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PARTICLE APPROXIMATION OF VLASOV
EQUATIONS WITH SINGULAR FORCES:

PROPAGATION OF CHAOS

 M HAURAY  P-E JABIN

A. – We justify the mean field approximation and prove the propagation of chaos for
a system of particles interacting with a singular interaction force of the type 1/|x|α, with α < 1 in
dimension d ≥ 3. We also provide results for forces with singularity up to α < d − 1 but with
a large enough cut-off. This last result thus almost includes the case of Coulombian or gravitational
interactions, but it also allows for a very small cut-off when the strength of the singularity α is larger
but close to one.

R. – Nous montrons la validité de l’approximation par champ moyen et prouvons la pro-
pagation du chaos pour un système de particules en interaction par le biais d’une force avec singula-
rité 1/|x|α, avec α < 1 en dimension d ≥ 3. Nous traitons également le cas de forces avec troncature
et des singularités pouvant aller jusqu’à α < d− 1. Ce dernier résultat permet presque d’atteindre les
cas d’interaction coulombiennes ou gravitationnelles et requiert seulement de très petits paramètres de
troncature lorsque la singularité est proche de α = 1.

1. Introduction

The N particles system. – The starting point is the classical Newton dynamics for N point-
particles. We denote by Xi ∈ Rd and Vi ∈ Rd the position and velocity of the ith particle.
For convenience, we also use the notation Zi = (Xi, Vi) and Z = (Z1, . . . , Zn). Assuming
that particles interact two by two with the interaction force F (x), one finds the classical

(1.1)


Ẋi = Vi,

V̇i = EN (Xi) =
1

N

∑
j 6=i

F (Xi −Xj).

The (N -dependent) initial conditionsZ0 are given. We use the so-called mean-field scaling
which consists in keeping the total mass (or charge) of order 1 thus formally enabling us to
pass to the limit: this explains the 1/N factor in front of the force terms.
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892 M. HAURAY AND P.-E. JABIN

There are many examples of physical systems following (1.1). The best known example
concerns Coulombian or gravitational force F (x) = −∇Φ(x), with Φ(x) = C/|x|d−2

for d ≥ 3 with C ∈ R∗, which serves as a guiding example and reference. This system then
describes particles (ions or electrons) in a one component plasma forC > 0, or gravitational
interactions for C < 0. In the last case the system under study may be a galaxy, a smaller
cluster of stars or much larger clusters of galaxies (and thus particles can be “stars” or even
“galaxies”).

For the sake of simplicity, we consider here only a basic form for the interaction. However
the same techniques would apply to more complex models, for instance with several species
(electrons and ions in a plasma), 3-particle (or more) interactions, models where the force
also depends on the velocity as in swarming models like Cucker-Smale [9]... Indeed a striking
feature of our analysis is that it is valid for a force kernel F not necessarily derived from a
potential: In fact it never requires any Hamiltonian structure.

The potential and force used in this article. – Our first result applies to interaction forces that
are smooth outside of the origin and “weakly” singular near zero, in the sense that they satisfy

(1.2) (Sα) ∃C > 0, ∀x ∈ Rd\{0}, |F (x)| ≤ C

|x|α
, |∇F (x)| ≤ C

|x|α+1
,

for some α < 1.

We refer to this condition as the “weakly” singular case because under this, the potential
(when it exists) is continuous and bounded near the origin. It is reasonable to expect that the
analysis is simpler in that case than with a singular potential.

The second type of potentials or forces that we are dealing with are more singular, satisfy-
ing the (Sα)-condition with α < d− 1, but with an additional cut-off η near the origin that
will depend on N

(1.3) (Sαm)

i) F satisfies a (Sα)-condition for some α < d− 1,

ii) ∀ |x| ≥ N−m, FN (x) = F (x),

iii) ∀ |x| ≤ N−m, |FN (x)| ≤ Nmα.

We will refer to that case as the “strongly” singular case. Remark that the interaction kernelF
in fact depends on the number of particles. This might seem strange from the physical point
of view but it is in fact very common in numerical simulations in order to regularize the
interactions.

As we shall see in more details later, we can choose the cut-off parameter smaller than
typical inter particle distance (in position) if α is not too large (precisely smaller than d/2).
In that case one would hope that the cut-off is actually rarely “used”.

As the interaction force is singular, we first precise what we mean by solutions to (1.1) in
the following definition

D 1. – A (global) solution to (1.1) with initial condition

Z0 = (X0
1 , V

0
1 , . . . , X

0
N , V

0
N ) ∈ R2dN

4 e SÉRIE – TOME 48 – 2015 – No 4



PROPAGATION OF CHAOS FOR VLASOV EQUATIONS WITH SINGULAR FORCES 893

(at time 0) is a continuous trajectory Z(t) =
(
X1(t), V1(t), . . . , XN (t), VN (t)

)
such that

(1.4) ∀t ∈ R+, ∀i ≤ N,


Xi(t) = X0

i +

∫ t

0

Vi(s) ds

Vi(t) = V 0
i +

1

N

∑
j 6=i

∫ t

0

F (Xi(s)−Xj(s)) ds.

Local (in time) solutions are defined similarly.

We always assume that such solutions to (1.1) exist, at least for almost all initial config-
urations of the particles and over any time interval [0, T ] under consideration. Of course
as we use singular interaction forces, this is not completely obvious, but it holds under the
assumption (1.2). This point is discussed at the end of the article in Subsection 6.1, and we
now focus on the problem raised by the limit N → +∞.

Remark also that the uniqueness of such solutions is not important for our study. Only
the uniqueness of the solution to the limit equation is crucial for the mean-field limit and the
propagation of chaos.

The Jeans-Vlasov equation. – At first glance, the system (1.1) might seem quite reasonable.
However many problems arise when one tries to use it for practical applications. In our case,
the main issue is the number of particles, i.e., the dimension of the system. For example a
plasma or a galaxy usually contains a very large number of “particles”, typically from 109

to 1025, which can make solving (1.1) numerically prohibitively costly.
As usual in this kind of situation, one would like to replace the discrete system (1.1) by

a “continuous” model. In our case this model is posed in the space R2d, i.e., it involves the
distribution function f(t, x, v) in time, position and velocity. The evolution of that func-
tion f(t, x, v) is given by the Jeans-Vlasov equation (or collisionless Boltzmann equation)

(1.5)


∂tf + v · ∇xf + E(x) · ∇vf = 0 ,

E(x) =

∫
Rd
ρ(t, y)F (x− y) dy,

ρ(t, x) =

∫
Rd
f(t, x, v) dv,

where here ρ is the spatial density and the initial density f0 is given.
Our purpose in this article is to understand when and in which sense, Equation (1.5) can be

seen as a limit of system (1.1). This question is of importance for theoretical reasons, to justify
the validity of the Vlasov equation for example. It also plays a role for numerical simulation
in plasma physics [7, 30] and astrophysics [1], where a large class of methods (among which
the “Particles in Cells” method) introduce a large number of “virtual” particles (roughly
around 106 or 108, to compare with the real order mentioned above) in order to obtain a
many particle system solvable numerically. The problem in that case is to explain why it is
possible to correctly approximate the system by using much fewer particles. This would of
course be ensured by the convergence of (1.1) to (1.5).

We make use of uniqueness results for the solution to Equation (1.5). The regularity
theory for this equation is now well understood, even when the interaction F is singular,
including the Coulombian case. The existence of weak solutions goes back to [3, 20]. Exis-
tence and uniqueness of global classical solutions in dimension up to 3 is proved in [51], [55]

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



894 M. HAURAY AND P.-E. JABIN

(see also [36]) and at the same time in [42]. Of course those results require some assumptions
on the initial data f0: for instance compact support and boundedness in [51]. We will state
the precise result of existence and uniqueness we need in Proposition 2 in Section 3.2.

Formal derivation of Eq. (1.5) from (1.1). – One of the simplest way to understand formally
how to derive Eq. (1.5) is to introduce the empirical measure

µZN (t) =
1

N

N∑
i=1

δXi(t),Vi(t).

Remark that in the ODEs (1.1) there is no self-interaction: the force is summed over all the
particles except the i-th. So if we want to define F everywhere, i.e., even in 0, the natural
choice is F (0) = 0. That convention F (0) = 0 is natural for odd interaction kernels F which
are consistent with the law of action-reaction, and we will use that convention in the rest
of the article. Note anyway that because of the 1/N renormalization of the force term, the
choice of F (0) should only have a small impact on the dynamics.

Having defined F everywhere, measure valued solutions to the Vlasov Equation (1.5) are
now well defined in the sense of distribution. In addition it is straightforward to check that
Z(t) =

(
Xi(t), Vi(t)

)
1≤i≤N is a solution to (1.1), if and only if µZN solves (1.5) in the sense

of distribution.

At the level of measure valued solutions, the Newton system (1.1) is equivalent to the
Vlasov Eq. (1.5). This remarkable fact suggests as a strategy to study the stability of measure
valued solutions to (1.5) and to see the limit N → ∞ as a stability result with respect to
the convergence of the initial data. Unfortunately, except in special cases such as where F is
Lipschitz [11, 49, 20], a well posedness result for measure valued solutions is not accessible.

Notice that when Eq. (1.5) is solved for smooth initial data (at least in Lp with p > 1),
its properties become quite different. Crucially for our purpose, it enjoys a reduction in
complexity as it can efficiently be calculated numerically; in this sense calculating the solution
for N = ∞ is easier than for a finite N . There are many other key differences, such as long
time behavior, which are however beyond the scope of this introduction to describe.

The question of convergence and the mean-field limit. – The previous formal argument
suggests a first way of rigorously deriving the Vlasov Equation (1.5). Take a sequence of
initial conditions Z0

N (to be given for every number N or a sub-sequence of such numbers)
and assume that the corresponding empirical measures at time 0 converge (in the usual
weak-∗ topology for measures)

µZN (0) −→ f0(x, v).

One would then try to prove that the empirical measures at later times µZN (t) weakly converge
to a solution f(t, x, v) to (1.5) with initial data f0. In other words, is the following diagram
commutative?

µZN (0)
cvg //

Npart

��

f(0)

V P

��
µZN (t)

cvg ? // f(t).
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We refer to the mean-field limit for the question as to whether µZN (t) converges to f(t)

for a given sequence of initial conditions Z0
N (or equivalently µ0

N = µZN (0)). This is a
purely deterministic problem. We give in Theorems 1 and 3 a quantitative version of the
convergence of µN (t) towards f(t), provided some assumptions on f0 and on the initial
configurations µ0

N are satisfied.

Propagation of molecular chaos. – In many physical settings, it is relevant to introduce
randomness on the initial position and velocities Z of the particles. When the particles are
indistinguishable (as in our model), a natural hypothesis is that the law should be invariant
by permutation of the particles. This property is usually referred to as exchangeability (in
probability), and precisely defined as

D 2. – A random vector-field withN component Z = (Z1, . . . , ZN ) is said to be
exchangeable if for any permutation σ, Z and Zσ = (Zσ(1), . . . , Zσ(N)) have the same law.

A particularly interesting situation arises when each couple Zi = (Xi, Vi) is chosen ran-
domly and independently with law f0, or when the independence is satisfied in an asymptotic
sense, asN goes to infinity. The precise notion of “asymptotic independence” is usually given
by the notion of chaotic sequence, restated in the following definition.

D 3. – Let E be a measurable metric space (E = R2d in our applications), and
f a probability measure on E. A sequence (fN )N∈N of exchangeable probability on EN is said
to be f -chaotic, if one of the following equivalent properties holds:

i) for all k ∈ N, the k-marginals of fN , defined as

fNk (t, z1, . . . , zk) =

∫
R2d(N−k)

fN (t, z1, . . . , zN ) dzk+1 . . . dzN ,

converge weakly towards f⊗k as N goes to infinity: fNk ⇀ f⊗k,
ii) the second marginal fN2 converges weakly towards f⊗2: fN2 ⇀ f⊗2,

iii) under the laws fN , the (random) empirical measures µZN converge in law towards f (with
the weak topology of measure).

The equivalence between i) and iii) holds because the marginals can be recovered from the
expectations of moments of the empirical measure

fNk = E(µZN (t, z1) . . . µZN (t, zk)) +O

(
k2

N

)
,

a result sometimes called Grunbaum lemma. We also mention that the fact that iii) holds
when f := f⊗N is known as the empirical law of large number, or Glivenko-Cantelli
theorem; see Proposition 6 for precise statement.

We refer to the lecture notes by Sznitman [58] for a rigorous proof of the equivalence
of the three statements. For detailed explanations about quantification of the equivalence
between convergence of the marginals fNk and the convergence in law of the empirical distri-
butions µZN , we refer to [35]. This quantified equivalence was for instance used in the recent
and important work of Mischler and Mouhot about Kac’s program in kinetic theory [48].

The introduction of these chaotic (or asymptotically independent) sequences of probabil-
ity is justified in our mean-field setting by some previous works: several authors [12, 38, 39,
47, 40, 52] have already proved that equilibrium measures for these systems (1.1) do satisfy

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



896 M. HAURAY AND P.-E. JABIN

the chaoticity assumptions of Definition 3, the latter reference containing even quantitative
chaos estimates for the Coulomb case.

The notion of propagation of molecular chaos was formalized by Kac’s in [37] and goes
back to Boltzmann and his “Stosszahlansatz”. A standard reference is the famous course by
Sznitman [58]. We also refer to the recent review of Golse [27], with the point of view of an
analyst.

D 4. – Denoting by fN (t, z1, . . . , zN ) the image by the dynamics (1.1) of a given
initial law fN (0), Propagation of chaos holds when if starting with f0-chaotic initial conditions,
the sequence fN (t) is f(t)-chaotic for any time t ≥ 0, where f(t) is the unique solution (in a
suitable sense) of the limit dynamics (1.5).

Here, we will not prove this “full” propagation of chaos, starting from any f0-chaotic
sequence, but only a partial result valid only if the initial conditions have law (f0)⊗N . That
partial result is in some sense not a result of propagation (since we are of course not able to
propagate the exact independence between particles), but we explain in Remark 5 what we
are exactly able to propagate.

In the hard sphere problem, (partial) propagation of chaos towards the Boltzmann equa-
tion (in the Boltzmann-Grad scaling) was shown by Landford [41], with a non completely
correct proof that was completed only recently by Gallagher, Saint-Raymond and Texier [23]
(and extended to more general interactions). Unfortunately the deep techniques used in [23]
do not seem to be applicable in our case.

The mean field limit results obtained in that article, see Theorems 1 and 3, imply (partial)
quantified versions of the propagation of chaos, stated in Theorems 2 and 4, and Corollary 1
and 2.

Previous results in dimension one. – Let us shortly mention that in dimension one, the mean
field limit and the propagation of chaos are better understood , even for the 1D Coulomb
interaction. In fact, that case is in some sense simpler: the force F (x) = sign(x) is “only”
discontinuous. The first mean field limit result in that case was obtained by Trocheris [59], and
it was re-discovered by Cullen, Gangbo and Pisante as a particular case of semi-geostrophic
equations [16]. We also refer to a simpler proof by the first author [33] using a weak-strong
stability inequality for the 1D Vlasov-Poisson equation. All these mean-field results imply
the propagation of chaos in a straightforward manner.

Previous results with cut-off or for smooth interactions. – The mean-field limit and the
propagation of chaos are known to hold for smooth interaction forces (F ∈W 1,∞

loc ) since the
end of the seventies and the works of Braun and Hepp [11], Dobrushin [20] and Neunzert
and Wick [49]. Those articles introduce the main ideas and the formalism behind mean field
limits; we also refer to the nice book by Spohn [57].

Their proofs however rely on Gronwall type estimates and are connected to the fact that
Gronwall estimates are actually true for (1.1) uniformly in N if F ∈ W 1,∞. This makes
it impossible to generalize them to any case where F is singular, including Coulombian
interactions and many other physically interesting models.

4 e SÉRIE – TOME 48 – 2015 – No 4



PROPAGATION OF CHAOS FOR VLASOV EQUATIONS WITH SINGULAR FORCES 897

However, by keeping the same general approach, it is possible to deal with singular
interactions with cut-off. For instance for Coulombian interactions, one could consider

FN (x) = C
x

(|x|2 + ε(N)2)d/2
,

or other types of regularization at the scale ε(N). The system (1.1) with such forces does
not necessarily have much physical meaning but the corresponding studies are crucial to
understand the convergence of numerical methods. For particles initially on a regular mesh,
we refer to the works of Ganguly and Victory [25], Wollman [62] and Batt [6] (the latter gives a
simpler proof, but valid only for larger cut-off than in the two first references). Unfortunately
they had to impose that limN→∞ ε(N)N1/d = +∞, meaning that the cut-off for convergence
results is usually larger than the one used in practical numerical simulations. Note that the
scale N−1/d is the average distance between two neighboring particles in position.

These “numerically oriented” results do not imply the propagation of chaos, as the parti-
cles are on a mesh initially and hence (highly) correlated. Moreover, we emphasize that the
two problems with initial particles on a mesh, or with initial particles independently and
equally distributed seem to be very different. In the last case, Ganguly, Lee, and Victory [24]
prove the convergence only for a much larger cut-off ε(N) ≈ (lnN)−1.

Previous results for 2d Euler or other macroscopic equations. – A well known system, very
similar at first sight with the question here, is the vortices system for the 2d incompressible
Euler equation. One replaces (1.1) by

(1.6) Ẋi =
1

N

∑
j 6=i

αi αj ∇⊥Φ(Xi −Xj),

where Φ(x) = (2π)−1 ln |x| is still the Coulombian kernel (in 2 dimensions here) and
αi = ±1. One expects this system to converge to the Euler equation in vorticity formulation

(1.7) ∂tω + div (uω) = 0, divu = 0, curlu = ω.

The same questions of convergence and propagation of chaos can be asked in this setting.
Two results without regularization for the true kernel are already known. The work of
Goodman, Hou and Lowengrub, [29, 28], has a numerical point of view but uses the true
singular kernel in an interesting way. The work of Schochet [56] uses the weak formulation
of Delort of the Euler equation and proves that empirical measures with bounded energy
converge towards measures that are weak solutions to (1.7). Unfortunately, the possible lack
of uniqueness of the vorticity Equation (1.7) in the class of measures does not allow to deduce
the propagation of chaos.

The main difference between (1.1) and (1.6) is that System (1.1) is second order while (1.6)
is first order. In particular given a test particle at the origin, one may consider the subset of
the one particle phase space (or position-velocity space) corresponding to collisions; the one
particle phase space is R2 for 2dEuler and R2d in the Vlasov case. The subsets corresponding
to collisions are very different in either cases: this subset is {0} ⊂ R2 for Euler versus
Rd ⊂ R2d for Vlasov. And so proving convergence results leads to quite different difficulties
in both situations as it requires to control collisions or “near” collisions.

The references mentioned above use the symmetry of the forces in the vortex case; a
symmetry which cannot exist in our kinetic problem, independently of additional structural
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assumptions like F = −∇Φ. The force is still symmetric with respect to the space variable,
but there is now a velocity variable which breaks the argument used in the vortices case. For
a more complete description of the vortices system, we refer to the references already quoted
or to [32], which introduces in that case techniques similar to the one used here.

Our previous result for singular forces without cut-off. – To the best of our knowledge, the
only mean field limit result available up to now for System (1.1) with singular forces is [34].
We proved the mean field limit (not the propagation of chaos) provided that:

– The interaction force F satisfies an (Sα)-condition with α < 1.
– The particles are initially well distributed, meaning that the minimal inter-distance

in R2d is of the same order as the average distance between neighboring parti-
cles N−1/2d.

The second assumption is all right for numerical purposes but does not allow to consider
physically realistic initial conditions, as per the propagation of chaos property. This assump-
tion is indeed not generic for empirical measures randomly chosen with law (f0)⊗N , i.e., it
is satisfied with probability going to 0 in the large N limit.

Organization of the paper. – In the next section, we precisely state our main theorems. In
the third section, we introduce the notation, recall some results on the Vlasov-Poisson Equa-
tion (1.5) and give a short sketch of the proof. The fourth and longest section is devoted to
the proof of the main field limit results, and we explain in the fifth section why those deter-
ministic results imply the propagation of chaos. The sixth section contains two important
discussions: one about the existence of solution to the system of ODE (1.1), and a second
explaining why we cannot use the structure of the force term, when it is of potential form,
attractive or repulsive. Finally, two useful propositions are proved in the appendix.

2. Main results

Before stating our main results, we recall the definition of the order one Monge-
Kantorovitch-Wasserstein distance (MKW) denoted W1: for two probability measures µ, ν
on Rn with finite first moment, define

W1(µ, ν) := inf
π∈Π(µ,ν)

∫
Rn×Rn

|x− y|π(dx, dy),

where Π(µ, ν) stands for the set of all probability measures on Rn×Rn with first marginal µ
and second marginal ν (see also Definition 5). Here and everywhere, | · | stands for the usual
Euclidean distance. Roughly speaking, the 1-MKW distance measures the minimal cost of
the transport from a measure to the other one. We refer to Villani’s book for more details [61].

2.1. The results without cut-off

Our main result in this article is deterministic: It proves that the mean field limit holds,
provided that interaction forces still satisfy an (Sα)-condition (1.2) with α < 1. The initial
distributions of particles have to be uniformly compactly supported, and to satisfy a bound
from above on a “discrete uniform norm” and again a bound from below on the minimal
distance between particles (in position and speed) which is much less demanding than in [34].
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PROPAGATION OF CHAOS FOR VLASOV EQUATIONS WITH SINGULAR FORCES 899

T 1. – Assume that d ≥ 2 and that the interaction force F satisfies an (Sα) condi-
tion (1.2), for some α < 1 and let 0 < γ < 1.

Assume that f0 ∈ L∞(R2d) is non-negative, and has compact support and total mass one,
and denote by f the unique non-negative, global, bounded, and compactly supported solution f
of the Vlasov Equation (1.5), see Proposition 2.

Assume that the initial conditionsZ0 are such that for eachN , there exists a global solutionZ
to the N particle system (1.1), and that the initial empirical distributions µ0

N of the particles
satisfy

i) for a constant C∞ independent of N ,

sup
z∈R2d

Nγµ0
N

(
B2d

(
z,N−

γ
2d

))
≤ C∞, and ‖f0‖∞ ≤ C∞;

ii) for some R0 > 0, ∀N ∈ N, Suppµ0
N ⊂ B2d(0, R0);

iii) for some r ∈ (0, r∗) where r∗ := d−1
1+α ,

inf
i 6=j
|(X0

i , V
0
i )− (X0

j , V
0
j )| ≥ N−γ(1+r)/2d.

Then for any T > 0, there exist two constants C0(R0, C∞, F, T ) and C1(R0, C∞, F, γ, r, T )

such that for N ≥ C1, the following estimate holds

(2.1) ∀ t ∈ [0, T ], W1(µN (t), f(t)) ≤ eC0t
(
W1(µ0

N , f
0) + 2N−

γ
2d

)
.

R 1. – The conditions (i)-(iii) are fulfilled when the initial positions and velocities of
the particles are chosen on a mesh. They are also fulfilled when one considers a finite number of
particles inside cells of a mesh, as it is usually done in PIC method.

To deduce from the previous theorem the propagation of chaos, it remains to show that we
can apply its deterministic stability result to most of the random initial conditions. Precisely,
we can show that when the initial positions and velocities are i.i.d. with law f0, then the
conditions (i)-(iii) of Theorem 1 are satisfied with a probability going to one in the limit. This
leads to a quantitative version of propagation of chaos.

T 2. – Assume that d ≥ 3 and that F satisfies an (Sα)-condition (1.2) with α < 1.
There exist a positive real number γ∗ ∈ (0, 1) depending only on (d, α) and a function
s∗ : γ ∈ (γ∗, 1)→ s∗γ ∈ (0,∞) such that:

for any non negative initial data f0 ∈ L∞(R2d) with compact support and total mass one,
denoting by f the unique global, non-negative bounded, and compactly supported solution f to
the Vlasov Equation (1.5), see Proposition 2;

for each N ∈ N∗, denoting by µN the empirical measure corresponding to the solution
to (1.1) with initial positions Z0 = (X0

i , V
0
i )i≤N chosen randomly according to the probabil-

ity (f0)⊗N .
Then, for all T > 0, any

γ∗ < γ < 1 and 0 < s < s∗γ ,

there exist three positive constants C0(T, f, F ), C1(γ, s, T, f, F ) and C2(f0, γ) such that
for N ≥ C1

(2.2) P
(
∃ t ∈ [0, T ], W1(µZN (t), f(t)) ≥ 3 eC0tN−

γ
2d

)
≤ C2

Ns
.
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The constants C1 and C2 blow up when γ or s approach their maximum value.

R 2. – We have explicit formulas for γ∗ and s∗γ namely

(2.3) γ∗ :=
2 + 2α

d+ α
and s∗γ :=

γd− (2− γ)α− 2

2(1 + α)
.

Those conditions are not completely obvious, but it can be checked that if α < 1 and d ≥ 3,
then γ∗ < 1, so that admissible γ exists. And for an admissible γ, s∗γ is also positive, so that
admissible s also exists. The best choices for γ and s would be γ = 1 and s = d−α−2

2(1+α) as those
give the fastest convergence. Unfortunately the constant C1 and C2 would then be +∞ hence
the more complicated formulation.

R 3. – The expected distance between neighboring particles thrown at random inde-
pendently and uniformly in a ball of radius 1 of R2d is of order N−1/2d. So roughly speaking,
under the assumptions of Theorem 2, except for a small set of initial conditions, the deviation
between the empirical measure and the limit is almost of order of the average inter-particle dis-
tance in position-velocity space.

R 4. – The deterministic Theorem 1 is valid in dimension 2. Unfortunately, its
assumptions are not generic in dimension 2 for initial conditions chosen randomly and indepen-
dently. This is why we cannot prove the propagation of chaos for d = 2 in Theorem 2 even for
small α. In fact, note for instance that if d = 2 then γ∗ defined in (2.3) is larger than 1 so that
it is never possible to find γ in (γ∗, 1).

R 5. – Theorem 2 is not exactly a result of “propagation”, since the assumption on
the independence of the initial particles cannot be strictly propagated in time for obvious reasons.
However, we cannot provide a result of propagation of chaos in the usual sense considered in the
literature (with a general chaotic sequence as initial distribution of particles). Indeed, we need
assumptions (on the minimal distance between particles, on a discrete uniform norm,. . .) that
are not implied by the chaoticity of Definition 3. However, we could still consider more general
f0-chaotic sequences provided additional assumptions are made. For instance, our techniques
imply a result like

Rough statement of propagation of f -chaotic sequences. – Assume that the forceF and the ini-
tial condition f0 satisfy the assumptions of Theorem 2. Assume as well that the distribution fN0
is f0-chaotic, and that for some C∞ > 0, R > 0 and r > 1, the points i), ii), iii) of Theorem 1
are satisfied with a probability going to 1 as N goes to infinity.

Then for any t > 0, the same holds at time t: The distribution fN (t) of particles at time t
is f(t)-chaotic and satisfies points i), ii), iii) of Theorem 1 for some C∞(t) > 0, R(t) > 0 and
r(t) > 1 with large probability.

R 6. – The arguments in the proof of Theorem 2 prove that, at fixedN , there exists
a global solution to (1.4) for a large set of initial conditions. In fact, in a very sketchy way, this
theorem also propagates a control on the minimal inter-particles distance in position-velocity
space. Used as is, it only says that asymptotically, the control is good with large probability.
However for fixed N , if we let some constants increase as much as needed, it is possible to
modify the argument and obtain a control for almost all initial configurations. Since the proof
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also implies that the only bad collisions are the collisions with vanishing relative velocities, we
can obtain existence (and also uniqueness) for almost all initial data of the ODE (1.1).

Theorem 2 states the propagation of chaos using the formulation iii) of Definition 3.
Thanks to the equivalence of the three formulations, it may be restated in terms of conver-
gence of marginals. In fact, using the notion of entropic chaotic sequence (introduced in [37],
formalized in [13], see also [35, Definition 1.3]), we can even state a result of convergence of
the marginals in L1.

We first recall the definition of the entropy: for a probability measure with density fN

on R2dN ,

H(fN ) :=

∫
R2dN

ln
(
fN (z)

)
fN (Z) dZ,

which is well defined in R ∪ {+∞} when fN is compactly supported (see for instance [35,
Lemma 3.1]). We emphasize that this definition also covers the case N = 1.

C 1. – Under the assumption of Theorem 2, the law fN (t) of the particle system
ZN (t) at time t is entropically f(t)-chaotic:

(2.4) ∀ t ≥ 0, ∀ k ∈ N, fNk (t) −−−−−⇀
N→+∞

f(t)⊗k, and
1

N
H
(
fN (t)

)
−−−−−→
N→+∞

H(f(t)).

This implies in particular a stronger version of the point i) in Definition 3. Precisely that

∀ k ∈ N,
∥∥fNk (t)− f(t)⊗k

∥∥
L1 −−−−−→

N→+∞
0.

The proof of Corollary 1 is performed after the proof of Theorem 2.

The improvements with respect to [34]. – The major improvement is the much weaker
assumption in Theorem 1 on the initial distribution of positions and velocities, which
enables us to prove the propagation of chaos.

The method of the proof is also quite different. It now relies on explicit bounds between
the empirical measure and an appropriate solution to the limit Equation (1.5). This lets us
easily use the properties of (1.5), and dramatically simplifies the proof in the long time case
which was very intricate in [34] and does not require any special treatment here.

Finally, our analysis is now quantitative: for large enough N , Theorem 1 gives a precise
rate of convergence in Monge-Kantorovitch-Wasserstein distanceW1, with important appli-
cations from the point of view of the numerical analysis (giving rates of convergence for par-
ticles’ methods for instance). For more details about the novelties and improvements with
respect to [34], we refer to the sketch of the proof in Subsection 3.3.

Unfortunately, the condition on the interaction forceF is still the same and does not allow
to treat Coulombian interactions. There are some physical reasons for this condition, which
are discussed at the end of the article in Subsection 6.2. We refer to [4] for some ideas in how
to go beyond this threshold in the repulsive case.
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2.2. The results with cut-off

The result presented here is in one sense slightly weaker than the previously known result
[24], since we just miss the critical case α = d − 1. But in that work the cut-off used is
very large: ε(N) ≈ (lnN)−1. Instead we are able to use cut-off that are some power of N
and much more realistic from a physical point of view. For instance, astrophysicists doing
gravitational simulations (α = d− 1) with “tree codes” usually use small cut-off parameters,
lower than N−1/d by some order. See [17] for a physically oriented discussion about the
optimal length of this parameter.

T 3. – Assume that d ≥ 2 and that the interaction force FN satisfies an (Sαm) con-
dition (1.3), for some 1 ≤ α < d− 1, with a cut-off order satisfying

m < m∗ :=
1

2d
min

(
d− 2

α− 1
,

2d− 1

α

)
,

and choose any γ ∈
(
m
m∗ , 1

)
.

Assume that f0 ∈ L∞(R2d) is non-negative and has compact support and total mass one,
and denote by f the unique, non-negative, bounded, and compactly supported solution f of the
Vlasov Equation (1.5) on the maximal time interval [0, T ∗), see Proposition 2.

Assume also that for any N , the initial empirical distribution of the particles µ0
N satisfies:

i) for a constant C∞ independent of N ,

sup
z∈R2d

Nγµ0
N

(
B2d

(
z,N−

γ
2d

))
≤ C∞, and ‖f0‖∞ ≤ C∞;

ii) for some R0 > 0, ∀N ∈ N, Suppµ0
N ⊂ B2d(0, R0).

Then for any time T < T ∗, there exist C0(R0, C∞, F, T ) and C1(R0, C∞, F, γ, r, T ) such that
for N ≥ C1 the following estimate holds

(2.5) ∀ t ∈ [0, T ], W1(µN (t), f(t)) ≤ eC0t
(
W1(µ0

N , f0) + 3N−
γ
2d

)
.

R 7. – One would like to take m as large as possible if we want to be close to the
dynamics without cut-off.

R 8. – As mentioned earlier, that theorem is interesting when the cut-off parameter
is small in a suitable sense. For instance, it is interesting to known when a cut-off of order smaller
than N−1/d is allowed, since the latter order is the one of the average inter-particle distance in
position space. This happens in fact when m∗ > d−1 and leads to the condition α < d

2 .

R 9. – Theorem 3 is also interesting for numerical simulations with particle’s
methods [1, 7, 30] because one obvious way to fulfill the assumption i) is to put particles
initially on a mesh (with a grid length of N−1/2d in R2d). In that case, the result is even valid
with γ = 1.

As in the case without cut-off, the fact that the mean-field limit holds under “generic”
conditions implies the propagation of molecular chaos.
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T 4. – Assume that d ≥ 3 and that FN satisfies a (Sαm)-condition for some
1 ≤ α < d− 1 with a cut-off order m such that

m < m∗ :=
1

2d
min

(
d− 2

α− 1
,

2d− 1

α

)
,

and choose any γ ∈
(
m
m∗ , 1

)
.

Choose any non-negative initial condition f0 ∈ L∞ with compact support and total mass one
for the Vlasov Equation (1.5), and denote by f the unique non-negative and strong solution of
the Vlasov equation (1.5) with initial condition f0 on the maximal time interval [0, T ∗), given
by Proposition 2.

For eachN ∈ N∗, consider the system (1.1) for FN with initial positions (Xi, Vi)i≤N chosen
randomly according to the probability (f0)⊗N .

Then for any time T < T ∗, there exist positive constants C0(T, f, F ), C1(γ,m, T, f, F ),
C2(f) and C3(f) such that for N ≥ C1

P
(
∃ t ∈ [0, T ], W1(µN (t), f(t)) ≥ 4 eC0tN−

γ
2d

)
≤ C2N

γ e−C3N
λ

,

where λ = 1−max
(
γ, 1

d

)
.

R 10. – Our result is valid only locally in time (but on the largest interval of time
possible) in the case where blow-up may occur in the Vlasov equation, as for instance in
dimension larger than or equal to four with attractive interactions. But it is valid for any time in
dimension three, since in that case the strong solutions of the Vlasov equations we are dealing
with are global, see Proposition 2 in Section 3.2.

As in the case without cutoff, the result may be restated in term of convergence of the
k-marginals.

C 2. – Under the assumption of Theorem 4, the law fN (t) of the particle sys-
tem ZN (t) at time t is entropically f(t)-chaotic:

∀ t ≥ 0, ∀ k ∈ N, fNk (t) −−−−−⇀
N→+∞

f(t)⊗k, and
1

N
H
(
fN (t)

)
−−−−−→
N→+∞

H(f(t)).

This implies in particular a stronger version of the point i) in Definition 3. Precisely that

∀ k ∈ N,
∥∥fNk (t)− f(t)⊗k

∥∥ −−−−−→
N→+∞

0.

2.3. Open problems and possible extensions

In dimension d = 3, the minimal cut-off is given by m∗ = γ
6 min((α − 1)−1, 5α−1). As

γ can be chosen very close to one, for α larger but close to one, the previous bound tells us
that we can choose cut-off of order almostN−5/6, i.e., much smaller than the likely minimal
inter-particles distance in position space (of orderN−2/3, see the third section). With such a
small cut-off, one could hope that it is almost never used when we calculate the interaction
forces between particles. Only a negligible number of particles will become that close to one
another before the time T . This suggests that there should be some way to extend the result
of convergence without cut-off at least to some α > 1.

Unfortunately, we do not know how to make rigorous the previous argument on the
close encounters. First it is highly difficult to translate for particles system that are highly
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correlated. To state it properly we needL∞ bounds on the 2-particle marginal. But obtaining
such a bound for singular interactions seems difficult. Moreover, it remains to control the
influence of particles that have had a close encounter (their trajectories after an encounter
are not well controlled) on the other particles.

Many particles systems with diffusion. – It would be very natural to try to adapt our tech-
niques to the stochastic case of Langevin equations
(2.6)

∀i ≤ N,


Xi(t) = X0

i +

∫ t

0

Vi(s) ds

Vi(t) = V 0
i +

1

N

∑
j 6=i

∫ t

0

F (Xi(s)−Xj(s)) ds− λ
∫ t

0

Vi(s) ds+ νBi(t),

where the Bi are independent Brownian motions, and ν, λ > 0. Solutions of that system
should formally converge to solutions of the Jeans-Vlasov-Fokker-Planck equation

(2.7)


∂tf + v · ∇xf + E(x) · ∇vf =

ν2

2
∆vf + λ div(vf) ,

E(x) =

∫
Rd
ρ(t, y)F (x− y) dy.

It was shown by McKean in [46] that the propagation of chaos holds when F ∈ W 1,∞. But
to the best of our knowledge, there is no similar result when the interaction force is singular,
even weakly. Our techniques, which rely on strong controls on the trajectories and on the
minimal inter-particle distance are very sensitive to noise, and cannot be directly adapted to
the stochastic case.

Remark that the situation is in some way “opposite” in the vortex case. The propagation
of chaos for the stochastic vortex system (the system (1.6) with independent noises) was first
proved by Osada in the eighties [50], and recently generalized by Fournier, Mischler and the
first author [22]. But what happens for the Euler equation is still not well understood despite
interesting efforts [56].

3. Notation, useful results and sketch of the proof

3.1. ∞-MKW distance, blob distributions and more notation

In the sequel (and before), we always use the Euclidean distance on Rd for positions or
velocities, or on R2d for couples of “position-velocity”. It will simply be denoted by |x|, |v|,
|z|. The notationBn(a,R) will always stand for the ball of center a and radiusR in dimension
n = d or 2d. The Lebesgue measure of a measurable set A will also be denoted by |A|.

Empirical distribution µN and minimal inter-particle distance dN . – Given a configuration
Z = (Xi, Vi)i≤N of the particles in the phase space R2dN , the associated empirical distribu-
tion is the measure

µZN =
1

N

∑
δXi,Vi .

An important remark is that if (Xi(t, ), Vi(t))i≤N is a solution of the system of ODE (1.1),
then the measure µZN (t) is a solution of the Vlasov Equation (1.5) in a weak sense, provided
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that we define also the interaction force at zero with F (0) = 0. As said before, this condition
is necessary since there is no self interaction in the Newton system (1.1).

For every configuration (or equivalently for every empirical measure), we define the
minimal distance dZN between particles in R2d

(3.1) dZN = dN (µZN ) := min
i6=j
|Zi − Zj | = min

i6=j

(
|Xi −Xj |2 + |Vi − Vj |2

) 1
2 .

This is not an averaged quantity, contrary to most of the relevant quantities in statistical
physics and thermodynamics, but an extremal one. However it is crucial to control the
possible concentrations of particles and we will need to bound that quantity from below.

In the following we often omit the Z superscript, in order to keep “simple” notation.

Infinite MKW distance. – We use many times the Monge-Kantorovitch-Wasserstein dis-
tances of order one and infinite. The order one distance, denoted by W1, is classical and
we refer to the very clear book of Villani for definition and properties [61]. The second one
denoted W∞ is not widely used, so we recall its definition. We start with the definition of
transference plane

D 5. – Given two probability measures µ and ν on Rn for any n ≥ 1, a
transference plane π from µ to ν is a probability measure on X ×X such that∫

X

π(x, dy) = µ(x),

∫
X

π(dx, y) = ν(y),

that is the first marginal of π is µ and the second marginal is ν.

With this we may define the W∞ distance

D 6. – For two probability measures µ and ν on Rn, with Π(µ, ν) the set of
transference planes from µ to ν:

W∞(µ, ν) = inf
{
π − esssup |x− y|

∣∣ π ∈ Π
}
.

There is also another notion, called the transport map. A transport map is a measurable
map T : Suppµ → Rn such that T#µ = ν, where the pushforward of a measure m by a
transform L is defined by

L#m(O) = m(L−1(O)), for any measurable set O.

In fact, it can be checked that to any transport map, one may associate a transference plane
through the measure (Id, T )# µ ∈ Π; this measure is actually the pushforward of µ via
the map x →

(
x, T (x)

)
. In one of the few works on the subject [15] Champion, and De

Pascale and Juutineen prove that if µ is absolutely continuous with respect to the Lebesgue
measure L, then at least one optimal transference plane for the infinite MKW distance
is given by an optimal transport map, i.e., there exists T such that T#µ = ν (and thus
(Id, T )# µ ∈ Π), and

W∞(µ, ν) = µ− esssupx |Tx− x|.
Although that is not mandatory (we could actually work with optimal transference planes),
we will use this result and work in the sequel with transport maps. That will greatly simplify
the notation in the proof.
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Optimal transport is useful to compare the discrete sum appearing in the force induced by
the N particles to the integral of the mean-field force appearing in the Vlasov equation. For
instance, if f is a continuous distribution and µN an empirical distribution we may rewrite
the interaction force of µN using a transport map T = (Tx, Tv) of f onto µN

1

N

∑
i 6=j

F (X0
i −X0

j ) =

∫
F (X0

i − Tx(y, w))f(y, w) dydw.

Note that in the equality above, the function F is singular at x = 0, and that we impose
F (0) = 0. The interest of the infinite MKW distance is that the singularity is still localized
“in a ball” after the transport : The term under the integral in the right-hand side has no
singularity out of a ball of radius W∞(f, µN ) in x. Other MKV distances of order p < +∞
destroy that simple localization after the transport, which is why it seems more difficult to
use them.

The use of that distance yields rates of convergence, improving in that way our previous
work on the subject [34]. To our knowledge however this distance was only seldom used in
the literature: It was used by McCann [45] for a problem of stability of rotating binary stars,
and by the first authors and collaborators [32, 14] for mean-field limits for the Euler equation
and the aggregation equation.

The scale ε. – We also introduce a scale

(3.2) ε(N) = N−γ/2d ,

for some γ ∈ (0, 1) to be fixed later but close enough to 1. Remark that this scale is
larger than the average distance between a particle and its closest neighbor, which is of
order N−1/2d. We will often define quantities directly in term of ε rather than N . For
instance, the cut-off order m used in the (Sαm)-condition may be rewritten in term of ε, with
m̄ := 2d

γ m ∈
(
1,min( d−2

α−1 ,
2d−1
α )

)
.

(3.3) (Sαm)

i) F satisfies an (Sα)-condition,

ii) ∀ |x| ≥ εm̄, FN (x) = F (x),

iii) ∀ |x| ≤ εm̄, |FN (x)| ≤ ε−m̄α.

The solution fN of Vlasov equation with blob initial condition. – We define a smoothing of µN
at the scale ε(N). For this, we choose a bounded kernel φ : R2d → R radial with compact
support in B2d(0, 1) and total mass one, and denote φε(·) = ε−2dφ(·/ε). The precise choice
of φ is not very relevant here, and the simplest one is maybe φ = 1

|B2d(0,1)|1B2d(0,1). We use
this to smooth µN and define

(3.4) f0
N = µ0

N ∗ φε(N),

and denote by fN (t, x, v) the solution to the Vlasov Eq. (1.5) for the initial condition f0
N .

With fN , the assumption of point i) in Theorems 1 and 3 may be rewritten

‖f0
N‖∞ ≤ C∞,

independently of N . Since solutions of the Vlasov equation are transported along the char-
acteristic of the associated vector-field, even in the case where that vector-field is only inW 1,1

(see [2] for details), the uniform L∞ bound also holds for any time. That L∞ bound together
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with an estimate on the growth of the support lets us use standard stability estimates to con-
trol the W1 distance of fN to another solution of the Vlasov equation, see Loeper’s result
[43] recalled in Proposition 3.

A key point in the rest of the article is that f0
N and µ0

N are very close in W∞ distance as
per

P 1. – For any φ : R2d → R radial with compact support inB2d(0, 1) and total
mass one we have for any µ0

N = 1
N

∑N
i=1 δ(X0

i ,V
0
i )

W∞(f0
N , µ

0
N ) = cφε(N)

where cφ is the smallest c for which Suppφ ⊂ B2d(0, c).

Proof. – Unfortunately even in such a straightforward case, it is not possible to give a
simple explicit formula for the optimal transport map. But there is a rather simple optimal
transference plane. Define

π(x, v, y, w) =
1

N

∑
i

φε(x− y, v − w) δ(X0
i , V

0
i )(y, w).

Note that ∫
R2d

π(x, v, dy, dw) = [µ0
N ∗ φε](x, v) = f0

N (x, v),

and since φε has mass 1∫
R2d

π(dx, dv, y, w) =
1

N

∑
i

δ(X0
i , V

0
i )(y, w) = µ0

N (y, w).

Therefore π is a transference plane between f0
N and µ0

N . Now take any (x, v, y, w) in the
support of π. By definition there exists i such that y = X0

i , w = V 0
i and (x, v) is in the

support of φε(.−X0
i , v − V 0

i ). Hence by the assumption on the support of φ

|x− y|2 + |v − w|2 ≤ c2φ[ε(N)]2,

which gives the upper bound.

We turn to the lower bound. Remark that the fact that φ is assumed to be radial and the
definition of cφ imply that φ > 0 on B2d(0, cφ). Choose X0

i , V
0
i any extremal point of the

cloud (X0
j , V

0
j )j≤N . Denote ui ∈ S2d−1 a vector separating the cloud at X0

i , V
0
i , i.e.,

ui · (X0
j −X0

i , V
0
j − V 0

i ) < 0, ∀j 6= i.

Now define (x, v) = (X0
i , V

0
i ) + λ ε(N)ui. Since φε is radial and φε > 0 on B(0, cφ ε) then

f0
N (x, v) > 0 when λ < cφ. Denote by T the optimal transference map. T (x, v) has to be one

of the (X0
j , V

0
j ). Hence by the definition of ui, |(x, v) − T (x, v)| ≥ λ ε(N). Since it is true

for any λ < cφ, and for any ũ in a neighborhood of u, it implies that f0
N − esssup |T − Id| ≥

cφε(N). That last argument may be adapted if we use an optimal transference plane, rather
than a map. This means in particular that the plane π defined above is optimal. But it is not
the only one, except if the blobs never intersect.

Before turning to the proof of our results on the mean field limit, we give some results
about the existence and uniqueness of strong solutions to the Vlasov Equation (1.5).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



908 M. HAURAY AND P.-E. JABIN

3.2. Uniqueness, stability of solutions to the Vlasov Equation 1.5

The already known results about the well-posedness (in the strong sense) of the Vlasov
equation that we are considering are gathered in the following proposition.

P 2. – For any dimension d, and any α ≤ d− 1, and any compactly supported
and bounded initial condition f0 there exists a unique local (in time) strong solution to the
Vlasov Equation (1.5) that remains bounded and compactly supported. In general, the maximal
time of existence T ∗ of this solution may be finite, but in the two particular cases below we have
T ∗ = +∞ :

• α < 1 (and any d),
• d ≤ 3, and α ≤ d− 1.

In the other cases, the maximal time of existence of the strong solution may be bounded from
below by some constant depending only on the L∞ norm and the size of the support of the initial
condition f0. The size of the support at any time tmay also be bounded by a constant depending
on the same quantities.

The local existence part in Proposition 2 is a consequence of the following lemma which
is proved in the appendix and the following Proposition 3

L 3. – Let f ∈ L∞([0, T ], R2d) with compact support be a solution to (1.5) in the
sense of distribution with an F satisfying an (Sα) condition (1.2) with α ≤ d − 1. Then if we
denote by R(t) and K(t) the maximal position and velocity in the support of f :

RX(t) := sup
{
|x| | ∃ v ∈ Rd, f(t, x, v) > 0

}
,

RV (t) := sup
{
|v| | ∃x ∈ Rd, f(t, x, v) > 0

}
,

they satisfy for a numerical constant C

RX(t) ≤ RX(0) +

∫ t

0

RV (s) ds,

RV (t) ≤ RV (0) + C ‖f(0)‖α/dL∞ ‖f(0)‖1−α/dL1

∫ t

0

RV (s)α ds.

The local uniqueness part in Proposition 2 is a consequence of the following stability
estimate proved in [43] for α = d − 1. Its proof may be adapted to less singular case. For
instance, the adaptation is done in [32] in the Vortex case.

P 3 (Loeper). – If f1 and f2 are two solutions of Jeans-Vlasov Equation (1.5)
respectively with different interaction forces F1 and F2 both satisfying an (Sα)-condition with
α < d− 1, then

d

dt
W1(f1(t), f2(t)) ≤ C max(‖ρ1(t)‖∞, ‖ρ2(t)‖∞)

[
W1(f1(t), f2(t)) + ‖F1 − F2‖1

]
,

where ρi denotes the position distribution associated to fi: ρi(t, x) :=
∫
fi(t, x, v) dv.

In the caseα = d−1, Loeper only obtains in [43] a “log-Lipschitz” bound and not a linear
one, but it still implies the stability.

Finally, the global character of the solution in Proposition 2 is
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– a consequence of Lemma 3 if α < 1, since in that case, the estimates obtained in that
lemma show that R(t) and K(t) cannot blow up in finite time,

– a much more delicate issue in the case d ≤ 3, and α = d− 1, finally solved in [42], [55]
and [51]. Their proofs may also be extended to the less singular case α < d− 1.

3.3. A short sketch of the proofs

Here we only present “almost correct” ideas, and refer to the proof for fully correct
statements. We put the emphasis on the novelty with respect to our previous work [34]. We
concentrate mostly on the proof of Theorem 1: the proof of Theorem 3 is very similar and
simpler, and we say only a few words about the propagation of chaos at the end.

We use the notation introduced in Section 3.1 and two quantities defined below. Recalling
the real r ∈ (0, r∗) introduced in assumption iii) of Theorem 1, we define:

d̃N (t) := ε−(1+r) dN (t), W̃∞(t) := ε−1W∞(t).

The assumption iii) of Theorem 1 implies that d̃N is initially larger than 1, and by Proposi-
tion 1, W̃∞ is initially equal to a constant cφ > 0 depending only on the cut-off φ used in the
construction of the blob-approximation.

As mentioned above, the Vlasov Equation (1.5) is satisfied by the empirical distribution
µN of the interacting particle system provided that F (0) is set to 0. Hence the problem
of convergence can be reformulated into a problem of stability of the empirical measures
µN (t)—seen initially as measure valued perturbations of the smooth profile f0—but around
the smooth solution f(t) of the Vlasov equation. The proof of the two mean-field limit results
uses two ingredients to obtain this stability, which is given in term of an explicit control
on W1

(
µN (t), f(t)

)
– A standard stability estimate (See Proposition 3) for solution of the Vlasov-Poisson

Equation (1.5), (with the 1 Monge-Kantorovitch-Wasserstein distance W1):

W1

(
fN (t), f(t)

)
≤ eCtW1

(
f0
N , f

0
)
, C := sup

s≤t

(
‖ρf (s)‖∞ + ‖ρfN (s)‖∞

)
.

– A control onW∞(t) = W∞
(
µN (t), fN (t)

)
(remark that we always have the inequality

W1

(
µN (t), fN (t)

)
≤W∞(t)).

Once this is achieved, we get a quantitative control on the rate of convergence. This is
an important improvement with respect to [34], where we used a compactness argument to
prove the convergence and did not get any convergence rate.We emphasize that the use of the
infinite MKW distance is important. We were not able to perform our calculations with other
MKW distances of order p < +∞ as the infinite distance is the only MKW distance with
which we can handle a localized singularity in the force and Dirac masses in the empirical
distribution.

The control onW∞(t) requires to estimate the difference between the force terms acting in
the two systems (the particle system and the continuous distribution fN ). Precisely, we need
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to compare averages on short time intervals of length ε of the forces:

ẼN (t, i) =
1

N

∑
j

∫ t

t−ε
F
(
Xi(s)−Xj(s)

)
ds,

Ẽ∞(t, z) =

∫
Rd

∫ t

t−ε
F (xs − y)f(s, y, w) dydw ds,

when Zi = (Xi, Vi) and z = (x, v) are close (xs denotes the position at time s of the point
starting at (t, z) when following the characteristics defined by fN ). For this comparison, it is
necessary to distinguish the contributions of three domains:

– Contribution of particles j (and point y) far enough from Xi and x in the physical
space. This is the simplest case as one does not see the discrete nature of the problem
at that level. The estimates need to be adapted to the W∞ distance used here but are
otherwise very similar in spirit to the continuous problem or other previous works for
mean field limits.

– Contribution of particles j (and point y) ε-close in the physical space Rd to Xi and
x, but with sufficiently different velocities. It corresponds to a domain of volume of
order εd, but where the force is singular. Here we start to see the discrete level of the
problem and in fact we cannot compare anymore the discrete and continuous forces:
Instead we just show that both are small. The continuous force term is handled easily,
but the discrete force term requires more work: the short average in time is really
required to get rid of possible singularities.

Precisely, consider a second particle j 6= i, and neglect the variation of velocities
on [t− ε, t]. Because of (1.2), with α < 1, we have∫ t

t−ε
|F (Xi(s)−Xj(s))| ds ∼

∫ t

t−ε

ds

|δ + (s− s0)(Vi − Vj)|α
.

ε1−α

|Vi − Vj |−α

where δ is the minimum distance between the two particles on the time interval [t−ε, t],
which is reached at time s0. The full contribution is obtained after a careful summation
on all the particles j of the domain.

There is here a major improvement with respect to [34]. In this previous work
bounding the number of particles in that domain was straightforward, since we
assumed that ε ≤ dN (that bound was propagated in time) so that particles were
mostly equidistributed at scale ε. Instead here, we use the L∞ bound on fN and the
W∞ distance to obtain a control of the contribution of all these particles, which is
more delicate.

– Contribution of particles ε-close in R2d, i.e., in position and velocity. This a very small
domain, of volume of order ε2d, but it contains particles that are close in physical space
and are likely to remain close for a rather long time (small relative velocity).

Again, there is a major improvement with respect to [34], as this case was relatively
simple there: under our restrictive assumption on dN that last domain contained only
a bounded number of particle. Here the lower bound on dN is much smaller, of order
ε1+r. It is even surprising that it is possible to control dN at a scale which is much
lower than the natural discrete scale of the problem. The key to this new control is due
to the fact that the ODE system is second order so that the trajectories (in position
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space) can be approximated by straight lines up to second order in time, thanks to a
discrete Lipschitz estimate on ẼN . Using this idea, careful estimates allow to control
the influence of one single particle. Then, the number of particles in the domain is
bounded, again with the help of ‖fN‖∞ and W∞.

All of this leads to the following estimate

W̃∞(t)− W̃∞(t− ε)
ε

≤ C
(
W̃∞(t) + εβ1W̃ d

∞(t) + εβ2W̃ 2d
∞ (t)d̃N (t)−α

)
,

where β1, β2 > 0 under the assumptions of Theorem 1. The three terms of the r.h.s.
come respectively from the three domains mentioned above. We complete the proof
with an inequality on d̃N (t) obtained in a similar way (β3, β4 > 0)

d̃N (t)− d̃N (t− ε)
ε

≥ −C
(
d̃N (t) + εβ3W̃ d

∞(t) + εβ4W̃ 2d
∞ (t)d̃N (t)−α

)
.

The two previous inequalities form an (implicit) time discretization of a system of
two differential inequalities. As the non-linear terms come with small weight εβi , the
previous system provides uniform bounds until a critical time Tε with Tε → ∞ as
ε→ 0; hence for any fixed T , Tε > T for N large enough (depending on T ).

About the restriction α < 1. – This restriction is clearly manifested when two particles
with non vanishing relative velocity become relatively close. The physical explanation is the
following: if α < 1 the deviation in velocity due to a collision (another particle coming very
close) with a sufficiently large relative velocity cannot be too large: for instance, two particles
with sufficiently large relative velocity will never bounce back even if they exactly collide at
some time. So we do not expect any fast variation in the velocities of the particles and our
analysis shows that we can rigorously prove that claim. This is why it is enough to control
the distance in R2d between particles: the only “bad events” are the collisions with very small
relative velocities. In contrast when α > 1, a particle coming very close to another one can
change its velocity over a very short time interval (even if their relative velocity remains of
order 1): for instance the two particles can bounce back. Such “collisions” are incompatible
with our argument since a control on the distance between particles in position-velocities
does not allow to prevent them. When such an event happens, we are not able to control the
trajectories of the particles involved after that. Even if it happens only once, we cannot adapt
our strategy of proof, which requires a control on W∞, i.e., a control on all the trajectories.

The propagation of chaos results. – To deduce Theorem 2 from Theorem 1, it is enough to
show that the conditions i) and iii) under which our mean-field limit theorem is valid, are
satisfied with large probability in the limit. This relies on already known results or on rather
simple statistical estimates:

– for point i), it relies on a large deviation bound for ‖fN‖∞, see Proposition 8,
– for point iii) it relies on a simple estimate (not of large deviation type) on dN (0) proved

in [32], see Proposition 5,
– and finally, we use also some large deviation bound on W1(µ0

N , f
0) obtained by Bois-

sard [8], see Proposition 6.
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4. Proof of Theorems 1 and 3

4.1. Definition of the transport

We now try to compare the dynamics of µN and fN , which both have a compact support.
For that, we choose an optimal transport T 0 (of course depending on N ) from f0

N to µ0
N for

the infinite MKW distance. The existence of such a transport is ensured by [15]. T 0 is defined
on the support of f0

N , which is included inB2d(0, R
0) (the size of the support in position and

velocity), and Proposition 1 implies that W∞(f0
N , µ

0
N ) ≤ ε.

Thanks to the assumptions of both theorems, the strong solution fN to the Vlasov
equation is well defined till a time T ∗, infinite in the case of Theorem 1, that depends only
on C∞ and R0 and not on N . Since we are dealing with strong solutions, there exists a
well-defined underlying flow, that we will denote by Zf = (Xf , V f ) : Zf (t, s, z) being the
position-velocity at time t of a particle with position-velocity z at time s.

Moreover, by the assumption of Theorem 1 or because we use a cut-off in Theorem 3,
the dynamic of the N particles is well defined, and we can also write in that case a flow
Zµ = (Xµ, V µ), which is well defined at least at the position and velocity of the particles
we are considering. A simple way to get a transport of fN (t) on µN (t) is to transport along
the flows the map T 0, i.e., to define

T t = Zµ(t, 0) ◦ T 0 ◦ Zf (0, t), and T t = (T tx, T
t
v).

We use the following notation, for a test-“particle” of the continuous system with position-
velocity zt = (xt, vt) at time t, zs = (xs, vs) will be its position and velocity at time s
for s ∈ [t− τ, t]. Precisely

zs = Zf (s, t, zt).

Since fN is the solution of a transport equation, we have fN (t, zt) = fN (s, zs). And since the
vector-field of that transport equation is divergence free, the flow Zf is measure-preserving
in the sense that for all smooth test functions Φ∫

Φ(z) fN (s, z) dz =

∫
Φ(Zf (s, t, z)) fN (t, z) dz =

∫
Φ(zs) fN (t, zt) dzt.

That property is standard for smooth vector fields but also holds here with a vector-field
inW 1,1, see the lecture notes of Ambrosio [2]. Finally, let us remark that the fN are solutions
to the (continuous) Vlasov equations with an initialL∞ norm and support that are uniformly
bounded inN . Therefore the Proposition 2, and in particular the last assertion in it imply that
this remains true uniformly inN for any finite time T < T ∗. In particular the uniform bound
on the whole support R(T ) (in position-velocity) implies since α < d − 1 the existence of a
constant C independent of N such that for any t ∈ [0, T ]

‖fN (t, ., .)‖∞ ≤ C, ‖fN (t, ., .)‖L1 = 1,

supp fN (t, ., .) ∈ B2d

(
0, R(t)

)
, with R(t) ≤ C,

|EfN |∞(t) := ‖EfN (t, ·)‖∞ ≤ sup
x

∫
|F (x− y)| fN (t, y, w) dy dw ≤ C,

|∇EfN (t, x)| ≤
∫
|∇F (x− y)| fN (t, y, w) dy dw ≤ C,

(4.1)

where EfN stands for the force-field generated by fN : EfN (t, x) =
∫
F (x− y)fN (t, y, w) dydw.
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In what follows, the final time T is fixed and independent of N . For simplicity, C will
denote a generic universal constant, which may actually depend on T , the size of the initial
support, the infinite norms of the fN . . . But those constants are always independent of N as
in (4.1).

4.2. The quantities to control

We will not be able to control the infinite norm of the field (and its derivative) created
by the empirical distribution µN , but only a small time average of this norm. For this, we
introduce in the case without cut-off a small time step τ = εr

′
for some r′ > r and close to r

(the precise condition will appear later). In the case with cut-off where r and r′ are useless,
the time step will by τ = ε.

Before going on, we define some important quantities :

– The MKW infinite distance between µN (t) and f(t).
We wish to bound the infinite Wasserstein distance W∞(µN (t), fN (t)) between the

empirical measure µN associated to theN particle system (1.1), and the solution fN of
the Vlasov Equation (1.5) with blobs as initial condition. But for convenience we will
work instead with the quantity

(4.2) W∞(t) := sup
s≤t

sup
z∈supp fN (s)

|T s(z)− (z)|,

where the sup on z should be understood precisely as a essential supremum with respect
to the measure fN (s). This is not exactly the infinite Wasserstein distance between
µN (t) and fN (t) (or its supremum in times smaller than s ≤ t). But, since for all s,
the transport map T s sends the measure fN (s) onto µN (s) by construction, we always
have

W∞(µN (t), fN (t)) ≤ sup
s≤t

W∞(µN (t), fN (t)) ≤W∞(t).

So that a control onW∞(t) implies a control onW∞(µN (t), fN (t)). It is in fact a little
stronger, since it means that rearrangements in the transport are not necessary to keep
the infinite MKW distance bounded. We introduce the supremum in time for technical
reasons as it will be simpler to deal with a non-decreasing quantity in the sequel.

– The support of µN .
We also need a uniform control on the support in position and velocity of the

empirical distributions :

(4.3) RN (t) := sup
s≤t

max
i
|(Xi(t), Vi(t))|.

– The infinite norm |∇NE|∞ of the time averaged discrete derivative of the force field.
We define a version of the infinite norm of the averaged derivative of the discrete

force field EN

(4.4) |∇NE|∞(t) := sup
i 6=j

1

τ

∫ t

t−τ

|EN (Xi(s))− EN (Xj(s))| ds
|Xi(s)−Xj(s)|+ ε(1+r′)

ds.

For |∇NE|∞, we use the convention that when the interval of integration contains 0

(for t < τ ), the integrand is null on the right side for negative times. Remark that the
control on |∇NE|∞ is useless in the cut-off case.
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– The minimal distance in R2d, dN , which was already defined in the Equation (3.1) in
the Section 3.

– Two useful integrals Iα(t, z̄t, zt) and Jα+1(t, z̄t, zt).
Finally for any two test trajectories zt = (xt, vt) and z̄t = (x̄t, v̄t), we define

(4.5) Iα(t, z̄t, zt) :=
1

τ

∫ t

t−τ
|F (T sx(z̄s)− T sx(zs))− F (x̄s − xs)| ds,

which controls the difference of the two force fields at two points related by the “opti-
mal” transport. We recall that we use here the convention F (0) = 0, in order to avoid
self-interaction. It is important here since we have T s(zs) = T s(z̄s) for all s ∈ [t−τ, t],
for a set of (zs, z̄s) of positive measure (those who are associated to the same particle
(Xi, Vi)).

Defining a second kernel as

(4.6) Kε := min

(
1

|x|1+α
,

1

ε1+r′ |x|α

)
for x 6= 0, and Kε(0) = 0,

we introduce a second useful quantity

Jα+1(t, z̄t, zt) :=
1

τ

∫ t

t−τ
Kε

(
T sx(z̄s)− T sx(zs)

)
ds

=
1

τ

∫ t

t−τ
Kε

(
Xi(s)−Xj(s)

)
ds,

(4.7)

if i and j are the indices such that Zi(t) = T t(z̄t) and Zj(t) = T t(zt). Jα+1 will be
useful to control the discrete derivative of the field |∇NE|∞(t), and is thus useless in
the cut-off case.

All previous quantities are relatively easily bounded by Iα and Jα+1. Those last two will
not be bounded by direct calculation on the discrete system, but we will compare them to
similar ones for the continuous system, paying for that in terms of the distance betweenµN (t)

and f(t). That strategy is interesting because the integrals are easier to manipulate than the
discrete sums.

R 11. – Before stating the next proposition, let us mention that we also define
for t < 0, W (t) = W (0) and dN (t) = dN (0). This is just a helpful convention. With it the
estimates of the next proposition are valid for any t ≥ 0, and this will be very convenient in the
conclusion of the proof of our main theorem. Remark also that |∇NE|∞(0) = 0.

We summarize the first easy bounds in the following
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P 4. – Under the assumptions of Theorem 1, one has for some constant C
uniform in N that, for all t ≥ 0

RN (t) ≤W∞(t) +R(t) ≤W∞(t) + C,(i)

W∞(t) ≤W∞(t− τ) + τW∞(t) + C τ sup
z̄t

∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt,(ii)

|∇NE|∞(t) ≤ C sup
z̄t

∫
|zt|≤R(t)

Jα+1(t, z̄t, zt) dzt,(iii)

dN (t) + ε1+r′ ≥ [dN (t− τ) + ε1+r′ ]e−τ(1+|∇NE|∞(t)).(iv)

The points i) and ii) are also satisfied under the assumptions of 3.

Note that the control on RN (t) is simple enough that it will actually be used implicitly in
the rest many times. In that proposition the crucial estimates are the ii) and iii). Remark also
that in the case of very singular interaction force (α ≥ 1) with cut-off—in short (Sαm) condi-
tions (3.3)—the control on minimal distance dN and therefore the control on |∇NE|∞ are
useless, so that the only interesting inequality is the second one.

4.3. Proof of Proposition 4

Step 1. Let us start with (i). Simply write

RN (t) = sup
s≤t

sup
z∈supp fN (s,·)

|T s(z)| ≤ sup
s≤t

sup
z∈supp fN (s,·)

|T s(z)− z|+ sup
s≤t

sup
z∈supp fN (s,·)

|z|,

so indeed by the bound (4.1) and the Definition (4.2) of W∞

RN (t) ≤W∞(t) +R(t) ≤W∞(t) + C.

Step 2. For (ii), for any time t′ ∈ [t− τ, t] we have

|T t
′

x (z̄t′)− x̄t′ | ≤ |T t−τx (z̄t−τ )− x̄t−τ |+
∫ t′

t−τ
|T sv (z̄s)− v̄s| ds

≤ |T t−τx (z̄t−τ )− x̄t−τ |+ τW∞(t),(4.8)

and for the speeds

|T t
′

v (z̄t′)− v̄t′ | ≤ |T t−τv (z̄t−τ )− v̄t−τ |

+

∫ t′

t−τ

∫
|F (T sx(z̄s)− T s(zs))− F (x̄s − xs)|fN (s, zs) dzsds

≤ |T t−τv (z̄t−τ )− v̄t−τ |+
∫ t

t−τ

∫
|F (T sx(z̄s)− T s(zs))− F (x̄s − xs)|fN (t, zt) dztds.

where we used the fact that the change of variable zt 7→ zs preserves the measure. Since
fN (t) is uniformly bounded in L∞ and compactly supported in B2d(0, R(t)), one gets by
the Definition (4.5) of Iα

(4.9) |T t
′

v (z̄t′)− v̄t′ | ≤ |T t−τv (z̄t−τ )− v̄t−τ |+ Cτ sup
z̄t

∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt.
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Summing the two estimates (4.8) and (4.9), we get for the Euclidean distance on R2d

|T t
′
(z̄t′)− z̄t′ | ≤ |T t−τ (z̄t−τ )− z̄t−τ |+ τW∞(t) + Cτ sup

z̄t

∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt.

Taking the supremum over all z̄t′ in the support of fN (t′), and then the supremum over all
t′ ∈ [t− τ, t] we get

W∞(t) ≤W∞(t− τ) + τW∞(t) + Cτ sup
z̄t

∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt

which is exactly (ii).

Step 3. Concerning |∇NE|∞(t) in (iii), note that∫ t

t−τ

|EN (Xi(s))− EN (Xj(s))|
|Xi(s)−Xj(s)|+ ε1+r′

=
1

N

∑
k 6=i,j

∫ t

t−τ

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|
|Xi(s)−Xj(s)|+ ε1+r′

ds

+
1

N

∫ t

t−τ

|F (Xi(s)−Xj(s))− F (Xj(s)−Xi(s))|
|Xi(s)−Xj(s)|+ ε1+r′

ds.

By the assumption (1.2), one has that

|F (x)− F (y)| ≤ C
(

1

|x|α+1
+

1

|y|α+1

)
|x− y|.

So

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|
|Xi(s)−Xj(s)|+ ε1+r′

≤ C

|Xi(s)−Xk(s)|1+α
+

C

|Xj(s)−Xk(s)|1+α
,

and that bound is also true for the remaining term where k = i or j, if we delete the undefined
term in the sum. One also obviously has, still by (1.2)

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|
|Xi(s)−Xj(s)|+ ε1+r′

≤ C

ε1+r′ |Xi(s)−Xk(s)|α
+

C

ε1+r′ |Xj(s)−Xk(s)|α
.

Therefore by the definition of Kε

|F (Xi(s)−Xk(s))− F (Xj(s)−Xk(s))|
|Xi(s)−Xj(s)|+ ε1+r′

≤ C
[
Kε(Xi(s)−Xk(s)) +Kε(Xj(s)−Xk(s))

]
.

Summing up, this implies that

|∇NE|∞(t) ≤ C max
i 6=j

(1

τ

∫ t

t−τ

1

N

∑
k 6=i

Kε(Xi(s)−Xk(s)) ds

+
1

τ

∫ t

t−τ

1

N

∑
k 6=j

Kε(Xj(s)−Xk(s))ds
)
.

Transforming the sum into integral thanks to the transport, we get exactly the bound (iii)
involving Jα+1.
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Step 4. Finally for dN (t), consider any i 6= j, differentiating the Euclidean distance
|Zi − Zj |, we get

d

ds

∣∣(Xi(s)−Xj(s), Vi(s)− Vj(s))
∣∣ ≥ −|Vi(s)− Vj(s)| − ∣∣EN (Xi(s))− EN (Xj(s))

∣∣.
Simply write

|EN (Xi(s))− EN (Xj(s))| ≤
|EN (Xi(s))− EN (Xj(s))|
|Xi(s)−Xj(s)|+ ε1+r′

(|Xi(s)−Xj(s)|+ ε1+r′)

to obtain that

d

ds

∣∣(Xi(s)−Xj(s), Vi(s)− Vj(s))
∣∣ ≥ −(1 +

|EN (Xi(s))− EN (Xj(s))|
|Xi(s)−Xj(s)|+ ε1+r′

)
(
|(Xi(s)−Xj(s), Vi(s)− Vj(s))|+ ε1+r′

)
.

Integrating this inequality and taking the minimum, we get

dN (t) + ε1+r′ ≥ (dN (t− τ) + ε1+r′) inf
i 6=j

exp

(
−τ −

∫ t

t−τ

|EN (Xi(s))− EN (Xj(s))|
|Xi(s)−Xj(s)|+ ε1+r′

ds

)
≥ [dN (t− τ) + ε1+r′ ] exp−τ(1+|∇NE|∞(t)) .

4.4. The bounds for Iα and Jα+1

To close the system of inequalities in Proposition 4, it remains to bound the two integrals
involving Iα and Jα. It is done with the following lemmas

L 4. – Assume thatF satisfies an (Sα)-condition (1.2) withα < 1, and that τ is small
enough such that for some constant C (made precise in the proof)

(4.10) C τ (1 + |∇NE|∞(t)) (W∞(t) + τ) ≤ dN (t).

Then one has the following bounds, uniform in z̄t∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt ≤ C
[
W∞(t) + (W∞(t) + τ)dτ−α + (W∞(t) + τ)2d(dN (t))−ατ−α

]
.∫

|zt≤R(t)

Jα+1(t, z̄t, zt) dzt ≤ C
(
1 + (W∞(t) + τ)dε−(1+r′) τ−α

+ (W∞(t) + τ)2dε−(1+r′) τ−α (dN (t))−α
)
.

In the cut-off case where the interaction force satisfies an (Sαm) condition (3.3), we only
need to bound the integral of Iα, with the result

L 5. – Assume that 1 ≤ α < d − 1, and that F satisfies an (Sαm) condition (3.3).
Then one has the following bound, uniform in z̄t

(4.11)
∫
|zt|≤R(t)

Iα(t, z̄t, zt) dzt

≤ C
(
W∞(t) + (W∞(t) + τ)dτ−1εm̄(1−α) + (W∞(t) + τ)2dε−m̄α

)
.
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with the convention(1) (if α = 1) that ε0 = 1 + | ln ε| .

The proofs with or without cut-off follow the same line and we will prove the above
lemmas at the same time. We begin by an explanation of the sketch of the proof, and then
perform the technical calculation.

4.4.1. Rough sketch of the proof. – The point z̄t = (x̄t, v̄t) is considered fixed through all
this subsection (as the integration is carried over zt = (xt, vt)). Accordingly we decompose
the integration in zt over several domains. First

(4.12) At = {zt | |x̄t − xt| ≥ 4W∞(t) + 2τ(|v̄t − vt|+ τ |E|∞(t)) }.

This set consists of points zt such that xs and T sx(zs) are sufficiently far away from x̄s on
the whole interval [t − τ, t], so that they will not see the singularity of the force. The bound
over this domain will be obtained using traditional estimates for convolutions.

Next, one part of the integral can be estimated easily onAct (the part corresponding to the
flow of the regular solution fN to the Vlasov equation). For the other part it is necessary to
decompose further. The next domain is

(4.13) Bt = Act ∩ {zt | |v̄t − vt| ≥ 4W∞(t) + 4 τ |E|∞|(t)}.

This contains all particles zt that are close to z̄t in position (i.e., xt close to x̄t), but with
enough relative velocity not to interact too much. The small average in time will be useful in
that part, as the two particles remain close only a small amount of time.

The last part is of course the remainder

(4.14) Ct = (At ∪Bt)c.

This is a small set, but where the particles remain close together a relatively long time. Here,
we are forced to deal with the corresponding term at the discrete level of the particles. This
is the only term which requires the minimal distance in R2d; and the only term for which we
need a time step τ small enough as per the assumption in Lemma 4.

4.4.2. Step 1: Estimate over At. – According to the Definition (4.12), if zt ∈ At, we have
for s ∈ [t− τ, t]

|x̄s − xs| ≥ |x̄t − xt| − (t− s)|v̄t − vt| − (t− s)2|E|∞(t) ≥ |x̄t − xt|
2

(4.15)

|T sx(z̄s)− T sx(zs)| ≥ |x̄s − xs| − 2W∞(s) ≥ |x̄t − xt|
2

.(4.16)

For Iα, we use the direct bound for zt ∈ At∣∣F (T sx(z̄s)− T sx(zs))− F (x̄s − xs)
∣∣ ≤ C

|x̄t − xt|1+α
(|T sx(z̄s)− x̄s|+ |T sx(zs)− xs|)

≤ C

|x̄t − xt|1+α
W∞(s) ≤ C

|x̄t − xt|1+α
W∞(t),

(1) That convention may be justified by the fact that it implies a very simple algebra (x1−α)′ ≈ x−α even if α = 1.
It allows us to give a unique formula rather than three different cases.
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F 1. The partition of R2d.

and obtain by integration on [t− τ, t]

Iα(t, z̄t, zt) ≤
C

|x̄t − xt|1+α
W∞(t).

Then integrating in zt we may get since α+ 1 < d∫
At

Iα(t, z̄t, zt) dzt ≤ CW∞(t)

∫
At

dzt
|x̄t − xt|1+α

≤ C R(t)2d−1−αW∞(t) ≤ CW∞(t).

(4.17)

For Jα+1, we use (4.16) on the set At the bound

|Kε(T
s
x(z̄s)− T sx(zs))| ≤

C

|x̄t − xt|1+α
.

Integrating with respect to time and zt we get since 1 + α < d.∫
At

Jα+1(t, z̄t, zt) dzt ≤ C
∫
At

dzt
|x̄t − xt|1+α

≤ C R(t)2d−1−α ≤ C.
(4.18)

For the cut-off case, the estimation on Iα for this step is unchanged.

4.4.3. Step 1′ : Estimate over Act for the “continuous” part of Iα. – For the remaining term
in Iα, we use the rude bound

|F (T sx(z̄s)− T sx(zs))− F (x̄s − xs)| ≤ |F (T sx(z̄s)− T sx(zs))|+ |F (x̄s − xs)|.
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The term involving T s is complicated and requires an additional decomposition. It will be
treated in the next sections. The other term is simply bounded by∫

zt∈Act

1

τ

∫ t

t−τ
|F (x̄s − xs)|ds dzt ≤

1

τ

∫ t

t−τ

∫
zt∈Act

C dzt
|x̄s − xs|α

ds

≤ 1

τ

∫ t

t−τ

∫
zs∈Zf (s,t,Act)

C dzs
|x̄s − xs|α

ds.

From the bounds (4.1), we get that

|Act | ≤ CR(t)d[W∞(t) + τ(1 + |E|∞(t))]d ≤ C(W∞(t) + τ)d,

where |·| denotes the Lebesgue measure. Since the flowZf is measure-preserving, the measure
of the set Zf (s, t, Act) satisfies the same bound. This set is also included inB2d(0, R). We will
also need the following lemma

L 6. – Let Ω ⊂ B2d(0, R) ⊂ R2d. Then for any a < d, there exists a constant Ca
depending on a and d such that ∫

Ω

dz

|x|a
≤ CaRa |Ω|1−a/d.

Proof of Lemma 6. – We maximize the integral∫
ω

|x|−adz

over all sets ω ⊂ R2d satisfying ω ⊂ B2d(0, R) and |ω| = |Ω|. It is clear that the maximum is
obtained by concentrating as much as possible ω near x = 0, i.e., with a cylinder of the form
Bd(0, r)×Bd(0, R). Since |ω| = |Ω| we have (cd)

2rdRd = |Ω|, where cd is the volume of the
unit ball of dimension d. The integral over this cylinder can now be computed explicitly and
gives the lemma.

Applying Lemma 6, we get

(4.19)
∫
zt∈Act

1

τ

∫ t

t−τ
|F (x̄s − xs)| dztds ≤ C[W∞(t) + τ ]d−α.

That term does not appear in Lemma 4 since it is strictly smaller than the bound of the
remaining term (involving the transport T ), as we will see in the next section.

For the cut-off case, the same bound is valid for Iα since α ≤ d−1 < d (the cut-off cannot
in fact help to provide a better bound for this term).

At this point, the remaining term to bound in the integral involving Iα is only

(4.20)
∫
zt∈Act

1

τ

∫ t

t−τ
|F (T sx(z̄s)− T sx(zs))| ds

and the remainder in Jα+1 is

(4.21)
∫
Act

Jα+1(t, z̄t, zt) dzt =
1

τ

∫
Act

∫ t

t−τ
Kε(T

s
x(z̄s)− T sx(zs)) dztds.

Therefore in the next sections we focus on giving a bound for (4.20) and (4.21).
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4.4.4. Step 2: Estimate over Bt. – We recall the definition of Bt

Bt =

{
zt such that

|x̄t − xt| ≤ 4W∞(t) + 2τ(|v̄t − vt|+ τ |E|∞(t))

|v̄t − vt| ≥ 4W∞(t) + 4 τ |E|∞|(t)

}
.

If zt ∈ Bt, we have for s ∈ [t− τ, t]

|v̄s − vs − v̄t + vt| ≤ 2τ |E|∞(t) ≤ |v̄t − vt|
2

,(4.22)

|T sv (z̄s)− T sv (zs)− v̄t + vt| ≤ |v̄s − vs − v̄t + vt|+ 2W∞(s) ≤ |v̄t − vt|
2

.(4.23)

This means that the particles involved are close to each others (in the position variables),
but with a sufficiently large relative velocity, so that they do not interact a lot on the interval
[t− τ, t].

First we introduce a notation for the term of (4.20)

(4.24)
∫
zt∈Bt

Ibc(t, z̄t, zt) dzt,

with Ibc(t, z̄t, zt) = Ibc(t, i, j) :=
1

τ

∫ t

t−τ
F (T sx(z̄s)− T sx(zs)) ds,

where (i, j) are such that T tx(z̄t) = Xi(t), T tx(zt) = Xj(t) (and this is also true for any time
s ∈ [t− τ, t] by definition of T s. For zt ∈ Bt, define for s ∈ [t− τ, t]

φ(s) := (T sx(z̄s)− T sx(zs)) ·
v̄t − vt
|v̄t − vt|

= (Xi(s)−Xj(s)) ·
v̄t − vt
|v̄t − vt|

.

Note that |φ(s)| ≤ |T sx(z̄s)− T sx(zs)| and that

φ′(s) = (T sv (z̄s)− T sv (zs)) ·
v̄t − vt
|v̄t − vt|

= |v̄t − vt|+ (T sv (z̄s)− T sv (zs)− (v̄t − vt)) ·
v̄t − vt
|v̄t − vt|

≥ |v̄t − vt|
2

,

where we have used (4.23). Therefore φ is an increasing function of the time on the interval
[t− τ, t]. If it vanishes at some time s0 ∈ [t− τ, t], then the previous bound by below on its
derivative implies that

(4.25) |T sx(z̄s)− T sx(zs)| ≥ |φ(s)| ≥ |t− s0|
|v̄t − vt|

2
.

If φ is always positive (resp. negative) on [t− τ, t], then the previous estimate is still true with
the choice s0 = t − τ (resp. s0 = t). So in any case, estimate (4.25) holds true for some
s0 ∈ [t− τ, t]. Using this directly gives, as α < 1

(4.26) |Ibc(t, z̄t, zt)| ≤
C

τ
|v̄t − vt|−α

∫ t

t−τ

ds

|s− s0|α
≤ C τ−α |v̄t − vt|−α.

Integrating the above∫
zt∈Bt

|Ibc(t, z̄t, zt)| dzt ≤ C τ−α
∫
Act

dzt
|v̄t − vt|α

≤ C τ−α [W∞(t) + τ ]d [R(t)]d−α,
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by using the fact that Bt ⊂ Bd(0, C[W∞(t) + τ ])×Bd(0, R(t)). In conclusion

(4.27)
∫
zt∈Bt

|Ibc(t, z̄t, zt)| dzt ≤ C τ−α [W∞(t) + τ ]d.

With the cut-off where α > 1, the reasoning follows the same line up to the bound (4.26)
which relies on the assumption α < 1. (4.26) is replaced by

|Ibc(t, z̄t, zt)| ≤
C

τ

∫ t

t−τ

ds

(|s− s0||v̄t − vt|+ 4εm̄)α

≤ C

τ

∫ s0

t−τ
· · ·+ C

τ

∫ t

s0

· · · ≤ 2C

τ

∫ τ

0

ds

(s|v̄t − vt|+ 4εm̄)α

≤ C

τ |v̄t − vt|

∫ τ |v̄t−vt|

0

ds

(s+ 4εm̄)α
≤ Cεm̄(1−α)

τ |v̄t − vt|
.

When α = 1, the previous calculation leads to

|Ibc(t, z̄t, zt)| ≤
C

τ |v̄t − vt|
ln
(
1 + Cτε−m̄

)
≤ C

τ |v̄t − vt|
(1 + | ln ε|) =:

Cε0

τ

where the first bound follows from ln(1 + x) ≤ 1 + ln(x) if x ≥ 1. In the second one, we use
that τ = ε in the cut-off case. We also used the convention ε0 = 1 + | ln(ε)|, introduced in
Lemma 5, that will be quite convenient since it allows to conclude the proof of the two cases
α ∈ (1, d− 1) and α = 1 with the same calculation.

In both cases, the singular part in 1/|v̄t−vt| is integrable onRd and integrating that bound
over Bt, we get the estimate∫

zt∈Bt
|Ibc(t, z̄t, zt)| dzt ≤ C τ−1εm̄(1−α)

∫
Act

dzt
|v̄t − vt|

≤ C τ−1 εm̄(1−α)[W∞(t) + τ ]d [R(t)]d−1,

≤ C τ−1 εm̄(1−α)[W∞(t) + τ ]d.

(4.28)

4.4.5. Step 3: Estimate over Ct. – We recall the definition of Ct

Ct =

{
zt such that

|x̄t − xt| ≤ 4W∞(t) + 2τ(|v̄t − vt|+ τ |E|∞(t))

|v̄t − vt| ≤ 4W∞(t) + 4 τ |E|∞|(t)

}
.

First remark that Ct ⊂ {|zt − z̄t| ≤ C(W∞(t) + τ)}, so that its volume is bounded
by C(W∞(t) + τ)2d. From the previous steps, it only remains to bound∫

zt∈Ct
Ibc(t, z̄t, zt) dzt.

We begin by the cut-off case, which is the simpler one. In that case, one simply bounds
Ibc ≤ C ε−m̄α which implies

(4.29)
∫
zt∈Ct

Ibc(t, z̄t, zt) dzt ≤ C(W∞(t) + τ)2dε−m̄α.

It remains the case without cut-off. We denote

C̃t = {j | ∃zt ∈ Ct, such that Zj(t) = T t(zt)},
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and transform the integral on Ct in a discrete sum∫
zt∈Ct

Ibc(t, z̄t, zt) dzt =
∑
j∈C̃t

aijINc(t, i, j) with INc(t, i, j) =
1

τ

∫ t

t−τ

dzt
|Xi(s)−Xj(s)|α

ds,

where i is the number of the particles associated to z̄t (T t(z̄t) = Zi(t)) and

aij = |{zt ∈ Ct, T t(zt) = Zj(t)}|, so that
∑
j∈C̃t

aij = |Ct|.

To bound INc over C̃t, we do another decomposition in j. Define

JXt =

{
j ∈ C̃t , |Xj(t)−Xi(t)| ≥

dN (t)

2

}
,

JVt =

{
j ∈ C̃t , |Vj(t)− Vi(t)| ≥

dN (t)

2

}
.

By the definition of the minimal distance in R2d, dN (t), one has that C̃t = JXt ∪ JVt. Since

|T t(zt)− zt| ≤W∞(t),

one has by the definition of C̃t and Ct that for all j ∈ C̃t, |Zj(t)−Zi(t)| ≤ C (W∞(t) + τ).

Let us start with the bound over JXt. If j ∈ JXt, one has that

|Xj(s)−Xi(s)| ≥ |Xj(t)−Xi(t)| −
∫ t

s

|Vj(u)− Vi(u)| du.

On the other hand, for u ∈ [s, t],

|Vj(u)− Vi(u)| ≤ 2W∞(t) + |v̄u − vu| ≤ 2(W∞(t) + τ |E|∞) + |v̄t − vt| ≤ C(W∞(t) + τ).

Therefore assuming that with that constant C

(4.30) C τ(W∞(t) + τ) ≤ dN (t)/4,

we have that for any s ∈ [t−τ, t], |Xj(s)−Xi(s)| ≥ dN (t)/4. Consequently for any j ∈ JXt

(4.31) INc(t, i, j) ≤ C [dN (t)]−α.

For j ∈ JVt, we write

|(Vj(s)− Vi(s))− (Vj(t)− Vi(t))| ≤
∫ t

s

|EN (Xj(u))− EN (Xi(u))| du.

Note that

|Xj(s)−Xi(s)| ≤ |Xj(t)−Xi(t)|+
∫ t

s

|Vj(u)− Vi(u)| du

≤ C(W∞(t) + τ) + 2

∫ t

s

(W∞(u) +R(u)) du

≤ C(W∞(t) + τ).

(4.32)

Hence we get for s ∈ [t− τ, t], by the Definition (4.4) of |∇NE|∞∫ t

s

|EN (Xj(u))− EN (Xi(u))| du ≤ C τ |∇NE|∞ (W∞(t) + τ + ε1+r′).
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Note that the constant C still does not depend on τ = εr
′
. Therefore provided that with the

previous constant C

(4.33) 2C τ |∇NE|∞ (W∞(t) + τ) ≤ dN (t)/4,

one has that

|Vj(s)− Vi(s)− (Vj(t)− Vi(t))| ≤ dN (t)/4 and also |Vi(s)− Vj(s)| ≥
dN (t)

4
.

As in the step for Bt (see Equation (4.25)) this implies the dispersion estimate
|Xj(s)−Xi(s)| ≥ |s− s0| dN (t)/4 for some s0 ∈ [t− τ, t]. As a consequence for j ∈ JVt,

(4.34) INc(t, i, j) ≤
C

τ
(dN (t))−α

∫ t

t−τ

ds

|s− s0|α
≤ C τ−α (dN (t))−α.

Summing (4.31) and (4.34), one gets∑
j∈C̃t

aijINc(t, i, j) ≤ C |Ct|
(
(dN (t))−α + τ−α (dN (t))−α

)
.

Coming back to Ibc, using the bound on the volume of |Ct| and keeping only the largest term
of the sum

(4.35)
∫
Ct

Ibc(t, z̄t, zt) dzt ≤ C (W∞(t) + τ)2dτ−α (dN (t))−α.

4.4.6. Conclusion of the proof of Lemmas 4, 5. – Assumptions (4.30) and (4.33) are ensured
by the assumptions of the lemma. Summing up (4.17) for Iα or (4.18) for Jα+1, with (4.19),
(4.27) and (4.35), we indeed find the conclusion of the first lemma.

In the Sαm case, no assumption is needed, and summing up the bounds (4.17), (4.19),
(4.28), (4.29), we obtain the second lemma.

4.5. A bound on W∞(µN , fN ) in the case without cut-off

In this subsection, in order to make the argument clearer, we number explicitly the
constants. Let us summarize the important information of Proposition 4 and Lemma 4. We
introduce rescaled versions of the important quantities

W̃∞(t) = ε−1W∞(t), d̃N (t) = ε−(1+r) dN (t).

Remark that by Proposition 1, W̃∞(t) = cφ > 0. By assumption (i) in Theorem 1, also note
that d̃N (0) ≥ 1.

Recalling τ = εr
′

(with r′ > r > 1), the condition (4.10) of Lemma 4 after rescaling reads

(4.36) C1 ε
r′−r (1 + |∇NE|∞(t)) W̃∞(t) ≤ d̃N (t).

In Lemma 4, we proved that there exist some constants C0 and C2 independent of N (and
hence ε), such that if (4.36) is satisfied, then for any t ∈ [0, T ]

W̃∞(t) ≤ W̃∞(t− τ) + C0 τ
(
W̃∞(t) + ελ1 W̃ d

∞(t) + ελ2 W̃ 2d
∞ (t) d̃−αN (t)

)
,

|∇NE|∞(t) ≤ C2

(
1 + ελ3 W̃ d

∞(t) + ελ4 W̃ 2d
∞ (t) d̃−αN (t))

)
d̃N (t) + εr

′−r ≥ [d̃N (t− τ) + εr
′−r]e−τ(1+|∇NE|∞(t)),
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where ε appears four times with four different exponents λi, i = 1, . . . , 4 defined by

λ1 = d− 1− α r′, λ2 = 2d− 1− α(1 + r′ + r),

λ3 = d− 1− r′ − α r′, λ4 = 2d− 1− r′ − α(1 + r′ + r).

To propagate uniform bounds as ε → 0 and N → ∞, we need all λi to be positive. As
r, r′ > 0, it is clear that λ1 > λ3 and λ2 > λ4. Thus we need only check λ3 > 0 and λ4 > 0.
As r′ > r, it is sufficient to have

r′ <
d− 1

1 + α
, and r′ <

2d− 1− α
1 + 2α

.

Note that a simple calculation shows that

d− 1

1 + α
− 2d− 1− α

1 + 2α
=

α2 − d
(1 + α)(1 + 2α)

< 0,

so that the first inequality is the stronger one. Thanks to the condition given in Theorem 1,
r < r∗ := d−1

1+α , so that if we choose any r′ ∈ (r, r∗), the corresponding λi are all positive.
We fix a r′ as above and denote λ = mini(λi). Then by a rough estimate

W̃∞(t) ≤ W̃∞(t− τ) + C0 τ
(
W̃∞(t) + 2 ελ W̃ 2d

∞ (t) d−αN (t)
)
,

|∇NE|∞(t) ≤ C2

(
1 + 2 ελ W̃ 2d

∞ (t) d̃−αN (t)
)
,

d̃N (t) ≥ [ d̃N (t− τ) + εr
′−r]e−(1+|∇NE|∞(t))τ − εr

′−r.

(4.37)

Next, we define tN0 ∈ [0, T ] as the maximal time such that (4.36) and

(4.38) 2 ελ W̃ 2d−1
∞ (t)

[
1 + W̃∞(t)

]
d̃−αN (t) ≤ 1,

are satisfied on [0, tN0 ]. This time tN0 can depend on N and possibly tN0 = T .

We claim that this time tN0 exists and is strictly positive for N large enough. First as we
explain in Remark 11, |∇NE|∞(0) = 0 and the conditions (4.36) and (4.38) are satisfied at
time t = 0. In fact, at time 0 they may be rewritten

C1ε
r′−rW̃∞(0) ≤ d̃N (0), 2ελW̃∞(0)2d−1

[
1 + W̃∞(0)

]
d̃N (0)−α ≤ 1

and this is true for N large enough because of our assumption on ε and dN (0). Next, as we
mention in the introduction, we only deal with continuous solutions to the N particle sys-
tem (1.1). So W̃∞(t) and d̃N (t) are continuous functions of the time, and |∇NE|∞(t) is also
continuous in time thanks to the smoothing parameter that appears in its Definition (4.4).
Then if the conditions hold at t = 0, they also hold on a small neighborhood of 0, and the
claim is proved.

Next, as long as t < tN0 , the first equation in (4.37) may be rewritten

W̃∞(t) ≤ W̃∞(t− τ) + 2C0τW̃∞(t)

so that if 2C0τ < 1

W̃∞(t) ≤ W̃∞(t− τ)(1− 2C0τ)−1,

|∇NE|∞(t) ≤ 2C2,

d̃N (t) ≥ e−(1+2C2) t − εr
′−r

(4.39)
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for any t < tN0 . The last inequality implies d̃N (t) ≥ 1
2 e
−(1+2C2) t if 2εr

′−re(1+2C2)T < 1.
That condition is fulfilled for ε small enough, i.e., N large enough.

The first inequality in (4.39) iterated gives W∞(t) ≤ W∞(0)(1 − 2C0τ)−
t
τ . If C0τ ≤ 1

4 ,
then we can use − ln(1− x) ≤ 2x for x ∈ [0, 1

2 ], and get

W̃∞(t) ≤ W̃∞(0)e4C0t

To summarize, under the previous assumption it comes for all t ∈ [0, tN0 ]

W̃∞(t) ≤ e4C0t,

|∇NE|∞(t) ≤ 2C2,

d̃N (t) ≥ 1

2
e−(1+2C2) t.

(4.40)

Finally, we show that for N large enough, i.e., ε small enough, then one necessarily has
tN0 = T . Then we will have (4.40) on [0, T ] which is the desired result. This is simple enough.
By contradiction if tN0 < T then

C1 ε
(r−r′) (1 + |∇NE|∞(tN0 )) W̃∞(tN0 ) = d̃N (tN0 ), or 4 ελ W̃ 2d−1

∞ (tn0 )
[
1 + W̃∞(tN0 )

]
d̃−αN (tN0 ) = 1.

But until tN0 , (4.40) holds. Therefore

ελ W̃ 2d−1
∞ (tN0 )

[
1 + W̃∞(tN0 )

]
d̃−αN (tN0 ) ≤ ελ 2α+1 e(α+ (8d+2α) max(C0,C2)) tN0 < 1,

for ε small enough with respect to T and the Ci. This is the same for (4.36)

C1 ε
(r−r′) (1 + |∇NE|∞(t0)) W̃∞(t0)d̃−1

N (t0) ≤ 2ε(r−r′)C1(1 + 2C2)e(1+6 max(C0,C2))t0 < 1.

Hence we obtain a contradiction and prove that

(4.41) ∀t ≤ T, W∞(fN (t), µN (t)) ≤ e4C0tW∞(f0
N , µ

0
N ),

for N large enough.

4.6. A bound on W∞(µN , fN ) in the case with cut-off

In the cut-off case, using Lemma 5 together with the inequality ii) of the Proposition 4,
we may obtain

W∞(t) ≤W∞(t− τ) + C0W∞(t)
[
1 + (W∞(t) + τ)d−1τ−1εm̄(1−α) + (W∞(t) + τ)2d−1ε−m̄α

]
.

We again rescale the quantity W∞(t) = εW̃∞(t). Choosing in that case τ = ε, it comes
for 1 ≤ α < d− 1,

W̃∞(t) ≤ W̃∞(t− τ) + C0W̃∞(t)τ
[
1 + εd−2−m̄(α−1) W̃ d−1

∞ (t) + ε2d−1−m̄α W̃ 2d−1
∞ (t)

]
.

As in the previous section, we will get a good bound provided that the powers of ε appearing
in parentheses are positive. The two conditions read

m̄ < m̄∗ := min

(
d− 2

α− 1
,

2d− 1

α

)
.

In that case, for N large enough (with respect to eCt), we get a control of type

d

dt
W̃∞(t) ≤ 4C0W̃∞(t),
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(but discrete in time) which gives that

(4.42) ∀t ≤ T, W∞(fN (t), µN (t)) ≤ e4C0tW∞(f0
N , µ

0
N ),

for N large enough.

R 12. – In the cut-off case (and also in the case without cut-off), it seems important
to be able to say that the initial configurations Z we choose have a total energy close to the one
of f0. Because, if the empirical distribution µZN is close to f0, but has a different total energy,
we would not expect that they remain close a very long time. Fortunately, such a result is true
and under the assumptions of Theorems 1 and 3, the total energy of the empirical distributions
is close to the total energy of f0.

Unfortunately, the proof is not simple. But, it can be done using the argument presented
here for the deterministic theorems. First, the difference between the kinetic energies is easily
controlled because our solutions are compactly supported and that there is no singularity there.
Next, performing calculations very similar to the ones done in the proofs, we can control the
difference between a small average in time of the potential energies, on the small interval of
time [0, τ ]. Then, we control the average of the total energy, which is constant.

4.7. Estimation of the distance W1(f, µN )

The case without cut-off. – Just apply the stability estimate for solutions of Vlasov equation
given by Proposition 3. This is possible since the uniform bound on ‖fN‖∞ given by point ii)
in Theorems 1 and 3, and the uniform bound on the size of the support of Proposition 4,
imply a uniform bound on ‖ρN‖∞ ≤ ‖fN‖∞R(t)2d. We get

W1(f, fN ) ≤ eC0tW1(f0, f0
N )

≤ eC0t
(
W1(f0, µ0

N ) +W1(µ0
N , f

0
N )
)
,

≤ eC0t
(
W1(f0, µ0

N ) +N−
γ
2d

)
,

where we have used in the last line Proposition 1 with a φ such that cφ = 1. This together
with the bound (4.41) concludes the proof since

W1(f, µN ) ≤W1(f, fN ) +W1(fN , µN )

≤W1(f, fN ) +W∞(fN , µN )

≤ e4C0t
(
W1(f0, µ0

N ) + 2N−
γ
2d

)
.

The case with cut-off. – Proposition 2 implies that the strong solution fN with initial data f0
N

has existence times T ∗N bounded from below by some T̄ independent of N . And from the
condition (Sαm) restated in (3.3) in term of ε, we get that

‖F − FN‖1 ≤ εm̄(d−α) ≤ ε,
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since m̄ ≥ 1 and d − α ≥ 1. So we can apply the stability estimate given by Proposition 3
with F1 = F and F2 = FN and get that

W1(f(t), fN (t)) ≤ eC0t
(
W1(f0, f0

N ) + ε
)

≤ eC0t
(
W1(f0, µ0

N ) +W1(µ0
N , f

0
N ) +N−

γ
2d

)
,

≤ eC0t
(
W1(f0, µ0

N ) + 2N−
γ
2d

)
,

for any t ≤ T̄ . With the bound (4.42) it leads to

W1(f, µN ) ≤ e4C0t
(
W1(f0, µ0

N ) + 3N−
γ
2d

)
,

and this concludes the proof in the cut-off case.

5. From deterministic results (Theorems 1 and 3) to propagation of chaos.

The assumptions made in Theorem 1 are in some sense generic, when the initial positions
and speeds are chosen with the law (f0)⊗N . Therefore, to prove Theorem 2 from Theorem 1,
we need to

– find a good choice of the parameters γ and r so that there is a small probability that
empirical measures, chosen with the law (f0)⊗N , do not satisfy the conditions i) and
ii) of Theorem 1, and are far away from f0 in W1 distance;

– apply Theorem 1 on the complementary set that is almost of full measure.

For the first point, we will use results detailed in the next two sections.

5.1. Estimates in probability on the initial distribution

Deviations on the infinite norm of the smoothed empirical distribution fN . – The precise result
we need is given by the Proposition 8 in the appendix. It tells us that if the approximating
kernel is φ = 1[− 1

2 ,
1
2 ]2d and if the Zi are i.i.d random variables with law f0, then the random

variable fN satisfies

P
(
‖f0
N‖∞ ≥ 21+2d‖f0‖∞

)
≤ C2N

γe−C1N
1−γ

,

with C2 = (2R0 + 2)2d, R0 the size of the support of f , and C1 = (2 ln 2− 1) 22d‖f‖∞.

We would like to mention that we were first aware of the possibility of getting such
estimates in a paper of Bolley, Guillin and Villani [10], where the authors obtain quantitative
concentration inequality for ‖fN − f‖∞ under the additional assumption that f0 and φ are
Lipschitz. Unfortunately, they cannot be used in our setting because they would require too
large a smoothing parameter. Gao obtains in [26] large (and moderate) deviation principles
for ‖fN − f‖∞. But a large deviation principle is too precise for our purpose, and also
less convenient since it provides only an asymptotic estimate, and no quantitative bounds.
Finally, we choose to prove a more simple estimate that is well adapted to our problem.
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Deviations for the minimal inter-particle distance. – It may be proved with simple arguments
that the scale ηm is almost surely larger thanN−1/d when f0 ∈ L∞. A precise result is stated
in the proposition below, proved in [32, Proposition 4].

P 5. – There exists a constant c2d depending only on the dimension such that
if f0 ∈ L∞(R2d) and if Z = (Z1, . . . , ZN ) has law (f0)⊗N , then

P
(
dN (Z) ≥ l

N1/d

)
≥ e−c2d‖f

0‖∞ld .

We point out that this is not a large deviation result : the inequalities are in the wrong
direction. This is quite natural because dN is not an average quantity, but an infimum. It is
that condition that prevents us from obtaining a “large deviation” type result in Theorem 2,
contrarily to the cut-off case of Theorem 4. In fact, the only bound it provides on the “bad”
set is

P
(
dN (Z) ≤ l

N1/d

)
≤ 1− e−c2d‖f

0‖∞ld ≤ c2d‖f0‖∞ld.

With the notation of Theorem 1 (recall that ε = N−γ/(2d)) it comes that if s = γ 1+r
2 −1 > 0

then

(5.1) P
(
dN (Z) ≤ ε1+r

)
= P

(
dN (Z) ≤ N−s/d

N1/d

)
≤ c2d‖f0‖∞N−s.

Deviations for the W1 MKW distance. – It is more or less classical that if the Zi are inde-
pendent random variables with identical law f , the empirical measure µZN goes in probabil-
ity to f . This theorem is known as the empirical law of large number or Glivenko-Cantelli
Theorem and is due in this form to Varadarajan [60]. But, the convergence may be quanti-
fied in Wasserstein distance, and recently upper bounds on the large deviations ofW1(µZN , f)

were obtained by Bolley, Guillin and Villani [10] and Boissard [8]. However the first one con-
cerns only very large deviations, and the last result is more interesting for our purpose. We
also mention the very recent work of Fournier and Guillin [21].

P 6 (Boissard [8], Annexe A, Proposition 1.2). – Assume that f is a non neg-
ative measure compactly supported on B2d(0, R) ⊂ R2d. If d ≥ 2, and the Z = (Z1, . . . , ZN )

are chosen according to the law (f0)⊗N , then there is an explicit constantC1 = 2−(2d+1)R−2d,
such that the associated empirical measures µZN satisfy

P
(
W1(µZN , f) ≥ E[W1(µZN , f)] + L

)
≤ e−C1NL

2

.

Since it is already known (see [8] or [19] and references therein) that for d ≥ 2 there exists a
numerical constant C2(d) such that

E[W1(µZN , f)] ≤ C2
R

N1/2d
,

the previous result with L = C2
R

N1/(2d) implies that for C3(R, d) := C1(R)C2(d)2R2,

(5.2) P
(
W1(µZN , f) ≥ 2

C2R

N1/2d

)
≤ e−C3N

1−1/d

.
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5.2. From Theorem 1 to Theorem 2

Now take the assumptions of Theorem 2 : F satisfies an (Sα) condition for α < 1 and
f0 ∈ L∞ with support in some ball B2d(0, R0) in dimension d ≥ 3. We choose

γ ∈
(
γ∗ =

2 + 2α

d+ α
, 1

)
, and r ∈

(
2

γ
− 1, r∗ =

d− 1

1 + α

)
,

the condition on γ ensuring that the second interval is non empty. We also define

s := γ
1 + r

2
− 1 > 0, λ = 1−max

(
γ,

1

d

)
.

Denote by ω1, ω2 the sets of initial conditions such that respectively (i) and (ii) of Theorem 1
hold and ω3 s.t. W1(µN , f

0) ≤ 1
Nγ/(2d)

. Precisely

ω1 := {Z0 such that dN (Z0) ≥ ε1+r},

ω2 := {Z0 such that ‖f0
N‖∞ ≤ 21+2d‖f0‖∞}

ω3 := {Z0 such that W1(µ0
N , f

0) ≤ ε}.

By the results stated in the previous section, one knows that for N ≥ (2C2R)2d/(1−γ)

(5.3) P(ωc1) ≤ C N−s, P(ωc2) ≤ CNγe−CN
1−γ

, P(ωc3) ≤ e−CN
1− 1

d .

Denote ω = ω1 ∩ ω2 ∩ ω3. Hence |ωc| ≤ |ωc1|+ |ωc2|+ |ωc3| and for N large enough

(5.4) P(ωc) ≤ C N−s + C Nγ e−C N
1−γ

+ e−CN
1− 1

d ≤ C N−s,

and checking carefully the dependence, we can see that the constant C depends only
on d,R, ‖f0‖∞, γ. Since we known that global solutions to theN particles system (1.1) exist
for almost all initial conditions (see the discussion on this point in Subsection 6.1), one may
apply Theorem 1 to (f0)⊗N -a.e. initial condition in ω and get on [0, T ]

W1(f, µN ) ≤ eC0t
(

2W1(f, µ0
N ) +N−

γ
2d

)
≤ 3 eC0tN−

γ
2d ,

which proves that

ω ⊂
{
∀t ∈ [0, T ], W1(f, fN ) ≤ 3eC0t

Nγ/(2d)

}
.

The bound 5.4 then gives Theorem 2.

5.3. From Theorem 3 to Theorem 4

In the cut-off case, one can derive Theorem 4 from Theorem 3 in the same manner. As
we do not use the minimal distance in that case, the proof is simpler and we get a stronger
convergence result.

We only have to consider ω = ω2 ∩ ω3, where ω2 and ω3 are defined according to (5.3).
Then, the bound (5.4) is replaced for N larger than an explicit constant by

(5.5) P(ωc) ≤ C Nγ e−C N
1−γ

+ e−CN
1− 1

d ≤ C Nγ e−C N
−λ
.

Next, for any Z0 ∈ ω, we can apply Theorem 3 and obtain the stability estimate for any
T < T ∗

W1(f, µN ) ≤ eC0t
(
W1(f0, µ0

N ) + 3N−
γ
2d

)
≤ 4 eC0tN−

γ
2d .
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From there, we obtain as before that for N large enough

P
(
∃ t ∈ [0, T ], W1(µN (t), f(t)) ≥ 4eC0t

Nγ/(2d)

)
≤ CNγe−CN

λ

.

Replacing 21+2d by any c > 1 in the definition of ω2, we may also get estimates that are valid
till a time T ∗ as large as possible.

5.4. Proof of Corollary 1

Theorem 2 proves that for fixed time t, µN (t) converges in probability towards f(t) as
N → +∞. This classically implies the convergence in law of µN (t) towards f(t), which is
one of the characterizations of f(t)-chaotic sequences, given in point iii) of Definition 3. This
proves the first part of (2.4).

For the second part, first remark that by the definition of the entropy, H
(
(f0)⊗N

)
=

NH(f0). Then, the chain rule applied to the Vlasov Equation (1.5) implies that for any
smooth β, β(f) also satisfies

∂tβ(f) + v · ∇vβ(f) + E(t, x)∇vβ(f) = 0.

This is classical if f is a smooth solution to the Vlasov equation, but also holds in our case as
the vector-field is smooth enough (at leastW 1,1), we refer to [2] for the details (this is indeed
an important issue in the theory initiated by DiPerna and Lions [18]). An integration in x
and v implies that for any time t,∫

R2d

β(f(t)) dz =

∫
R2d

β(f0) dz.

Approximating β(x) = x lnx by a monotone sequence of smooth βn, the monotone conver-
gence theorem (we recall that f(t) and f0 are bounded and non-negative) allows to conclude
that the entropy is preserved by the Vlasov equation: H(f(t)) = H(f0) for all time t.

In addition, the entropy is also preserved by the (linear) Liouville equation, governing the
evolution of the distribution of the N particle system. In fact, a similar argument applies
since the vector-field associated to the Liouville equation (which is nothing but the one
appearing in (1.1)) is smooth enough, at least W 1,1. If fN (t) denotes the law at time t
of ZN (t), we also have H(fN (t)) = H

(
(f0)⊗N

)
. All in all, we conclude that the second

point of (2.4) holds not only asymptotically but precisely

∀ t ≥ 0, ∀N ∈ N,
1

N
H
(
fN (t)

)
=

1

N
H
(
(f0)⊗N

)
= H(f0) = H

(
f(t)

)
.

On the marginals, the entropy has the two key properties of lower semi-continuity and so-
called super additivity: H(fNk ) ≤ q−1H(fN ), with q the divisor in the Euclidean division
of N by k: N = qk + r. This implies that H(fNk (t)) → H(f(t)⊗k). Since the entropy is
a strictly convex functional, the weak convergence of the fNk and the convergence of their
entropy implies the strong convergence in L1 norm stated in Corollary 1. We refer to [22,
Section 8] for a rigorous proof of the last point in a slightly different setting.
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6. Related discussions

6.1. The question of existence of solutions to System (1.1)

We have just mentioned till now the most basic question for System (1.1) with a singular
force kernel, namely whether one can even expect to have solutions to the system for a fixed
number of particles.

Since we only use forces that are singular only at the origin, the usual Cauchy-Lipschitz
theory implies that starting from any initial conditions such that XN

i 6= XN
j for all i 6= j,

there exists a unique local solution, defined till the first collision time T ∗, when for some
couple i, j we have XN

i (T ∗) = XN
j (T ∗). Unfortunately this time T ∗ depends on the initial

configuration (and thus on N ) and could be very small.
In the case where the interaction force F derives from a repulsive singular potential φ

strong enough, i.e., if Φ satisfies limx→0 Φ(x) = +∞, then collisions can never occur and
the solutions given by the classical Cauchy-Lipschitz theory are global, i.e., T ∗ = +∞ for all
initial configurations.

In the other cases, it is not possible to extend the local result in such a simple way. One
could try to apply the DiPerna-Lions theory [18], that allows to handle vector fields that
are locally in W 1,1. This looks promising since any force satisfying the condition (1.2), with
α < d−1 has the required local regularity. But unfortunately, the DiPerna-Lions theory also
requires a condition on the growth of the vector-field at infinity, which is not satisfied in our
case. However if the interaction force F derives from a potential Φ which is bounded at the
origin (without any sign condition), the DiPerna-Lions theory still leads to global solutions
for almost every initial conditions. This is stated precisely in the following proposition which
is a consequence of [31, Theorem 4].

P 7. – Assume that F = −∇Φ with Φ ∈W 2,1
loc , and that Φ(x) ≥ −C(1+ |x|2)

for some constant C > 0. Then for any fixed N , there exists a unique measure preserving
and energy preserving flow defined almost everywhere on R2dN associated to (1.1). Such a flow
precisely satisfies

i) there exists a set Ω ⊂ R2dN with |Ω| = 0 s.t. for any initial data Z0 ∈ R2dN \Ω, we have
a trajectory Z(t) solution to (1.1),

ii) for a.e. trajectory the energy is conserved: for all time t ≥ 0,

1

2

N∑
i=1

|Vi(t)|2 +
1

2N

∑
i 6=j

Φ(|Xi(t)−Xj(t)|) =
1

2

N∑
i=1

|V 0
i |2 +

1

2N

∑
i 6=j

Φ(|X0
i −X0

j |)

iii) the family of solutions defines a global flow, which preserves the measure on R2dN .

Remark that if F = −∇Φ then the conditions on Φ are fulfilled whenever F satisfies (1.2).
So this proposition implies the global existence of solutions for almost all initial positions
and velocities in that case, and this is completely sufficient for our results: Theorem 1 requires
only the existence of a solution with given initial data and Theorem 2 requires the existence
of solutions for almost all initial data.

In the case of some specific but more singular attractive potentials as the gravitational
force (α = d− 1) in dimension 2 or 3, and also for some others power law forces, it is known
[53] that the set of initial conditions leading to “standard” collisions (possibly multiple and
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simultaneous), is of zero measure. The 2D case is in fact completely solved in [44]. But, what
is unknown even if it seems rather natural, is that the set of initial collisions leading to the so-
called “non-collisions” singularities, which do exist [63], is also of zero measure for N ≥ 5.
Up to our knowledge it has only been proved forN ≤ 4 [54]. In fact, there is a large literature
about this N body problem in the physics and mathematics communities. However, that
discussion is not really relevant here since in the “strongly” singular case α ∈ [1, d − 1),
we use a regularization or cut-off of the force (see the condition (1.3)), thanks to which the
question of global existence becomes trivial.

Eventually, the only case in which we are not covered by the existing literature is the case
of non potential force satisfying the (Sα)-condition for some α < 1, for which we claimed
a result without cut-off. In that case, we opt for the following simple strategy. As in the
case with larger singularity we use a cut-off or regularization of the interaction force. The
existence of global solution is then straightforward. And our results of convergence are valid
independently of the size of cut-off (or smoothing parameter) which is used. It can be any
positive function of the number of particles N .

Note that this suggests in fact that for a fixed N , the analysis done in this article should
imply the existence of solutions for almost all initial conditions. If one checks precisely, our
proofs show that trajectories may be extended after a collision where the relative velocity
between the two particles goes to a non zero limit. Hence the only collisions that remain
problematic are those where the relative velocity of the colliding particles vanishes, but our
result controls the probability of this happening. This was mentioned in Remark 6 after
Theorem 2.

6.2. The structure of the force term: Potential, repulsive, attractive?

In the particular case where the force derives from a potential F = −∇Φ, the system (1.1)
is endowed with some important additional structure, for example the conservation of energy

1

N

∑
i

|Vi|2

2
+

1

2N2

∑
i 6=j

Φ(Xi −Xj) = const.

When the forces are repulsive, i.e., Φ ≥ 0, this immediately bounds the kinetic energy and
separately the potential energy. However this precise structure is never used in this article,
which may seem weird at first glance. We present here some arguments that can explain this
fact.

First, for the interactions considered in the case without cut-off, again satisfying an
(Sα) condition with α < 1, the potential Φ is continuous (hence locally bounded). In that
case the singularity in the force term is too weak to really see or use a difference between
repulsive and attractive interactions. Two particles having a close encounter cannot have a
strong influence onto each other, both in the attractive or repulsive case. Similarly the fact
that the interaction derives from a potential is not really useful, hence our choice of the
slightly more general setting.

It should here be noted that the previous discussion applies to every previous result on
the mean-field limit or propagation of chaos in the kinetic case: They all require assump-
tions (typically∇2Φ locally bounded) implying that the attractive or repulsive nature of the
interaction does not matter; the situation is different for the macroscopic “Euler-like” cases,
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see the comments in the paragraph devoted to that case. The present contribution shows that
mean-field limits and propagation of chaos are essentially valid at least as long as the poten-
tial is bounded (instead of at leastW 2,∞

loc as before). This corresponds to the physical intuition
that nothing should go wrong as long as the local interaction between two very close particles
is too weak to impact the dynamics.

The exact structure of the interaction kernel should become crucial once this threshold
is passed, i.e., for Φ(x) ∼ C|x|1−α at the origin with α ≥ 1. But here we use in that case a
cut-off, which weakens the effect of the interaction between two very close particles. In fact
in order to prove the mean-field limit, we are able to show that if the cut-off is large enough,
these local interactions may be neglected. So our techniques still do not make any difference
between the repulsive or attractive cases.

However in the case where the “strong” singularity is repulsive, the potential energy
is bounded, and if we were able to use this fact, we would obtain results depending of
the attractive-repulsive character of the interaction. In that respect, we point out that the
information contained in a bounded potential energy is actually quite weak and clearly
insufficient, at least with our techniques. Assume for instance that Φ(x) ∼ |x|1−α for
some α > 1 in dimension 3. Then the boundedness of the potential energy implies that
the minimal distance in physical space between any two particles is of order N−2/(α−1),
which is at best N−2 in the Coulomb case, α = 2. But it can be checked that the cut-off

parameter N−m given in Theorem 4 as a power m which is always much lower than 2
α−1 ,

i.e., that the cut-off we use is always much larger than the minimal distance provided by the
bound on the potential energy. To go further, an interesting idea is to compare the dynamics
of the N particles with or without cut-off. But even if the difference between the original
force and its mollified version is well localized, it is quite difficult to understand how we can
control the difference between the two associated dynamics. We refer to [5] for a first attempt
in that direction, in which well-localized and singular perturbations of the free transport are
investigated.

Therefore in those singular settings, the repulsive or potential structure of the interaction
will only help in a more subtle (and still unidentified) manner. An interesting comparison is
the stability in average proved in [4]: This requires repulsive interaction not to control locally
the trajectories but in order to use the statistical properties of the flow (through the Gibbs
equilibrium).

Appendix

A.1. Large deviation on the infinite norm of fN

P 8. – Assume thatρ is a probability onRn with support included in [−R0, R0]n

and bounded density f(x) dx. Let φ be a bounded cut-off function, with support in [−L2 ,
L
2 ]n

and total mass one, and define the usual φε := 1
εnφ( ·ε ). For any configuration Z = (Zi)i≤N

we define

fZN := µZN ∗ φε(N).
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If ε(N) = N−
γ
n and the ZN are distributed according to f⊗N , then we have the explicit “large

deviations” bound with cφ = (2L)n‖φ‖∞ and c0 = (2R0 + 2)nL−n

(A.1) ∀β > 1, P (‖fZN‖∞ ≥ βcφ‖f‖∞) ≤ c0Nγe−(β ln β−β+1)(2L)n‖f‖∞N1−γ
.

In particular, for φ = 1[−1/2,1/2]n and β = 2, we get

(A.2) P
(
‖fZN‖∞ ≥ 21+n‖f‖∞

)
≤ (2R0 + 2)nNγe−(2 ln 2−1)2n‖f‖∞N1−γ

.

Proof. – For any Z ∈ RnN and z ∈ Rn, we have

fZN (z) =
1

N

N∑
i=1

φε(z − Zi) =
1

N εn

N∑
i=1

φ

(
z − Zi
ε

)
≤ ‖φ‖∞

N εn
#{i such that |z − Zi|∞ ≤ Lε

2 }

‖fZN‖∞ ≤
‖φ‖∞
N εn

sup
z∈Rn

#{i such that |z − Zi|∞ ≤ Lε
2 },

where # stands for the cardinal (of a finite set). It remains to bound the supremum on all
the cardinals. The first step will be to replace the sup on all the z ∈ Rn by a supremum on a
finite number of points. For this, we cover [−R0, R0]n by M cubes Ck of size Lε, centered at
the points (ck)k≤M . The number M of squares needed depends on N via ε, and is bounded
by

M ≤
[

2(R0 + 1)

Lε

]n
.

Next, for any z ∈ Rd, there exists a k ≤M such that |z − ck| ≤ Lε
2 . This implies that

sup
z∈Rn

#{i such that |z − Zi|∞ ≤ Lε
2 } ≤ sup

k≤M
#{i such that |ck − Zi|∞ ≤ Lε}.

Now we set HN
k := #{i such that |ck − Zi|∞ ≤ Lε}. HN

k follows a binomial law B(N, pk)

with pk =
∫

2Ck
f(z) dz, where 2Ck denotes the square with center ck, but size 2Lε. Remark

that

pk ≤ p̄ := (2Lε)n‖f‖∞.

For any λ, the exponential moments of HN
k are therefore given and bounded by

E(eλH
N
k ) =

[
1 + (eλ − 1)pk

]N
≤
[
1 + (eλ − 1)(2Lε)n‖f‖∞

]N
≤ e(eλ−1)N(2Lε)n‖f‖∞ .

Now for the supremum of the HN
k

E(eλ supkH
N
k ) ≤ E(eλH

N
1 ) + · · ·+ E(eλH

N
M )

≤ Me(eλ−1)N(2Lε)n‖f‖∞

≤
[

2(R0 + 1)

Lε

]n
e(eλ−1)N(2Lε)n‖f‖∞ .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



936 M. HAURAY AND P.-E. JABIN

Using finally Chebyshev’s inequality, we get for any β > 0

P (‖fZN‖∞ ≥ β(2L)n‖φ‖∞‖f‖∞) ≤ P
(

sup
k
HN
k ≥ β‖f‖∞N(2Lε)n

)
≤ E(eλ supkH

N
k )e−λβ‖f‖∞N(2Lε)n

≤
[

2(R0 + 1)

Lε

]n
e(e

λ−1−λβ)N(2Lε)n‖f‖∞ .

For β > 1, the optimal λ is lnβ and we get with cφ = (2L)n‖φ‖∞

P (‖fZN‖∞ ≥ βcφ‖f‖∞) ≤
[

2(R0 + 1)

Lε

]n
e−(β ln β−β+1)N(2Lε)n‖f‖∞ .

With the scaling ε(N) = N−
γ
n , we get

P (‖fZN‖∞ ≥ βcφ‖f‖∞) ≤ c0Nγe−(β ln β−β+1)(2L)n‖f‖∞N1−γ
.

Remark finally that the choice of scale ε(N) = (lnN)N−
1
n is also sufficient to get a

probability vanishing faster than any inverse power.

A.2. Existence of strong solutions to Equation (1.5)

This subsection is devoted to the proof of Lemma 3.

Proof of Lemma 3.. – Given the estimate on f , ρ =
∫
f dv also belongs to L∞ with the

bound

‖ρ(t, .)‖L∞(Rd) ≤ C RV (t)d ‖f(t, ., .)‖L∞(R2d).

As we have (1.2) with α < d − 1, E = F ?x ρ is Lipschitz. Therefore the solution to (1.5) is
given by the characteristics. Namely, we define X and V the unique solutions to

∂tX(t, s, x, v) = V (t, s, x, v), ∂tV (t, s, x, v) = E(t,X(t, s, x, v)),

X(s, s, x, v) = x, V (s, s, x, v) = v.

The solution f is now given by

f(t, x, v) = f(0, X(0, t, x, v), V (0, t, x, v)),

with the consequence that

RX(t) ≤ RX(0) +

∫ t

0

RV (s) ds, RV (t) ≤ RV (0) +

∫ t

0

‖E(s, .)‖L∞ ds.

Then, the use of

‖E‖L∞ ≤ ‖ρ‖1−α/dL1 ‖ρ‖α/dL∞ ,

leads to the required inequality. To conclude it is enough to notice that theL1 andL∞ norms
of f are preserved in this case. This again holds because f is transported along the flow of a
sufficiently smooth vector-field, at least W 1,1. See [2] for the details.

4 e SÉRIE – TOME 48 – 2015 – No 4



PROPAGATION OF CHAOS FOR VLASOV EQUATIONS WITH SINGULAR FORCES 937

BIBLIOGRAPHY

[1] S. J. A, Gravitational N-body simulations, Cambridge Univ. Press, 2010.

[2] L. A, Transport equation and Cauchy problem for non-smooth vector fields,
in Calculus of variations and nonlinear partial differential equations, Lecture Notes in
Math. 1927, Springer, Berlin, 2008, 1–41.

[3] A. A. A′, Existence in the large of a weak solution of Vlasov’s system of equa-
tions, Ž. Vyčisl. Mat. i Mat. Fiz. 15 (1975), 136–147.

[4] J. B, M. H, P.-E. J, Stability of trajectories for N-particle dynamics
with a singular potential, preprint arXiv:1004.2177.

[5] J. B, P.-E. J, Free transport limit forN -particles dynamics with singular and
short range potential, J. Stat. Phys. 131 (2008), 1085–1101.

[6] J. B,N -particle approximation to the nonlinear Vlasov-Poisson system, in Proceed-
ings of the Third World Congress of Nonlinear Analysts, Part 3 (Catania, 2000), 47,
2001, 1445–1456.

[7] C. B, A. L, Plasma physics via computer simulation, Series in plasma
physics, 1991.

[8] E. B, Problèmes d’interaction discret-continu et distances de Wasserstein, thèse
de doctorat, Université de Toulouse III, 2011.

[9] F. B, J. A. C, J. A. C, Stochastic mean-field limit: non-Lipschitz
forces and swarming, Math. Models Methods Appl. Sci. 21 (2011), 2179–2210.

[10] F. B, A. G, C. V, Quantitative concentration inequalities for
empirical measures on non-compact spaces, Probab. Theory Related Fields 137
(2007), 541–593.

[11] W. B, K. H, The Vlasov dynamics and its fluctuations in the 1/N limit of
interacting classical particles, Comm. Math. Phys. 56 (1977), 101–113.

[12] E. C, P.-L. L, C. M, M. P, A special class of sta-
tionary flows for two-dimensional Euler equations: a statistical mechanics descrip-
tion, Comm. Math. Phys. 143 (1992), 501–525.

[13] E. A. C, M. C. C, J. L R, M. L, C. V, Entropy and
chaos in the Kac model, Kinet. Relat. Models 3 (2010), 85–122.

[14] J. A. C, Y.-P. C, M. H, The derivation of swarming models:
Mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to
Crowds, CISM International Centre for Mechanical Sciences 553, Springer Vienna,
2014, 1–46.

[15] T. C, L. D P, P. J, The∞-Wasserstein distance: local solu-
tions and existence of optimal transport maps, SIAM J. Math. Anal. 40 (2008), 1–20.

[16] M. C, W. G, G. P, The semigeostrophic equations discretized in
reference and dual variables, Arch. Ration. Mech. Anal. 185 (2007), 341–363.

[17] W. D, A very fast and momentum-conserving tree code, The Astrophysical Jour-
nal 536 (2000), L39–L42.

[18] R. J. DP, P.-L. L, Ordinary differential equations, Invent. Math 98 (1989),
511–547.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#4
http://arxiv.org/abs/1004.2177
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#9
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#10
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#11
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#15
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#18


938 M. HAURAY AND P.-E. JABIN

[19] V. D , J. E. Y, Asymptotics for transportation cost in high dimensions,
J. Theoret. Probab. 8 (1995), 97–118.

[20] R. L. D, Vlasov equations, Funktsional. Anal. i Prilozhen. 13 (1979), 48–58,
96.

[21] N. F, A. G, On the rate of convergence in Wasserstein distance of the
empirical measure, preprint arXiv:1312.2128.

[22] N. F, M. H, S. M, Propagation of chaos for the 2D viscous
vortex model, J. Eur. Math. Soc. (JEMS) 16 (2014), 1423–1466.

[23] I. G, L. S-R, B. T, From Newton to Boltzmann : hard
spheres and short-range potentials, Zurich Advanced Lectures in Mathematics
Series, 2014.

[24] K. G, J. T. L, H. D. J. V, On simulation methods for Vlasov-Poisson
systems with particles initially asymptotically distributed, SIAM J. Numer. Anal. 28
(1991), 1574–1609.

[25] K. G, H. D. J. V, On the convergence of particle methods for multidi-
mensional Vlasov-Poisson systems, SIAM J. Numer. Anal. 26 (1989), 249–288.

[26] F. G, Moderate deviations and large deviations for kernel density estimators, J. The-
oret. Probab. 16 (2003), 401–418.

[27] F. G, On the dynamics of large particle systems in the mean field limit, preprint
arXiv:1301.5494.

[28] J. G, T. Y. H, New stability estimates for the 2-D vortex method, Comm.
Pure Appl. Math. 44 (1991), 1015–1031.

[29] J. G, T. Y. H, J. L, Convergence of the point vortex method for
the 2-D Euler equations, Comm. Pure Appl. Math. 43 (1990), 415–430.

[30] Y. N. G, V. A. V, M. P. F, Numerical "particle-in-cell"
methods: Theory and applications, De Gruyter, 2002.

[31] M. H, On Liouville transport equation with force field in BVloc, Comm. Partial
Differential Equations 29 (2004), 207–217.

[32] M. H, Wasserstein distances for vortices approximation of Euler-type equations,
Math. Models Methods Appl. Sci. 19 (2009), 1357–1384.

[33] M. H, Mean field limit for the one dimensional Vlasov-Poisson equation, Sémi-
naire Laurent Schwartz, École polytechnique, 2013.

[34] M. H, P.-E. J, N -particles approximation of the Vlasov equations with
singular potential, Arch. Ration. Mech. Anal. 183 (2007), 489–524.

[35] M. H, S. M, On Kac’s chaos and related problems, To be published
soon., 2012.

[36] E. H, On the asymptotic growth of the solutions of the Vlasov-Poisson system,
Math. Methods Appl. Sci. 16 (1993), 75–86.

[37] M. K, Foundations of kinetic theory, in Proceedings of the Third Berkeley Sympo-
sium on Mathematical Statistics and Probability, 1954 1955, vol. III, University of
California Press, 1956, 171–197.

[38] M. K.-H. K, On the equilibrium statistical mechanics of isothermal classical
self-gravitating matter, J. Statist. Phys. 55 (1989), 203–257.

4 e SÉRIE – TOME 48 – 2015 – No 4

http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#19
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#20
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#21
http://arxiv.org/abs/1312.2128
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#22
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#23
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#24
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#25
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#26
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#27
http://arxiv.org/abs/1301.5494
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#28
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#29
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#30
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#31
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#32
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#33
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#34
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#35
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#36
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#37
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#38


PROPAGATION OF CHAOS FOR VLASOV EQUATIONS WITH SINGULAR FORCES 939

[39] M. K.-H. K, Statistical mechanics of classical particles with logarithmic inter-
actions, Comm. Pure Appl. Math. 46 (1993), 27–56.

[40] M. K.-H. K, H. S, A note on the eigenvalue density of random matri-
ces, Comm. Math. Phys. 199 (1999), 683–695.

[41] O. E. I. L, Time evolution of large classical systems, in Dynamical systems,
theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture
Notes in Phys. 38, Springer, 1975, 1–111.

[42] P.-L. L, B. P, Propagation of moments and regularity for the 3-dimen-
sional Vlasov-Poisson system, Invent. Math. 105 (1991), 415–430.

[43] G. L, Uniqueness of the solution to the Vlasov-Poisson system with bounded
density, J. Math. Pures Appl. 86 (2006), 68–79.

[44] C. M, M. P, On the singularities of the Newtonian two-
dimensionalN -body problem, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
75 (1983), 106–110.

[45] R. J. MC, Stable rotating binary stars and fluid in a tube, Houston J. Math. 32
(2006), 603–631.

[46] H. P. J. MK, Propagation of chaos for a class of non-linear parabolic equations,
in Stochastic Differential Equations (Lecture Series in Differential Equations, Session
7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., 1967, 41–57.

[47] J. M, H. S, Statistical mechanics of the isothermal Lane-Emden equation,
J. Statist. Phys. 29 (1982), 561–578.

[48] S. M, C. M, Kac’s program in kinetic theory, Invent. Math. 193 (2013),
1–147.

[49] H. N, J. W, The convergence of simulation methods in plasma physics, in
Mathematical methods of plasmaphysics (Oberwolfach, 1979), Methoden Verfahren
Math. Phys. 20, Lang, 1980, 271–286.

[50] H. O, Propagation of chaos for the two-dimensional Navier-Stokes equation,
in Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), Academic
Press, 1987, 303–334.

[51] K. P, Global classical solutions of the Vlasov-Poisson system in three
dimensions for general initial data, J. Differential Equations 95 (1992), 281–303.

[52] N. R, S. S, Higher dimensional Coulomb gases and renormalized
energy functionals, preprint arXiv:1307.2805.

[53] D. G. S, Improbability of collisions in Newtonian gravitational systems. II, Trans.
Amer. Math. Soc. 181 (1973), 351–368.

[54] D. G. S, A global existence theorem for the four-body problem of Newtonian
mechanics, J. Differential Equations 26 (1977), 80–111.

[55] J. S, Global existence of smooth solutions to the Vlasov-Poisson system in
three dimensions, Comm. Partial Differential Equations 16 (1991), 1313–1335.

[56] S. S, The point-vortex method for periodic weak solutions of the 2-D Euler
equations, Comm. Pure Appl. Math. 49 (1996), 911–965.

[57] H. S, Large scale dynamics of interacting particles, Springer Verlag, 1991.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#39
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#40
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#41
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#42
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#43
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#44
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#45
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#46
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#47
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#48
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#49
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#50
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#51
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#52
http://arxiv.org/abs/1307.2805
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#53
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#54
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#55
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#56
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_4.html#57


940 M. HAURAY AND P.-E. JABIN

[58] A.-S. S, Topics in propagation of chaos, in École d’été de probabilités de Saint-
Flour XIX 1989, Lecture Notes in Math. 1464, Springer, 1991, 165–251.

[59] M. T, On the derivation of the one-dimensional Vlasov equation, Transport
Theory Statist. Phys. 15 (1986), 597–628.

[60] V. S. V, On the convergence of sample probability distributions, Sankhyā
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