Free product of von Neumann algebras

Let (Aj , φj)j∈J be a family of unital C∗-algebras with distinguished states φj whose GNS
constructions (πj , H j , ξj) with H j = L2(Aj , φj) are faithful. Let us define

◦
Aj =

{
a ∈ Aj

∣∣ φj(a) = 0
}

and
◦
H j= ξ⊥j

so that Aj = C1⊕
◦
Aj and H j = Cξj⊕

◦
H j . Note that we have natural maps ij = Aj → H j

such that φj(a∗b) = 〈ij(a), ij(b)〉 H j for every j ∈ J . Let us consider the full Fock space
associated to the free product

F = CΩ ⊕
⊕
m≥1

j1 6=j2 6=···6=jm

◦
H j1 ⊗ · · ·⊗

◦
H jm

with inner product 〈
h1 ⊗ · · · ⊗ hm, h′1 ⊗ · · · ⊗ h′n

〉
= δmn

m∏
j=1

〈hj , h′j〉.

Each algebra Aj acts non-degenerately on F via the map ωj : Aj → B( F ) in the following
manner. Since we can decompose every z ∈ Aj as z = φj(z)1 + a with φj(a) = 0, it suffices
to define ωj(a). Let h1⊗· · ·⊗hm be a generic element in F with hi ∈ H ji 	Cξji . If j 6= j1,
we set

ωj(a)
(
h1 ⊗ · · · ⊗ hm

)
= ij(a)⊗ h1 ⊗ · · · ⊗ hm.
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When j = j1 we add and subtract the mean to obtain

ωj(a)
(
h1 ⊗ · · · ⊗ hm

)
=
〈
ξj , πj(a)(h1)

〉
H j
h2 ⊗ · · · ⊗ hm

+
(
πj(a)(h1)−

〈
ξj , πj(a)(h1)

〉
H j
ξj

)
⊗ h2 ⊗ · · · ⊗ hm.

The faithfulness of the GNS construction of (Aj , φj) implies that the representation ωj is
faithful for every j ∈ J . Thus, we may find a copy of the algebraic free product

A = CΩ ⊕
⊕
m≥1

j1 6=j2 6=···6=jm

◦
Aj1 ⊗ · · ·⊗

◦
Ajm

in B( F ). The reduced free product of the family (Aj , φj)j∈J is the C∗-algebra generated by
these actions. In other words, the norm closure of A in B( F ). It is denoted by

(A, φ) = ∗j∈J(Aj , φj),

where the state φ on A is given by

φ(1) = 1 and φ(a1 ⊗ · · · ⊗ am) = 0

for m ≥ 1 and ai ∈
◦
Aji with j1 6= j2 6= · · · 6= jm. Each Aj is naturally considered as a

subalgebra of A and the restriction of φ to Aj coincides with φj . It is helpful to think of the
elementary tensors above a1 ⊗ · · · ⊗ am as words of length m, where the empty word Ω has
length 0. In this sense, a word a1 ⊗ · · · ⊗ am can be identified with the product a1a2 · · · am
via the formula a1 · · · amΩ = a1 ⊗ · · · ⊗ am.

This construction also holds in the category of von Neumann algebras. Let ( Mj , φj)j∈J
be a family of von Neumann algebras with distinguished states φj whose GNS con-
structions (πj , H j , ξj) are faithful. Then, the corresponding reduced free product von
Neumann algebra is the weak-∗ closure of ∗j∈J( Mj , φj) in B( F ) which will be denoted
by ( M, φ) = ∗j∈J( Mj , φj). As before, the Mj ’s are regarded as von Neumann subalgebras
of M and the restriction of φ to Mj coincides with φj . A more complete explanation of the
reduced free product of von Neumann algebras can be found in [41]. Let us now consider a
family (Λj : Mj → Mj)j∈J of normal, completely positive, unital and trace preserving maps.
Then, it is known from [5, Theorem 3.8] that there exists a map Λ = ∗j∈JΛj : M → M such
that Λ(x1x2 · · ·xm) = Λj1(x1) · · ·Λjm(xm), whenever xi ∈ Mji is trace 0 and ji 6= ji+1

for 1 ≤ i ≤ m− 1. This map is called the free product map of the Λj ’s. In particular we may
take Mj = C(Rd) for 1 ≤ j ≤ n and Λj = Oj,t, the Ornstein-Uhlenbeck semigroup on Mj

at time t. The resulting free product maps OM = ( OM,t)t≥0 with OM,t = O1,t∗ O2,t∗· · ·∗ On,t
will be referred to as the free Ornstein-Uhlenbeck semigroup on the reduced free product von
Neumann algebra M.

2. The free Ornstein-Uhlenbeck semigroup

This section is devoted to the proof of Theorem B. Of course, we may and will assume for
simplicity that dα = d for all 1 ≤ α ≤ n. The key idea is to describe the free product of
fermion algebras and the corresponding Ornstein-Uhlenbeck semigroup as the limit objects
of certain spin matrix models and certain semigroups defined on them. In this sense, we will
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extend Biane’s results [4] by showing that these matrix models can be used to describe a wide
range of operator algebra frameworks.

Note that the free Ornstein-Uhlenbeck semigroup restricted to a single free copy Mα

coincides with the fermion oscillator semigroup on Mα. In particular, we know from Carlen
and Lieb’s theorem [9] that the optimal time in Theorem B must be greater than or equal
to 1

2 log q−1
p−1 . This proves the necessity, it remains to prove the sufficiency. Given 1 ≤ α ≤ n

and recalling that [d] stands for {1, 2, . . . , d}, we denote by (xαi )i∈[d] the generators
of Mα = C(Rd). A reduced word in the free product M = M1 ∗ M2 ∗ · · · ∗ Mn is then
of the form

(2.1) x = xα1

A1
· · ·xα`A`

with Aj ⊂ [d] and αj 6= αj+1. The case ` = 0 refers to the empty word 1. If we set
sj = |Aj | and write Aj = {is1+···+sj−1+1, . . . , is1+···+sj−1+sj}—labeling the indices in a
strictly increasing order—x can be written as follows

x =

x
α1
A1︷ ︸︸ ︷

xα1
i1
· · ·xα1

is1

x
α2
A2︷ ︸︸ ︷

xα2
is1+1

· · ·xα2
is1+s2

· · ·

x
α`
A`︷ ︸︸ ︷

xα`is1+···+s`−1+1
· · ·xα`is1+···+s`

.(2.2)

In what follows, we will use the notation |x| = |A1|+ · · ·+ |A`| = s1 + · · ·+ s`.

2.1. Spin matrix model

Given m ≥ 1, we will describe a spin system with mixed commutation and anticommu-
tation relations which approximates the free product of fermions M as m→∞. Let us first
recall the construction of a spin algebra in general. In our setting, we will need to consider
three indices. This is why we introduce the sets Υ = [n]× [d]×Z+ and Υm = [n]× [d]× [m]

for m ≥ 1. Let ε : Υ×Υ→ {−1, 1} be any map satisfying

• ε is symmetric: ε(x, y) = ε(y, x),
• ε ≡ −1 on the diagonal: ε(x, x) = −1.

Given m ≥ 1, we will write εm to denote the truncation of ε to Υm × Υm. Consider the
complex unital algebra Aεm generated by the elements (xαi (k))(α,i,k)∈Υm which satisfy the
commutation/anticommutation relations

xαi (k)xβj (`)− ε
(
(α, i, k), (β, j, `)

)
xβj (`)xαi (k) = 2δ(α,i,k),(β,j,`)(2.3)

for (α, i, k), (β, j, `) ∈ Υm. We endow Aεn with the antilinear involution such that
xαi (k)∗ = xαi (k) for every (α, i, k) ∈ Υm. If we equip Υm with the lexicographical order, a
basis of the linear space Aεm is given by xεm∅ = 1 Aεm and the set of reduced words written
in increasing order. Namely, elements of the form

xεmA = xα1
i1

(k1) · · ·xαsis (ks),

where A = {(α1, i1, k1), . . . , (αs, is, ks)} ⊂ Υm with (αj , ij , kj) < (αj+1, ij+1, kj+1)

for 1 ≤ j ≤ s − 1. For any such element we set |xεmA | = |A| = s. Define the tracial state
on Aεm given by τεm(xεmA ) = δ∅,A forA ⊂ Υm. The given basis turns out to be orthonormal
with respect to the inner product 〈x, y〉 = τεm(x∗y). Let Aεm act by left multiplication on
the Hilbert space H Aεm = ( Aεm , 〈·, ·〉) to get a faithful ∗-representation of Aεm on H Aεm .
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We may endow Aεm with the von Neumann algebra structure induced by this representation
and denote by Lp( Aεm , τεm) the associated non-commutative Lp-space. At this point, it is
natural to define the εm-Ornstein-Uhlenbeck semigroup on Aεm by

(2.4) Sεm,t(x
εm
A ) = e−t|x

εm
A |xεmA .

Biane extended hypercontractivity for fermions to these spin algebras in [4]

(2.5)
∥∥ Sεm,t : Lp( Aεm)→ Lq( Aεm)

∥∥ = 1 ⇔ t ≥ 1

2
log

q − 1

p− 1
,

whenever 1 < p ≤ q < ∞. We will also use the following direct consequence of Biane’s
result. Namely, given 1 ≤ p < ∞ and r ∈ Z+ we may find constants Cp,r > 0 such that
the following inequality holds uniformly for all m ≥ 1 and all homogeneous polynomials P
of degree r in |Υm| noncommutative indeterminates satisfying (2.3) and written in reduced
form

(2.6)
∥∥∥P ((xαi (k))(α,i,k)∈Υm

)∥∥∥
Lp( Aεm )

≤ Cp,r

∥∥∥P ((xαi (k))(α,i,k)∈Υm

)∥∥∥
L2( Aεm )

.

According to (2.5), it is straightforward to show that we can take Cp,r = (p− 1)r/2.

2.2. A central limit theorem

In order to approximate the free product M of Clifford algebras, we need to choose the
commutation/anticommutation relations randomly. More precisely, we consider a probabil-
ity space (Ω, µ) and a family of independent random variables

ε
(
(α, i, k), (β, j, `)

)
: Ω→ {−1, 1} for (α, i, k) < (β, j, `)

which are distributed as follows

µ
(
ε
(
(α, i, k), (β, j, `)

)
= −1

)
=

{
1 if α = β,

1/2 if α 6= β.
(2.7)

In particular, this means that all the generators (xαi (k))i∈[d],k∈[m] anticommute for α ∈ [n]

fixed and allm ≥ 1. Therefore, the algebra Aαεm generated by them is isomorphic to C(Rdm).
Formally, we have a matrix model for each ω ∈ Ω. In this sense, the generators xαi (k) and the
algebras Aαεm are also functions of ω. In order to simplify the notation, we will not specify
this dependence unless it is necessary for clarity in the exposition. Define also the algebra

Ã
α

εm =
〈
x̃αi (m)

∣∣ i ∈ [d]
〉

with generators given by

x̃αi (m) =
1√
m

m∑
k=1

xαi (k).

L 2.1. – The von Neumann algebra Ã
α

εm is canonically isomorphic to C(Rd).

Proof. – It suffices to prove that the generators verify the CAR relations. All of them are
self-adjoint since the same holds for the xαi ’s. Since α is fixed, our choice (2.7) of the sign
function ε and (2.3) give
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x̃αi (m)x̃αj (m) + x̃αj (m)x̃αi (m) =
1

m

m∑
k=1

m∑
`=1

xαi (k)xαj (`) + xαj (`)xαi (k) = 2δij .

We will denote by Π(s) the set of all partitions of [s] = {1, 2, . . . , s}. Given σ, π ∈ Π(s),
we will write σ ≤ π if every block of the partition σ is contained in some block of π. We
denote by σ0 the smallest partition, in which every block is a singleton. Given an s-tuple
i = (i1, . . . , is) ∈ [N ]s for some N , we can define the partition σ(i) associated to i by
imposing that two elements j, k ∈ [s] belong to the same block of σ(i) if and only if ij = ik.
We will denote by Π2(s) the set of all pair partitions. That is, partitions σ = {V1, . . . , Vs/2}
such that |Vj | = 2 for every block Vj . In this case, we will write Vj = {ej , zj} with ej < zj
so that e1 < e2 < · · · < es/2. For a pair partition σ ∈ Π2(s) we define the set of crossings
of σ by

I(σ) =
{

(k, `)
∣∣ 1 ≤ k, ` ≤ s

2 , ek < e` < zk < z`

}
.

Moreover, given an s-tuple α = (α1, . . . , αs) such that σ ≤ σ(α), we can define the set of
crossings of σ with respect to α by Iα(σ) = {(k, `) ∈ I(σ) : αek 6= αe`}. This notation
allows us to describe the moments of reduced words in M with a simple formula. Indeed, the
following lemma arises from [40, Lemma 2] and a simple induction argument like the one
used below to prove identity (2.9).

L 2.2. – If i ∈ [d]s and α ∈ [n]s we have

τ
(
xα1
i1
· · ·xαsis

)
= δs∈2Z

∑
σ∈Π2(s)

σ≤σ(i),σ(α)
Iα(σ)=∅

(−1)#I(σ).

We can now prove that the moments of the free product von Neumann algebra M are the
almost everywhere limit of the moments of our matrix model. More explicitly, we find the
following central limit type theorem.

T 2.3. – If i ∈ [d]s and α ∈ [n]s we have

lim
m→∞

τεm

(
x̃α1
i1

(m)(ω) · · · x̃αsis (m)(ω)
)

= τ
(
xα1
i1
· · ·xαsis

)
a.e.

Proof. – We will first prove that the convergence holds in expectation. For ω ∈ Ω fixed,
by developing and splitting the sum according to the distribution we obtain

τεm

(
x̃α1
i1

(m)(ω) · · · x̃αsis (m)(ω)
)

(2.8)

=
1

ms/2

∑
k∈[m]s

τεm
(
xα1
i1

(k1)(ω) · · ·xαmis (ks)(ω)
)

=
1

ms/2

∑
σ∈Π(s)

∑
k∈[m]s

σ(k)=σ

τεm
(
xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω)
)

︸ ︷︷ ︸
µσ(ω)

.
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We claim that

lim
m→∞

1

ms/2
µσ(ω) = 0

for every σ ∈ Π(s)\Π2(s) and all ω ∈ Ω. Indeed, the upper bound µσ(ω) ≤ mr holds
when σ has r blocks since |τεm(xα1

i1
(k1)(ω) · · ·xαsis (ks)(ω))| ≤ 1. Hence, the limit above

vanishes for r < s/2. It then suffices to show that the same limit vanishes when σ contains a
singleton {j0}. However, in this case we have

τεm
(
xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω)
)

= 0

whenever σ(k) = σ since the j0th term cannot be cancelled. This proves our claim.
Hence, the only partitions which may contribute in the sum (2.8) are pair partitions
σ = {{e1, z1}, . . . , {e s2 , z s2 }}. In particular, if s is odd we immediately obtain that the
trace converges to zero in (2.8). Note that given such a pair partition σ, we must have that
σ ≤ σ(α) and σ ≤ σ(i). Indeed, if this is not the case we will have iej 6= izj or αej 6= αzj for
some j = 1, 2, . . . , s/2. Now, for every k ∈ [m]s such that σ(k) = σ we have kej = kzj 6= k`
for every ` 6= ej , zj . Thus, the only way for the elements

x
αej
iej

(kej )(ω) and x
αzj
izj

(kzj )(ω)

to cancel is to match each other. Thus, we can assume that (αej , iej ) = (αzj , izj ).

We have seen that the letters of our word should match in pairs. We are now reduced to
study the sign which arises from the commutation/anticommutation relations to cancel all
elements. Assume that σ has a crossing with respect to α = (α1, . . . , αs). That is, there exists
(k, `) ∈ I(σ) such that αek 6= αe` . Then we find that

Eωτεm
(
xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω)
)

= 0

for every (k1, . . . , ks) such that σ(k1, . . . , ks) = σ. Indeed, define the sign function

ε
α
(k,`) := ε

(
(αe` , ie` , ke`), (αzk , izk , kzk)

)
.

If σ has such a crossing, we obtain (among others) this sign only once when canceling the let-
ters associated to (αek , iek , kek) and (αzk , izk , kzk) as well as (αe` , ie` , ke`) and (αz` , iz` , kz`).
Furthermore, by independence and since Eωεα(k,`) = 0 we get

Eωτεm
(
xα1
i1

(k1)(ω) · · ·xαsis (k1)(ω)
)

= ±Eω
( ∏

(k,`)∈Iα(σ)

ε
α
(k,`)

)
= ±

∏
(k,`)∈Iα(σ)

Eωεα(k,`) = 0,

where ± denotes a possible change of signs depending on the crossings of σ. Then, we
can also rule out these kind of partitions and we can assume that σ ∈ Π2(s) is such
that σ ≤ σ(i), σ(α) and Iα(σ) = ∅. In this case, we do not need to commute two letters
(α, i, k) and (β, j, `) with α 6= β. Hence we will obtain deterministic signs coming from
the commutations, which only depend on the number of crossings of σ. More precisely,
given σ ∈ Π2(s) satisfying the properties above and k ∈ [m]s such that σ(k) = σ we have

(2.9) τεm

(
xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω)
)

= (−1)#I(σ) for every ω.

Indeed, this can be proved inductively as follows. Using that Iα(σ) = ∅, there must exist a
connected block of consecutive numbers in [s] so that the following properties hold
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– The letters in that block are related to a fixed α.
– The product of the letters in that block equals ±1.
– The block itself is a union of pairs of the partition σ ∈ Π2(s).

If π denotes the restriction of σ to our distinguished block—well defined by the third
property—the sign given by the second property equals (−1)#I(π). After canceling this
block of letters, we may start again by noticing that Iβ(σ \ π) = ∅ where β is the restriction
of α to the complement of our distinguished block. This allows to restart the process. In the
end we obtain (−1)#I(σ) as desired. We deduce that

lim
m→∞

Eωτεm
(
x̃α1
i1

(m)(ω) · · · x̃αsis (m)(ω)
)

= lim
m→∞

1

ms/2
Eω

∑
σ∈Π2(s)

σ≤σ(i),σ(α)
Iα(σ)=∅

∑
k∈[m]s

σ(k)=σ

(−1)#I(σ) =
∑

σ∈Π2(s)
σ≤σ(i),σ≤σ(α)

Iα(σ)=∅

(−1)#I(σ).

Here we have used that

lim
m→∞

|{k ∈ [m]s : σ(k) = σ}|
ms/2

= lim
m→∞

m(m− 1) · · · (m− s
2 + 1)

ms/2
= 1.

By Lemma 2.2, this proves convergence in expectation and completes the first part of the
proof. It remains to prove almost everywhere convergence in ω. Let us define the random
variables

Xm(ω) = τεm

(
x̃α1
i1

(m) · · · x̃αsis (m)
)
.

By the dominated convergence theorem, it suffices to show

lim
m→∞

µ
({

sup
M≥m

∣∣XM − Eω[XM ]
∣∣ ≥ α}) = 0

for every α > 0. According to Tchebychev’s inequality, we find

µ
({

sup
M≥m

∣∣XM − Eω[XM ]
∣∣ ≥ α}) ≤ 1

α2

∞∑
M=m

V [XM ],

where V [XM ] = Eω[X2
M ] − (Eω[XM ])2 denotes the variance of XM . We will prove the

upper bound V [XM ] ≤ C(s)/M2 for every M , for some contant C(s) depending only on
the length s. This will suffice to conclude the argument. To this end we write

(2.10) V [XM ] =
1

Ms

∑
σ,π∈Π(s)

∑
k :σ(k)=σ
` :σ (`)=π

Dk,`,

where

Dk,` = Eω
[
τεm
(
xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω)
)
τεm
(
xα1
i1

(`1)(ω) · · ·xαsis (`s)(ω)
)]

− Eω
[
τεm
(
xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω)
)]
Eω
[
τεm
(
xα1
i1

(`1)(ω) · · ·xαsis (`s)(ω)
)]

for k = (k1, . . . , ks) and ` = (`1, . . . , `s). Now, reasoning as above one can see that
whenever σ or π has a singleton, all the corresponding terms in the sum (2.10) are equal to
zero. Thus, we may write σ = {V1, . . . , Vrσ} and π = {W1, . . . ,Wrπ} with rσ, rπ ≤ s

2 . If
neither σ nor π are pair partitions, we will have rσ, rπ ≤ s

2−1 and the part of the sum in (2.10)
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corresponding to these pairs (σ, π) can be bounded above in absolute value by C(s)/M2 as
desired. Then, it remains to control the rest of the terms in (2.10). To this end, we assume
that σ is a pair partition. Actually, a cardinality argument as before allows us to conclude
that π must be either a pair partition or a partition with all blocks formed by two elements
up to a possible four element block. In the following, we will explain how to deal with the
case in which π is a pair partition. The other case can be treated exactly in the same way,
being actually even easier by cardinality reasons. Let us fix two pair partitions σ and π and
let us consider k = (k1, . . . , ks) and ` = (`1, . . . , `s) such that σ(k) = σ and σ(`) = π.
When rearranging the letters in the traces defining Dk,`, the deterministic signs—α = β

in (2.7)—do not have any effect in the absolute value ofDk,`. On the other hand, the random
signs—α 6= β in (2.7)—makes the second term of Dk,` vanish. Thus, Dk,` 6= 0 if and only if
Iα(σ) 6= ∅ 6= Iα(π) and we obtain the same random signs coming from crossings in Iα(σ)

and Iα(π). In particular, we should find at least two signs

ε
(
(αp, ip, kp), (αq, iq, kq)

)
(ω) (αp 6= αq) from xα1

i1
(k1)(ω) · · ·xαsis (ks)(ω),

ε
(
(αu, iu, `u), (αv, iv, `v)

)
(ω) (αu 6= αv) from xα1

i1
(`1)(ω) · · ·xαsis (`s)(ω).

By independence, this implies that{
(αp, ip, kp), (αq, iq, kq)

}
=
{

(αu, iu, `u), (αv, iv, `v)
}
.

Moreover, since we also need σ ≤ σ(α) for non-vanishing terms, we can conclude that
kp 6= kq and `u 6= `v. Therefore, the sets {k1, . . . , ks} and {`1, . . . , `s} must have four
elements (corresponding to two different blocks) in common. This implies that the part of
the sum in (2.10) corresponding to pairs (σ, π) of pair partitions is bounded above by

C ′(s)
Ms/2M (s−4)/2

Ms
=

C ′(s)

M2

for a certain constant C(s)′ as we wanted. This completes the proof.

Let x be a word in the reduced free product of Clifford algebras M, which written in
reduced form is given by (2.1). In what follows, we will associate to x an element x̃(m) in Aεm
given by

(2.11) x̃(m) = x̃α1

A1
(m) · · · x̃α`A`(m).

If we develop x as in (2.2), then we can write x̃(m) as

x̃
α1
A1

(m)︷ ︸︸ ︷
x̃α1
i1

(m) · · · x̃α1
is1

(m)

x̃
α2
A2︷ ︸︸ ︷

x̃α2
is1+1

(m) · · · x̃α2
is1+s2

(m) · · ·

x̃
α`
A`

(m)︷ ︸︸ ︷
x̃α`is1+···+s`−1+1

(m) · · · x̃α`is1+···+s`
(m) .

2.3. Hypercontractivity bounds

In this subsection we prove Theorem B. The result below can be obtained following
verbatim the proof of [4, Lemma 4] just replacing Theorem 7 there by Theorem 2.3 above.
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L 2.4. – If p ≥ 1, we have

lim
m→∞

∥∥∥∑
j
ρj x̃j(m)

∥∥∥
Lp( Aεm )

=
∥∥∥∑

j
ρjxj

∥∥∥
Lp( M)

a.e.

for any finite linear combination
∑
j ρjxj of reduced words in the free product M.

L 2.5. – Givenx a reduced word in the free product M, let x̃(m) be the element in Aεm
associated to x as in (2.11). Then, there exists a decomposition x̃(m) = x̃1(m) + x̃2(m) with
the following properties

i) 〈x̃1(m), x̃2(m)〉 = 0 a.e.,

ii) Sεn,t(x̃1(m)) = e−t|x|x̃1(m),

iii) lim
m→∞

‖x̃1(m)‖L2( Aεm ) = 1 a.e.

In particular, we deduce that

lim
m→∞

‖x̃2(m)‖L2( Aεm ) = 0 a.e.

Proof. – If we set s = |x| and σ0 denotes the singleton partition, define

x̃1(m)(ω) =
1

ms/2

∑
k∈[m]s

σ(k)=σ0

xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω),

x̃2(m)(ω) =
1

ms/2

∑
σ∈Π(s)\{σ0}

∑
k∈[m]s

σ(k)=σ

xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω).

Clearly x̃(m) = x̃1(m) + x̃2(m) pointwise and ‖x̃(m)‖L2( Aεm ) = 1. Property i) is easily
checked. Indeed, consider k, ` ∈ [m]s with σ(k) = σ0 and σ(`) ∈ Π(s) \ {σ0}. Since the ki’s
are all distinct and the `i’s are not we must have

τεm

(
xα1
i1

(k1)(ω) · · ·xαsis (ks)(ω)xαsis (`s)(ω) · · ·xα1
i1

(`1)(ω)
)

= 0.

The second property comes from the definition of the semigroup (2.4) and the fact that for
every k with σ(k) = σ0, we have no cancellations. Now it remains to show that

lim
m→∞

1

ms

∑
k,`∈[m]s

σ(k)=σ(`)=σ0

τεm

(
xα1
i1

(k1) · · ·xαsis (ks)︸ ︷︷ ︸
x
α
i (k)

xαsis (`s) · · ·xα1
i1

(`1)︸ ︷︷ ︸
x
α
i (`)∗

)
= 1.

Indeed, if {k1, . . . , ks} 6= {`1, . . . , `s} the trace clearly vanishes and it suffices to consider the
case {k1, . . . , ks} = {`1, . . . , `s}. Note that the trace above is different from 0 if and only if
(αj , ij , kj) = (αβ(j), iβ(j), `β(j)) for some permutation β ∈ Ss and every 1 ≤ j ≤ s. If we
assume ks 6= `s, we get (αj , ij , kj) = (αs, is, `s) for certain j < s. This means that xαjij (kj)

and xαsis (ks) belong to differentα-blocks since the ij ’s are pairwise distinct in a fixedα-block.
Thus, to cancel these elements we must cross a β-block with β 6= αs. Since the k’s are all
different, the ε-signs corresponding to these commutations appear just once. We can argue
in the same way for every 1 ≤ j ≤ s and conclude that

Eω τεm
(
xα1
i1

(k1) · · ·xαsis (ks)x
αs
is

(`s) · · ·xα1
i1

(`1)
)

= 0
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unless kj = `j for all 1 ≤ j ≤ s. Therefore

lim
m→∞

Eω‖x̃1(m)‖2L2( Aεm ) = lim
m→∞

1

ms

∑
k∈[m]s

ki 6=kj

1

= lim
m→∞

m(m− 1) · · · (m− s+ 1)

ms
= 1.

Finally, arguing as in the proof of Theorem 2.3 we see that the same limit holds for almost
every ω ∈ Ω. This proves iii). The last assertion follows from i), iii) and the identity
‖x̃(m)‖2 = 1. The proof is complete.

L 2.6. – If p ≥ 1, we have

lim
m→∞

∥∥∥ Sεm,t
(∑

j
ρj x̃j(m)

)∥∥∥
Lp( Aεm )

=
∥∥∥ OM,t

(∑
j
ρjxj

)∥∥∥
Lp( M)

a.e.

for any finite linear combination
∑
j ρjxj of reduced words in the free product M.

Proof. – According to Lemma 2.5, we have

lim
m→∞

∥∥∥( Sεm,t − e
−t|x|1 Aεm

)(
x̃(m)

)∥∥∥
L2( Aεm )

= 0 a.e.

for any reduced word x ∈ M and the associated x̃(m)’s ∈ Aεm given by (2.11). Thus

lim
m→∞

∥∥∥ Sεm,t
(∑

j
ρj x̃j(m)

)
−
∑

j
e−t|xj |ρj x̃j(m)

∥∥∥
L2( Aεm )

= 0 a.e.

Then (2.6) implies that the same limit vanishes in the norm of Lp( Aεm). On the other hand,
since OM,t(xj) = e−t|xj |xj , the assertion follows from Lemma 2.4.

Proof of Theorem B. – Let 1 < p ≤ q < ∞. By construction, the algebraic free
product A is a weak-∗ dense involutive subalgebra of M. In particular, it is dense in Lp( M)

for every p <∞. Given a finite sum z =
∑
j ρjxj ∈ A, consider the corresponding sum

z̃(m) =
∑
j ρj x̃j(m) ∈ Aεm following (2.11). Given any t ≥ 1

2 log(q − 1/p − 1), we may
apply Lemmas 2.4 and 2.6 in conjunction with Biane’s Theorem (2.5) to conclude

‖ OM,t(z)‖Lq( M) = lim
m→∞

∥∥ Sεm,t(z̃(m))
∥∥
Lq( Aεm )

≤ lim
m→∞

‖z̃(m))‖Lp( Aεm ) = ‖z‖Lp( M).

The necessity of the condition t ≥ 1
2 log(q − 1/p− 1) was justified above.

2.4. Further comments

Note that the argument we have used in the proof of Theorem B still works in a more
general setting. More precisely, we may replace the fermion algebras Mα = C(Rd) by spin
system algebras Aα, where the generators xαi satisfy certain commutation and anticommu-
tation relations given by a sign εα as follows

xαi x
α
j − εα(i, j)xαj x

α
i = 2δij for 1 ≤ i, j ≤ d.
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Indeed, we just need to replace (2.7) by

µ
(
ε
(
(α, i, k), (β, j, `)

)
= −1

)
=

{
εα(i, j) if α = β,

1/2 if α 6= β.

This yields optimal time hypercontractivity bounds for the Ornstein-Uhlenbeck semigroup
on the free product of spin matrix algebras. An additional application of Speicher’s central
limit theorem allows us to obtain optimal hypercontractivity estimates for the Ornstein-
Uhlenbeck semigroup on the free product of q-deformed algebras Γq, −1 ≤ q ≤ 1.

R 2.7. – Slight modifications in (2.7) lead to von Neumann algebras which are
still poorly understood. For instance, let us fix a function f : [1, n]× [1, n] → [−1, 1] which
is symmetric and assume that

µ
(
{ε((α, i, k), (β, j, `)) = +1}

)
=

1 + f(α, β)

2
.

As usual we will assume that all the random variables ε(x, y) are independent. Then it is
convenient to first calculate expectation of the joint moments of

x̃αi (m) =
1√
m

m∑
k=1

xαi (k).

Again, only the pair partitions survive and we get

lim
m→∞

Eωτεm(x̃α1
i1

(m) · · · x̃αsis (m)) =
∑

σ∈Π2(s)
σ≤σ(i),σ(α)

∏
(k,`)∈I(σ)

f(αek , αe`).

As above, we will have hypercontractivity with the optimal constant for the limit Gaussian
systems (they indeed produce a tracial von Neumann algebra). As an illustration, let us
consider n = 2, q1, q2 ∈ [−1, 1], f(1, 1) = q1q2 and f(1, 2) = f(2, 1) = f(2, 2) = q2.
We deduce immediately that

i) The von Neumann subalgebra generated by

x1
i = lim

m
x̃1
i (m),

for i = 1, . . . , d is isomorphic to Γq1q2(Rd), generated by d q1q2-Gaussians.

ii) The von Neumann subalgebra generated by

x2
i = lim

m
x̃2
i (m),

for i = 1, . . . , d is isomorphic to Γq2(Rd), generated by d q2-Gaussians.

iii) Let A ⊂ [s] and let yi = x1
ji

for i ∈ A (and αi = 1) and yi = x2
ji

(αi = 2) otherwise.
Let η0 be the partition of [s] defined by the possible values of (ji, αi). Then we get

τ(y1y2 · · · ys) =
∑

η0≥σ∈Π2(s)

q
inversion(σ|A)
1 q

inversion(σ)
2 .

Here σ|A is the restriction of σ to A where we count only inversions inside A. This
construction is considered in [10] for constructing new Brownian motions.
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We see that we can combine different q Gaussian random variables in one von Neumann
algebra with a prescribed interaction behaviour. With this method we recover the cons-
truction from [10] of a non-stationary Brownian motion Bt. Indeed one can choose
0 = t0 < t1 < · · · < td such that Bt is an abstract Brownian motion [10] and the ran-
dom variables st(j) = Bt − Btj are q0 · · · qj-Brownian motions. In this construction we
needed a q1-Brownian motion over a q2-Brownian motion and hence the choice of the
product q1q2 above. Although it is no longer trivial to determine the number operator, we
see that hypercontractivity is compatible with non-stationarity. The algebras generated for
arbitrary symmetric f could serve as models for q1-products over q2-products, although in
general there is no q-product of arbitrary von Neumann algebras.

3. The free Poisson semigroup

In this section we prove Theorem A and optimal hypercontractivity for linear combina-
tions of words in Fn with length lower than or equal to 1. Let us start with a trigonometric
identity, which follows from the binomial theorem and the identity 2 cosx = eix + e−ix

(cosx)m =
1

2m−1

∑
0≤k≤[m2 ]

(
m

k

)
cos((m− 2k)x)

2δm,2k
.

Let gj denote one of the generators of Fn. Identifying λ(gj) with exp(2πi·), the von
Neumann algebra generated by λ(gj) is L(Z) and the previous identity can be rephrased as
follows for uj = λ(gj)

(3.1)
(
uj + u∗j

)m
=

∑
0≤k≤[m2 ]

(
m

k

)
vj,m−2k,

with vj,k = ukj +(u∗j )
k for every k ≥ 1 and v0 = 1. We will also need a similar identity inG2n.

Let z1, z2, . . . , z2n denote the canonical generators of G2n, take xj = λ(zj) for 1 ≤ j ≤ 2n

and consider the operators aj,0 = 1, bj,0 = 0 and

(3.2) aj,k = x2j−1x2jx2j−1 · · ·︸ ︷︷ ︸
k

, bj,k = x2jx2j−1x2j · · ·︸ ︷︷ ︸
k

.

If we set ζj = uj + u∗j and ψj = x2j−1 + x2j , let us consider the ∗-homomorphism
Λ : Ansym → L(G2n) determined by Λ(ζj) = ψj . The result below can be proved by induction
summing by parts.

L 3.1. – If m ≥ 0, we find(
x2j−1 + x2j

)m
=

∑
0≤k≤[m2 ]

(
m

k

)(
aj,m−2k + bj,m−2k

)
.

Moreover, vj,k ∈ 〈uj + u∗j 〉 and we have Λ(vj,k) = aj,k + bj,k for every k ≥ 0.

Proof of Theorem A. – As observed in the introduction, the group von Neumann alge-
bra L(Z2) is ∗-isomorphic to the Clifford algebra C(R). Moreover, the Poisson and Ornstein-
Uhlenbeck semigroups coincide in this case. In particular, the first assertion follows from
L(Gn) = L(Z2) ∗ · · · ∗ L(Z2) ' C(R) ∗ · · · ∗ C(R), by applying Theorem B with d = 1.
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To prove the second assertion, we consider the injective group homomorphism determined
by

Φ : gj ∈ Fn 7→ x2j−1x2j ∈ G2n.

This map clearly lifts to an isometry Lp( L(Fn)) → Lp( L(G2n)) for all p ≥ 1. Moreover,
since |Φ(g)| = 2|g|, we see that Φ intertwines the corresponding free Poisson semigroup up to
a constant 2. More precisely, Φ◦ PFn,t = PG2n,t/2◦Φ for all t > 0. Hence, if 1 < p ≤ q <∞
and f ∈ Lp( L(Fn)), we obtain from the result just proved that∥∥PFn,tf

∥∥
Lq( L(Fn))

=
∥∥( PG2n,t/2 ◦ Φ)f

∥∥
Lq( L(G2n))

≤ ‖Φf‖Lp( L(G2n) = ‖f‖Lp( L(Fn)),

whenever t ≥ log(q − 1/p − 1). It remains to prove the last assertion iii). The necessity of
the condition t ≥ 1

2 log(q − 1/p − 1) can be justified following Weissler argument in [42,
p. 220]. Therefore, we just need to prove sufficiency. According to [32],χ[−2,2](s)/π

√
4− s2 is

the common distribution of ζj andψj . Moreover, since both families of variables are free, the
tuples (ζ1, . . . , ζn) and (ψ1, . . . , ψn) must have the same distribution too. Therefore, for every
polynomial P in n non-commutative variables we have∥∥P (ζ1, . . . , ζn)

∥∥
Lp( Ansym)

=
∥∥P (ψ1, . . . , ψn)

∥∥
Lp( L(G2n))

for every 1 ≤ p ≤ ∞. In particular, the ∗-homomorphism Λ : Ansym → L(G2n) determined
by Λ(ζj) = ψj for every 1 ≤ j ≤ n extends to an Lp isometry for every 1 ≤ p ≤ ∞. We claim
that

Λ
(
PFn,t(P (ζ1, . . . , ζn))

)
= PG2n,t

(
P (ψ1, . . . , ψn)

)
for every polynomial P in n non-commutative variables. It is clear that the last assertion iii)
of Theorem A follows from our claim above in conjunction with the first assertion i), already
proved. By freeness of the semigroups involved and the fact that Λ is a ∗-homomorphism, it
suffices to justify the claim for P (X1, X2, . . . , Xn) = Xm

j with 1 ≤ j ≤ n and m ≥ 0.
However, this follows directly from Lemma 3.1.

In the lack of optimal time estimates for Fn through the probabilistic approach used so
far—see [19] for related results—we conclude this paper with optimal hypercontractivity
bounds for linear combinations of words with length lower than or equal to 1. We will use
two crucial results, the second one is folklore and it follows from the “invariance by rotation”
of the CAR algebra generators.

– The Ball/Carlen/Lieb convexity inequality [1](Tr|A+B|p + Tr|A−B|p

2

) 2
p ≥

(
Tr|A|p

) 2
p + (p− 1)

(
Tr|B|p

) 2
p

for any 1 ≤ p ≤ 2 and any given pair of m×m matrices A and B.
– A Khintchine inequality for fermion algebras∥∥∥ d∑

j=1

ρjxj

∥∥∥
p

=
( d∑
j=1

|ρj |2
) 1

2

whenever 1 ≤ p <∞, ρj ∈ R, xj = x∗j and xixi + xjxi = 2δij .
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T 3.2. – Let us denote by W 1 the linear span of all words in L(Fn) of length lower
than or equal to 1. Then, the following optimal hypercontractivity bounds hold for 1 < p ≤ 2,
every t ≥ − 1

2 log(p− 1) and all f ∈ W 1

‖PFn,tf‖L2( L(Fn)) ≤ ‖f‖Lp( L(Fn)).

Proof. – The optimality of our estimate follows once again from Weissler argument in
[42, p. 220]. Moreover, it suffices to show the inequality for the extreme case e−t =

√
p− 1.

The key point in the argument is the use of the ∗-homomorphism Φ : L(Fn) → L(G2n)

defined in the proof of Theorem A in conjunction with our characterization of L(G2n) using
a spin matrix model. Indeed, we will consider here exactly the same matrix model with 2n free
copies and just one generator per algebra. More precisely, givenm ≥ 1 we will consider xα(k)

with 1 ≤ α ≤ 2n and 1 ≤ k ≤ m verifying the same relations as in (2.7) depending on the
corresponding random functions ε((α, k), (β, `)). We also set

x̃α(m) =
1√
m

m∑
k=1

xα(k)

as usual. Note that this model describes—in the sense of Theorem 2.3—the algebra L(G2n).
In fact, according to Lemma 2.4 we know that for every trigonometric polynomial
z =

∑
j ρjxj ∈ L(G2n) in the span of finite words, we can define the corresponding elements

z̃(m) =
∑
j ρj x̃j(m) ∈ Aεm such that

lim
m→∞

‖z̃(m)‖Lp( Aεm ) = ‖z‖Lp( L(G2n))

almost everywhere. Furthermore, by dominated convergence we find

lim
m→∞

Eω‖z̃(m)‖Lp( Aεm ) = ‖z‖Lp( L(G2n)).

We first consider a function f = a01 + a1λ(g1) + b1λ(g1)∗ + . . . + anλ(gn) + bnλ(gn)∗

in W 1 such that arg(aα) = arg(bα) for all 1 ≤ α ≤ n. By the comments above, we have for
every 1 < p < 2

‖f‖2Lp( L(Fn)) = ‖Φf‖2Lp( L(G2n))

= lim
m→∞

Eω
∥∥∥a01 + a1x̃

1(m)x̃2(m) + b1x̃
2(m)x̃1(m)

+ · · · + anx̃
2n−1(m)x̃2n(m) + bnx̃

2n(m)x̃2n−1(m)
∥∥∥2

Lp( Aεm )
.

Now, we claim that ‖f‖2Lp( L(Fn)) is bounded below by

lim
m→∞

Eω
(
|a0|2 +

p− 1

m2

∑
1≤α≤n
1≤k≤m

∥∥∥ ∑
1≤`≤m

(
aα + bαε

(
(2α− 1, k), (2α, `)

))
x2α(`)

∥∥∥2

p

)
.

If this is true, we can apply Khintchine’s inequality for fixed α and k to get

Eω
∥∥∥ ∑

1≤`≤m

(
aα + bαε

(
(2α− 1, k), (2α, `)

))
x2α(`)

∥∥∥2

p

= Eω
∥∥∥ ∑

1≤`≤m

(
|aα|+ |bα|ε

(
(2α− 1, k), (2α, `)

))
x2α(`)

∥∥∥2

p
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=
∑

1≤`≤m

(
|aα|2 + |bα|2 + 2|aαbα|Eωε

(
(2α− 1, k), (2α, `)

))
= m(|aα|2 + |bα|2).

Here, we have used that the ε’s are centered for α 6= β. Therefore, we finally obtain

‖f‖2Lp( L(Fn)) ≥ |a0|2 + (p− 1)

n∑
α=1

(|aα|2 + |bα|2) = ‖PFn,tf‖2L2( L(Fn))

for e−t =
√
p− 1. Therefore, it suffices to prove the claim. To this end, note that

‖f‖2Lp( L(Fn)) = lim
m→∞

Eω
∥∥Am + x1(1)Bm

∥∥2

Lp( Aεm )
,

where Am and Bm are given by

Am = a01 +
1

m

∑
2≤k≤m
1≤`≤m

(
a1 + b1ε

(
(1, k), (2, `)

))
x1(k)x2(`)

+
1

m

∑
1≤k,`≤m

[
a2x

3(k)x4(`) + b2x
4(k)x3(`) + . . .+ bnx

2n(k)x2n−1(`)
]

and Bm = 1
m

∑
1≤`≤m

(
a1 + b1ε

(
(1, 1), (2, `)

))
x2(`). Then, since the spin matrix model

is unaffected by the change of sign of one generator and Am, Bm do not depend on x1(1),
we deduce ‖Am + x1(1)Bm‖p = ‖Am − x1(1)Bm‖p. Therefore, applying Ball/Carlen/Lieb
inequality we conclude that

‖f‖2Lp( L(Fn)) ≥ lim
m→∞

Eω
(
‖Am‖2Lp( Aεm ) + (p− 1)‖Bm‖2Lp( Aεm )

)
,

where we have used that ‖x1(1)Bm‖p = ‖Bm‖p for every ω and every p. If we apply the same
strategy with x1(2), . . . , x1(m), it is not difficult to obtain the following lower bound

‖f‖2Lp( L(Fd)) ≥ lim
m→∞

Eω
∥∥∥a01 + a2x̃

3(m)x̃4(m) + b2x̃
4(m)x̃3(m)

+ · · · + anx̃
2n−1(m)x̃2n(m) + bnx̃

2n(m)x̃2n−1(m)
∥∥∥2

p

+
p− 1

m2

∑
1≤k≤m

∥∥∥ ∑
1≤`≤m

(
a1 + b1ε

(
(1, k), (2, `)

))
x2(`)

∥∥∥2

p
.

Our claim follows iterating this argument on 2 ≤ α ≤ n. It remains to consider an arbi-
trary f = a01 + a1λ(g1) + b1λ(g1)∗ + · · · + anλ(gn) + bnλ(gn)∗ ∈ W 1. Let us
set (θα, θ

′
α) = (arg(aα), arg(bα)) and (να, ν

′
α) = (1

2 (θα + θ′α), 1
2 (θα − θ′α)) for each 1 ≤ α ≤ n.

Consider the 1-dimensional representation π : Fn → C determined by π(gα) = exp(iν′α)

for the α-th generator gα. According to the Lp-analog of Fell’s absorption principle [34], we
have from the first part of the proof that

‖PFn,tf‖2 ≤
∥∥∥a01 +

n∑
α=1

|aα|eiναλ(gα) + |bα|eiναλ(gα)∗
∥∥∥
Lp( L(Fn))

=
∥∥∥a01 +

n∑
α=1

|aα|eiναπ(gα)λ(gα) + |bα|eiναπ(g−1
α )λ(gα)∗

∥∥∥
Lp( L(Fn))

=
∥∥∥a01 +

n∑
α=1

aαλ(gα) + bαλ(gα)∗
∥∥∥
Lp( L(Fn))

= ‖f‖Lp( L(Fn)).
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The proof is complete.

We finish this section with further results on Lp → L2 estimates for the free Poisson
semigroup. The key point here is to use a different model for Haar unitaries. In the sequel,
we will denote by M2 the algebra of 2× 2 matrices.

L 3.3. – If uj = λ(gj) and xj = λ(zj), the map

uj 7→

[
0 x2j−1

x2j 0

]
determines a trace preserving ∗-homomorphism π : L(Fn)→M2⊗ L(G2n) such that

π ◦ PFn,t =
(
IdM2

⊗ PG2n,t

)
◦ π.

Proof. – Since π(uj) is a unitary wj in M2⊗ L(G2n) and Fn is a free group, a unique
∗-homomorphism π : L(Fn) → M2⊗ L(G2n) is determined by the wj ’s. Thus, it suffices
to check that π is trace preserving. The fact that π(λ(g)) has trace zero in M2⊗ L(G2n) for
every g 6= e follows easily from the equalities

π(u1)2k =

[
a1,2k 0

0 b1,2k

]
π(u1)2k+1 =

[
0 a1,2k+1

b1,2k+1 0

]
and its analogous formulae for the product of different generators. Here, we have used the
notations introduced in (3.2). The second assertion can be checked by simple calculations.
The proof is complete.

Biane’s theorem relies on an induction argument [4, Lemma 2] which exploits the Ball-
Carlen-Lieb convexity inequality stated before Theorem 3.2. In fact, our proof of Theo-
rem 3.2 follows the same induction argument. We will now consider spin matrix models
with operator coefficients. More precisely, given a finite von Neumann algebra ( M, τ), we
will look at M⊗Aεm . In particular, following the notation in Section 2 every x ∈ M⊗Aεm
can be written as x =

∑
A ρA ⊗ x

εm
A where ρA ∈ M for every A ⊂ Υm. Then, the induction

argument easily leads to the inequality below provided that e−t ≤
√
p− 1

‖x‖2
Lp( M⊗ Aεm )

≥
∑

A⊂Υm

e−2t|A|‖ρA‖2Lp( M).

For our purpose we will consider M = M2 with its normalized trace, so that

‖a‖p ≥ 2
1
2−

1
p ‖a‖2

for every a ∈ M2. Let x =
∑
A ρA ⊗ x

εm
A be as above. Let us also define U as the (possible

empty) set of the subsets A of Υm such that ρA is a multiple of a unitary. In particular,
‖ρA‖L2( M) = ‖ρA‖Lp( M) for every A ∈ U. Then, letting y =

∑
A∈ U ρA ⊗ x

εm
A , the following

estimate holds provided e−t ≤
√
p− 1

(3.3) ‖x‖2p ≥
∥∥IdM2

⊗ Sεm,t(y)
∥∥2

2
+ 21− 2

p

∥∥IdM2
⊗ Sεm,t(x− y)

∥∥2

2
,

where the right-hand side norms are taken in M2⊗Aεm . Our first application of this alter-
native approach is that Weissler’s theorem [42] can be proved using probability and operator
algebra methods.
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P 3.4. – If 1 < p ≤ q <∞, we find∥∥PZ,t : Lp( L(Z))→ Lq( L(Z))
∥∥ = 1 ⇔ t ≥ 1

2
log

q − 1

p− 1
.

Proof. – We will assume that q = 2 since the optimal time for every p, q can be obtained
from this case by means of standard arguments involving logarithmic Sobolev inequalities,
see Remark 3.6. We follow here the same approximation procedure of Lemmas 2.4 and 2.5
withn = 2 and d = 1. Consider a reduced word x = xα1 · · ·xαs in L(G2), so thatαj ∈ {1, 2}
and αj 6= αj+1. We then form the associated element

x̃(m)(ω) =
1

ms/2

∑
k∈[m]s

σ(k)=σ0

xα1(k1)(ω) · · ·xαs(ks)(ω) ∈ Aεm .

Note that restricting to σ(k) = σ0 implies that there will be no repetitions of the ele-
ments xαj (kj), hence no simplifications in x̃(m). As we showed in the proof of Lemma 2.5,
the terms with repetitions do not play any role. On the other hand, Lemma 2.4 easily
extends to operator coefficients so that for any 1 ≤ p ≤ 2, every ρj ∈M2 and every reduced
word xj ∈ L(G2), we have

(3.4) lim
m→∞

∥∥∥∑
j

ρj ⊗ x̃j(m)
∥∥∥
Lp(M2⊗ Aεm )

=
∥∥∥∑

j

ρj ⊗ xj
∥∥∥
Lp(M2⊗ L(G2))

a.e.

Let us denote by u = λ(g1) the canonical generator of L(Z). By the positivity of PZ,t and a
density argument, it suffices to show that ‖PZ,tf‖L2( L(Z)) ≤ ‖f‖Lp( L(Z)) for every positive
trigonometric polynomial

f = ρ01 +

d∑
j=1

(ρju
j + ρju

∗j).

To this end, we use the map π from Lemma 3.3 and construct

x = π(f) =

[
ρ0 0

0 ρ0

]
⊗ 1 +

∑
`≥1

[
ρ2` 0

0 ρ2`

]
⊗ a1,2` +

[
ρ2` 0

0 ρ2`

]
⊗ b1,2`

+
∑
`≥1

[
0 ρ2`+1

ρ2`+1 0

]
⊗ a1,2`+1 +

[
0 ρ2`+1

ρ2`+1 0

]
⊗ b1,2`+1.

To use our approximation procedure, we consider the element x̃(m) ∈ M2⊗Aεm asso-
ciated to x. We start noting that x̃(m) is self-adjoint. Now, in order to use (3.3) and
make act IdM2 ⊗ Sεm,t, we must write x̃(m) in reduced form. That is, for every k ∈ [m]s

with σ(k) = σ0 and α = (α1, . . . , αs) ∈ {1, 2}s with αj 6= αj+1, we want to understand the
matrix coefficients γα(k) of xα(k) = xα1(k1) · · ·xαs(ks), where the latter is an element in
the basis of Aεm . In fact, it suffices to show that these matrix coefficients are multiples of
unitaries, so that all the subsets A of Υm are in U and we do not loose any constant when
applying (3.3). Let us first assume that s = 2` + 1 is odd. Since by definition there is no
simplifications in x̃(m), the term xα(k) will only appear in the element in Aεm associated to
either a1,2`+1 or b1,2`+1. By the commutation relations, we see that xα(k)∗ = ±xα(k). Then
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its matrix coefficient must also satisfy γα(k)∗ = ±γα(k). Moreover, one easily checks that it
also has the shape [

0 δ

µ 0

]
from the above formula of x. Hence δ = ±µ and γα(k) is a multiple of a unitary (this can also
be directly seen from the formula of x). If s = 2`, the term xα(k) will appear in the elements
associated to the two reduced words a1,2` and b1,2`. Since the commutation relations only
involve signs, after a moment of thought we can conclude that γα(k) has the shape[

δ 0

0 δ

]
.

Hence, it is a multiple of a unitary. Actually, we also know that δ is either real or purely
imaginary. Once we have seen that the matrix coefficients of x̃(m) written in reduced form are
multiples of unitaries, we can conclude the proof as in Theorem B. Indeed, using Lemma 3.3,
(3.3) and (3.4), we get

‖f‖Lp(T) = ‖x‖Lp(M2⊗ L(G2))

= lim
m→∞

‖x̃(m)‖Lp(M2⊗ Aεm )

≥ lim
m→∞

‖(IdM2
⊗ Sεm,t)x̃(m)‖L2(M2⊗ Aεm )

= ‖(IdM2
⊗ PG2,t)(x)‖L2(M2⊗ L(G2)) = ‖PZ,t(f)‖L2(T),

where the limits are taken a.e. and t ≥ − 1
2 log(p− 1). The proof is complete.

A slight modification of the previous argument allows us to improve Theorem A ii)
for q = 2. In fact, by a standard use of logarithmic Sobolev inequalities we may also improve
the Lp → Lq hypercontractivity bound, see Remark 3.8 below.

T 3.5. – If 1 < p ≤ 2, we find∥∥PFn,t : Lp( L(Fn))→ L2( L(Fn))
∥∥ = 1 if t ≥ 1

2
log

1

p− 1
+

1

2

(1

p
− 1

2

)
log 2.

Proof. – Once again, by positivity and density it suffices to prove the assertion for a posi-
tive trigonometric polynomial f ∈ L(Fn). If j = (j1, . . . , jd), we will use the notation |j| = d

and uj = λ(gj) with gj = gj1 · · · gjd a reduced word in Fn, so that

f =
∑

j
ρjuj .

Here we use the usual convention that g−k = g−1
k . We use again the trace preserving

∗-homomorphism π : L(Fn) → M2⊗ L(G2n) coming from Lemma 3.3. This gives the
identity

π(uj) =

[
0 x2j1−1

x2j1 0

][
0 x2j2−1

x2j2 0

]
· · ·

[
0 x2jd−1

x2jd 0

]
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with the convention that for j > 0, x−2j = x2j−1 and x−2j−1 = x2j . If d = 0, we set gj = e

and π(uj) = IdM2
. Hence with x = π(f), summing up according to the length we obtain

(3.5)

x =

[
ρ0 0

0 ρ0

]
⊗ 1 +

∑
|j|=2`

`≥1

[
ρj 0

0 ρ−j

]
⊗ x2j1−1x2j2 · · ·x2j2`

+
∑

|j|=2`+1

`≥0

[
0 ρj

ρ−j 0

]
⊗ x2j1−1x2j2 · · ·x2j2`+1−1.

We repeat the arguments used in the proof of Proposition 3.4 to approximate x by a spin
model x̃(m)(ω) with operator coefficients. That is, xα1 · · ·xαs ∈ L(G2n) is associated to

x̃(m)(ω) =
1

ms/2

∑
k∈[m]s

σ(k)=σ0

xα1(k1)(ω) · · ·xαs(ks)(ω) ∈ Aεm .

Note that the contribution to x given by (3.5) of words of length 0 and 1 is[
ρ0 0

0 ρ0

]
⊗ 1 +

∑
j∈Z\{0}

[
0 ρj

ρ−j 0

]
⊗ x2j−1.

Since f is self-adjoint, we have ρ−j = ρj for j ∈ Z \ {0}. Hence the matrix coefficients
corresponding to the words of length 0 and 1 in the approximation are multiples of uni-
taries. We will have {A ⊂ Υm : |A| ≤ 1} ⊂ U with the notations of (3.3), and decom-
pose f = g + h, where g is the part of f of degree less than 1 and h is supported by the words
of length greater than or equal to 2. Observe that g and h are orthogonal. Let t = t0 + t1
with t0 = − 1

2 log(p− 1). Since h has valuation 2, we have

‖PFn,t0+t1(h)‖2 ≤ e−2t1‖PFn,t0(h)‖2.

Thus thanks to (3.3), as in the proof of Proposition 3.4, we get by orthogonality

‖f‖2p ≥ ‖PFn,t0(g)‖22 + 21− 2
p ‖PFn,t0(h)‖22

≥ ‖PFn,t(g)‖22 + 21− 2
p e4t1‖PFn,t(h)‖22

≥ ‖PFn,t(g)‖22 + ‖PFn,t(h)‖22 = ‖PFn,t(f)‖22,

provided that e−4t12
2
p−1 ≤ 1⇔ t1 ≥ 1

2 ( 1
p −

1
2 ) log 2. This completes the proof.

R 3.6. – Along this section, we have invoked a couple of times Gross’ argument
to deduce general hypercontractivity estimates from the case q = 2. Let us sketch how to
adapt his argument to the case of tracial von Neumann algebras and Markov semigroups.
Namely, our starting point is

‖Ptf‖2 ≤ ‖f‖p(t) for p(t) = 1 + e−2t

for certain Markov semigroup ( Pt)t≥0. According to it, we deduce that

dΦ

dt
(0) ≥ 0 for Φ(t) = ‖f‖2p(t) − ‖Ptf‖

2
2.
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Indeed, it is a positive smooth function vanishing at 0. Let us writeA to denote the infinitesi-
mal generator of ( Pt)t≥0. Then, differentiating Φ at time 0 produces the following inequality,
known as logarithmic Sobolev inequality

τ
(
|f |2 log |f |2

)
− ‖f‖22 log ‖f‖22 ≤ 2

〈
f,Af

〉
.

Next, we need the analog of Gross inequality for the generator A. This follows from the
Lp-regularity of the associated Dirichlet form, which in turn was proved by Olkiewicz and
Zegarlinski in the tracial case in [33, Theorem 5.5]. Namely, given f ≥ 0 and 1 < p <∞, it
follows that 〈

fp/2, Afp/2
〉
≤ p2

4(p− 1)

〈
f,Afp−1

〉
.

Replacing f by fp/2 in the logarithmic Sobolev inequality and combining it with the above
estimate gives the following inequality

τ
(
fp log fp

)
− ‖f‖pp log ‖f‖pp ≤

p2

2(p− 1)

〈
f,Afp−1

〉
for f ≥ 0 and 1 < p < ∞, which is nothing but an Lp-analog of the logarithmic Sobolev
inequality. The goal is to show that

‖Ptf‖q(t) ≤ ‖f‖p for all t ≥ 0 with q(t) = 1 + (p− 1)e2t.

If we define Ψ(t, p) = ‖Ptf‖q(t), so that Ψ(0, q(0)) = ‖f‖p, it suffices to show that
Ψ(t, q(t)) is a decreasing function of t. Moreover, Pt has positive maximizers by Stinespring’s
factorization theorem, see [19, Lemma 1.1] for details. Thus, we may assume that f ≥ 0.
Then, differentiating at time t the result follows by applying the Lp-analog of logarithmic
Sobolev inequality for (f, p) = ( Ptf, q(t)).

R 3.7. – Let σ be the involutive ∗-representation on L(Fn) exchanging uj and
u∗j = u−j for all j ≥ 1. So that if f =

∑
j ρjuj , then σ(f) =

∑
j ρ−juj . Denote by L(Fn)σ

the fixed point algebra of σ, it clearly contains Ansym. The above arguments actually prove
that PFn,t is hypercontractive on L(Fn)σ from Lp to L2 with optimal time. Indeed, under
this symmetric condition for f all the matrix coefficients will be multiples of unitaries. Then
using Remark 3.6 one sees that Theorem A iii) can be extended to L(Fn)σ.

R 3.8. – It is not difficult to show that

1

2
log

1

p− 1
+

1

2

(1

p
− 1

2

)
log 2 ≤ β

2
log

1

p− 1

with β = 1+ log(2)
4 . In particular, Theorem 3.5 proves that we have hypercontractiveLp → L2

estimates for t ≥ −β2 log(p − 1). A straightforward modification of Gross’ argument in
Remark 3.6 for this shape of the time yields that the constant 2 in Theorem A ii) can be
replaced by the better constant 1 + 1

4 log(2) ∼ 1.17. Hence, we get the following inequality
for any 1 < p ≤ q <∞∥∥PFn,t : Lp( L(Fn))→ Lq( L(Fn))

∥∥ = 1 if t ≥ β

2
log

q − 1

p− 1
.
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