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ASYMPTOTIC STABILITY
IN THE ENERGY SPACE FOR DARK SOLITONS

OF THE GROSS-PITAEVSKII EQUATION

 F BÉTHUEL, P GRAVEJAT  D SMETS

A. – We pursue our work [5] on the dynamical stability of dark solitons for the one-
dimensional Gross-Pitaevskii equation. In this paper, we prove their asymptotic stability under small
perturbations in the energy space. In particular, our results do not require smallness in some weighted
spaces or a priori spectral assumptions. Our strategy is reminiscent of the one used by Martel and
Merle in various works regarding generalized Korteweg-de Vries equations. The important feature of
our contribution is related to the fact that while Korteweg-de Vries equations possess unidirectional
dispersion, Schrödinger equations do not.

R. – Nous poursuivons notre analyse [5] de la stabilité dynamique des solitons sombres
pour l’équation de Gross-Pitaevskii en dimension un. Dans cet article, nous démontrons leur stabilité
asymptotique par rapport à de petites perturbations dans l’espace d’énergie. En particulier, nos résul-
tats ne requièrent aucune condition de petitesse dans des espaces à poids, aussi bien qu’aucune hypo-
thèse spectrale a priori. Notre stratégie s’appuie sur celle développée par Martel et Merle dans plusieurs
articles au sujet des équations de Korteweg-de Vries généralisées. Notre contribution principale réside
dans le fait que les équations de Korteweg-de Vries possèdent une dispersion unidirectionnelle, ce qui
n’est plus le cas des équations de Schrödinger.

1. Introduction

We consider the one-dimensional Gross-Pitaevskii equation

(GP) i∂tΨ + ∂xxΨ + Ψ
(
1− |Ψ|2

)
= 0,

for a function Ψ : R× R→ C, supplemented with the boundary condition at infinity

(1) |Ψ(x, t)| → 1, as |x| → +∞.

The three-dimensional version of (GP) was introduced in the context of Bose-Einstein con-
densation in [37, 24]. It is also used as a model in other areas of physics such as nonlinear
optics [25] and quantum fluid mechanics [14]. In nonlinear optics, the Gross-Pitaevskii equa-
tion appears as an envelope equation in optical fibers, and is mostly relevant in the one and
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1328 F. BÉTHUEL, P. GRAVEJAT AND D. SMETS

two dimensional cases. In dimension one, the case studied in this paper, it models the prop-
agation of dark pulses in slab waveguides, and the boundary condition (1) corresponds to a
non-zero background.

On a mathematical level, the Gross-Pitaevskii equation is a defocusing nonlinear
Schrödinger equation. It is Hamiltonian, and in dimension one, it owns the remarkable
property to be integrable by means of the inverse scattering method [42]. The Hamiltonian
is given by the Ginzburg-Landau energy

E(Ψ) :=
1

2

∫
R
|∂xΨ|2 +

1

4

∫
R

(1− |Ψ|2)2.

A soliton with speed c is a travelling-wave solution of (GP) of the form

Ψ(x, t) := Uc(x− ct).

Its profile Uc is a solution to the ordinary differential equation

(2) − ic∂xUc + ∂xxUc + Uc
(
1− |Uc|2

)
= 0.

The solutions to (2) with finite Ginzburg-Landau energy are explicitly known. For |c| ≥
√

2,
they are the constant functions of unitary modulus, while for |c| <

√
2, up to the invariances

of the problem, i.e., multiplication by a constant of modulus one and translation, they are
uniquely given by the expression

(3) Uc(x) :=

√
2− c2

2
th
(√2− c2x

2

)
+ i

c√
2
.

Notice that solitons Uc with speed c 6= 0 do not vanish on R. They are called dark solitons,
with reference to nonlinear optics where |Ψ|2 refers to the intensity of light. Instead, since
it vanishes at one point, U0 is called the black soliton. Notice also, this turns out to be an
important feature, that solitons Uc with c '

√
2 have indefinitely small energy.

Our goal in this paper is to study the (GP) flow for initial data that are close to dark
solitons, and in particular to analyze the stability of solitons. Since we deal with an infinite
dimensional dynamical system, the notion of stability relies heavily on the way to measure
distances. A preliminary step is to address the Cauchy problem with respect to these dis-
tances. In view of the Hamiltonian E, the natural energy space for (GP) is given by

X(R) :=
{

Ψ ∈ H1
loc(R), Ψ′ ∈ L2(R) and 1− |Ψ|2 ∈ L2(R)

}
.

Due to the non-vanishing conditions at infinity, it is not a vector space. Yet X(R) can be given
a structure of complete metric space through the distance

d(Ψ1,Ψ2) :=
∥∥Ψ1 −Ψ2

∥∥
L∞([−1,1])

+
∥∥Ψ′1 −Ψ′2

∥∥
L2(R)

+
∥∥|Ψ1| − |Ψ2|

∥∥
L2(R)

.

In space dimension one, for an initial datum Ψ0 ∈ X(R), the Gross-Pitaevskii equation
possesses a unique global solution Ψ ∈ C0(R, X(R)), and moreover Ψ−Ψ0 ∈ C0(R, H1(R))

(see e.g., [43, 19, 21] and Appendix A.1). In the sequel, stability is based on the distance d.
It is well-known that a perturbation of a soliton Uc at initial time cannot remain a pertur-

bation of the same soliton for all time. This is related to the fact that there is a continuum of
solitons with different speeds. If Ψ0 = Uc for c ' c, but c 6= c, then Ψ(x, t) = Uc(x − ct)
diverges from Uc(x− ct), as t→ +∞. The notion of orbital stability is tailored to deal with
such situations. It means that a solution corresponding to a perturbation of a soliton Uc at
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ASYMPTOTIC STABILITY FOR SOLITONS 1329

initial time remains a perturbation of the family of solitons with same speed for all time.
Orbital stability of dark and black solitons was proved in [26, 3] (see also [1, 22, 5]).

T 1 ([26, 3]). – Let c ∈ (−
√

2,
√

2). Given any positive number ε, there exists a
positive number δ such that, if

d
(
Ψ0, Uc

)
≤ δ,

then

sup
t∈R

inf
(a,θ)∈R2

d
(
Ψ(·, t), eiθUc(· − a)

)
≤ ε.

The proof of Theorem 1 is mainly variational. Following the strategy developed in [11] or
[41, 23], it combines minimizing properties of the solitons with the Hamiltonian nature of
(GP) through conservation of energy and momentum.

In the sequel, our focus is put on the notion of asymptotic stability. For a finite dimen-
sional system, asymptotic stability of a stationary state or orbit means that any small pertur-
bation of the given state at initial time eventually converges to that state as time goes to infin-
ity. For a finite dimensional Hamiltonian system, this is excluded by the symplectic struc-
ture. In infinite dimension, one may take advantage of different topologies to define relevant
notions of asymptotic stability. Our main result is

T 2. – Let c ∈ (−
√

2,
√

2)\{0}. There exists a positive number δc, depending only
on c, such that, if

d
(
Ψ0, Uc

)
≤ δc,

then there exist a number c∗ ∈ (−
√

2,
√

2) \ {0}, and two functions b ∈ C1(R,R) and
θ ∈ C1(R,R) such that

b′(t)→ c∗, and θ′(t)→ 0,

as t→ +∞, and for which we have
(4)
e−iθ(t)Ψ

(
·+b(t), t

)
→ Uc∗ inL∞loc(R), and e−iθ(t)∂xΨ

(
·+b(t), t

)
⇀ ∂xUc∗ inL2(R),

in the limit t→ +∞.

Whereas Theorem 1 establishes that the solution remains close to the whole family of dark
solitons, Theorem 2 describes a convergence to some orbit on that family. In particular, it
expresses the fact that in the reference frame of the limit soliton, the perturbation is dispersed
towards infinity.

Concerning the topology, the convergence in L∞loc(R) in (4) cannot be improved into a
convergence in L∞(R), for instance due to the presence of additional small solitons, or to a
possible phenomenon of slow phase winding at infinity. Similarly, the weak convergence of
the gradients in L2(R) cannot be improved into a strong convergence in L2(R), due to the
Hamiltonian nature of the equation. Yet, it is not impossible that the latter could be improved
into a strong convergence in L2

loc(R), but we have no proof of that fact.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1330 F. BÉTHUEL, P. GRAVEJAT AND D. SMETS

R. – (i). Note that the case c = 0 is excluded from the statement of Theorem 2.
For c 6= 0, if δc is chosen sufficiently small, it follows from the Sobolev embedding theorem
and Theorem 1 that Ψ does not vanish on R×R. We rely heavily on this property for proving
Theorem 2, in particular in the next subsection where we introduce the hydrodynamical
framework.

(ii). Complementing Theorem 2 with information from Theorem 1, one derives a control
on |c− c∗| relative to d(Ψ0, Uc), and in particular it directly follows from the two statements
that |c − c∗| → 0, as d(Ψ0, Uc) → 0. We will actually prove uniform estimates, valid for all
times, stating that

d
(
e−iθ(t)Ψ

(
·+b(t), t

)
, Uc∗

)
+
∣∣b′(t)− c∣∣ ≤ Ac d(Ψ0, Uc

)
,

where Ac depends only on c (see Theorem 3 below). We believe that the functions b(t) − c∗
and θ(t) need not be bounded, and in particular need not have limits as t → +∞, unless
additional (regularity/localization) assumptions are made on the initial perturbation.

(iii). Finally, we mention that our proofs make no determinant use of the integrability of the
Gross-Pitaevskii equation, nor of the explicit nature of the solitons Uc. In particular, they
could presumably be extended to related nonlinearities (e.g., those studied in [12]) without
major modifications.

As previously mentioned, the Gross-Pitaevskii equation is both nonlinear and dispersive.
For constant coefficient linear equations, dispersion implies local convergence towards zero
as a consequence of a stationary phase type argument. This property does not carry over to
general coefficient or nonlinear equations. Persistent localized structures like ground states
or solitons are characteristic counter-examples. In that situation, dispersion around the
localized structure, through the linearized equation, seems more appropriate.

In [38, 39, 40], Soffer and Weinstein studied the asymptotic stability of ground states for
the nonlinear Schrödinger equation with a potential in a regime for which the nonlinear
ground-state is a close continuation of the linear one. They establish dispersive estimates for
the linearized equation around the ground state in suitable weighted spaces, which allow to
implement a fixed point argument in a space of functions that vanish as time goes to infinity.
This was later extended to a fully nonlinear regime for the nonlinear Schrödinger equation
without potential (see e.g., [8, 9, 10, 15]) and with a potential (see e.g., [20]). We refer to
[16] for a detailed historical survey of those and related works. In this context, the solutions
behave at large time as a soliton plus a purely scattering linear perturbation. This reflects
either a priori spectral assumptions or the use of weighted spaces for the initial perturbation.
In particular this prevents to consider e.g., solutions of multi-soliton type, where a reference
soliton is perturbed by one or more small solitons which do not disperse in time. These
solutions are known to exist for a large class of nonlinearities.

A related equation where similar questions were addressed is given by the Korteweg-de
Vries equation, or its generalizations. In [36], Pego and Weinstein studied the asymptotic sta-
bility of solitons in spaces of exponentially localized perturbations (see also [34] for pertur-
bations with algebraic decay). Here also, one may check a posteriori that multi-solitons are
excluded from the assumptions. In a series of papers, Martel and Merle [29, 30, 28, 31, 33, 32]
were able to establish the asymptotic stability of the generalized Korteweg-de Vries equations
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ASYMPTOTIC STABILITY FOR SOLITONS 1331

in the energy spaceH1(R), without additional a priori assumptions. In particular, perturba-
tions by multi-solitons are there handled too. Their method differs in many respects with the
ones above and relies on a combination of variational and dynamical arguments in the form
of localized monotonicity formulas. Our work was strongly motivated by the possibility to
obtain such an extension for the Gross-Pitaevskii equation. Even though the later is also a
nonlinear Schrödinger equation, the non-vanishing boundary conditions at spatial infinity
modifies the dispersive properties. More precisely, the dispersion relation for the linearization
of (GP) around the constant 1 is given by

ω2 = 2k2 + k4,

and therefore dispersive waves travel at speeds (positive or negative) greater than the speed
of sound

√
2. Instead, solitons are subsonic and hence the speeds of solitons and dispersive

waves are decoupled. In contrast, for the focusing nonlinear Schrödinger equation with
vanishing boundary conditions, the speeds of solitons and of dispersive waves overlap. The
description of the dynamics in the energy space near solitons of the focusing nonlinear
Schrödinger equation is certainly more delicate, since for instance in the case of a purely cubic
nonlinearity the existence of breathers prevent asymptotic stability.

In higher dimension, the Gross-Pitaevskii equation possesses localized structures as well,
in particular in the form of vortices and travelling vortex pairs in dimension two, or vortex
rings in dimension three (see e.g., [7, 6, 2, 27]). Some of these have been proved to be orbitally
stable [13]. Their asymptotic stability remains an interesting open question which partially
motivated the present work.

In the remaining part of this introduction, we present the main ingredients leading to the
proof of Theorem 2.

1.1. Hydrodynamical form of the Gross-Pitaevskii equation

As mentioned above, when c 6= 0 the soliton Uc does not vanish and may thus be written
under the form

Uc := %ce
iϕc ,

for smooth real functions %c and ϕc. In view of Formula (3), the maps ηc := 1 − %2
c and

vc := −∂xϕc are given by
(5)

ηc(x) =
2− c2

2ch
(√

2−c2
2 x

)2 , and vc(x) =
cηc(x)

2
(
1− ηc(x)

) =
c(2− c2)

2
(
2ch
(√

2−c2
2 x

)2 − 2 + c2
) .

In the sequel, we set

Qc,a :=
(
ηc,a, vc,a

)
:=
(
ηc(· − a), vc(· − a)

)
,

for 0 < |c| <
√

2 and a ∈ R. More generally, provided a solution Ψ to (GP) does not vanish,
it may be lifted without loss of regularity as

Ψ := %eiϕ,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1332 F. BÉTHUEL, P. GRAVEJAT AND D. SMETS

where % := |Ψ|. The functions η := 1− %2 and v := −∂xϕ are solutions, at least formally, to
the so-called hydrodynamical form of (GP), namely

(HGP)


∂tη = ∂x

(
2ηv − 2v

)
,

∂tv = ∂x

(
v2 − η + ∂x

( ∂xη

2(1− η)

)
− (∂xη)2

4(1− η)2

)
.

The Ginzburg-Landau energy E(Ψ), rewritten in terms of (η, v), is given by

E(η, v) :=

∫
R
e(η, v) :=

1

8

∫
R

(∂xη)2

1− η
+

1

2

∫
R

(1− η)v2 +
1

4

∫
R
η2,

so that the energy space for (HGP) is the open subset

N V (R) :=
{

(η, v) ∈ X(R), s.t. max
x∈R

η(x) < 1
}
,

where the Hilbert space X(R) := H1(R)× L2(R) is equipped with the norm

‖(η, v)‖2X(R) := ‖η‖2H1(R) + ‖v‖2L2(R).

It is shown in [35] (see also Proposition A.4) that if Ψ ∈ C0(R, X(R)) is a solution to
(GP) with infR×R |Ψ| > 0, then (η, v) ∈ C0(R, N V (R)) is a solution to (HGP) and the
energy E(η, v) is a conserved quantity, as well as the momentum

P (η, v) :=
1

2

∫
R
ηv.

1.2. Orbital stability in the hydrodynamical framework

The following is a quantitative version of Theorem 1 in the hydrodynamical framework
(therefore for c 6= 0).

T 3 ([26, 5]). – Let c ∈ (−
√

2,
√

2) \ {0}. There exists a positive number αc,
depending only on c, with the following properties. Given any (η0, v0) ∈ X(R) such that

(4) α0 :=
∥∥(η0, v0)−Qc,a

∥∥
X(R)

≤ αc,

for some a ∈ R, there exist a unique global solution (η, v) ∈ C0(R, N V (R)) to (HGP) with
initial data (η0, v0), and two maps c ∈ C1(R, (−

√
2,
√

2) \ {0}) and a ∈ C1(R,R) such that
the function ε defined by

(5) ε(·, t) :=
(
η(·+ a(t), t), v(·+ a(t), t)

)
−Qc(t),

satisfies the orthogonality conditions

(6) 〈ε(·, t), ∂xQc(t)〉L2(R)2 = P ′(Qc(t))(ε(·, t)) = 0,

for any t ∈ R. Moreover, there exist two positive numbers σc and Ac, depending only and
continuously on c, such that

max
x∈R

η(x, t) ≤ 1− σc,(7) ∥∥ε(·, t)∥∥
X(R)

+
∣∣c(t)− c∣∣ ≤ Acα0,(8)

and
∣∣c′(t)∣∣+

∣∣a′(t)− c(t)∣∣2 ≤ Ac∥∥ε(·, t)∥∥2

X(R)
,(9)

for any t ∈ R.
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The proof of Theorem 3 is essentially contained in [5]. However, since the statement
in [5] slightly differs from the statement presented here, in particular regarding the quadratic
dependence of c′(t), we provide the few additional details in Section B.2 below. The main
ingredient is a spectral estimate which we recall now for future reference (see also Section B
for additional information). The functional E − cP is a conserved quantity of the flow
whenever c is fixed, and it plays a particular role in the analysis since the solitons Qc are
solutions of the equation

E′(Qc)− cP ′(Qc) = 0.

In particular, [
E − cP

](
Qc + ε

)
=
[
E − cP

](
Qc
)

+
1

2
Hc

(
ε
)

+ O
(
‖ε‖3X(R)

)
,

as ε → 0 in X(R). In this formula, Hc denotes the quadratic form on X(R) corresponding
to the unbounded linear operator

H c := E′′(Qc)− cP ′′(Qc).

The operator H c is self-adjoint on L2(R)× L2(R), with domain Dom( H c) := H2(R)× L2(R).
It has a unique negative eigenvalue which is simple, and its kernel is given by

(10) Ker( H c) = Span(∂xQc).

Moreover, under the orthogonality conditions

〈ε, ∂xQc〉L2(R)2 = P ′(Qc)(ε) = 0,(11)

we have

Hc(ε) ≥ Λc‖ε‖2X(R),

where the positive number Λc depends only and continuously on c ∈ (−
√

2,
√

2) \ {0}. The
first orthogonality relation in (11) is related to the invariance by translation of E and P ,
which is reflected in the fact that ∂xQc is in the kernel of H c. There is probably more
freedom regarding the second orthogonality relation in (11). Our choice was motivated by
the possibility to obtain the quadratic dependence of c′(t) stated in Theorem 3.

The pair ε obtained in Theorem 3 satisfies the equation

(12) ∂tε = J H c(t)(ε) + J Rc(t)ε+
(
a′(t)− c(t)

)(
∂xε+ ∂xQc(t)

)
− c′(t)∂cQc(t),

where J is the symplectic operator

(13) J = −2S∂x :=

(
0 −2∂x

−2∂x 0

)
,

and the remainder term Rc(t)ε is given by

Rc(t)ε := E′(Qc(t) + ε)− E′(Qc(t))− E′′(Qc(t))(ε).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1334 F. BÉTHUEL, P. GRAVEJAT AND D. SMETS

1.3. Asymptotic stability in the hydrodynamical framework

An important part of the paper is devoted to the following theorem, from which we will
eventually deduce Theorem 2.

T 4. – Let c ∈ (−
√

2,
√

2) \ {0}. There exists a positive constant βc ≤ αc,
depending only on c, with the following properties. Given any (η0, v0) ∈ X(R) such that∥∥(η0, v0)−Qc,a

∥∥
X(R)

≤ βc,

for some a ∈ R, there exist a number c∗ ∈ (−
√

2,
√

2) \ {0} and a map b ∈ C1(R,R) such that
the unique global solution (η, v) ∈ C0(R, N V (R)) to (HGP) with initial data (η0, v0) satisfies(

η(·+ b(t), t), v(·+ b(t), t)
)
⇀ Qc∗ in X(R),

and
b′(t)→ c∗,

as t→ +∞.

In order to prove Theorem 4, a main step is to substitute the uniform estimates (8) and (9)
by suitable convergence estimates. We present the main ingredients in the proof of Theorem 4
in the next subsections.

1.3.1. Construction of a limit profile. – Let c ∈ (−
√

2,
√

2) \ {0} be fixed and let
(η0, v0) ∈ X(R) be any pair satisfying the assumptions of Theorem 4. Since βc ≤ αc in
the assumptions of Theorem 4, by Theorem 3, we may consider the unique globally defined
solution (η, v) to (HGP) with initial datum (η0, v0).

We fix an arbitrary sequence of times (tn)n∈N tending to +∞. In view of (8) and (9),
we may assume, going to a subsequence if necessary, that there exist ε∗0 ∈ X(R) and
c∗0 ∈ [−

√
2,
√

2] such that

(14) ε(·, tn) =
(
η(·+ a(tn), tn), v(·+ a(tn), tn)

)
−Qc(tn) ⇀ ε∗0 in X(R),

and

(15) c(tn)→ c∗0,

as n → +∞. In the next two subsections, we will eventually come to the conclusion (see
Corollary 2) that necessarily

ε∗0 ≡ 0,

by establishing smoothness and rigidity properties for the solution of (HGP) with initial
datum given by Qc∗0 + ε∗0.

More precisely, we first impose the constant βc to be sufficiently small so that, when
α0 appearing in Theorem 3 satisfies α0 ≤ βc, then in view of (8) and (9), we have

(16) min
{
c(t)2, a′(t)2

}
≥ c

2

2
, max

{
c(t)2, a′(t)2

}
≤ 1 +

c2

2
,

and also

(17)
∥∥ηc(·)− η(·+ a(t), t)

∥∥
L∞(R)

≤ min
{ c2

4
,

2− c2

64

}
,

for any t ∈ R. In particular, we deduce that c∗0 ∈ (−
√

2,
√

2) \ {0} and therefore Qc∗0 is
well-defined and different from the black soliton.
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It follows from (8) that

(18)
∣∣c∗0 − c∣∣ ≤ Acβc,

and from (8), (14) and the weak lower semi-continuity of the norm that the function

(η∗0 , v
∗
0) := Qc∗0 + ε∗0

satisfies

(19)
∥∥(η∗0 , v

∗
0)−Qc

∥∥
X(R)

≤ Acβc +
∥∥Qc −Qc∗0∥∥X(R)

.

We next impose a supplementary smallness assumption on βc so that∥∥(η∗0 , v
∗
0)−Qc

∥∥
X(R)

≤ αc.

Applying Theorem 3 yields a unique global solution (η∗, v∗) ∈ C0(R, N V (R)) to (HGP)
with initial data (η∗0 , v

∗
0), and two maps c∗ ∈ C1(R, (−

√
2,
√

2) \ {0}) and a∗ ∈ C1(R,R)

such that the function ε∗ defined by

(20) ε∗(·, t) :=
(
η∗(·+ a∗(t), t), v(·+ a∗(t), t)

)
−Qc∗(t)

satisfies the orthogonality conditions

(21) 〈ε∗(·, t), ∂xQc∗(t)〉L2(R)2 = P ′(Qc∗(t))(ε
∗(·, t)) = 0,

as well as the estimates∥∥ε∗(·, t)∥∥
X(R)

+
∣∣c∗(t)− c∣∣ ≤ Ac∥∥(η∗0 , v

∗
0)−Qc

∥∥
X(R)

,(22) ∣∣c∗′(t)∣∣+
∣∣a∗′(t)− c∗(t)∣∣2 ≤ Ac∥∥ε∗(·, t)∥∥2

X(R)
,(23)

for any t ∈ R.
We finally restrict further the definition of βc, if needed, in such a way that (22) and (23),

together with (18) and (19), imply that

(24) min
{
c∗(t)2, (a∗)′(t)2

}
≥ c

2

2
, max

{
c∗(t)2, (a∗)′(t)2

}
≤ 1 +

c2

2
,

and

(25)
∥∥ηc(·)− η∗(·+ a∗(t), t)

∥∥
L∞(R)

≤ min
{ c2

4
,

2− c2

64

}
,

for any t ∈ R.
The following proposition, based on the weak continuity of the flow map for the Gross-

Pitaevskii equation, allows to improve the convergence properties of the initial data, as
stated in (14), into convergence properties for the flow under (HGP) and for the modulation
parameters.

P 1. – Let t ∈ R be fixed. Then,

(26)
(
η(·+ a(tn), tn + t), v(·+ a(tn), tn + t)

)
⇀
(
η∗(·, t), v∗(·, t)

)
in X(R),

while

(27) a(tn + t)− a(tn)→ a∗(t), and c(tn + t)→ c∗(t),

as n→ +∞. In particular, we have

(28) ε(·, tn + t) ⇀ ε∗(·, t) in X(R), as n→ +∞.
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1.3.2. Localization and smoothness of the limit profile. – In order to prove localization of the
limit profile, we rely heavily on a monotonicity formula.

Let (η, v) be as in Theorem 3 and assume that (16) and (17) hold. Given real numbers R
and t, we define the quantity

IR(t) ≡ I(η,v)
R (t) :=

1

2

∫
R

[
ηv
]
(x+ a(t), t)Φ(x−R) dx,

where Φ is the function defined on R by

(29) Φ(x) :=
1

2

(
1 + th

(
νcx
))
,

with νc :=
√

2− c2/8. The function IR(t) represents the amount of momentum of
(η(·, t), v(·, t)) located from a (signed) distance R to the right of the soliton.

We have

P 2. – Let R ∈ R, t ∈ R, and σ ∈ [−σc, σc], with σc := (2 − c2)/(8
√

2).
Under the above assumptions, we have

d

dt

[
IR+σt(t)

]
≥ (2− c2)2

211

∫
R

[
(∂xη)2 + η2 + v2

]
(x+ a(t), t)Φ′(x−R− σt) dx

− 24
(2− c2)2

c4
e−2νc|R+σt|.

(30)

As a consequence, we obtain

(31) IR(t1) ≥ IR(t0)− 211

√
2− c2
c4

e−2νc|R|,

for any real numbers t0 ≤ t1.

Specifying for the limit profile (η∗, v∗), we set I∗R(t) := I
(η∗,v∗)
R (t) for any R ∈ R and any

t ∈ R. We claim

P 3. – Given any positive number δ, there exists a positive numberRδ, depend-
ing only on δ, such that we have ∣∣I∗R(t)

∣∣ ≤ δ, ∀R ≥ Rδ,∣∣I∗R(t)− P (η∗, v∗)
∣∣ ≤ δ, ∀R ≤ −Rδ,

for any t ∈ R.

The proof of Proposition 3 relies on a contradiction argument. The rough idea is that if
some positive quantity δ of momentum for (η∗, v∗) were transferred from time t = 0 to time
t = T and from the interval (−∞, R+ a∗(0)) towards the interval (R+ a∗(T ),+∞), then a
similar transfer would hold for the function (η, v) from time t = tn to time t = tn + T and
from the interval (−∞, R+ a(tn)) towards the interval (R+ a(tn + T ),+∞), for any suffi-
ciently large n. On the other hand, assuming that tn+1 ≥ tn + T , the monotonicity formula
implies that the momentum for (η, v) at time tn+1 and inside the interval (R+ a(tn+1),+∞)

is greater (up to exponentials) than the momentum for (η, v) at time tn + T and inside the
interval (R + a(tn + T ),+∞). The combination of those two information would yield that
the momentum for (η, v) at time tn and inside (R + a(tn),+∞) tends to +∞ as n→ +∞,
which is forbidden by the finiteness of the energy of (η, v).
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From Proposition 3, and using once more Proposition 2, we obtain

P 4. – Let t ∈ R. We have∫ t+1

t

∫
R

[
(∂xη

∗)2 + (η∗)2 + (v∗)2
]
(x+ a∗(s), s)e2νc|x| dx ds ≤ 223

c4(2− c2)
.

In order to prove the smoothness of the limit profile, we rely on the following smoothing
type estimate for localized solutions of the inhomogeneous linear Schrödinger equation.

P 5. – Let λ ∈ R and consider a solution u ∈ C0(R, L2(R)) to the linear
Schrödinger equation

(LS) i∂tu+ ∂xxu = F,

with F ∈ L2(R, L2(R)). Then, there exists a positive constant Kλ, depending only on λ, such
that

(31) λ2

∫ T

−T

∫
R
|∂xu(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫
R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt,

for any positive number T .

Applying Proposition 5 to the derivatives of Ψ∗, the solution to (GP) associated to the
solution (η∗, v∗) of (HGP), and then expressing the information in terms of (η∗, v∗), we
obtain

P 6. – The pair (η∗, v∗) is indefinitely smooth and exponentially decaying
on R × R. Moreover, given any k ∈ N, there exists a positive constant Ak,c, depending only
on k and c, such that

(32)
∫
R

[
(∂k+1
x η∗)2 + (∂kxη

∗)2 + (∂kxv
∗)2
]
(x+ a∗(t), t)e2νc|x| dx ≤ Ak,c,

for any t ∈ R.

The proof of Proposition 5 and Proposition 6, as well as additional remarks concerning
smoothing properties for localized solutions are gathered in Appendix A.2.

1.3.3. Rigidity for the limit profile. – Our main task is now to show that the limit profile
constructed above is exactly a soliton, which amounts to prove that ε∗0 ≡ 0.

Recall from (12) that ε∗ satisfies the equation

(33) ∂tε∗ = J H c∗(t)(ε
∗) +J Rc∗(t)ε∗+

(
a∗′(t)− c∗(t)

)(
∂xQc∗(t) +∂xε

∗)− c∗′(t)∂cQc∗(t).
Our strategy is to derive suitable integral estimates on ε∗. Since the linear operator H c has a
kernel given by ∂xQc, it turns out that it is more convenient to derive first integral estimates
for the quantity H c∗(ε

∗) (so that the component along the kernel is eliminated) rather than
directly on ε∗. This idea was already successfully used by Martel and Merle in [32] (see also
[28]) for the generalized Korteweg-de Vries equation. The smoothness and decay obtained in
the previous subsection allow us to perform as many differentiations as we wish.

More precisely, we define the pair

(34) u∗(·, t) := S H c∗(t)(ε
∗(·, t)).
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Since S H c∗(t)(∂xQc∗(t)) = 0, we deduce from (33) that

∂tu
∗ = S H c∗(t)

(
JSu∗

)
+ S H c∗(t)

(
J Rc∗(t)ε∗

)
− (c∗)′(t)S H c∗(t)(∂cQc∗(t))

+ (c∗)′(t)S∂c H c∗(t)(ε
∗) +

(
(a∗)′(t)− c∗(t)

)
S H c∗(t)(∂xε

∗).
(35)

At spatial infinity, the operator H c is asymptotically of constant coefficients, and therefore
almost commutes with J . Therefore the linear operator in (35), namely H c∗J , coincides in
that limit with the linear operator J H c∗ appearing in (33). It is thus not surprising that a
monotonicity formula similar in spirit to the monotonicity of the localized momentum for ε∗

(see Proposition 2) also holds for u∗. More precisely, decreasing further the value of βc if
necessary, we obtain

P 7. – There exist two positive numbers A∗ and R∗, depending only on c, such
that we have (1)

(36)
d

dt

(∫
R
xu∗1(x, t)u∗2(x, t) dx

)
≥ 2− c2

64

∥∥u∗(·, t)∥∥2

X(R)
−A∗‖u∗(·, t)‖2X(B(0,R∗))

,

for any t ∈ R.

In order to get rid of the non-positive local term ‖u∗(·, t)‖2X(B(0,R∗))
in the right-hand side

of (36), we invoke a second monotonicity type formula. IfM is a smooth, bounded, two-by-
two symmetric matrix-valued function, then

(37)
d

dt

〈
Mu∗, u∗

〉
L2(R)2

= 2
〈
SMu∗, H c∗(JSu

∗)
〉
L2(R)2

+ “super-quadratic terms”.

For c ∈ (−
√

2,
√

2) \ {0}, let Mc be given by

(38) Mc :=

(
− c∂xηc

2(1−ηc)2 −
∂xηc
ηc

−∂xηcηc
0

)
.

The choice of Mc is motivated by the following key observation.

L 1. – Let c ∈ (−
√

2,
√

2) \ {0} and u ∈ X3(R). Then,

Gc(u) := 2
〈
SMcu, H c(JSu)

〉
L2(R)2

= 2

∫
R

(
ηc + ∂xxηc

)(
u2 −

cηc
2(ηc + ∂xxηc)

u1 −
c∂xηc

2(1− ηc)(ηc + ∂xxηc)
∂xu1

)2

+
3

2

∫
R

η2
c

ηc + ∂xxηc

(
∂xu1 −

∂xηc
ηc

u1

)2

.

(39)

Notice that the quadratic formGc(u) in (39) is pointwise non-negative (and non-singular)
since

ηc + ∂2
xxηc = ηc

(
3− c2 − 3ηc

)
≥ c2

2
ηc > 0.

It also follows from (39) that
Ker(Gc) = Span(Qc).

(1) In (36), we have used the notation∥∥(f, g)
∥∥2

X(Ω)
:=

∫
Ω

(
(∂xf)2 + f2 + g2

)
,

in which Ω denotes a measurable subset of R.
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In our situation, u∗ = S H c∗(ε
∗) is not proportional to Qc∗ . By the orthogonality relation

(21), we indeed have P ′(Qc∗(t))(ε∗) = 0. Since one has Hc(∂cQc) = P ′(Qc), it follows that

(40) 0 = 〈Hc∗(∂cQc∗), ε
∗〉L2(R)2 = 〈H c∗(ε

∗), ∂cQc∗〉L2(R)2 = 〈u∗, S∂cQc∗〉L2(R)2 .

On the other hand,

(41)
〈
Qc∗ , S∂cQc∗

〉
=

1

2

d

dc

〈
Qc, SQc

〉
|c=c∗ = 2

d

dc

(
P (Qc)

)
|c=c∗

= −2
(
2− c2∗

) 1
2 6= 0,

which prevents u∗ from being proportional to Qc∗ . This leads to

P 8. – Let c ∈ (−
√

2,
√

2)\{0}. There exists a positive number Λc, depending
only and continuously on c, such that

(42) Gc(u) ≥ Λc

∫
R

[
(∂xu1)2 + (u1)2 + (u2)2

]
(x)e−

√
2|x| dx,

for any pair u ∈ X1(R) verifying

(43) 〈u, S∂cQc〉L2(R)2 = 0.

Coming back to (37), we can prove

P 9. – There exists a positive number B∗, depending only on c, such that

d

dt

(〈
Mc∗(t)u

∗(·, t), u∗(·, t)
〉
L2(R)2

)
≥ 1

B∗

∫
R

[
(∂xu

∗
1)2 + (u∗1)2 + (u∗2)2

]
(x, t)e−

√
2|x| dx

−B∗
∥∥ε∗(., t)∥∥ 1

2

X(R)

∥∥u∗(·, t)∥∥2

X(R)
,

(44)

for any t ∈ R.

Combining Proposition 7 and Proposition 9 yields

C 1. – Set

N(t) :=
1

2

(
0 x

x 0

)
+A∗B∗e

√
2R∗Mc∗(t).

We have

(45)
d

dt

(
〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2

)
≥ 2− c2

128

∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R. In particular,

(46)
∫ +∞

−∞

∥∥u∗(·, t)∥∥2

X(R)
dt < +∞.

Therefore, there exists a sequence (t∗k)k∈N such that

(47) lim
k→+∞

∥∥u∗(·, t∗k)
∥∥2

X(R)
= 0.
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Combining (47) with the inequality∥∥ε∗(·, t)‖X(R) ≤ Ac
∥∥u∗(·, t)∥∥

X(R)
,

(see (3.17)), we obtain

(48) lim
k→+∞

∥∥ε∗(·, t∗k)
∥∥2

X(R)
= 0.

Combining (48) with the orbital stability in Theorem 3, we are finally led to

C 2. – We have
ε∗0 ≡ 0.

1.3.4. Proof of Theorem 4 completed. – Let c ∈ (−
√

2,
√

2)\{0} and let (η0, v0) be as in the
statement of Theorem 4. It follows from the analysis in the previous three subsections that,
given any sequence of times (tn)n∈N converging to +∞, there exists a subsequence (tnk)k∈N
and a number c∗0 (sufficiently close to c as expressed e.g., in (18)) such that(

η(·+ a(tnk), tnk), v(·+ a(tnk), tnk)
)
⇀ Qc∗0 in X(R),

as n → +∞. By a classical argument for sequences, if we manage to prove that c∗0 is
independent of the sequence (tn)n∈N, then it will follow that

(49)
(
η(·+ a(t), t), v(·+ a(t), t)

)
⇀ Qc∗0 in X(R),

as t→ +∞.
We argue by contradiction. Assume that for two different sequences (tn)n∈N and (sn)n∈N,

both tending to +∞, we have

(50)
(
η(·+ a(tn), tn), v(·+ a(tn), tn)

)
⇀ Qc∗1 in X(R),

and

(51)
(
η(·+ a(sn), sn), v(·+ a(sn), sn)

)
⇀ Qc∗2 in X(R),

as n → +∞, with c∗1 6= c∗2 satisfying (18). Without loss of generality, we may assume that
c∗1 < c∗2 and that the sequences (tn)n∈N and (sn)n∈N are strictly increasing and nested such
that

(52) tn + 1 ≤ sn ≤ tn+1 − 1,

for any n ∈ N. The contradiction will follow essentially in the same way as for Proposition 3.
We set δ := P (Qc∗1 ) − P (Qc∗2 ) > 0. In order to be able to use (31), we choose a positive

number R sufficiently large so that

211

√
2− c2
c4

e−2νc|R| ≤ δ

10
.

In particular, we have from Proposition 2 and (52),

(53) I±R(sn) ≥ I±R(tn)− δ

10
and I±R(tn+1) ≥ I±R(sn)− δ

10
,

for any n ∈ N. Increasing the value of R if necessary, we may also assume that∣∣∣∣12
∫
R

(
Φ(x+R)− Φ(x−R)

)
ηc∗i vc∗i (x) dx− P (Qc∗i )

∣∣∣∣ ≤ δ

10
,
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for i = 1, 2 (and with Φ as in (29)). In particular, in view of the convergences (50) and (51),
there exists an integer n0 such that

(54)
∣∣I−R(tn)− IR(tn)− P (Qc∗1 )

∣∣ ≤ δ

5
,

and

(55)
∣∣I−R(sn)− IR(sn)− P (Qc∗2 )

∣∣ ≤ δ

5
,

for any n ≥ n0. Combining (53), (54) and (55), we obtain

IR(sn) ≥ IR(tn) +
δ

2
,

for any n ≥ n0, from which it follows again by (53) that

IR(tn+1) ≥ IR(tn) +
2δ

5
,

for any n ≥ n0. Therefore, the sequence (IR(tn))n∈N is unbounded, which is the desired
contradiction.

At this stage, we have proved that (49) holds, and therefore, in view of the statement of
Theorem 4, we set c∗ := c∗0. It is tempting to set also b(t) := a(t), but we have not proved
that a′(t) → c∗ as t → +∞. We will actually not try to prove such a statement but rely
instead on the weaker form given by (27) which, once we now know that a∗(t) = c∗t since
(η∗, v∗) = Qc∗ , reads

a(tn + t)− a(tn)→ c∗t,
for any fixed t ∈ R and any sequence (tn)n∈N tending to +∞. The opportunity to replace
the function a by a function b satisfying the required assumptions then follows from the next
elementary real analysis lemma. The proof of Theorem 4 is here completed.

L 2. – Let c ∈ R and let f : R→ R be a locally bounded function such that

lim
x→+∞

f(x+ y)− f(x) = cy,

for any y ∈ R. Then there exists a function g ∈ C1(R,R) such that

lim
x→+∞

g′(x) = c, and lim
x→+∞

|f(x)− g(x)| = 0.

Proof. – Replacing f(x) by f(x) − cx, we may assume that c = 0. It then suffices
to replace f by its convolution by any fixed mollifier and the conclusion follows from the
Lebesgue dominated convergence theorem.

1.4. Asymptotic stability in the original framework: Proof of Theorem 2

We first define δc in such a way that ‖(η0, v0)−Qc‖X(R) ≤ βc, whenever d(Ψ0, Uc) ≤ δc.
We next apply Theorem 4 to the solution (η, v) ∈ C0(R, N V (R)) to (HGP) corresponding
to the solution Ψ to (GP). This provides us with a speed c∗ and a position function b. We
now construct the phase function θ, and then derive the convergences in the statement of
Theorem 2.
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We fix a function χ ∈ C∞c (R, [0, 1]) such that χ is real, even, and satisfies
∫
R χ(x) dx = 1.

In view of the expression of Uc∗ in (3), we have∫
R
Uc∗(x)χ(x) dx = i

c∗√
2
6= 0.

Decreasing the value of βc if needed, we deduce from orbital stability that∣∣∣∣ ∫
R

Ψ(x+ b(t), t)χ(x) dx

∣∣∣∣ ≥ |c∗|2
√

2
> 0,

for any t ∈ R. In particular, there exists a unique ϑ : R→ R/(2πZ) such that

e−iϑ(t)

∫
R

Ψ(x+ b(t), t)χ(x) dx ∈ i c
∗
√

2
R+,

for any t ∈ R. Since b ∈ C1
b(R,R), and since both ∂xΨ and ∂tΨ belong to C0

b(R, H
−1
loc (R)),

it follows by the chain rule and transversality that ϑ ∈ C1
b(R,R/(2πZ)). From Theorem 4

and the definition of ϑ, we also infer that

(56)

e−iϑ(t)∂xΨ(·+ b(t), t) ⇀ ∂xUc∗ in L2(R),

1−
∣∣e−iϑ(t)Ψ(·+ b(t), t)

∣∣2 ⇀ 1−
∣∣Uc∗ ∣∣2 in L2(R),

e−iϑ(t)Ψ(·+ b(t), t) → Uc∗ in L∞loc(R),

as t → +∞. Invoking the weak continuity of the Gross-Pitaevskii flow, as stated in Propo-
sition A.3, as well as its equivariance with respect to a constant phase shift and the fact that
Uc∗ is an exact soliton of speed c∗, it follows that for any fixed T ∈ R,

(57)

e−iϑ(t)∂xΨ(·+ b(t), t+ T ) ⇀ ∂xUc∗(· − c∗T ) in L2(R),

1−
∣∣e−iϑ(t)Ψ(·+ b(t), t+ T )

∣∣2 ⇀ 1−
∣∣Uc∗(· − c∗T )

∣∣2 in L2(R),

e−iϑ(t)Ψ(·+ b(t), t+ T ) → Uc∗(· − c∗T ) in L∞loc(R),

as t→ +∞. On the other hand, rewriting (56) at time t+ T , we have

(58)

e−iϑ(t+T )∂xΨ(·+ b(t+ T ), t+ T ) ⇀ ∂xUc∗ in L2(R),

1−
∣∣e−iϑ(t+T )Ψ(·+ b(t+ T ), t+ T )

∣∣2 ⇀ 1−
∣∣Uc∗ ∣∣2 in L2(R),

e−iϑ(t+T )Ψ(·+ b(t+ T ), t+ T ) → Uc∗ in L∞loc(R),

as t→ +∞. Since we already know by Theorem 4 that

(59) b(t+ T )− b(t)→ c∗T,

as t→ +∞, we deduce from (57), (58) and (59) that(
ei(ϑ(t)−ϑ(t+T )) − 1

)
Uc∗ → 0 in L∞loc(R),

as t→ +∞. Therefore, we first have

lim
t→+∞

ϑ(t+ T )− ϑ(t) = 0 in R/(2πZ),

but then also in R for any lifting of ϑ, since we have a global bound on the derivative of ϑ.

As for the proof of Theorem 4, the conclusion then follows from Lemma 2 applied to (any
lifting of) ϑ. This yields a function θ such that θ′(t) → 0, and ϑ(t) − θ(t) → 0 as t → +∞.
In particular, we may substitute ϑ(t) by θ(t) in (56), and obtain the desired conclusions.
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2. Proofs of localization and smoothness of the limit profile

2.1. Proof of Proposition 2

First, we deduce from (HGP) the identity

d

dt

[
IR+σt(t)

]
= −1

2
(a′(t) + σ)

∫
R

[
ηv
]
(x+ a(t), t)Φ′(x−R− σt) dx

+
1

2

∫
R

[
(1− 2η)v2 +

η2

2
+

(3− 2η)(∂xη)2

4(1− η)2

]
(x+ a(t), t)Φ′(x−R− σt) dx

+
1

4

∫
R

[
η + ln(1− η)

]
(x+ a(t), t)Φ′′′(x−R− σt) dx.

(2.1)

Our goal is to provide a lower bound for the integrand in the right-hand side of (2.1).
We will decompose the domain of integration into two parts, [−R0, R0] and its complement,
where R0 is to be defined below. Outside [−R0, R0], we will bound the integrand pointwise
from below by a positive quadratic form in (η, v). Exponentially small error terms will arise
from integration on [−R0, R0].

First notice that

ηc ≤ ν2
c if ch2

(√2− c2
2

x
)
≥ 32,

i.e., if

|x| ≥ R0 :=
2√

2− c2
ch−1(4

√
2).

In particular, we infer from (17) that

(2.2)
∣∣η(x+ a(t), t)

∣∣ ≤ 2ν2
c ,

for any x /∈ [−R0, R0]. Elementary real analysis and (2.2) then imply that

(2.3)
∣∣[η + ln(1− η)

]
(x+ a(t), t)

∣∣ ≤ η2(x+ a(t), t),

for any x /∈ [−R0, R0]. Next, notice that the function Φ satisfies the inequality

(2.4) |Φ′′′| ≤ 4ν2
cΦ
′.

Finally, in view of the bound (16) on a′(t) and the definition of σc, we obtain that

(2.5)
∣∣a′(t) + σ

∣∣2 ≤ 3

2
+
c2

4
.

Taking into account (2.2), (2.3), (2.4) and (2.5), we may bound the integrand of (2.1)
on R \ [−R0, R0] from below by[(1

2
− 2ν2

c

)
v2 +

(1

4
− ν2

c

)
η2 −

√
3

8
+
c2

16
|ηv|+ 1

4
(∂xη)2

]
(x+ a(t), t)Φ′(x−R− σt).

Set a := 1/4− ν2
c = 7/32 + c2/64 and b :=

√
3/8 + c2/16. In the above quadratic form, we

may write

aη2− b|ηv|+ 2av2 =
b

2
√

2

(
|η|−

√
2|v|
)2

+
(
a− b

2
√

2

)(
η2 + 2v2

)
≥
(
a− b

2
√

2

)(
η2 + 2v2

)
,
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and compute

a− b

2
√

2
=

a2 − b2

8

a+ b
2
√

2

≥ 2a2 − b2

4
=

(2− c2)2

211
.

We next consider the case x ∈ [−R0, R0]. In that region, we simply bound the positive
function Φ′(x−R− σt) by a constant,

Φ′(x−R− σt) ≤ 2νce
−2νc|R+σt−R0| ≤ 2νce

2νcR0e−2νc|R+σt| ≤ 8νce
−2νc|R+σt|,

and control the remaining integral using the energy. More precisely, notice that for those x,
ηc ≥ ν2

c and therefore by (17), we also have η ≥ 0 (in the remaining part of the proof when
we refer to η or v we mean the value at the point (x+ a(t), t)). Next, we have 1− ηc ≥ c2/2,
and therefore by (17) also, 1− η ≥ c2/4. Finally, recall that |a′(t) + σ|/2 ≤

√
2/2, and that

(2.4) holds, so that combining the previous estimates and elementary real analysis, we may
bound the integrand in the right-hand side of (2.1) by[(

4 + (2− c2) ln
( c2

4

))
η2 + 8v2 +

48

c4
(∂xη)2

]
νce
−2νc|R+σt|.

Conclusion (30) follows from integration and a comparison with the energy of (η, v),
together with the explicit value E(Qc) = (2− c2)

3
2 /3 (see e.g., [5]).

It remains to prove (31). For that purpose, we distinguish two cases, depending on the sign
of R. If R ≥ 0, we integrate (30) from t = t0 to t = (t0 + t1)/2 with the choice σ = σc and
R = R − σct0, and then from t = (t0 + t1)/2 to t = t1 with the choice σ = −σc and
R = R+σct1. In total, we hence integrate on a broken line starting and ending at a distance
R from the soliton. If R ≤ 0, we argue similarly, choosing first σ = −σc, and next σ = σc.
This yields (31), and completes the proof of Proposition 2.

2.2. Proof of Proposition 3

We argue by contradiction and assume that there exists a positive number δ0 such that,
for any positive number Rδ0 , there exist two numbers R ≥ Rδ0 and t ∈ R such that either
|I∗R(t)| ≥ δ0 or |I∗R(t) − P (η∗, v∗)| ≥ δ0. Since at time t = 0, we have limR→+∞ I∗R(0) =

limR→−∞ I∗R(0)− P (η∗, v∗) = 0, we first fix Rδ0 > 0 such that

(2.6) |I∗R(0)|+ |I∗−R(0)− P (η∗, v∗)| ≤ δ0
4

and 211

√
2− c2
c4

e−2νcR ≤ δ0
32
,

for any R ≥ Rδ0 . We next fix R > 0 and t ∈ R obtained from the contradiction assumption
for that choice of Rδ0 , so that either |I∗R(t)| ≥ δ0 or |I∗R(t)− P (η∗, v∗)| ≥ δ0. In the sequel,
we assume that I∗R(t) ≥ δ0 holds, the three other cases would follow in a very similar manner.
In particular, we infer from (2.6) that

I∗R(t) ≥ δ0 ≥
δ0
4

+
δ0
16
≥ I∗R(0) + 212

√
2− c2
c4

e−2νcR,

and therefore it follows from the monotonicity formula in Proposition 2, applied to (η∗, v∗),
that t > 0. Finally, we fix R′ ≥ R such that

(2.7)
∣∣I∗−R′(t)− P (η∗, v∗)

∣∣ ≤ δ0
4
.
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Since R′ ≥ R, we also deduce from (2.6) that

(2.8)
∣∣I∗−R′(0)− P (η∗, v∗)

∣∣ ≤ δ0
4

and 211

√
2− c2
c4

e−2νcR
′
≤ δ0

32
.

Combining the inequality |I∗R(t)| ≥ δ0 with (2.6), (2.7) and (2.8), we obtain∣∣I∗−R′(t)− I∗R(t)− P (η∗, v∗)
∣∣ ≥ 3δ0

4
and

∣∣I∗−R′(0)− I∗R(0)− P (η∗, v∗)
∣∣ ≤ δ0

2
,

and therefore ∣∣∣(I∗−R′(0)− I∗R(0)
)
−
(
I∗−R′(t)− I∗R(t)

)∣∣∣ ≥ δ0
4
.

Since the integrands of the expressions between parentheses are localized in space, we deduce
from Proposition 1 that there exists an integer n0 such that∣∣∣(I−R′(tn)− IR(tn)

)
−
(
I−R′(tn + t)− IR(tn + t)

)∣∣∣ ≥ δ0
8
,

for any n ≥ n0. Rearranging the terms in the previous inequality yields

(2.9) max
{∣∣I−R′(tn)− I−R′(tn + t)

∣∣, ∣∣IR(tn)− IR(tn + t)
∣∣} ≥ δ0

16
.

On the other hand, since t ≥ 0, by the monotonicity formula in Proposition 2, (2.6) and (2.8),
we have

I−R′(tn)− I−R′(tn + t) ≤ δ0
32

and IR(tn)− IR(tn + t) ≤ δ0
32
,

and therefore we deduce from (2.9) that, given any n ≥ n0,

either I−R′(tn + t)− I−R′(tn) ≥ δ0
16
, or IR(tn + t)− IR(tn) ≥ δ0

16
.

In particular, there exists an increasing sequence (nk)k∈N such that tnk+1
≥ tnk + t for any

k ∈ N, and either

(2.10) IR(tnk + t)− IR(tnk) ≥ δ0
16
,

for any k ∈ N, or

I−R′(tnk + t)− I−R′(tnk) ≥ δ0
16
,

for any k ∈ N. In the sequel, we assume that (2.10) holds, here also the other case would
follow in a very similar manner. Since tnk+1

≥ tnk+t, we obtain by the monotonicity formula
of Proposition 2, (2.6) and (2.10), that

(2.11) IR(tnk+1
) ≥ IR(tnk+t)−

δ0
32
≥ IR(tnk) +

δ0
32
,

for any k ∈ N. On the other hand, we have∣∣IR(tnk)
∣∣ ≤ 1

2

∫
R

∣∣η(x, tnk)
∣∣∣∣v(x, tnk)

∣∣ dx ≤ 1

4

∫
R

(
|η(x, tnk)|2 + |v(x, tnk)|2

)
dx ≤ 2

c2
E(η, v),

where the last term does not depend on k by conservation of energy. This yields a contradic-
tion with (2.11).
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2.3. Proof of Proposition 4

Let s ∈ R and R ≥ 0 be arbitrary. Integrating (30) of Proposition 2, and choosing
successively σ = σc and σ = −σc, we infer that we have both

I∗R(s) ≤ I∗R+σcτ (s+ τ) + 211

√
2− c2
c4

e−2νcR,

and

I∗R(s) ≥ I∗R+σcτ (s− τ)− 211

√
2− c2
c4

e−2νcR,

for each positive number τ . Taking the limit as τ → +∞ in the previous two inequalities, we
deduce from Proposition 3 that∣∣I∗R(s)

∣∣ ≤ 211

√
2− c2
c4

e−2νcR,

for any s ∈ R and R ≥ 0. Similarly, we obtain∣∣I∗R(s)− P (η∗, v∗)
∣∣ ≤ 211

√
2− c2
c4

e−2νc|R|,

for any s ∈ R and R ≤ 0. Therefore, integrating (30) from t to t + 1 with the choice σ = 0

yields∫ t+1

t

∫
R

[
(∂xη

∗)2 + (η∗)2 + (v∗)2
]
(x+ a∗(s), s)Φ′(x−R) dx ds ≤ 214

c4

(
3 +

29

(2− c2)
3
2

)
e−2νc|R|,

for any R ∈ R. Since we have

lim
R→±∞

e2νc|R|Φ′(x−R) = 2νce
±2νcx,

for any x ∈ R, the conclusion follows from the Fatou lemma, the inequality

e2νc|x| ≤ e−2νcx + e2νcx,

and elementary real estimates.

3. Proofs of the rigidity properties for the limit profile

3.1. Proof of Proposition 7

In order to establish inequality (36), we first check that we are allowed to differentiate the
quantity

I ∗(t) :=

∫
R
xu∗1(x, t)u∗2(x, t) dx,

in the right-hand side of (36). This essentially follows from Proposition 6. Combining (32)
with the explicit formulae for ηc and vc in (5), we indeed derive the existence of a positive
number Ak,c such that

(3.1)
∫
R

((
∂kxε
∗
η(x, t)

)2
+
(
∂kxε
∗
v(x, t)

)2)
e2νc|x| dx ≤ Ak,c,

for any k ∈ N and any t ∈ R. In view of the formulae for u∗ in (34) and for H c in (B.1), a
similar estimate holds for u∗, for a further choice of the constant Ak,c. In view of (35), this
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is enough to define properly the quantity I ∗ and establish its differentiability with respect to
time. Moreover, we can compute

d

dt

(
I ∗
)

= −2

∫
R
µ
〈
H c∗(∂xu

∗), u∗
〉
R2 +

∫
R
µ
〈
H c∗

(
J Rc∗ε∗

)
, u∗
〉
R2

+
(
c∗
)′ ∫

R
µ
〈
∂c H c∗(ε

∗), u∗
〉
R2 −

(
c∗
)′ ∫

R
µ
〈
H c∗(∂cQc∗), u

∗〉
R2

+
(
(a∗)′ − c∗

) ∫
R
µ
〈
H c∗(∂xε

∗), u∗
〉
R2 ,

(3.2)

where we have set µ(x) = x for any x ∈ R. In particular, the proof of Proposition 7 reduces
to estimate each of the five integrals in the right-hand side of (3.2).

We split the proof into five steps. Concerning the first integral, we have

S 1. – There exist two positive numbers A1 and R1, depending only on c, such that
(3.3)

I ∗1(t) := −2

∫
R
µ
〈
H c∗(∂xu

∗), u∗
〉
R2 ≥

2− c2

16

∥∥u∗(·, t)∥∥2

X(R)
−A1

∥∥u∗(·, t)∥∥2

X(B(0,R1))
,

for any t ∈ R.

In order to prove inequality (3.3), we replace the operator H c∗ in the definition of I ∗1(t)

by its explicit formula (see (B.1)), and we integrate by parts to obtain

I ∗1(t) =

∫
R
ι∗1(x, t) dx,

with

ι∗1 =
1

4

( 3∂xµ

1− ηc∗
− µ∂xηc∗

(1− ηc∗)2
)

(∂xu
∗
1)2 − c∗∂x

( µ

1− ηc∗

)
u∗1u

∗
2 + ∂x

(
µ(1− ηc∗)

)
(u∗2)2

+
1

4
∂x

(
µ
(

2− ∂xxηc∗

(1− ηc∗)2
− (∂xηc∗)

2

(1− ηc∗)3
)
− ∂x

( ∂xµ

1− ηc∗

))
(u∗1)2.

Here, we have used the identity

c∗

2
+ vc∗ =

c∗

2(1− ηc∗)
,

so as to simplify the factor in front of u∗1u
∗
2. Since µ(x) = x, the integrand ι∗1 may also be

written as

ι∗1 =
1

4

( 3

1− ηc∗
− x∂xηc∗

(1− ηc∗)2
)

(∂xu
∗
1)2

− c∗
(1− ηc∗ + x∂xηc∗

(1− ηc∗)2
)
u∗1u

∗
2 +

(
1− ηc∗ − x∂xηc∗

)
(u∗2)2

+
1

4

(
2− 2∂xxηc∗

(1− ηc∗)2
− 3(∂xηc∗)

2

(1− ηc∗)3

− x
( ∂xxxηc∗

(1− ηc∗)2
+

4(∂xηc∗)(∂xxηc∗)

(1− ηc∗)3
+

3(∂xηc∗)
3

(1− ηc∗)4
))

(u∗1)2.
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Given a small positive number δ, we next rely on the exponential decay of the function ηc
and its derivatives to guarantee the existence of a radius R, depending only on c and δ (in
view of the bound on c∗ − c in (22)), such that

ι∗1(x, t) ≥ 3

4

(
∂xu

∗
1(x, t)

)2
+

1

2
u∗1(x, t)2 − c∗(t)u∗1(x, t)u∗2(x, t) + u∗2(x, t)2

− δ
(
(∂xu

∗
1(x, t))2 + u∗1(x, t)2 + u∗2(x, t)2

)
≥
(3

4
− δ
)(
∂xu

∗
1(x, t)

)2
+
(1

2
− |c

∗(t)|
2
√

2
− δ
)
u∗1(x, t)2 +

(
1− |c

∗(t)|√
2
− δ
)
u∗2(x, t)2,

when |x| ≥ R. In this case, it is enough to choose δ = (2 − c2)/32 and fix the number R1

according to the value of the corresponding R, to obtain

(3.4)
∫
|x|≥R1

ι∗1(x, t) dx ≥ 2− c2

16

∫
|x|≥R1

(
(∂xu

∗
1(x, t))2 + u∗1(x, t)2 + u∗2(x, t)2

)
dx.

On the other hand, it follows from (5), and again (22), that∫
|x|≤R1

ι∗1(x, t) dx ≥
(2− c2

16
−A1

)∫
|x|≤R1

(
(∂xu

∗
1(x, t))2 + u∗1(x, t)2 + u∗2(x, t)2

)
dx,

for a positive number A1 depending only on c. Combining with (3.4), we obtain (3.3).
We next turn to the second integral in the right-hand side of (3.2).

S 2. – There exist two positive numbers A2 and R2, depending only on c, such that
(3.5)∣∣ I ∗2(t)

∣∣ :=

∣∣∣∣ ∫
R
µ
〈
H c∗

(
J Rc∗ε∗

)
, u∗
〉
R2

∣∣∣∣ ≤ 2− c2

64

∥∥u∗(·, t)∥∥2

X(R)
+A2

∥∥u∗(·, t)∥∥2

X(B(0,R2))
,

for any t ∈ R.

Given a small positive number δ, there exists a radius R, depending only on δ and c, such
that

(3.6) |x| ≤ δe
νc|x|

2 ,

for any |x| ≥ R. As a consequence, we can estimate the integral I ∗2(t) as∣∣ I ∗2(t)
∣∣ ≤ R ∫

|x|≤R

∣∣H c∗(t)

(
J Rc∗(t)ε∗

)
(x, t)

∣∣∣∣u∗(x, t)∣∣ dx
+ δ

∫
|x|≥R

∣∣H c∗(t)

(
J Rc∗(t)ε∗

)
(x, t)

∣∣∣∣u∗(x, t)∣∣e νc|x|2 dx.

(3.7)

In order to estimate the two integrals in the right-hand side of (3.7), we first deduce from
(B.1) the existence of a positive number Ac, depending only on c, again by (22), such that,
given any pair ε ∈ H2(R)× L2(R), we have∣∣H c∗(ε)

∣∣ ≤ Ac(∣∣∂xxεη∣∣+
∣∣∂xεη∣∣+

∣∣εη∣∣+
∣∣εv∣∣).

In view of (13), it follows that

(3.8)
∣∣H c∗(Jε)

∣∣ ≤ 2Ac

(∣∣∂xxxεv∣∣+
∣∣∂xxεv∣∣+

∣∣∂xεv∣∣+
∣∣∂xεη∣∣),

when ε ∈ H1(R)×H3(R).
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On the other hand, given an integer `, we can apply the Leibniz rule to the second identity
in (B.12) to compute

(3.9)
∣∣∂`x[ Rc∗ε∗]v

∣∣ ≤ ∑̀
k=0

(
`

k

)∣∣∂kxε∗η∣∣∣∣∂`−kx ε∗v
∣∣ ≤ K`

∑̀
k=0

∣∣∂kxε∗∣∣2,
whereK` refers to some constant depending only on `. Similarly, we can combine the Leibniz
rule with (5), (22) and (25) to obtain

(3.10)
∣∣∂x[ Rc∗ε∗]η

∣∣ ≤ Ac( 1∑
k=0

∣∣∂kxε∗v∣∣2 +

3∑
k=0

∣∣∂kxε∗η∣∣2 +
∣∣∂xε∗η∣∣3).

Here, we have also applied the Sobolev embedding theorem to bound the norm ‖ε∗η(·, t)‖L∞(R)

by Acα0 according to (22). Combining with (3.8), we are led to∥∥H c∗(t)

(
J Rc∗(t)ε∗

)
(·, t)

∥∥2

L2(R)2
≤ Ac

(∥∥∂xε∗η(·, t)
∥∥6

L6(R)
+

3∑
k=0

∥∥∂kxε∗(·, t)∥∥4

L4(R)2

)
.

At this stage, we invoke again the Sobolev embedding theorem to write

(3.11)
∫
R

(
∂`xf

)2p
= (−1)`

∫
R
f ∂`x

((
∂`xf

)2p−1
)
≤ K

∥∥f∥∥
L2(R)

∥∥f∥∥2p−1

H2`+1(R)
,

for any ` ∈ N, any p ≥ 1, and any f ∈ H2`+1(R). Combining with (22), it follows that

∥∥H c∗(t)

(
J Rc∗(t)ε∗

)
(·, t)

∥∥2

L2(R)2
≤ K

∥∥ε∗(·, t)∥∥
L2(R)2

(∥∥ε∗η(·, t)
∥∥5

H3(R)
+
∥∥ε∗(·, t)∥∥3

H7(R)2

)
≤ Ac

∥∥ε∗(·, t)∥∥2

L2(R)2

(∥∥ε∗η(·, t)
∥∥ 5

2

H7(R)
+
∥∥ε∗(·, t)∥∥ 3

2

H15(R)2

)
.

(3.12)

Since

(3.13)
∥∥∂`xε∗(·, t)∥∥2

L2(R)2
≤
∫
R
e2νc|x|

(
∂`xε
∗(x, t)

)2
dx,

we can invoke (3.1) to conclude that

(3.14)
∥∥H c∗(t)

(
J Rc∗(t)ε∗

)
(·, t)

∥∥
L2(R)

≤ Ac
∥∥ε∗(·, t)∥∥

L2(R)2
.

On the other hand, we deduce from (3.8), (3.9) and (3.10) as before that∥∥∥H c∗(t)

(
J Rc∗(t)ε∗

)
(·, t)e

νc|·|
2

∥∥∥2

L2(R)

≤ Ac
(∫

R

(
∂xε
∗
η(x, t)

)6
eνc|x| dx+

3∑
k=0

∫
R

∣∣∂xε∗(x, t)∣∣4eνc|x| dx).
We also invoke the Sobolev embedding theorem to write∫

R

(
∂`xf(x)

)2p
eνcx dx = (−1)`

∫
R
f(x)∂`x

((
∂`xf(x)

)2p−1
eνcx

)
dx

≤ Ac
∥∥f∥∥

L2(R)

∥∥f∥∥2p−2

H2`+1(R)

∥∥feνc·∥∥
H2`+1(R)

≤ Ac
∥∥f∥∥p−1

L2(R)

∥∥f∥∥p−1

H4`+3(R)

∥∥feνc·∥∥
H2`+1(R)

,
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for any ` ∈ N, any p ≥ 2, and any f ∈ H4`+3(R), with feνc|·| ∈ H2`+1(R). Since

(3.15) eνc|x| ≤ eνcx + e−νcx ≤ 2eνc|x|,

for any x ∈ R, the same estimate holds with eνc|x| replacing eνcx. As a consequence, we
deduce as before from (22), (3.1) and (3.13) that∥∥∥H c∗(t)

(
J Rc∗(t)ε∗

)
(·, t)e

νc|·|
2

∥∥∥
L2(R)

≤ Ac
∥∥ε∗(·, t)∥∥

L2(R)2
.

Combining the previous inequality with (3.7) and (3.14), we derive the estimate

(3.16)
∣∣ I ∗2(t)

∣∣ ≤ Ac(R∥∥u∗(·, t)∥∥X(B(0,R))
+ δ
∥∥u∗(·, t)∥∥

X(R)

)∥∥ε∗(·, t)∥∥
L2(R)2

.

We finally recall that
Su∗(·, t) = H c∗(t)(ε

∗)(·, t),
with 〈ε∗(·, t), ∂xQc∗(t)〉L2(R)2 for any t ∈ R by (21). In view of (B.2), we infer that

(3.17)
∥∥ε∗(·, t)∥∥

X(R)
≤ Ac

∥∥Su∗(·, t)∥∥
L2(R)2

≤ Ac
∥∥u∗(·, t)∥∥

X(R)
,

so that (3.16) may be written as∣∣ I ∗2(t)
∣∣ ≤ Ac(R2

δ

∥∥u∗(·, t)∥∥2

X(B(0,R))
+ 2δ

∥∥u∗(·, t)∥∥2

X(R)

)
.

Fixing the number δ so that 2Acδ ≤ (2 − c2)/64, and letting R2 denote the corresponding
number R, we obtain (3.5), with A2 = AcR

2
2/δ.

Concerning the third term in the right-hand side of (3.2), we have

S 3. – There exists a positive number A3, depending only on c, such that

(3.18)
∣∣ I ∗3(t)

∣∣ :=

∣∣∣∣(c∗)′ ∫
R
µ
〈
∂c H c∗(ε

∗), u∗
〉
R2

∣∣∣∣ ≤ A3α0

∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R.

Coming back to (22) and (23), we have

(3.19)
∣∣(c∗)′(t)∣∣ ≤ Acα0

∥∥ε∗(·, t)∥∥
X(R)

.

On the other hand, we deduce from (22), (3.1) and the explicit formula for H c∗ in (B.1) that∣∣∣∣ ∫
R
µ
〈
∂c H c∗(ε

∗), u∗
〉
R2

∣∣∣∣ ≤ Ac∥∥u∗(·, t)∥∥X(R)
.

Combining with (3.17), we obtain (3.18).

Similarly, we can combine (3.17) and (3.19) with the expression of H c∗ in (B.1) and the
exponential decay of the function ∂cQc∗ and its derivatives, to establish

S 4. – There exists a positive number A3, depending only on c, such that

(3.20)
∣∣ I ∗3(t)

∣∣ :=

∣∣∣∣(c∗)′ ∫
R
µ
〈
H c∗(∂cQc∗), u

∗〉
R2

∣∣∣∣ ≤ A3α0

∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R.

Finally, we show
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S 5. – There exist two positive numbers A4 and R4, depending only on c, such that

(3.21)
∣∣ I ∗4(t)

∣∣ :=

∣∣∣∣((a∗)′ − c∗) ∫
R
µ
〈
H c∗(∂xε

∗), u∗
〉
R2

∣∣∣∣
≤ 2− c2

64

∥∥u∗(·, t)∥∥2

X(R)
+A4

∥∥u∗(·, t)∥∥2

X(B(0,R4))
,

for any t ∈ R.

The proof is similar to the one of Step 2. Given a small positive number δ, we can use (3.6)
to find a radius R such that

(3.22)

∣∣∣∣ ∫
R
µ
〈
H c∗(∂xε

∗), u∗
〉
R2

∣∣∣∣
≤
∥∥eνc|·| H c∗(t)(∂xε

∗)(·, t)
∥∥
L2(R)

(
R
∥∥u∗(·, t)∥∥

X(B(0,R))
+ δ
∥∥u∗(·, t)∥∥

X(R)

)
.

In view of (23) and (3.8), this gives∣∣ I ∗4(t)
∣∣ ≤ Ac∥∥ε∗(·, t)∥∥X(R)

∥∥eνc|·|ε∗(·, t)∥∥
H4(R)

(
R
∥∥u∗(·, t)∥∥

X(B(0,R))
+ δ
∥∥u∗(·, t)∥∥

X(R)

)
,

so that by (3.1) and (3.17),∣∣ I ∗4(t)
∣∣ ≤ Ac∥∥u∗(·, t)∥∥X(R)

(
R
∥∥u∗(·, t)∥∥

X(B(0,R))
+ δ
∥∥u∗(·, t)∥∥

X(R)

)
.

Estimate (3.21) follows arguing as in the proof of (3.5).

We are now in position to conclude the proof of Proposition 7.

End of the proof of Proposition 7. – Applying the estimates in Steps 1 to 5 to the identity
(3.2), we have

d

dt

(
I ∗(t)

)
≥
(2− c2

32
−A3α0

)∥∥u∗(·, t)∥∥2

X(R)
−
(
A1 +A2 +A4

)∥∥u∗(·, t)∥∥2

X(B(0,R∗))
,

with R∗ = max{R1, R2, R3}. Choosing α0 small enough, we are led to (36) with
A∗ = A1 +A2 +A4.

3.2. Proof of Lemma 1

Identity (39) derives from a somewhat tedious, but direct computation. For sake of com-
pleteness, we provide the following details.

When u ∈ X3(R), the function JSu = −2∂xu lies in the domain H2(R)× L2(R) of H c.
In view of (38), the quantity in the right-hand side of (39) is well-defined. Moreover, we can
invoke (B.1) to write it as

2
〈
SMcu, H c(JSu)

〉
L2(R)2

=

∫
R

(
∂xηc
ηc

(
2− ∂xxηc

(1− ηc)2
− (∂xηc)

2

(1− ηc)3
)
− c2 ∂xηc

(1− ηc)3

)
u1∂xu1

−
∫
R

∂xηc
ηc

∂x

( ∂xxu1

1− ηc

)
+ 4

∫
R

∂xηc(1− ηc)
ηc

u2∂xu2

+ 2c

∫
R

(
∂xηc

1− ηc
u1∂xu2 −

∂xηc
ηc(1− ηc)

∂x
(
u1u2

))
.

(3.23)
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In order to simplify the integrations by parts of the integrals in the right-hand side of (3.23)
which lead to (39), we recall that ηc solves the equation

(3.24) ∂xxηc = (2− c2)ηc − 3η2
c ,

so that we have

(3.25) (∂xηc)
2 = (2− c2)η2

c − 2η3
c , and ∂x

(∂xηc
ηc

)
= −ηc.

As a consequence, the third integral in the right-hand side of (3.23) can be expressed as

(3.26) 4

∫
R

∂xηc(1− ηc)
ηc

u2∂xu2 = 2

∫
R
µcu

2
2,

with µc := ηc + ∂xxηc. The last integral is similarly given by

(3.27)
∫
R

(
∂xηc

1− ηc
u1∂xu2 −

∂xηc
ηc(1− ηc)

∂x
(
u1u2

))
= −

∫
R

(
ηcu1u2 +

∂xηc
1− ηc

u2∂xu1

)
.

Introducing (3.26) and (3.27) into (3.23), we obtain the identity

2
〈
SMcu, H c(JSu)

〉
L2(R)2

= I + 2

∫
R
µc

(
u2 −

cηc
2µc

u1 −
c∂xηc

2µc(1− ηc)
∂xu1

)2

,

where

I =

∫
R

(
∂xηc
ηc

(
2− ∂xxηc

(1− ηc)2
− (∂xηc)

2

(1− ηc)3
)
− c2 ∂xηc

(1− ηc)3
− c2 ηc∂xηc

µc(1− ηc)

)
u1∂xu1

−
∫
R

∂xηc
ηc

∂x

( ∂xxu1

1− ηc

)
− c2

2

∫
R

η2
c

µc
u2

1 −
c2

2

∫
R

(∂xηc)
2

µc(1− ηc)2
(∂xu1)2.

Relying again on (3.24) and (3.25), we finally check that

I =
3

2

∫
R

η2
c

µc

(
∂xu1 −

∂xηc
ηc

u1

)2

,

which is enough to complete the proof of identity (39).

3.3. Proof of Proposition 8

In view of (5) and (39), the quadratic form Gc is well-defined and continuous on X1(R).
Moreover, setting v = (

√
ηcu1,

√
ηcu2) and using (3.25), we can write it as

(3.28)

Gc(u) =
3

2

∫
R

ηc
µc

(
∂xv1 −

3∂xηc
2ηc

v1

)2

+ 2

∫
R

µc
ηc

(
v2 −

c3ηc
4µc(1− ηc)

v1 −
c∂xηc

2µc(1− ηc)
∂xv1

)2

,

where we have set, as above, µc := ηc + ∂xxηc. Introducing the pair
(3.29)

w =
(
v1, v2 −

c∂xηc
2µc(1− ηc)

∂xv1

)
=
(√

ηcu1,
√
ηc

(
u2 −

c(∂xηc)
2

4µcηc(1− ηc)
u1 −

c∂xηc
2µc(1− ηc)

∂xu1

))
,

we obtain

(3.30) Gc(u) =
〈
T c(w), w

〉
L2(R)2

,

4 e SÉRIE – TOME 48 – 2015 – No 6



ASYMPTOTIC STABILITY FOR SOLITONS 1353

with
(3.31)

T c(w) =

−∂x( 3ηc
2µc

∂xw1

)
+
(

27(∂xηc)
2

8µcηc
+ c6ηc

8µc(1−ηc)2 + ∂x

(
9∂xηc
4µc

))
w1 − c3

2(1−ηc)w2

− c3

2(1−ηc)w1 + 2µc
ηc
w2

 .

The operator T c in (3.31) is self-adjoint on L2(R)2, with domain Dom( T c) = H2(R)× L2(R).
Moreover, it follows from (3.28) and (3.30) that T c is non-negative, with a kernel equal to

Ker( T c) = Span
(
η

3
2
c ,

c3η
5
2
c

4µc(1− ηc)

)
.

In order to establish (42), we now prove

S 1. – Let c ∈ (−
√

2,
√

2) \ {0}. There exists a positive number Λ1, depending
continuously on c, such that

(3.32) 〈 T c(w), w〉L2(R)2 ≥ Λ1

∫
R

(
w2

1 + w2
2

)
,

for any pair w ∈ X1(R) such that

(3.33)
〈
w,
(
η

3
2
c ,

c3η
5
2
c

4µc(1− ηc)

)〉
L2(R)2

= 0.

In order to prove Step 1, we show that the essential spectrum of T c is given by

(3.34) σess( T c) =
[
τc,+∞

)
,

with

(3.35) τc =
(3− c2)(22 + c2)

16
− 1

2

( (3− c2)2(22 + c2)2

64
− 27(2− c2)

) 1
2

> 0.

In this case, 0 is an isolated eigenvalue in the spectrum of T c. Inequality (3.32) follows
with Λ1 either equal to τc, or to the smallest positive eigenvalue of T c. In each case,
Λ1 depends continuously on c due to the analytic dependence on c of the operator T c.

The proof of (3.34) relies as usual on the Weyl criterion. We deduce from (3.24) and (3.25)
that

µc(x)

ηc(x)
→ 3− c2, and

∂xηc(x)

ηc(x)
→ ±

√
2− c2,

as x→ ±∞. Coming back to (3.31), we introduce the operator T ∞ given by

T ∞(w) =

(
− 3

2(3−c2)∂xxw1 + (3−c2)(6+c2)
8 w1 − c3

2 w2

− c
3

2 w1 + 2(3− c2)w2

)
.

By the Weyl criterion, the essential spectrum of T c is equal to the spectrum of T ∞.

We next apply again the Weyl criterion to establish that a real number λ belongs to the
spectrum of T ∞ if and only if there exists a complex number ξ such that

λ2 −
( 3

2(3− c2)
|ξ|2 +

(3− c2)(22 + c2)

8

)
λ+ 3|ξ|2 +

27

4

(
2− c2

)
= 0.
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This is the case if and only if

λ =
3|ξ|2

4(3− c2)
+

(3− c2)(22 + c2)

16

± 1

4

( 9|ξ|4

3− c2
+

3(c2 − 10)

2
|ξ|2 +

225

4
− 195

4
c2 +

229

16
c4 +

19

8
c6 +

c8

16

) 1
2

.

Notice that the quantity in the square root of this expression is positive since its discriminant
with respect to |ξ|2 is −9c2/(3− c2)2. As a consequence, we obtain that

σess( T c) = σ( T ∞) =
[
τc,+∞

)
,

with τc as in (3.35). This completes the proof of Step 1.

S 2. – There exists a positive number Λ2, depending continuously on c, such that

Gc(u) ≥ Λ2

∫
R
ηc
(
(∂xu1)2 + u2

1 + u2
2

)
,

for any pair u ∈ X1(R) such that

(3.36) 〈u,Qc〉L2(R)2 = 0.

We start by improving the estimate in (3.32). Given a pair w ∈ X1(R), we check that∣∣∣∣〈 T c(w), w〉L2(R)2 −
3τ

2

∫
R

ηc
µc

(∂xw1)2
∣∣∣∣ ≤ Ac ∫

R
(w2

1 + w2
2).

Here and in the sequel, Ac refers to a positive number, depending continuously on c.
For 0 < τ < 1, we deduce that

〈 T c(w), w〉L2(R)2 ≥
(
1− τ

)
〈 T c(w), w〉L2(R)2 +

3τ

2

∫
R

ηc
µc

(∂xw1)2 −Acτ
∫
R

(w2
1 + w2

2).

Since ηc/µc ≥ 1/(3− c2), we are led to

〈 T c(w), w〉L2(R)2 ≥
((

1− τ
)
Λ1 −Acτ

)∫
R
(w2

1 + w2
2) +

3τ

2(3− c2)

∫
R
(∂xw1)2,

under condition (3.33). For τ small enough, this provides the lower bound

(3.37) 〈 T c(w), w〉L2(R)2 ≥ Ac
∫
R

(
(∂xw1)2 + w2

1 + w2
2

)
,

when w satisfies condition (3.33).
When the pair w depends on the pair u as in (3.29), we can express (3.37) in terms of u.

The left-hand side of (3.37) is exactly equal toGc(u) by (3.30), whereas for the left-hand side,
we have ∫

R

(
(∂xw1)2 + w2

1

)
=

∫
R
ηc

(
(∂xu1)2 +

(
1 +

(∂xηc)
2

4ηc
− ∂xxηc

2ηc

)
u2

1

)
.

Since

1 +
(∂xηc)

2

4ηc
− ∂xxηc

2ηc
=

2 + c2

4
+ ηc ≥

1

2
,

by (3.24) and (3.25), we deduce that (3.37) may be written as

Gc(u) ≥ Ac
∫
R
ηc

(
(∂xu1)2 +

1

2
u2

1

)
+Ac

∫
R
ηc

(
u2−

c∂xηc
2µc(1− ηc)

∂xu1−
c(∂xηc)

2

4µcηc(1− ηc)
u1

)2

.
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At this stage, recall that, given two vectors a and b in an Hilbert space H, we have∥∥a− b∥∥2

H
≥ τ

∥∥a∥∥2

H
− τ

1− τ
∥∥b∥∥2

H
,

for any 0 < τ < 1. In particular, this gives

Gc(u) ≥ Ac
∫
R
ηc

(
(∂xu1)2 +

1

2
u2

1 + τu2
2

)
− τAc

1− τ

∫
R
ηc

( c∂xηc
2µc(1− ηc)

∂xu1 −
c(∂xηc)

2

4µcηc(1− ηc)
u1

)2

.

It then remains to choose τ small enough so that we can deduce from (5) that

(3.38) Gc(u) ≥ Ac
∫
R
ηc
(
(∂xu1)2 + u2

1 + u2
2

)
,

when w satisfies condition (3.33), i.e., when u is orthogonal to the pair

(3.39) uc =
(
η2
c −

c4η2
c (∂xηc)

2

16µ2
c(1− ηc)2

+ ∂x

( c4η3
c (∂xηc)

8µ2
c(1− ηc)2

)
,

c3η3
c

4µc(1− ηc)

)
.

The last point to verify is that (3.38) remains true, decreasing possibly the value of Ac,
when we replace this orthogonality condition by condition (3.36). With this goal in mind,
we remark that

〈uc, Qc〉L2(R)2 6= 0.

Otherwise, we would deduce from (3.38) that

0 = Gc(Qc) ≥ Ac
∫
R
ηc
(
(∂xηc)

2 + η2
c + v2

c

)
> 0,

which is impossible. Moreover, the quantity 〈uc, Qc〉L2(R)2 depends continuously on c in view
of (3.39). We next consider a pair u which satisfies (3.36), and we denote λ the real number
such that u = λQc + u is orthogonal to uc. Since Qc belongs to the kernel of Gc, we deduce
from (3.38) that

(3.40) Gc(u) = Gc(u) ≥ Ac
∫
R
ηc
(
(∂xu1)2 + u21 + u22

)
.

On the other hand, since u satisfies (3.36), we have

λ =
〈u, Qc〉L2(R)2

‖Qc‖2L2(R)2
.

Using the Cauchy-Schwarz inequality, this leads to

λ2 ≤ Ac
(∫

R

(
ηc +

v2
c

ηc

))(∫
R
ηc
(
u21 + u22

))
,

so that, by (5) and (3.40),
λ2 ≤ AcGc(u) = AcGc(u).

Combining again with (3.40), we are led to∫
R
ηc
(
(∂xu1)2 + u2

1 + u2
2

)
≤ 2

(
λ2

∫
R
ηc
(
(∂xηc)

2 + η2
c + v2

c

)
+

∫
R
ηc
(
(∂xu1)2 + u21 + u22

))
≤ AcGc(u),

which completes the proof of Step 2.

S 3. – End of the proof.
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We conclude the proof applying again the last argument in the proof of Step 2. We decom-
pose a pair u ∈ X(R), which satisfies the orthogonality condition in (43), as u = λQc + u,
with 〈u, Qc〉L2(R)2 = 0. Since Qc belongs to the kernel of Gc, we deduce from Step 2 that

(3.41) Gc(u) = Gc(u) ≥ Λ2

∫
R
ηc
(
(∂xu1)2 + u21 + u22

)
.

Relying on the orthogonality condition in (43), we next compute

λ = −
〈u, S∂cQc〉L2(R)2

〈Qc, S∂cQc〉L2(R)2
.

Using the Cauchy-Schwarz inequality and invoking (41), we obtain

λ2 ≤ 1

4(2− c2)

(∫
R

1

ηc

(
(∂cηc)

2 + (∂cvc)
2
))(∫

R
ηc
(
u21 + u22

))
.

In view of (5), we can check that

∂cηc(x) =
c√

2− c2
ηc(x)

(
x sh

(√
2−c2x

2

)
ch
(√

2−c2x
2

) − 2√
2− c2

)
,

while

∂cvc =
ηc

2(1− ηc)
+

c∂cηc
2(1− ηc)2

,

so that ∫
R

1

ηc

(
(∂cηc)

2 + (∂cvc)
2
)
≤ Ac.

As a consequence, we can derive from (3.41) that

λ2 ≤ AcGc(u) = AcGc(u).

Combining again with (3.41), we are led to∫
R
ηc
(
(∂xu1)2 + u2

1 + u2
2

)
≤ 2

(
λ2

∫
R
ηc
(
(∂xηc)

2 + η2
c + v2

c

)
+

∫
R
ηc
(
(∂xu1)2 + u21 + u22

))
≤ AcGc(u).

It remains to recall that

ηc(x) ≥ Ace−
√

2|x|,

by (5), to obtain (42). This completes the proof of Proposition 8.

3.4. Proof of Proposition 9

Combining inequality (3.1) with the definitions foru∗ in (34), and for H c in (B.1), we know
that there exists a positive number Ak,c such that

(3.42)
∫
R

((
∂kxu

∗
1(x, t)

)2
+
(
∂kxu

∗
2(x, t)

)2)
e2νc|x| dx ≤ Ak,c,

for any k ∈ N and any t ∈ R. In view of (35) and (38), this is enough to guarantee the
differentiability with respect to time of the quantity

J ∗(t) :=
〈
Mc∗(t)u

∗(·, t), u∗(·, t)
〉
L2(R)2

,
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and to check that

d

dt

(
J ∗
)

= 2
〈
SMc∗u

∗, H c∗(JSu
∗)
〉
L2(R)2

+ 2
〈
SMc∗u

∗, H c∗(J Rc∗ε∗)
〉
L2(R)2

+ 2
(
(a∗)′ − c∗

)〈
SMc∗u

∗, H c∗(∂xε
∗)
〉
L2(R)2

− 2
(
c∗
)′〈
SMc∗u

∗, H c∗(∂cQc∗)
〉
L2(R)2

+
(
c∗
)′〈
∂cMc∗u

∗, u∗
〉
L2(R)2

+ 2
(
c∗
)′〈
Mc∗u

∗, S∂c H c∗(ε
∗)
〉
L2(R)2

.

(3.43)

In particular, the proof of (44) reduces to estimate the six terms in the right-hand side of
(3.43). Concerning the first one, we derive from Proposition 8 the following estimate.

S 1. – There exists a positive number B1, depending only on c, such that
(3.44)

J ∗1(t) := 2
〈
SMc∗u

∗, H c∗(JSu
∗)
〉
L2(R)2

≥ B1

∫
R

[
(∂xu

∗
1)2 + (u∗1)2 + (u∗2)2

]
(x, t)e−

√
2|x| dx,

for any t ∈ R.

Since the pair u∗ satisfies the orthogonality condition in (43) by (40), inequality (3.44) is
exactly (42), setting B1 = Λc.

For the second term, we can prove

S 2. – There exists a positive number B2, depending only on c, such that

(3.45)
∣∣ J ∗2(t)

∣∣ := 2
∣∣∣〈SMc∗u

∗, H c∗(J Rc∗ε∗)
〉
L2(R)2

∣∣∣ ≤ B2

∥∥ε∗(·, t)∥∥ 1
2

X(R)

∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R.

In view of (5), (22) and (38), we first notice that there exists a positive numberAc, depend-
ing only on c, such that

(3.46)
∥∥Mc∗(t)

∥∥
L∞(R)

≤ Ac,

for any t ∈ R. As a consequence, we can write

(3.47)
∣∣ J ∗2(t)

∣∣ ≤ Ac∥∥u∗(·, t)∥∥L2(R)2

∥∥H c∗(J Rc∗ε∗)(·, t)
∥∥
L2(R)2

.

Applying (3.11) to the last inequality in (3.12), we next check that∥∥H c∗(t)

(
J Rc∗(t)ε∗

)
(·, t)

∥∥
L2(R)2

≤ Ac
∥∥ε∗(·, t)∥∥

L2(R)2

(∥∥ε∗η(·, t)
∥∥ 5

8

L2(R)

∥∥ε∗η(·, t)
∥∥ 5

8

H15(R)
+
∥∥ε∗(·, t)∥∥ 9

16

L2(R)2

∥∥ε∗(·, t)∥∥ 3
16

H63(R)2

)
,

so that by (22), (3.1) and (3.17), we have∥∥H c∗(t)

(
J Rc∗(t)ε∗

)
(·, t)

∥∥
L2(R)2

≤ Ac
∥∥ε∗(·, t)∥∥ 1

2

L2(R)2

∥∥u∗(·, t)∥∥
X(R)

.

Estimate (3.45) follows combining with (3.47).
We now turn to the third term in the right-hand side of (3.43).

S 3. – There exists a positive number B3, depending only on c, such that
(3.48)∣∣ J ∗3(t)

∣∣ := 2
∣∣(a∗)′ − c∗∣∣ ∣∣∣〈SMc∗u

∗, H c∗(∂xε
∗)
〉
L2(R)2

∣∣∣ ≤ B3

∥∥ε∗(·, t)∥∥ 1
2

X(R)

∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R.
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In view of (23) and (3.46), we have

(3.49)
∣∣ J ∗3(t)

∣∣ ≤ Ac∥∥ε∗(·, t)∥∥X(R)

∥∥u∗(·, t)∥∥
L2(R)2

∥∥H c∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2

,

for any t ∈ R. Coming back to the definition for H c in (B.1), we can write∥∥H c∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2

≤ Ac
(∥∥ε∗η(·, t)

∥∥
H3(R)

+
∥∥ε∗v(·, t)∥∥H1(R)

)
.

Hence, by (3.11) again,∥∥H c∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2

≤ Ac
∥∥ε∗η∥∥ 1

2

L2(R)2

(∥∥ε∗η(·, t)
∥∥ 1

2

H7(R)
+
∥∥ε∗v(·, t)∥∥ 1

2

H3(R)

)
.

Combining the latter inequality with (3.1), (3.17) and (3.49) yields estimate (3.48).
For the fourth term, we have

S 4. – There exists a positive number B4, depending only on c, such that
(3.50)∣∣ J ∗4(t)

∣∣ := 2
∣∣(c∗)′∣∣∣∣∣〈SMc∗u

∗, H c∗(∂cQc∗)
〉
L2(R)2

∣∣∣ ≤ B4

∥∥ε∗(·, t)∥∥ 1
2

X(R)

∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R.

Similarly, we deduce from (23) and (3.46) that∣∣ J ∗4(t)
∣∣ ≤ Ac∥∥ε∗(·, t)∥∥2

X(R)

∥∥u∗(·, t)∥∥
L2(R)2

.

Estimate (3.50) then appears as a consequence of (22) and (3.17).
The fifth term is estimated in a similar way.

S 5. – There exists a positive number B5, depending only on c, such that

(3.51)
∣∣ J ∗5(t)

∣∣ :=
∣∣(c∗)′∣∣∣∣∣〈∂cMc∗u

∗, u∗
〉
L2(R)2

∣∣∣ ≤ B5

∥∥ε∗(·, t)∥∥ 1
2

X(R)

∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R.

We derive again from (5) and (38) the existence of a positive number Ac, depending only
on c, such that ∥∥∂cMc∗(t)

∥∥
L∞(R)

≤ Ac,
for any t ∈ R. As a consequence of (23), we infer that∣∣ J ∗5(t)

∣∣ ≤ Ac∥∥ε∗(·, t)∥∥2

X(R)

∥∥u∗(·, t)∥∥2

L2(R)2
.

This provides (3.51), relying again on (22).
Finally, we infer from (22), (23), (3.17), (3.46), and the explicit formula for H c∗ in (B.1)

that

S 6. – There exists a positive number B6, depending only on c, such that∣∣ J ∗6(t)
∣∣ :=

∣∣(c∗)′∣∣∣∣∣〈Mc∗u
∗, S∂c H c∗(ε

∗)
〉
L2(R)2

∣∣∣ ≤ B6

∥∥ε∗(·, t)∥∥ 1
2

X(R)

∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R.

In order to conclude the proof of Proposition 9, it remains to combine the six previous
steps to obtain (44), with B∗ := max

{
1/B1, B2 +B3 +B4 +B5 +B6}.
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3.5. Proof of Corollary 1

Corollary 1 is a consequence of Propositions 7 and 9. As a matter of fact, combining the
two estimates (36) and (44) with the definition of N(t), we obtain

d

dt

(
〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2

)
≥
(2− c2

64
−A∗B∗e

√
2R∗
∥∥ε∗(·, t)∥∥ 1

2

X(R)

)∥∥u∗(·, t)∥∥2

X(R)
,

for any t ∈ R. Invoking (22), it remains to fix the parameter βc such that∥∥ε∗(·, t)∥∥ 1
2

X(R)
≤ 2− c2

128A∗B∗e
√

2R∗
,

for any t ∈ R, in order to obtain (45). Since the map t 7→ 〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2

is uniformly bounded by (3.42) and (3.46), estimate (46) follows by integrating (45) from
t = −∞ to t = +∞. Finally, statement (47) is a direct consequence of (46).

Appendix A

On the regularity and smoothness of the Gross-Pitaevskii flow

A.1. Continuity with respect to weak convergence in the energy space

It is shown in [43] (see also [18, 21, 4]) that the Gross-Pitaevskii equation is globally well-
posed in the spaces

Xk(R) :=
{
ψ ∈ L∞(R), s.t. η := 1− |Ψ|2 ∈ L2(R) and ∂xψ ∈ Hk(R)

}
,

equipped with the metric structure provided by the distance

dk(ψ1, ψ2) :=
∥∥ψ1 − ψ2

∥∥
L∞(R)

+
∥∥∂xψ1 − ∂xψ2

∥∥
Hk(R)

+
∥∥η1 − η2∥∥L2(R)

,

where we have set, as above, η1 := 1− |Ψ1|2 and η2 := 1− |Ψ2|2.

P A.1 ([43]). – Let k ∈ N and Ψ0 ∈ Xk(R). There exists a unique solution
Ψ in C0(R, Xk(R)) to (GP) with initial data Ψ0. Moreover, the flow map Ψ0 → Ψ(·, T ) is
continuous on Xk(R) for any fixed T ∈ R, and the map t → Ψ(·, t) belongs to C1(R, Xk(R))

when Ψ0 belongs to Xk+2(R). Finally, the Ginzburg-Landau energy is conserved along the flow,
i.e.,

(A.1) E(Ψ(·, t)) = E(Ψ0),

for any t ∈ R.

In order to establish the continuity of the Gross-Pitaevskii flow with respect to some
suitable notion of weak convergence, it is helpful to enlarge slightly the range of function
spaces in which it is possible to solve the Cauchy problem for (GP). For 1/2 < s < 1, we
define the Zhidkov spaces Zs(R) as

Zs(R) :=
{
ψ ∈ L∞(R), s.t. ∂xψ ∈ Hs−1(R)

}
,

and we endow them with the norm∥∥ψ∥∥ Zs(R)
:=
∥∥ψ∥∥

L∞(R)
+
∥∥∂xψ∥∥Hs−1(R)

.

We then prove
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P A.2. – Let 1/2 < s < 1 and Ψ0 ∈ Zs(R). There exists a unique maximal
solution Ψ ∈ C0((Tmin, Tmax), Zs(R)) to (GP) with initial datum Ψ0.

Proof. – Proposition A.2 is essentially due to Gallo who has proved it in [18] when
s ∈ N∗. Due to the Sobolev embedding theorem ofHs(R) intoL∞(R) for s > 1/2, the proof
in [18] extends to the case s > 1/2. As a consequence, we refer to [18] for a detailed proof.

In the framework provided by Proposition A.1, we can introduce a notion of weak con-
vergence for which the Gross-Pitaevskii flow is continuous. We consider a sequence of initial
conditions Ψn,0 ∈ X(R) such that the energies E(Ψn,0) are uniformly bounded with respect
to n. Invoking the Rellich-Kondrachov theorem, there exists a function Ψ0 ∈ X(R) such
that, going possibly to a subsequence,

(A.2) ∂xΨn,0 ⇀ ∂xΨ0 in L2(R), 1− |Ψn,0|2 ⇀ 1− |Ψ0|2 in L2(R),

and, for any compact subset K of R,

(A.3) Ψn,0 → Ψ0 in L∞(K),

asn→ +∞. We claim that the convergences provided by (A.2) and (A.3) are conserved along
the Gross-Pitaevskii flow.

P A.3. – We consider a sequence (Ψn,0)n∈N ∈ X(R)N, and a function
Ψ0 ∈ X(R) such that assumptions (A.2) and (A.3) are satisfied, and we denote Ψn, respec-
tively Ψ, the unique global solutions to (GP) with initial datum Ψn,0, respectively Ψ0, given by
Proposition A.1. For any fixed t ∈ R and any compact subset K of R, we have

(A.4) Ψn(·, t)→ Ψ(·, t) in L∞(K),

when n→ +∞, as well as

(A.5) ∂xΨn(·, t) ⇀ ∂xΨ(·, t) inL2(R), and 1−|Ψn(·, t)|2 ⇀ 1−|Ψ(·, t)|2 inL2(R).

Proof. – The proof is standard. For sake of completeness, we recall some details.

As usual, we first bound suitably the functions Ψn and ηn := 1 − |Ψn|2. In view of the
weak convergences in assumption (A.2), there exists a positive constant M such that

E(Ψn,0) ≤M2,

for any n ∈ N. Since the energy E is conserved along the (GP) flow by (A.1), we deduce that

(A.6) ‖∂xΨn(·, t)‖L2(R) ≤
√

2M, and ‖ηn(·, t)‖L2(R) ≤ 2M,

for any n ∈ N and any t ∈ R. Invoking the Sobolev embedding theorem, we next write

‖Ψn(·, t)‖2L∞(R) ≤ 1 + ‖ηn(·, t)‖L∞(R) ≤ 1 + ‖ηn(·, t)‖
1
2

L2(R)‖∂xηn(·, t)‖
1
2

L2(R).

Since

‖∂xηn(·, t)‖L2(R) ≤ 2‖Ψn(·, t)‖L∞(R)‖∂xΨn(·, t)‖L2(R),

we obtain the uniform bounds

(A.7) ‖Ψn(·, t)‖L∞(R) ≤ KM , and ‖∂xηn(·, t)‖L2(R) ≤ KM ,
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where KM is a positive number depending only on M . In particular, given a fixed positive
number T , we deduce that

(A.8)
∫ T

0

∫
R
|∂xΨn(x, t)|2 dx dt ≤M2T, and

∫ T

0

∫
R
ηn(x, t)2 dx dt ≤M2T.

With bounds (A.7) and (A.8) at hand, we are in position to construct weak limits for the
functions Ψn and ηn. In view of (A.8), there exist two functions Φ1 ∈ L2(R × [0, T ]) and
N ∈ L2(R× [0, T ]) such that, up to a further subsequence,

(A.9) ∂xΨn ⇀ Φ1 in L2(R× [0, T ]), and ηn ⇀ N in L2(R× [0, T ]),

when n→∞. Similarly, we can invoke (A.7) to exhibit a function Φ ∈ L∞(R× [0, T ]) such
that, up to a further subsequence,

(A.10) Ψn
∗
⇀ Φ in L∞(R× [0, T ]),

when n→ +∞. Combining with (A.9), we remark that Φ1 = ∂xΦ in the sense of distribu-
tions.

Our goal is now to check that the function Φ is solution to (GP). This requires to improve
the convergences in (A.9) and (A.10). With this goal in mind, we introduce a cut-off function
χ ∈ C∞c (R) such that χ ≡ 1 on [−1, 1] and χ ≡ 0 on (−∞, 2] ∪ [2,+∞), and we set
χp(·) := χ(·/p) for any integer p ∈ N∗. In view of (A.6) and (A.8), the sequence
(χpΨn)n∈N is bounded in C0([0, T ], H1(R)). By the Rellich-Kondrachov theorem, the sets
{χpΨn(·, t), n ∈ N} are relatively compact in H−1(R) for any fixed t ∈ [0, T ]. On the
other hand, the function Ψn is solution to (GP), so that its time derivative ∂tΨn belongs
to C0([0, T ], H−1(R)) and satisfies

‖∂tΨn(·, t)‖H−1(R) ≤ ‖∂xΨn(·, t)‖L2(R) + ‖Ψn(·, t)‖L∞(R)‖ηn(·, t)‖L2(R) ≤ KM .

As a consequence, the functions χpΨn are equicontinuous in C0([0, T ], H−1(R)). Applying
the Arzela-Ascoli theorem and using the Cantor diagonal argument, we can find a further
subsequence (independent of p), such that, for each p ∈ N∗,

(A.11) χpΨn → χpΦ in C0([0, T ], H−1(R)),

as n→ +∞. Recalling that the functions χpΨn are uniformly bounded in C0([0, T ], H1(R)),
we deduce that the convergence in (A.11) also holds in the spaces C0([0, T ], Hs(R)) for any
s < 1. In particular, by the Sobolev embedding theorem, we obtain

(A.12) χpΨn → χpΦ in C0([0, T ], C0(R)),

as n→ +∞.
Such convergences are enough to establish that Φ is solution to (GP). Let h be a function

in C∞c (R). Since the functions χpΨn are uniformly bounded in C0([0, T ], C0(R)), we check
(for an integer p such that supp(h) ⊂ [−p, p]) that

(A.13) hηn(·, t) = h
(
1−χ2

p|Ψn(·, t)|2
)
→ h

(
1−χ2

p|Φ(·, t)|2
)

= h
(
1−|Φ(·, t)|2

)
in C0(R),

as n → +∞, the convergence being uniform with respect to t ∈ [0, T ]. In view of (A.9), we
deduce that N = 1− |Φ|2. Similarly, we compute

(A.14) hΨn(·, t) = hχpΨn(·, t)→ hχpΦ(·, t) = hΦ(·, t) in C0(R),
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as n→ +∞. In view of (A.9), we infer that

hηnΨn → h(1− |Φ|2)Φ in L2(R× [0, T ]).

Going back to (A.9) and (A.10), we recall that

i∂tΨn → i∂tΦ in D′(R× [0, T ]), and ∂2
xxΨn → ∂2

xxΦ in D′(R× [0, T ]),

as n→ +∞, so that it remains to take the limit n→ +∞ in the expression∫ T

0

∫
R

(
i∂tΨn + ∂2

xxΨn + ηnΨn

)
h = 0,

where h ∈ C∞c (R × [0, T ]), in order to establish that Φ is solution to (GP) in the sense of
distributions. Moreover, we infer from (A.3) and (A.14) that Φ(·, 0) = Ψ0.

In order to prove that the function Φ coincides with the solution Ψ in Proposition A.3, it
is sufficient, in view of the uniqueness result in Proposition A.2, to establish the

C. – The function Φ belongs to C0([0, T ], Zs(R)) for any 1/2 < s < 1.

Proof of the claim. – Let t ∈ [0, T ] be fixed. We deduce from (A.6), (A.11) and (A.13)
that, up to a subsequence (depending on t),

(A.15) ∂xΨn(·, t) ⇀ ∂xΦ(·, t) in L2(R), and ηn(·, t) ⇀ 1− |Φ(·, t)|2 in L2(R),

as n→ +∞. We also know that

(A.16)
∫
R
|∂xΦ(·, t)|2 ≤ 2M2, and

∫
R

(
1− |Φ(·, t)|2

)2 ≤ 4M2.

In particular, the maps ∂xΦ and 1 − |Φ|2 belong to L∞([0, T ], L2(R)), respectively
L∞([0, T ], H1(R)). Since

i∂t
(
∂xΦ

)
= −∂3

xxxΦ− ∂x(ηΦ),

the derivative ∂xΦ actually belongs to W 1,∞([0, T ], H−2(R)). Hence, it is continuous with
values into H−2(R). By (A.16), it remains continuous with values into Hs(R) for any
−2 ≤ s < 0. Similarly, the functions ηn solve the equations

(A.17) ∂tηn = 2∂x
(
〈i∂xΨn,Ψn〉C

)
.

Invoking (A.9) and (A.14), we know that

h〈i∂xΨn,Ψn〉C → h〈i∂xΦ,Φ〉C in L2(R× [0, T ]),

for any h ∈ C∞c (R). Using (A.13) to take the limit n→ +∞ into (A.17), we are led to

∂t
(
1− |Φ|2

)
= 2∂x

(
〈i∂xΦ,Φ〉C

)
,

in the sense of distributions. We deduce as above that the map 1−|Φ|2 belongs toW 1,∞([0, T ],

H−1(R)), therefore that it is continuous with values into H−1(R), and finally with values
into Hs(R) for any −1 ≤ s < 1. At this stage, it suffices to apply the Sobolev embed-
ding theorem to guarantee that Φ is also in C0([0, T ], L∞(R)), and, as a consequence,
in C0([0, T ], Zs(R)) for any 1/2 < s < 1, which proves the claim.
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By Proposition A.2, the maps Φ and Ψ are therefore two identical solutions to (GP)
in C0([0, T ], Zs(R)) for 1/2 < s < 1. Arguing as in (A.15), we conclude that, given any
fixed number t ∈ [0, T ], we have, up to a subsequence (depending on t),

(A.18) ∂xΨn ⇀ ∂xΨ(·, t) in L2(R), and ηn ⇀ 1− |Ψ(·, t)|2 in L2(R).

Given any compact subset K of R, we also deduce from (A.12) that

Ψn(·, t)→ Ψ(·, t) in L∞(K),

as n→ +∞.

In order to complete the proof of Proposition A.3, we now argue by contradiction assum-
ing the existence of a positive number T , a function h ∈ L2(R) and a positive number δ such
that we have ∣∣∣∣ ∫

R

(
∂xΨϕ(n)(x, T )− ∂xΨ(x, T )

)
h(x) dx

∣∣∣∣ > δ,

for a subsequence (Ψϕ(n))n∈N. Up to the choice of a further subsequence (possibly depending
on T ), this is in contradiction with (A.18). Here, we have made the choice to deny one of the
weak convergences in (A.5), but a contradiction identically appears when (A.4) or the other
convergence in (A.5) is alternatively denied. Since the proof extends with no change to the
case where T is negative, this concludes the proof of Proposition A.3.

A natural framework for solving the hydrodynamical form of the Gross-Pitaevskii equa-
tion is provided by the functions spaces

N V k(R) :=
{

(η, v) ∈ Xk(R), s.t. max
x∈R

η(x) < 1
}
,

where we have set

Xk(R) := Hk+1(R)×Hk(R).

A counter-part of Proposition A.1 in terms of (HGP) is stated as follows.

P A.4 ([35]). – Let k ∈ N and (η0, v0) ∈ N V k(R). There exists a maximal
time Tmax > 0 and a unique solution (η, v) ∈ C0([0, Tmax), N V k(R)) to (HGP) with initial
datum (η0, v0). The maximal time Tmax is continuous with respect to the initial datum (η0, v0),
and is characterized by

lim
t→Tmax

max
x∈R

η(x, t) = 1 if Tmax < +∞.

Moreover, the energy E and the momentum P are constant along the flow.

In this setting, it is possible to establish the following version of the weak continuity of the
hydrodynamical flow.

P A.5. – We consider a sequence (ηn,0, vn,0)n∈N ∈ N V (R)N, and a pair
(η0, v0) ∈ N V (R) such that

(A.19) ηn,0 ⇀ η0 in H1(R), and vn,0 ⇀ v0 in L2(R),
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as n→ +∞. We denote by (ηn, vn) the unique solutions to (HGP) with initial data (ηn,0, vn,0)

given by Proposition A.4, and we assume that there exists a positive number T such that the
solutions (ηn, vn) are defined on [−T, T ], and satisfy the condition

(A.20) sup
n∈N

sup
t∈[−T,T ]

max
x∈R

ηn(x, t) ≤ 1− σ,

for a given positive numberσ. Then, the unique solution (η, v) to (HGP) with initial data (η0, v0)

is also defined on [−T, T ], and for any t ∈ [−T, T ], we have

(A.21) ηn(t) ⇀ η(t) in H1(R), and vn(t) ⇀ v(t) in L2(R),

as n→ +∞.

Proof. – The proof relies on applying Proposition A.3 to the solutions Ψn and Ψ to (GP)
with initial data

Ψn,0 :=
√

1− ηn,0eiϕn,0 , and Ψ0 :=
√

1− η0eiϕ0 ,

where we have set

(A.22) ϕn,0(x) :=

∫ x

0

vn,0(y) dy, and ϕ0(x) :=

∫ x

0

v0(y) dy.

The weak convergences in (A.21) then follow from the convergences in (A.4) and (A.5).

With this goal in mind, we first remark that the map ϕ0 in (A.22) defines a continuous
function with derivative v0 in L2(R), while

√
1− η0 defines a function in H1(R). As a

consequence, the function Ψ0, and similarly the functions Ψn,0, are well-defined on R and
belong to X(R), with derivatives

∂xΨ0 =
(
− ∂xη0

2
√

1− η0
+ i
√

1− η0v0
)
eiϕ0 ,

∂xΨn,0 =
(
− ∂xηn,0

2
√

1− ηn,0
+ i
√

1− ηn,0vn,0
)
eiϕn,0 .

(A.23)

We now check the first assumption in (A.2), as well as (A.3). The second assumption in
(A.2) is already included in (A.19). In view of (A.22), we write

ϕn,0(x)− ϕ0(x) = 〈vn,0 − v0, 1[0,x]〉L2(R),

for any x ∈ R, so that, by (A.19),

ϕn,0(x)→ ϕ0(x),

as n→ +∞. On the other hand, it again follows from (A.22) that∣∣ϕn,0(x)− ϕn,0(y)
∣∣ ≤ |x− y| 12 ‖vn,0‖L2(R),

for any (x, y) ∈ R2. Given a compact subset K of R, we deduce from the Ascoli-Arzela
theorem and the Cantor diagonal argument that, passing to a subsequence independent
of K, we have

ϕn,0 → ϕ0 in L∞(K),

as n→ +∞. In particular,

(A.24) eiϕn,0 → eiϕ0 in L∞(K),
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as n→ +∞. Similarly, if follows from (A.19) and the Rellich-Kondrachov theorem that, up
to a further subsequence,

(A.25)
√

1− ηn,0 →
√

1− η0 in L∞(K),

as n→ +∞. Since the maps eiϕn,0 are uniformly bounded by 1, we conclude that

Ψn,0 → Ψ0 in L∞(K),

as n→ +∞.
The proof of the first assumption in (A.2) is similar. We deduce from (A.20) and (A.25)

that √
1− ηn,0 ≥

√
σ, and

√
1− η0 ≥

√
σ on R.

Combining (A.23) with the convergences in (A.19), (A.24) and (A.25), we are led to

∂xΨn,0 ⇀ ∂xΨ0 in L2(R),

as n→ +∞.
As a consequence, we can apply Proposition A.3 to the solutions Ψn and Ψ to (GP) with

initial data Ψn,0, respectively Ψ0. Given any number t ∈ R, we obtain in the limit n→ +∞,

(A.26) Ψn(·, t)→ Ψ(·, t) in L∞(K),

for any compact subset K of R, as well as
(A.27)
∂xΨn(·, t) ⇀ ∂xΨ(·, t) in L2(R), and 1− |Ψn(·, t)|2 ⇀ 1− |Ψ(·, t)|2 in L2(R).

Setting
η̃n := 1− |Ψn|2, and η̃ := 1− |Ψ|2,

we infer similarly from (A.26), (A.27) and the identities ∂xη̃(n) = −2〈Ψ(n), ∂xΨ(n)〉C that

(A.28) η̃n(·, t) ⇀ η̃(·, t) in H1(R),

as n → +∞. In order to derive the first convergence in (A.21), it remains to check that
the functions η̃n and η̃ are equal to ηn, respectively η. This can be done by invoking the
uniqueness result in Proposition A.4 for the solutions to (HGP).

With this goal in mind, we first derive from the Sobolev embedding theorem that

1− |ψp|2 → 1− |ψ|2 in L∞(R),

when ψp → ψ in X(R) as p→ +∞. Since ηn,0 satisfies (A.20), and Ψn is continuous from R
to X(R), we can exhibit a number τn ∈ (0, T ), depending possibly on n, such that

(A.29) sup
t∈[−τn,τn]

max
x∈R

η̃n(x, t) ≤ 1− σ

2
.

As a consequence, we can define a function ṽn : R × [−τn, τn] → R according to the
expression

ṽn =
〈iΨn, ∂xΨn〉C

1− |Ψn|2
.

Since Ψn is in C0([−τn, τn], L∞(R)), the function ṽn is continuous on [−τn, τn] with values
into L2(R). Similarly, η̃n is continuous on [−τn, τn] with values in H1(R). In view of (A.29),
we conclude that the pair (η̃n, ṽn) belongs to C0([−τn, τn], N V (R)). Moreover, the map Ψn

being a solution to (GP), the pair (η̃n, ṽn) solves (HGP) in the sense of distributions for an
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initial data equal to (ηn,0, vn,0). As a conclusion, this pair coincides with the solution (ηn, vn)

on [−τn, τn]. Using a standard connectedness argument, we derive that the function vn is
well-defined in C0([−T, T ], L∞(R)), and that

(η̃n(x, t), ṽn(x, t)) = (ηn(x, t), vn(x, t)),

for any x ∈ R and t ∈ [−T, T ].

Due to (A.25), one can rely on the same approach to establish that the function

ṽ =
〈iΨ, ∂xΨ〉C

1− |Ψ|2
,

is well-defined in C0([−T, T ], L∞(R)), and that

(η̃(x, t), ṽ(x, t)) = (η(x, t), v(x, t)),

for any x ∈ R and any t ∈ [−T, T ]. The first convergence in (A.21) is then exactly (A.28).
Concerning the second one, we deduce from (A.20), (A.26) and (A.27) that

〈iΨn, ∂xΨn〉C
1− |Ψn|2

⇀
〈iΨ, ∂xΨ〉C

1− |Ψ|2
in L2(R),

as n→ +∞. This is exactly the desired convergence.

However, the two convergences are only available for a subsequence, so that we have
to argue by contradiction as in the proof of Proposition A.3 to conclude the proof of
Proposition A.5.

A.1.1. Proof of Proposition 1. – In order to establish (26), we apply Proposition A.5. Relying
on assumption (15) and the explicit formula for Qc(tn) in (5), we check that

Qc(tn) → Qc∗0 in X(R),

as n→ +∞. Combining with (14), we are led to(
η(·+ a(tn), tn), v(·+ a(tn), tn)

)
⇀ ε∗0 +Qc∗0 in X(R),

as n → +∞. The weak convergence in (26) then appears as a direct consequence of (A.21)
since t 7→ (η(·+ a(tn), tn + t), v(·+ a(tn), tn + t)) and (η∗, v∗) are the solutions to (HGP)
with initial data (η(·+a(tn), tn), v(·+a(tn), tn)), respectively ε∗0+Qc∗0 , and since assumption
(A.20) is satisfied in view of (7).

Concerning (27), we rely on (8) to claim that the map t 7→ c(t) is bounded on R. We
next combine (8) and (9) to show that a′ is a bounded function on R. As a consequence,
the sequences (a(tn + t) − a(tn))n∈N and (c(tn + t))n∈N are bounded, so that the proof
of (27) reduces to establish that the unique possible accumulation points for these sequences
are a∗(t), respectively c∗(t).

In order to derive this further property, we assume that, up to a possible subsequence, we
have

(A.30) a(tn + t)− a(tn)→ α, and c(tn + t)→ σ,
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as n→ +∞. Given a function φ ∈ H1(R), we next write〈
η(·+ a(tn + t), tn + t), φ

〉
H1(R)

=
〈
η(·+ a(tn), tn + t), φ(· − a(tn + t) + a(tn))− φ(· − α)

〉
H1(R)

+
〈
η(·+ a(tn), tn + t), φ(· − α)

〉
H1(R)

.

Combining (26) and (A.30) with the well-known fact that

φ(·+ h)→ φ in H1(R),

when h→ 0, we deduce that

η(·+ a(tn + t), tn + t) ⇀ η∗(·+ α, t) in H1(R),

as n→ +∞. Similarly, we have

v(·+ a(tn + t), tn + t) ⇀ v∗(·+ α, t) in L2(R).

Since
Qc(tn+t) → Qσ in X(R),

as n→ +∞ by (A.30), we also obtain

(A.31) ε(·, tn + t) ⇀
(
η∗(·+ α, t), v∗(·+ α, t)

)
−Qσ in X(R),

as n→ +∞.

At this stage, we again rely on the second convergence in (A.30) to prove that

∂xQc(tn+t) → ∂xQσ in L2(R)2,

as n → +∞, and the similar convergence for P ′(Qc(tn+t)). With (A.31) at hand, this is
enough to take the limit n → +∞ in the two orthogonality conditions in (6) in order to
get the identities〈
(η∗(·+α, t), v∗(·+α, t))−Qσ, ∂xQσ

〉
L2(R)2

= P ′(Qσ)
(
(η∗(·+α, t), v∗(·+α, t))−Qσ

)
= 0.

Using the uniqueness of the parameters α∗(t) and c∗(t) in (20), we deduce that

(A.32) α = a∗(t), and σ = c∗(t),

which is enough to complete the proof of (27). Convergence (28) follows combining (20) with
(A.31) and (A.32).

A.2. Smoothing properties for space localized solutions

We consider a solution u ∈ C0(R, L2(R)) to the inhomogeneous linear Schrödinger
equation (LS), with F ∈ L2(R, L2(R)), and we assume that

(A.33)
∫ T

−T

∫
R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt < +∞,

for any positive number T . Our goal is to establish that the exponential decay for u and F
in (A.33) induces a smoothing effect on u in such a way that ∂xu belongs to L2

loc(R×R). In
order to derive this effect, we rely on the following virial type identity. We refer to the work
by Escauriaza, Kenig, Ponce and Vega [17] for useful extensions in related contexts.
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L A.1. – Let u be a solution in C0(R, H1(R)) to (LS), with F ∈ L2(R, H1(R)). We
consider two real numbers a < b, a function χ ∈ C2(R) such that χ(a) = χ(b) = 0, and a
bounded function Φ ∈ C4(R), with bounded derivatives. Then, we have

4

∫ b

a

∫
R
|∂xu(x, t)|2Φ′′(x)χ(t) dx dt =

∫
R

(
|u(x, a)|2χ′(a)− |u(x, b)|2χ′(b)

)
Φ(x) dx

+

∫ b

a

∫
R
|u(x, t)|2

(
Φ(x)χ′′(t) + Φ(4)(x)χ(t)

)
dx dt

+ 2

∫ b

a

∫
R
〈F (x, t), i u(x, t)〉CΦ(x)χ′(t) dx dt

− 2

∫ b

a

∫
R
〈F (x, t), u(x, t)〉CΦ′′(x)χ(t) dx dt

− 4

∫ b

a

∫
R
〈F (x, t), ∂xu(x, t)〉CΦ′(x)χ(t) dx dt.

(A.34)

Proof. – We introduce the map Ξ given by

Ξ(t) =

∫
R
|u(x, t)|2Φ(x) dx,

for any t ∈ R. When u is a smooth solution to (LS), we are allowed to compute

Ξ′(t) = 2

∫
R
〈F (x, t), iu(x, t)〉CΦ(x) dx+ 2

∫
R
〈∂xu(x, t), iu(x, t)〉CΦ′(x) dx,

as well as

Ξ′′(t) = 2∂t

(∫
R
〈F (x, t), iu(x, t)〉CΦ(x) dx

)
+ 4

∫
R
〈F (x, t), ∂xu(x, t)〉CΦ′(x) dx

+ 2

∫
R
〈F (x, t), u(x, t)〉CΦ′′(x) dx+ 4

∫
R
|∂xu(x, t)|2Φ′′(x) dx

−
∫
R
|u(x, t)|2Φ(4)(x) dx.

(A.35)

Formula (A.34) follows by writing the identity∫ b

a

Ξ′′(t)χ(t) dt = −Ξ(b)χ′(b) + Ξ(a)χ′(a) +

∫ b

a

Ξ(t)χ′′(t) dt,

and integrating by parts (with respect to t) the first integral in the right-hand side of (A.35).

When u is only in C0(R, H1(R)), we introduce a sequence of smooth functions (um,a)m∈N
and (Fm)m∈N such that

(A.36) um,a → u(·, a) in H1(R), and Fm → F in L2(R, H1(R)),

as m → +∞. We denote by um the unique solution to (LS), in which F is replaced by Fm,
with um(·, a) = um,a. Since um is a smooth solution to (LS), identity (A.34) holds for the
functions um and Fm. On the other hand, we can deduce from the convergences in (A.36)
applying an energy method to (LS) that

um → u in C0(R, H1(R)),
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when m→ +∞. Combining with (A.36) and taking the limit m→ +∞, we obtain identity
(A.34) for the functions u and F .

A.2.1. Proof of Proposition 5. – We apply Lemma A.1 with a = −T − 1 and b = T + 1,
and for a function χ ∈ C2

c(R, [0, 1]), with compact support in [−T −1, T + 1], and such that
χ = 1 on [−T, T ].

Concerning the choice of the function Φ, we would like to set Φ(x) = eλx for any x ∈ R.
However, this function is not bounded, as well as its derivatives. In order to by-pass this
difficulty, we introduce a function φ ∈ C∞(R, [0, 1]) with compact support in [−2, 2] and
such that φ = 1 on [−1, 1], and we set

φn(x) = φ
(x
n

)
,

for any n ∈ N∗ and any x ∈ R. We then apply Lemma A.1 to the function

Φn(x) = φn(x)eλx,

which is bounded, with bounded derivatives.

At this stage, we have to face a second difficulty. Lemma A.1 is available for functions u
andF in C0(R, H1(R)), respectivelyL2(R, H1(R)), but we would like to apply it when u and
F are only in C0(R, L2(R)), respectivelyL2(R, L2(R)). As a consequence, we first mollify the
functions u and F by introducing a smooth function µ ∈ C∞c (R×R), with compact support
in [−1, 1]2 and such that

∫
R2 µ = 1, and by setting

(A.37) um = u ? µm, and Fm = F ? µm,

with µm(x, t) = m2µ(mx,mt) for any m ∈ N and any (x, t) ∈ R2. In a second step, we will
complete the proof by taking the limit m→ +∞.

Since F is in L2(R, L2(R)), we first deduce from (A.37) and the Young inequality that
Fm belongs to L2(R, H1(R)), with the bounds

‖∂`xFm‖L2(R,L2(R)) ≤ m`‖F‖L2(R,L2(R))‖∂`xµ‖L1(R2),

for ` ∈ {0, 1}. Similarly, we compute∫
R

∣∣∂`xum(x, t)− ∂`xum(x, t0)
∣∣2dx

≤ m2`‖∂`xµ‖L1(R2)

∫ 1

−1

∫ 1

−1

∥∥∥u(·, t− τ

m

)
− u
(
·, t0 −

τ

m

)∥∥∥2

L2(R)
|∂`xµ(τ)| dτ,

so that um belongs to C0(R, H1(R)), with the bound

‖∂`xum‖ C0([−T−1,T+1],L2(R)) ≤ m`‖u‖ C0([−T−1,T+1],L2(R))‖∂`xµ‖L1(R2),
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which can be derived using the same arguments. As a consequence, we are in position to apply
Lemma A.1 to obtain the identity

4

∫
R

∫
R
|∂xum(x, t)|2

(
φn(x)eλx

)′′
χ(t) dx dt

= 2

∫
R

∫
R
〈Fm(x, t), i um(x, t)〉C φn(x)eλxχ′(t) dx dt

− 2

∫
R

∫
R
〈Fm(x, t), um(x, t)〉C

(
φn(x)eλx

)′′
χ(t) dx dt

− 4

∫
R

∫
R
〈Fm(x, t), ∂xum(x, t)〉C

(
φn(x)eλx

)′
χ(t) dx dt

+

∫
R

∫
R
|um(x, t)|2

(
φn(x)eλxχ′′(t) +

(
φn(x)eλx

)(4)
χ(t)

)
dx dt.

(A.38)

In order to take the limit n → +∞, we first combine (A.33) with (A.37) to obtain the
bound ∫ T+1

−T−1

∫
R

(
|∂`xum(x, t)|2 + |∂`xFm(x, t)|2

)
eλx dx dt

≤ m2`

(∫
R

∫
R
|∂`xµ(x, t)|eλx2 dx dt

)2

×
∫ T+2

−T−2

∫
R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt < +∞,

for ` ∈ {0, 1}. It follows that all the integrals in (A.38) can be written under the form

In(k,G) =

∫ T+1

−T−1

∫
R
G(x, t)φ(k)

n (x) dx dt,

with G ∈ L1([−T − 1, T + 1], L1(R)) and 0 ≤ k ≤ 4. Since

In(k,G)→ δk,0

∫ T+1

−T−1

∫
R
G(x, t) dx dt,

as n→ +∞ by the dominated convergence theorem, we obtain in the limit n→ +∞,

4λ2

∫ T+1

−T−1

∫
R
|∂xum(x, t)|2 eλxχ(t) dx dt = 2

∫ T+1

−T−1

∫
R
〈Fm(x, t), i um(x, t)〉C eλxχ′(t) dx dt

− 2λ2

∫ T+1

−T−1

∫
R
〈Fm(x, t), um(x, t)〉C eλxχ(t) dx dt

− 4λ

∫ T+1

−T−1

∫
R
〈Fm(x, t), ∂xum(x, t)〉C eλxχ(t) dx dt

+

∫ T+1

−T−1

∫
R
|um(x, t)|2 eλx

(
χ′′(t) + λ4χ(t)

)
dx dt.

(A.39)

We now use the inequality 2αβ ≤ α2 + β2 to write∣∣∣∣2 ∫ T+1

−T−1

∫
R
〈Fm(x, t), i um(x, t)〉C eλxχ′(t) dx dt

∣∣∣∣
≤ K1

(∫ T+1

−T−1

∫
R
|um(x, t)|2 eλx dx dt+

∫ T+1

−T−1

∫
R
|Fm(x, t)|2 eλx dx dt

)
,

(A.40)
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with K1 := ‖χ′‖L∞(R). Similarly, we have∣∣∣∣2 ∫ T+1

−T−1

∫
R

(
2λ〈Fm(x, t), ∂xum(x, t)〉C + λ2〈Fm(x, t), um(x, t)〉C

)
eλxχ(t) dx dt

∣∣∣∣
≤ λ2

∫ T+1

−T−1

∫
R
|um(x, t)|2 eλx dx dt+ 2λ2

∫ T+1

−T−1

∫
R
|∂xum(x, t)|2 eλxχ(t) dx dt

+
(
2 + λ2

) ∫ T+1

−T−1

∫
R
|Fm(x, t)|2 eλx dx dt.

Combining with (A.39) and (A.40), we obtain the inequality

2λ2

∫ T+1

−T−1

∫
R
|∂xum(x, t)|2 eλxχ(t) dx dt

≤
(
K1 +K2 + λ2 + λ4

) ∫ T+1

−T−1

∫
R
|um(x, t)|2eλx dx dt

+
(
K1 + λ2 + 2

) ∫ T+1

−T−1

∫
R
|Fm(x, t)|2 eλx dx dt,

with K2 := ‖χ′′‖L∞(R). At this stage, we rely on the properties of the function χ to obtain
the inequality (2)

(A.41)

2λ2

∫ T

−T

∫
R
|∂xum(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫
R

(
|um(x, t)|2 + |Fm(x, t)|2

)
eλx dx dt,

for some positive constant Kλ, depending only on λ.
In order to conclude the proof, we finally consider the limitm→ +∞. Using the linearity

of (LS), we can transform (A.41) into

(A.42) 2λ2

∫ T

−T

∫
R
|∂xum(x, t)− ∂xup(x, t)|2 eλx dx dt

≤ Kλ

∫ T+1

−T−1

∫
R

(
|um(x, t)− up(x, t)|2 + |Fm(x, t)− Fp(x, t)|2

)
eλx dx dt,

for any (m, p) ∈ (N∗)2. On the other hand, we can check that∫ T+1

−T−1

∫
R
|um(x, t)− u(x, t)|2 eλx dx dt

≤ 4‖µ‖2L1(R2) sup
|s|≤1,|y|≤1

∫ T+1

−T−1

∫
R

∣∣∣u(x− y

m
, t− s

m

)
− u(x, t)

∣∣∣2 eλx dx dt.
Setting v(x, t) = u(x, t)e

λx
2 , we observe that∫ T+1

−T−1

∫
R

∣∣∣u(x− y

m
, t− s

m

)
− u(x, t)

∣∣∣2 eλx dx dt
≤
∫ T+1

−T−1

∫
R

(
|v(x, t)|2

∣∣∣e λy2m − 1
∣∣∣2 +

∣∣∣v(x− y

m
, t− s

m

)
− v(x, t)

∣∣∣2eλym ) dx dt.
(2) The choice of χ can indeed be made so that K1 and K2 are independent of T .
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Since v ∈ L2([−T − 2, T + 2], L2(R)) by (A.33), we obtain the convergence∫ T+1

−T−1

∫
R
|um(x, t)− u(x, t)|2 eλx dx dt→ 0,

as m→ +∞. Due to (A.33) again, similar convergence holds for the functions Fm and F .

In particular, we infer from (A.42) that the functions (x, t) 7→ ∂xum(x, t)e
λx
2 form

a Cauchy sequence in L2([−T, T ], L2(R)). In view of (A.37), their limit in the sense
of distributions is the map (x, t) 7→ ∂xu(x, t)e

λx
2 . As a consequence, this map belongs

to L2([−T, T ], L2(R)), with∫ T

−T

∫
R
|∂xum(x, t)− ∂xu(x, t)|2 eλx dx dt→ 0,

as m → +∞. It is then enough to take the limit m → +∞ into (A.41) to obtain inequal-
ity (31). This completes the proof of Proposition 5.

R. – Inequalities similar in spirit to (31) can be obtained with similar proofs
replacing the weight function eλx by eφ where φ : R→ R is a smooth function with bounded
derivatives and such that φ′′ + (φ′)2 is bounded from below on R. In those cases, we obtain
inequalities of the form∫ T

−T

∫
R
|∂xu(x, t)|2eφ(x) dx dt ≤ Kφ

∫ T+1

−T−1

∫
R

(
|u(x, t)|2 + |F (x, t)|2

)
eφ(x) dx dt,

where Kφ is a positive constant depending only on φ.

A.2.2. Proof of Proposition 6. – We denote by Ψ∗ ∈ C(R, X(R)) a solution (uniquely
determined up to a constant phase shift) to (GP) corresponding to the solution (η∗, v∗)

to (HGP). Formally, we may differentiate (GP) k times with respect to the space variable and
write the resulting equation as

(A.43) i∂t
(
∂kxΨ∗

)
+ ∂xx

(
∂kxΨ∗

)
= Rk(Ψ∗),

where, in view of the cubic nature of (GP),

(A.44)
∣∣Rk(Ψ∗)

∣∣ ≤ |∂kxΨ∗|+
∑

α≤β≤γ
α+β+γ=k

Kα,β,γ |∂αxΨ∗| |∂βxΨ∗| |∂γxΨ∗|.

In particular, our strategy to establish Proposition 6 consists in applying inductively Propo-
sition 5 to the derivatives ∂kxΨ∗ in order to improve their smoothness properties, and then
translate the resulting properties in terms of the pair (η∗, v∗). As a consequence, we split the
proof into four steps.

S 1. – Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such
that

(A.45)
∫ t+1

t

∫
R

∣∣∂kxΨ∗(x+ a∗(t), s)
∣∣2e2νc|x| dx ds ≤ Ak,c,

for any t ∈ R.
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The proof is by induction on k ≥ 1. More precisely, we are going to prove by induction
that (A.45) and

(A.46)
∫ t+1

t

∫
R

∣∣Rk(Ψ∗)(x+ a∗(t), s)
∣∣2e2νc|x| dx ds ≤ Ak,c,

hold simultaneously for any t ∈ R. Notice that (A.45) implies that ∂kxΨ∗ ∈ L2
loc(R, L2(R)),

while (A.46) implies that Rk(Ψ∗) ∈ L2
loc(R, L2(R)). Therefore, if (A.45) and (A.46) are

established for some k ≥ 1, then (A.43) can be justified by a standard approximation
procedure, so that we are in position to apply Proposition 5 to (suitable translates of) ∂kxΨ∗.

For k = 1, recall that

|∂xΨ∗|2 =
(∂xη

∗)2

4(1− η∗)
+ (1− η∗)(v∗)2.

It follows that
1

Ac
|∂xΨ∗|2 ≤ (∂xη

∗)2 + (v∗)2 ≤ Ac|∂xΨ∗|2,

where the constant Ac, here as in the sequel, depends only on c. It then follows from Propo-
sition 4 that (A.45) and (A.46) are satisfied. Indeed, since

|R1(Ψ∗)| ≤ A|∂xΨ∗|
(
1 + |Ψ∗|2

)
,

we have∣∣R1(Ψ∗)(x+ a∗(t), s)
∣∣2e2νc|x| ≤ A2|∂xΨ∗(x+ a∗(s), s)|2e2νc(|a

∗(t)−a∗(s)|+|x|)(1 + ‖Ψ∗‖2L∞(R)

)2
,

and we may rely on Proposition 4, and the fact that |a∗(t)−a∗(s)| is bounded independently
of t for s ∈ [t, t+ 1].

Assume next that (A.45) and (A.46) are satisfied for any integer k ≤ k0 and any t ∈ R.
We apply Proposition 5 with u := ∂k0x Ψ∗(·+ a∗(t), · − (t+ 1/2)), T := 1/2 and successively
λ := ±2νc. In view of (A.43), (A.45), (A.46), and the fact that |a∗(t) − a∗(s)| is uniformly
bounded for s ∈ [t− 1, t+ 2], this yields

(A.47)
∫ t+1

t

∫
R
|∂k0+1
x Ψ∗(x+ a∗(t), s)|2e2νc|x| dx ds ≤ AcAk0,cK2νc

4ν2
c

,

so that (A.45) is satisfied for k = k0 + 1, if we set Ak0+1,c = AcAk0,cK2νc/4ν
2
c .

We now turn to (A.46) which we wish to establish for k = k0+1. First notice that the linear
term in the right-hand side is already bounded by (A.47), so that we only have to handle with
the cubic terms. Notice also that we have by (A.43), (A.45) and (A.46),

∂jxΨ∗ ∈ L2
loc(R, H2(R)), and ∂jxΨ∗ ∈ H1

loc(R, L2(R)),

for any 1 ≤ j < k0, with bounds depending only on k0 + 1 and c on any time interval of
length 1. By interpolation, we obtain similar bounds for ∂jxΨ∗ ∈ Hs

loc(R, H2−2s(R)) for any
0 ≤ s ≤ 1. Taking for instance s = 2/3 and using the Sobolev embedding theorem, we
obtain a global bound for ∂jxΨ∗ in L∞(R×R). Since the latter also holds for j = 0, we thus
have

(A.48)
∥∥∂jxΨ∗

∥∥
L∞(R×R)

≤ Ak0+1,c,

for any 0 ≤ j < k0, where the value of Ak0+1,c possibly needs to be increased with respect
to its prior value, but depending only on k0 + 1 and c.
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In order to estimate the sum in (A.44), we next distinguish two cases according to the
possible values of α, β and γ.

C 1. – If β < k0, then∫ t+1

t

∫
R

[
|∂αxΨ∗|2 |∂βxΨ∗|2 |∂γxΨ∗|2

]
(x+ a∗(t), s)e2νc|x| dx ds

≤
∥∥∂αxΨ∗

∥∥2

L∞(R×R)

∥∥∂βxΨ∗
∥∥2

L∞(R×R)

∫ t+1

t

∫
R
|∂γxΨ∗(x+ a∗(t), s)|2e2νc|x| dx ds,

and we may rely on (A.48), as well as (A.45) or (A.47), depending on the value of γ.

C 2. – Since α ≤ β ≤ γ and α + β + γ = k0 + 1, the only remaining case is α = 0,
β = γ = k0 = 1. In that situation, we write∫ t+1

t

∫
R

[
|Ψ∗|2 |∂xΨ∗|4

]
(x+ a∗(t), s)e2νc|x| dx ds

≤
∥∥Ψ∗

∥∥2

L∞(R×R)

(
sup

s∈[t,t+1]

∫
R
|∂xΨ∗(x, s)|2 dx

)∫ t+1

t

∥∥∂xΨ∗(·+a∗(t), s)eνc|x|
∥∥2

L∞(R)
ds.

By conservation of the energy, we have

sup
s∈[t,t+1]

∫
R
|∂xΨ∗(x, s)|2 dx ≤ 2 E(Ψ∗(·, 0)),

while, by the Sobolev embedding theorem,∥∥∂xΨ∗(·+ a∗(t), s)eνc|·|
∥∥2

L∞(R)

≤ Ac
(∥∥∂xxΨ∗(·+ a∗(t), s)eνc|·|

∥∥2

L2(R)
+
∥∥∂xΨ∗(·+ a∗(t), s)eνc|·|

∥∥2

L2(R)

)
.

The conclusion then follows also from (A.45) and (A.47).

At this stage, we have established by induction that (A.45) and (A.46) hold for any k ≥ 1.
In order to finish the proof of Proposition 6, we now turn theseL2

loc in time estimates intoL∞

in time estimates, and then in uniform estimates.

S 2. – Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such
that

(A.49)
∫
R

∣∣∂kxΨ∗(x+ a∗(t), t)2
∣∣2e2νc|x| dx ≤ Ak,c,

for any t ∈ R. In particular, we have

(A.50)
∥∥∂kxΨ∗(·+ a∗(t), t)eνc|·|

∥∥
L∞(R)

≤ Ak,c,

for any t ∈ R, and a further positive constant Ak,c, depending only on k and c.

Here also, we first rely on the Sobolev embedding theorem and (A.43). By the Sobolev
embedding theorem, we have∥∥∂kxΨ∗(·+ a∗(t), t)eνc|·|

∥∥2

L2(R)
≤ K

(∥∥∂s(∂kxΨ∗(·+ a∗(t), s)eνc|·|
)∥∥2

L2([t−1,t+1],L2(R))

+
∥∥∂kxΨ∗(·+ a∗(t), s)eνc|·|

∥∥2

L2([t−1,t+1],L2(R))

)
,
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while, by (A.43),∥∥∂s(∂kxΨ∗(·+ a∗(t), s)eνc|·|
)∥∥2

L2([t−1,t+1],L2(R))

≤ 2
(∥∥∂k+2

x Ψ∗(·+ a∗(t), s)eνc|·|
∥∥2

L2([t−1,t+1],L2(R))

+
∥∥Rk(Ψ∗)(·+ a∗(t), s)eνc|·|

∥∥2

L2([t−1,t+1],L2(R))

)
,

so that we finally deduce (A.49) from (A.46) and (A.45). Estimate (A.50) follows applying
the Sobolev embedding theorem.

We now translate (A.49) and (A.50) into estimates for η∗.

S 3. – Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such
that

(A.51)
∫
R

(
∂kxη

∗(x+ a∗(t), t)
)2
e2νc|x| dx ≤ Ak,c,

and

(A.52)
∥∥∂kxη∗(·+ a∗(t), t)eνc|·|

∥∥
L∞(R)

≤ Ak,c,

for any t ∈ R.

Concerning (A.51), we first recall that

∂s
(
η∗(·+ a∗(t), s)

)
= 2〈iΨ∗(·+ a∗(t), s), ∂xxΨ∗(·+ a∗(t), s)〉C.

Since Ψ∗ is uniformly bounded on R×R in view of (25), we can rely on (A.49) to claim that∥∥∂s(η∗(·+ a∗(t), s)eνc|·|
)∥∥
L2([t−1,t+1],L2(R))

≤ Ac
∥∥∂xxΨ∗(·+ a∗(t), s)eνc|·|

∥∥
L2([t−1,t+1],L2(R))

≤ Ac.

Since ∥∥η∗(·+ a∗(t), s)eνc|·|
∥∥
L2([t−1,t+1],L2(R))

≤ Ac,

by Proposition 4, and since |a∗(t)−a∗(s)| is bounded independently of t for s ∈ [t−1, t+1],
we can invoke again the Sobolev embedding theorem to obtain (A.51) for k = 0.

When k ≥ 1, we recall that

∂kxη
∗ = −2

k−1∑
j=0

(
k − 1

j

)〈
∂jxΨ∗, ∂k−jx Ψ∗

〉
C,

by the Leibniz rule, so that (A.51) follows from (A.49), (A.50), and the property that Ψ∗ is
uniformly bounded on R × R by (25). The uniform bound in (A.52) is then a consequence
of the Sobolev embedding theorem arguing as for (A.50).

Finally, we provide the estimates for the function v∗.

S 4. – Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such
that

(A.53)
∫
R

(
∂kxv

∗(x+ a∗(t), t)
)2
e2νc|x| dx ≤ Ak,c,
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and

(A.54)
∥∥∂kxv∗(·+ a∗(t), t)eνc|·|

∥∥
L∞(R)

≤ Ak,c,

for any t ∈ R.

Here, we recall that

v∗ =
(
1− η∗

)− 1
2
〈
i∂xΨ∗,Ψ∗

〉
C,

so that, by the Leibniz rule, we have

∂kxv
∗ =

k∑
j=0

k−j∑
`=0

(
k

j

)(
k − j
`

)
∂jx

(
(1− η∗)− 1

2

)〈
i∂`+1
x Ψ∗, ∂k−j−`x Ψ∗

〉
C.

At this stage, we can combine the Faa di Bruno formula with (25) and (A.52) to guarantee
that ∥∥∥∂jx((1− η∗)− 1

2

)
(·+ a∗(t), t)

∥∥∥
L∞(R)

≤ Aj,c,

for any j ∈ N and any t ∈ R. In view of (A.49) and (A.50), this leads to (A.53). The uniform
bound in (A.54) follows again from the Sobolev embedding theorem.

In view of (A.52) and (A.54), we conclude that the pair (η∗, v∗) is smooth on R×R, with
exponential decay. Estimate (32) is a direct consequence of (A.51) and (A.53). This completes
the proof of Proposition 6.

Appendix B

Complements on orbital stability and the operator H c

B.1. Properties of the operator H c

In this subsection, we recall and slightly extend some properties of the operator H c which
were established in [26, 5].

For c ∈ (−
√

2,
√

2) \ {0}, the operator H c is given in explicit terms by

(B.1) H c(ε) =

− 1
4∂x

(
∂xεη
1−ηc

)
+ 1

4

(
2− ∂xxηc

(1−ηc)2 −
(∂xηc)

2

(1−ηc)3

)
εη −

(
c
2 + vc

)
εv

−
(
c
2 + vc

)
εη + (1− ηc)εv

 .

It follows from the Weyl theorem and criterion that H c is self-adjoint on L2(R) × L2(R),
with domain H2(R)× L2(R), and that its essential spectrum is equal to

σess( H c) =
[ 2− c2

3 +
√

1 + 4c2
,+∞

)
.

It was proved in [26, 5] that H c has a unique negative eigenvalue, that its kernel is spanned
by ∂xQc, and that there exists a positive constant Λc, depending only and continuously on c,
such that we have the estimate Hc(ε) ≥ Λc‖ε‖2X , for any pair ε ∈ X(R) which satisfies the
orthogonality conditions 〈ε, ∂xQc〉L2(R)2 = P ′(Qc)(ε) = 0.

It follows from the characterization of the kernel here above that the operator H c is
an isomorphism from Dom( H c) ∩ Span(∂xQc)

⊥ onto Span(∂xQc)
⊥. Moreover, given any
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k ∈ N, there exists a positive number Ac, depending continuously on c, such that the inverse
mapping H −1

c satisfies

(B.2)
∥∥H −1

c (f, g)
∥∥
Hk+2(R)×Hk(R)

≤ Ac
∥∥(f, g)

∥∥
Hk(R)2

,

for any (f, g) ∈ Hk(R)2 ∩ Span(∂xQc)
⊥.

Indeed, the pair ε = H −1
c (f, g) is a solution in H2(R)× L2(R) to the equations

(B.3)

−
1
4∂x

(
∂xεη
1−ηc

)
= f − 1

4

(
2− ∂2

xxηc
(1−ηc)2 −

(∂xηc)
2

(1−ηc)3

)
εη +

(
c
2 + vc

)
εv,

(1− ηc)εv = g +
(
c
2 + vc

)
εη,

which satisfies the bound

(B.4) ‖εη‖L2(R) + ‖εv‖L2(R) ≤ κc
(
‖f‖L2(R) + ‖g‖L2(R)

)
,

with

κc := min
{ 1

λ
, λ 6= 0 s.t. λ ∈ σ( H c)

}
.

In particular, since H c depends analytically on c, and its eigenvalue 0 is isolated, the
constant κc is positive and depends continuously on c. Since

(B.5) min
x∈R

{
1− ηc(x)

}
=
c2

2
> 0,

we can apply standard elliptic theory to the first equation in (B.3) to obtain

‖εη‖H2(R) ≤ Ac
(
‖f‖L2(R) + ‖g‖L2(R)

)
,

whereAc also depends continuously on c. Combining the second equation in (B.3) with (B.4)
and (B.5), it follows that

‖εv‖Hmin{k,2}(R) ≤ Ac
(
‖f‖Hk(R) + ‖g‖Hk(R)

)
,

when (f, g) ∈ Hk(R)2. Applying again standard elliptic theory to the first equation in (B.3),
we are led to

‖εη‖Hmin{k+2,4}(R) ≤ Ac
(
‖f‖Hk(R) + ‖g‖Hk(R)

)
.

A bootstrap argument then yields (B.2), with a constantAc which depends continuously on c.

B.2. Proof of Theorem 3

As mentioned in the introduction, the proof of Theorem 3 consists in a few adaptations
with respect to the arguments in [26, 5].

The global existence of the solution (η, v) to (HGP) for an initial data (η0, v0) which
satisfies the condition (4) is indeed established in [5, Theorem 2].

The existence for a fixed number t ∈ R of the modulation parameters a(t) and c(t) in (5)
is shown in [5, Proposition 2], as well as the two estimates in (8). Combining these estimates
with the Sobolev embedding theorem of H1(R) into C0(R) and the bound (B.5) on 1 − ηc,
we can write

max
x∈R

η(x, t) ≥
∥∥ηc(t)∥∥L∞(R)

−
∥∥εη(·, t)

∥∥
L∞(R)

≥ 1− c(t)2

2
−Kcα0 ≥ 1− c

2

2
−Kcαc.

For αc small enough, estimate (7) follows with σc := c2/2 +Kcαc.
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Concerning the C1-dependence on t of the numbers a(t) and c(t), it is proved in [5,
Proposition 4], as well as the linear estimate

(B.6)
∣∣c′(t)∣∣+

∣∣a′(t)− c(t)∣∣ ≤ Ac∥∥ε(·, t)∥∥X(R)
.

The only remaining point to verify is that the linear dependence on ε of c′(t) in (B.6) is
actually quadratic.

In order to prove this further property, we differentiate the second orthogonality relation
in (6) with respect to time. Combining with (12), we obtain

c′
d

dc

(
P (Qc)

)
= P ′(Qc)

(
J H c(ε)

)
+
(
a′ − c

)
P ′(Qc)

(
∂xε+ ∂xQc

)
+ c′

〈
P ′′(Qc)(∂cQc), ε

〉
L2(R)2

+ P ′(Qc)
(
J Rcε

)
,

(B.7)

at any time t ∈ R. The first term in the right-hand side of (B.7) vanishes since

(B.8) P ′(Qc)
(
J H c(ε)

)
= 2〈∂xQc, H c(ε)〉L2(R)2 = 2〈H c(∂xQc), ε〉L2(R)2 = 0,

by (10). Concerning the second one, we have

(B.9) P ′(Qc)
(
∂xQc

)
=

∫
R
∂x
(
ηc(x)vc(x)

)
dx = 0,

while we can deduce from (B.6) that

(B.10)
∣∣a′ − c∣∣∣∣P ′(Qc)(∂xε)∣∣ ≤ Ac∥∥ε∥∥2

X(R)
.

Similarly, the third term can be estimated as

(B.11)
∣∣c′∣∣∣∣〈P ′′(Qc)(∂cQc), ε〉L2(R)2

∣∣ ≤ Ac∥∥ε∥∥2

X(R)
.

For the last term, we recall that

[
Rc(t)ε(·, t)

]
η

: =
(∂xηc)

2ε2η(3− ηc − 2η)

8(1− ηc)3(1− η)2
+

(∂xηc)εη(∂xεη)(2− ηc − η)

4(1− ηc)2(1− η)2
+

(∂xεη)2

8(1− η)2
− ε2v

2

− ∂x
( εη(∂xεη)

4(1− ηc)(1− η)
+

(∂xηc)ε
2
η

4(1− ηc)2(1− η)

)
,[

Rc(t)ε(·, t)
]
v

: = −εηεv,

(B.12)

so that we can compute

P ′(Qc)
(
J Rcε

)
=

∫
R

(∂xxηc)
( εη(∂xεη)

2(1− ηc)(1− η)
+

(∂xηc)ε
2
η

2(1− ηc)2(1− η)

)
−
∫
R

(
2(∂xvc)εηεv + (∂xηc)ε

2
v

)
−
∫
R

(∂xηc)
( (∂xηc)

2ε2η(3− ηc − 2η)

4(1− ηc)3(1− η)2

+
(∂xηc)εη(∂xεη)(2− ηc − η)

2(1− ηc)2(1− η)2
+

(∂xεη)2

4(1− η)2

)
.

It is then enough to apply again the Sobolev embedding theorem and to use the control
on 1− η and c provided by (7), respectively (8), to obtain∣∣P ′(Qc)(J Rcε

)∣∣ ≤ Ac∥∥ε∥∥2

X(R)
.
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Recalling that
d

dc

(
P (Qc)

)
= −

(
2− c2

) 1
2 6= 0,

we can combine the identity (B.7) with the estimates (B.8), (B.9), (B.10) and (B.11) to prove
the quadratic estimate of c′(t) in (9). This concludes the proof of Theorem 3.
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