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INVERSE PROBLEMS
IN MULTIFRACTAL ANALYSIS OF MEASURES

 J BARRAL

A. – Multifractal formalism is designed to describe the distribution at small scales of the
elements of M+

c (Rd), the set of positive, finite and compactly supported Borel measures on Rd. It is
valid for such a measure µ when its Hausdorff spectrum is the upper semi-continuous function given
by the concave Legendre-Fenchel transform of the free energy function τµ associated with µ; this is the
case for fundamental classes of exactly dimensional measures.

For any function τ candidate to be the free energy function of some µ ∈ M+
c (Rd), we construct

such a measure, exactly dimensional, and obeying the multifractal formalism. This result is extended
to a refined formalism considering jointly Hausdorff and packing spectra. Also, for any upper semi-
continuous function candidate to be the lower Hausdorff spectrum of some exactly dimensional
µ ∈ M+

c (Rd), we construct such a measure.

R. – Le formalisme multifractal est un cadre adapté pour décrire la distribution aux
petites échelles des mesures de Borel finies positives à support compact dans Rd, dont l’ensemble
est ici noté M+

c (Rd). Il est dit valide pour une mesure µ lorsque son spectre de Hausdorff est la
fonction semi-continue supérieurement obtenue comme transformée de Legendre-Fenchel concave de
sa fonction d’énergie libre τµ; c’est le cas pour certaines classes fondamentales de mesures exactement
dimensionnelles.

Pour toute fonction τ candidate à être la fonction d’énergie libre d’un élément µ de M+
c (Rd), nous

construisons une telle mesure, exactement dimensionnelle, et validant le formalisme. Ce résultat s’étend
à un formalisme plus fin considérant simultanément spectres de Hausdorff et de packing. D’autre part,
pour toute fonction semi-continue supérieurement candidate à être le spectre de Hausdorff inférieur
d’une mesure exactement dimensionnelle, nous construisons une telle mesure.

1. Introduction and main statements

1.1. Inverse problems in multifractal analysis of measures

Let M+
c (Rd) stand for the set of compactly supported Borel positive and finite measures

on Rd (d ≥ 1), and for µ ∈ M+
c (Rd) denote by supp(µ) the topological support of µ (i.e.,

The author is grateful to De-Jun Feng and Jacques Peyrière for their valuable comments on this work.
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1458 J. BARRAL

the compact set obtained as the complement of those points x for which µ(B(x, r)) = 0 for
some r > 0, where B(x, r) stands for the closed ball of radius r centered at x).

The upper and lower box dimensions of a bounded set E ⊂ Rd will be denoted dimBE

and dimBE respectively, and its Hausdorff and packing dimensions will be denoted by
dimH E and dimP E respectively (see [33, 60, 70, 81] for introductions to dimension theory).

Multifractal analysis is a natural framework to finely describe geometrically the het-
erogeneity in the distribution at small scales of the elements of M+

c (Rd). Specifically, if
µ ∈ M+

c (Rd), this heterogeneity can be described via the lower and upper local dimensions
of µ, namely

d(µ, x) = lim inf
r→0+

log(µ(B(x, r)))

log(r)
and d(µ, x) = lim sup

r→0+

log(µ(B(x, r)))

log(r)
,

and the level sets

E(µ, α, β) =
{
x ∈ supp(µ) : d(µ, x) = α, d(µ, x) = β

}
(α ≤ β ∈ R ∪ {∞}),

which form a partition of supp(µ) (notice that E(µ, α, β) = ∅ whenever α < 0). The sets

E(µ, α) =
{
x ∈ supp(µ) : d(µ, x) = α

}
, E(µ, α) =

{
x ∈ supp(µ) : d(µ, x) = α

}
,

and
E(µ, α) = E(µ, α) ∩ E(µ, α) = E(µ, α, α) (α ∈ R ∪ {∞})

are also very natural, and the most studied in the literature (although the sets defined above
are empty if α < 0 because µ is a bounded function of Borel sets, it is convenient to include
negative values of α in connection with the using along the paper of the Legendre-Fenchel
transform of functions defined on R or R ∪ {∞}).

The lower Hausdorff spectrum of µ is the mapping defined as

fH
µ

: α ∈ R ∪ {∞} 7→ dimH E(µ, α),

with the convention that dimH ∅ = −∞, so that fH
µ

(α) = −∞ if α < 0. This spectrum
provides a geometric hierarchy between the sets E(µ, α), which partition the support of µ.
Here, the lower local dimension is emphasized for it provides at any point the best pointwise
Hölder control one can have on the measure µ at small scales. However, the upper local
dimension is of course of interest, and much attention is paid in general to the setsE(µ, α) of
points at which one has an exact local dimension d(µ, x) = d(µ, x), especially when studying
ergodic measures in the context of hyperbolic and more generally non uniformly hyperbolic
dynamical systems.

The Hausdorff spectrum of µ is the mapping defined as

fHµ : α ∈ R ∪ {∞} 7→ dimH E(µ, α).

Inspired by the observations made by physicists of turbulence and statistical mechanics
[42, 40, 41], mathematicians derived, and in many situations justified the heuristic claiming
that for a measure possessing a self-conformal like property, its Hausdorff spectrum should
be obtained as the Legendre transform of a kind of free energy function, calledLq-spectrum.
This gave birth to an abundant literature on the so-called multifractal formalisms [33, 21, 19,
63, 70, 52, 17, 71, 56], which aim at linking the asymptotic statistical properties of a given
measure with its fine geometric properties.
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INVERSE PROBLEMS IN MULTIFRACTAL ANALYSIS OF MEASURES 1459

To be more specific we need some definitions. Given I ∈ {R, R ∪ {∞}} and a fonction
f : I → R ∪ {−∞}, the domain of f is defined as dom(f) = {x ∈ I : f(x) > −∞}.

Let τ : R → R ∪ {−∞}. If dom(τ) 6= ∅, the concave Legendre-Fenchel transform, or
concave conjugate function, of τ is the upper-semi continuous concave function defined as
τ∗ : α ∈ R 7→ inf{αq − τ(q) : q ∈ dom(τ)} (see [77]). We will need a slight extension of this
definition.

If τ : R → R ∪ {−∞}, dom(τ) 6= ∅, and 0 ∈ dom(τ), we define its (extended) concave
Legendre-Fenchel transform as

τ∗ : α ∈ R ∪ {∞} 7→

{
inf{αq − τ(q) : q ∈ dom(τ)} if α ∈ R,
inf{αq − τ(q) : q ∈ dom(τ) ∩ R−} if α =∞,

with the conventions∞× q = −∞ if q < 0 and∞× 0 = 0. Consequently,∞ ∈ dom(τ∗) if
and only if 0 = min(dom(τ)), and in this case τ∗(∞) = −τ(0) = max(τ∗). In any case, τ∗ is
upper semi-continuous over dom(τ∗), and concave over the interval dom(τ∗)\{∞} (here the
notion of upper semi-continuous function is relative to R∪{∞} endowed with the topology
generated by the open subsets of R and the sets (α,∞) ∪ {∞}, α ∈ R).

Now, define the (lower) Lq-spectrum of µ ∈ M+
c (Rd) as

τµ : q ∈ R 7→ lim inf
r→0+

log sup
{∑

i µ(B(xi, r))
q
}

log(r)
,

where the supremum is taken over all the centered packings of supp(µ) by closed balls of
radius r.

By construction, τµ is concave and non decreasing, and

−d ≤ τµ(0) = −dimB supp(µ) ≤ 0 = τµ(1),

so that one always has R+ ⊂ dom(τµ); also τ∗µ takes values in [0, d]∪{−∞}, and dom(τ∗µ) is
a closed subinterval of R+ ∪ {∞} (see Propositions 1.1 and 1.2).

For α ∈ R we always have (see [63, Section 2.7] or [52, Section 3])

(1.1) fHµ (α) ≤ fH
µ

(α) ≤ τ∗µ(α) ≤ max(α,−τµ(0)) ≤ max(α, d);

we also have
fHµ (∞) ≤ τ∗µ(∞),

a dimension equal to −∞ meaning that the set is empty (the second inequality is not stan-
dard, and will be proved in Section 5; the inequality τ∗µ(α) ≤ max(α,−τµ(0)) is a direct
consequence of the definition of τ∗µ and the fact that τµ(1) = 0).

We notice that due to (1.1), if fHµ (α) ≥ α at some α, then 0 ≤ α ≤ d and fHµ (α) =

τ∗µ(α) = α, so that α is a fixed point of τ∗µ . Moreover, since τµ(1) = 0 and τµ is concave, the
set of fixed points of τ∗µ is the interval [τ ′µ(1+), τ ′µ(1−)].

We will say that µ obeys the multifractal formalism at α ∈ R ∪ {∞} if fH
µ

(α) = τ∗µ(α),
and that the multifractal formalism holds (globally) for µ if it holds at any α ∈ R ∪ {∞}.

If fH
µ

(α) can be replaced by fHµ (α) in the previous definition, we will say that the multi-
fractal formalism holds strongly, and it is in this form that this formalism has been introduced
and studied the most. It turns out that in this case one has

dimH E(µ, α) = dimP E(µ, α) = dimH E(µ, α) = dimH E(µ, α) = τ∗µ(α).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1460 J. BARRAL

However, in general, nice families of discrete measures only obey the multifractal formalism
associated with the lower Hausdorff spectrum as defined above.

The multifractal formalism turns out to hold globally, or on some non trivial subinterval
of dom(τ∗µ), for some important classes of continuous measures possessing (or close to have)
self-conformal properties, namely some classes of self-conformal measures (among which
some Bernoulli convolutions), Gibbs and weak Gibbs measures on conformal repellers (e.g.,
the harmonic measure on such a disconnected set) or attractors of Axiom A diffeomorphisms
[25, 29, 73, 72, 59, 21, 54, 55, 76, 69, 70, 68, 58, 43, 50, 38, 34, 46, 79, 80, 35, 37, 49,
36], harmonic measure on the Brownian frontier [53], and scale invariant limits of certain
multiplicative chaos [45, 30, 61, 1, 5, 8, 9, 74, 2]; in these cases it also holds strongly. It also
holds for scale invariant discrete measures obtained as limits in law of Gibbs measures in
the context of random directed polymers [48, 12, 11] (see also [3, 47, 32, 13, 67] for other
classes of discrete measures obeying the multifractal formalism). Other examples are special
self-affine or Gibbs measures on self-affine Sierpiński carpets [51, 64, 10, 6], or on almost all
the attractors of IFS associated with certain families of d× d invertible matrices with small
enough singular values [31, 7], as well as generic probability measures on a compact subset
of Rd [22, 23, 16].

The measures mentioned above share the geometric property to be exactly dimensional,

i.e., for such a measure µ, there exists D ∈ [0, d] such that lim
r→0+

log(µ(B(x, r)))

log(r)
= D,

µ-almost everywhere. This implies fHµ (D) ≥ D, hence D ∈ [τ ′µ(1+), τ ′µ(1−)] and µ strongly
obeys the multifractal formalism atD by a remark made above. In fact, for any µ ∈ M+

c (Rd),
for µ-almost every x one has τ ′µ(1+) ≤ d(µ, x) ≤ d(µ, x) ≤ τ ′µ(1−) ([62]), and for most of
the continuous measures in the previous references, τ ′µ(1) exists, hence equals D; also, τµ is
piecewise C1, and even analytic in certain cases, a typical example being Gibbs measures
associated with Hölder potentials on repellers of C1+α conformal mappings.

Another property of the previous measures is, when they obey globally the multifractal
formalism, to be homogeneously multifractal (HM), this meaning that the lower Hausdorff

spectrum of the restriction of µ to any closed ball whose interior intersects supp(µ) is equal
to the lower Hausdorff spectrum of µ.

In this paper we solve the inverse problem consisting in constructing, for any concave func-
tion τ satisfying the necessary conditions to be the Lq-spectrum of an element of M+

c (Rd),
an exactly dimensional and (HM) measure whose Lq-spectrum equals τ , and which strongly
satisfies the multifractal formalism. More specifically:

T 1.1. – Let τ : R → R ∪ {−∞} be a concave function satisfying the necessary
properties (see Propositon 1.1) to be the Lq-spectrum of some element of M+

c (Rd). Let D ∈
[τ ′(1+), τ ′(1−)]. There exists an (HM) measure µ ∈ M+

c (Rd), exactly dimensional with
dimension D, and which strongly satisfies the multifractal formalism with τµ = τ .

Theorem 1.1 will be obtained as a consequence of more general statements which also
describe the Hausdorff and packing dimensions of the sets E(µ, α, β) (Theorem 1.3 and
Corollary 1.1 of Section 1.2). We will also study the inverse problem associated with a finer
multifractal formalism designed to describe the more general situation where the Hausdorff

spectrum fHµ and the packing spectrum fPµ : α 7→ dimP E(µ, α) differ (Theorem 1.4 and
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Corollary 1.2 of Section 1.2). As a by product of these results new multifractal behaviors are
exhibited.

In general, dom(fH
µ

) = {α ∈ R ∪ {∞} : E(µ, α) 6= ∅} is not necessarily a closed

subinterval of [0,∞], and even when it is the case, the restriction of fH
µ

to dom(fH
µ

) ∩ R+

is not necessarily concave. Consequently, we also study the inverse problem consisting in
associating to a function f : R∪{∞} → [0, d]∪{−∞}whose domain is a subset ofR+∪{∞}
and such that f(α) ≤ α for all α ≥ 0, an (HM) measure whose lower Hausdorff spectrum is
equal to f . We construct such a measure µwhen dom(f) is a closed subset of R+∪{∞}, f is
upper semi-continuous, and f has at least one fixed point, three properties shared with τ∗µ .
Moreover, the measure µ is exactly dimensional.

Thus, we will prescribe lower Hausdorff spectra in the family:

F (d) =

f : R ∪ {∞} → [0, d] ∪ {−∞} :


Fix(f) 6= ∅
dom(f) is a closed subset of [0,∞]

f is upper semi-continuous

f(α) ≤ α for all α ∈ dom(f)

 ,

where Fix(f) (⊂ [0, d]) stands for the set of fixed points of f .

T 1.2. – Let f ∈ F (d). For each D ∈ Fix(f), there exists an (HM) measure
µ ∈ M+

c (Rd), exactly dimensional with dimension D, such that fH
µ

= f .

This result will be strengthened in Theorem 1.5 of Section 1.2. It turns out that the
approach used in this paper does not make it possible to replace fH

µ
= f by fHµ = f in

the previous statement unless one of the following properties holds: dom(f) = Fix(f) (see
Theorem 1.5), or dom(f) is an interval and f is concave over dom(f) ∩ R+ (in this case we
will get a measure obeying the strong multifractal formalism, see Theorem 1.3).

Before developing further results and comments, let us outline the main ideas leading
to the construction of the measure µ provided by Theorem 1.2. To establish Theorem 1.1
one must improve this approach in order to control both the finer level sets E(µ, α) and the
upper large deviations spectrum of µ (to be defined in Section 1.2.1) when f is the concave
function τ∗, and then use the duality property linking the Lq-spectrum and the upper large
deviations spectrum to show that the multifractal formalism holds strongly.

For simplicity, we assume that dom(f) is a non trivial compact interval [αmin, αmax] ⊂ R+,
f is continuous over [αmin, αmax], 0 ≤ f(α) ≤ min(α, d) over [αmin, αmax], and f(D) = D

for a unique pointD in [αmin, αmax]. The homogeneity of the construction of the measure µ
automatically implies that the measure is (HM).

At first one shows (independently of f ) that for any γ ∈ [0, d] and α ≥ γ, one can find
two Borel probability measures µα,γ and να,γ supported on [0, 1]d such that µγ,γ = νγ,γ ,
να,γ is exactly dimensional with dimension γ, and να,γ is concentrated on E(µα,γ , α), as
well as on the set defined similarly but with α(µ, x) replaced by limn→∞

log(µ(In(x)))
−n log(2) , where

In(x) stands for the closure of a dyadic cube semi-open to the right containing x.
Set A1 = {α1 = D}, and for each integer m ≥ 1, define Am+1 = Am ∪ {αm+1}, where

αm+1 ∈ [αmin, αmax]\Am, in such a way that the set {αm : m ≥ 1} be dense in [αmin, αmax].
By using the previous property with γ = f(α), for allm ≥ 1 one gets an integer nm such that

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1462 J. BARRAL

for all α ∈ Am, for all n ≥ nm, there is a collectionGm,n(α) of about 2nf(α) dyadic subcubes
of [0, 1]d such that for all I ∈ Gm,n(α) one has µα,f(α)(I) ≈ 2−nα, να,f(α)(I) ≈ 2−nf(α),
and

∑
I∈Gm,n(α) να,f(α)(I) ∈ [1/2, 1].

For every integer m ≥ 2, one considers m dyadic closed subcubes of [0, 1]d of the
same generation n′m, Lα1 , . . . , Lαm , so that the 2−n

′
m/5 neighborhood of each Lαi does not

intersect any of the other Lαj .

The measure µ is constructed on a Cantor set K =
⋂
m≥1

⋃
I∈Gm

, where the Gm are
families of closed dyadic subcubes of [0, 1]d of generation gm tending to ∞ as m → ∞,
constructed recursively according to a scheme roughly as follows:

One obtains G1 by considering the measure µα1,f(α1) = µD,D, an integer N1 ≥ n1

much bigger than n′2 and setting G1 = G1,N1
(α1) = G1,N1

(D). This yields the probability
measure µ1 defined on G1 as

µ1(I) =
µD,D(I)(∑

I′∈G1
µD,D(I ′)

) .
This measure satisfies µ1(I) ≈ 2−N1D.

Suppose now that the set Gm has been constructed, as well as a probability measure µm
on its elements. One takes Nm+1 ≥ nm+1 and integer much bigger than max(gm, n

′
m+2),

and for each 1 ≤ i ≤ m + 1, one considers the measure µαi,f(αi) and the associated set
Gm+1(αi) := Gm+1,Nm+1(αi). For each 1 ≤ i ≤ m + 1 and Im ∈ Gm, one defines the set
of the elements of Gm+1 contained in Im as

⋃m+1
i=1 Gm+1(Im, αi), where Gm+1(Im, αi) =

{Im ·Lαi · I : I ∈ Gm+1(αi)}, and the concatenation J · J ′ of two closed subcubes of [0, 1]d

is obtained as the cube fJ(J ′), where fJ is the natural contracting similitude mapping [0, 1]d

onto J (this operation is associative). One gets a probability measure µm+1 on Gm+1 by
setting, for I ∈ Gm+1(αi):

(1.2) µm+1(Im · Lαi · I) = µm(Im)
µαi,f(αi)(I)∑

α∈Am+1

∑
I′∈Gm+1(α) µα,f(α)(I ′)

.

This makes it possible to define a Borel probability measure carried on K and coinciding
with µm over Gm for all m ≥ 1.

Since f(α) < α except for α = α1 = D, if Nm+1 is taken big enough, in (1.2) for
each i > 1 the contribution of the elements of Gm+1(αi) is roughly 2Nm+1(f(αi)−αi)

hence is negligible so that the denominator is equivalent to the single contribution of∑
I′∈Gm+1(D) µD,D(I ′) ∈ [1/2, 1]. Consequently, for Im+1 ∈ Gm+1 of the form Im ·Lαi · I,

I ∈ Gm+1(αi), we have the following estimate:

(1.3) µ(Im+1) ≈ µm(Im)µαi,f(αi)(I) ≈ µm(Im)2−αiNm+1 ≈ 2−αigm+1

because gm � Nm+1. Also, we have that #Gm+1(αi) ≈ 2f(αi)Nm+1 , hence

#{I ∈ Gm+1 : I ∈ Gm+1(Im, αi) for some Im ∈ Gm} = (#Gm)(#Gm+1(αi)) ≈ 2f(αi)gm+1 ,

again because gm � Nm+1. The previous estimate and the continuity of f essentially yield
that f is an upper bound for fH . Combined with (1.3), it shows that at generationm+1, the

4 e SÉRIE – TOME 48 – 2015 – No 6



INVERSE PROBLEMS IN MULTIFRACTAL ANALYSIS OF MEASURES 1463

mass of µ is essentially carried by the intervals Im · LD · I, I ∈ Gm+1(D), since we have

1 = ‖µ‖ ≈
m+1∑
i=1

2f(αi)gm+12−αigm+1 =

m+1∑
i=1

2(f(αi)−αi)gm+1 ≈ 2(f(α1)−α1)gm+1 = 1

(recall that α1 = f(α1) = D). This can be strengthened to show that µ is exact D-dimen-
sional.

Another important fact is the natural existence of a family of auxiliary measures used to
find a sharp lower bound for fH : with each β̂ = (βm)m≥1 ∈

∏∞
m=1Am is associated the

Cantor subset of K defined as

Kβ̂ =
⋂
m≥1

⋃
I∈G

β̂,m

I,

where Gβ̂,m is the subset of Gm obtained by selecting only the intervals of the construction
for which one considers the exponent βi ∈ Ai at step i for all 1 ≤ i ≤ m. Using (1.3)
and finer properties of the measures µα,γ one can show that Kβ̂ ⊂ E(µ, β), where
β = lim infm→∞ βm. Moreover, the measures νβm,f(βm) can be used to construct a nice
auxiliary probability measure νβ̂ carried by Kβ̂ . At first one defines recursively a sequence
of measures (νβ̂,m)m≥1 on the atoms of the sets Gβ̂,m, m ≥ 1, as follows: νβ̂,1 is the restric-
tion of νD,D to Gβ̂,1(= G1), and assuming that νβ̂,m is constructed on Gβ̂,m, if Im ∈ Gβ̂,m,
for I ∈ Gm+1(βm+1) one sets

νβ̂,m+1(Im · Lβm+1
· I) = νβ̂,m(Im)

νβm+1,f(βm+1)(I)∑
I′∈Gm+1(βm+1) νβm+1,f(βm+1)(I ′)

.

This yields a Borel probability measure νβ̂ supported on Kβ̂ such that

νβ̂(Im · Lβm+1
· I) = νβ̂,m+1(Im · Lβm+1

· I) ≈ νβ̂,m(Im)νβm+1,f(βm+1)(I),

so that νβ̂(Im · Lβm+1 · I) ≈ νβm+1,f(βm+1)(I) ≈ 2−f(βm+1)gm+1 (again since gm � Nm+1).
This can be strengthened to dimH(νβ̂) = lim infm→∞ f(βm), hence dimH Kβ̂ ≥
lim infm→∞ f(βm) by the mass distribution principle (see Section 6). Finally, if
β ∈ [αmin, αmax] and limm→∞ βm = β, the continuity of f yields fH(β) = dimH E(µ, β) ≥ f(β).

1.2. Main statements, and comments

New definitions and properties are needed to state our main results.

1.2.1. Additional definitions and properties related to the multifractal formalism. – For
µ ∈ M+

c (Rd), recall that fHµ and fPµ stand for the Hausdorff spectrum α ∈ R ∪ {∞} 7→
dimH E(µ, α) and the packing spectrum α ∈ R ∪ {∞} 7→ dimP E(µ, α) respectively.

The functions defined below, as well as some variants, are well known in the literature ([33,
21, 19, 63, 52]). They naturally complete τµ and τ∗µ to describe, in terms of large deviations,
the asymptotic behavior of the distribution of the measure µ at small scales. They also yield a
finer multifractal formalism, which connects geometric properties of the setsE(µ, α) to large
deviations properties associated with µ, both from the Hausdorff and packing dimensions
point of views. In Remark 1.3 (Section 1.2.2) we will explain the connection with another
multifractal formalism emphasized in [63], which is based on a purely geometric approach.
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Define also the upper Lq-spectrum of µ as

q ∈ R 7→ τµ(q) = lim sup
r→0+

log sup
{∑

i µ(B(xi, r))
q
}

log(r)

(this function is not concave in general), as well as the lower and upper large deviations
spectra fLD

µ
and f

LD

µ :

α ∈ R 7→ fLD

µ
(α) = lim

ε→0+
lim inf
r→0+

log sup #
{
i : rα+ε ≤ µ(B(xi, r)) ≤ rα−ε

}
− log(r)

,

α ∈ R 7→ f
LD

µ (α) = lim
ε→0+

lim sup
r→0+

log sup #
{
i : rα+ε ≤ µ(B(xi, r)) ≤ rα−ε

}
− log(r)

,

fLD

µ
(∞) = lim

A→∞
lim inf
r→0+

log sup #
{
i : µ(B(xi, r)) ≤ rA

}
− log(r)

,

f
LD

µ (∞) = lim
A→∞

lim sup
r→0+

log sup #
{
i : µ(B(xi, r)) ≤ rA

}
− log(r)

,

where the suprema are taken over all the centered packings of supp(µ) by closed balls of
radius r. Notice that 0 ≤ dimB supp(µ) = −τ(0) ≤ d, and τµ(1) = 0 (by the same
arguments as for the equality τµ(1) = 0, see [63, Section 2.7] or [52, Section 3]).

One always has τ∗µ ≤ τ∗µ , and

∀α ∈ R ∪ {∞}, fHµ (α) ≤ fLD

µ
(α) ≤ τ∗µ(α) ≤ max(α,−τµ(0)) ≤ max(α, d),(1.4)

∀α ∈ R ∪ {∞}, fPµ (α) ≤ fLD

µ (α) ≤ τ∗µ(α) ≤ max(α,−τµ(0)) ≤ max(α, d).(1.5)

We will say that µ obeys the refined multifractal formalism at α ∈ R∪{∞} if fHµ (α) = τ∗µ(α)

and fPµ (α) = τ∗µ(α). If α ∈ dom(τ∗µ) \ dom(τ∗µ), one necessarily has E(µ, α) = ∅, so that in

(1.5), one can only expect the large deviations property f
LD

µ (α) = τ∗µ(α) to hold.
The inequalities fHµ (α) ≤ τ∗µ(α) and fPµ (α) ≤ τ∗µ(α) are established for α <∞ when µ is

doubling in [63, Section 2.7]. The inequalities fHµ (α) ≤ f
LD

µ (α) ≤ τ∗µ(α) are established in
[52, Section 3] when α <∞. The other inequalities will be justified in Sections 5.2 and 5.3.

We notice that if µ is exactly dimensional with dimension D, then D = fH(D) =

fLD

µ
(D) = τ∗µ(D) = f

LD

µ (D) = τ∗µ(D), and in the case where τµ is concave, we have

D ∈ [τ ′µ(1+), τ ′µ(1−)](⊂ [τ ′µ(1+), τ ′µ(1−)]), since τµ(1) = 0 implies that τ∗µ(α) = α if and
only if α ∈ [τ ′µ(1+), τ ′µ(1−)].

Let us now describe the possible behaviors of theLq-spectrum and its Legendre transform.
Before stating the corresponding propositions, we need to extend the notion of Legendre-
Fentchel transform to functions f : R ∪ {∞} → R ∪ {−∞}.

If f : R ∪ {∞} → R ∪ {−∞} and dom(f) ∩ R 6= ∅, we define the concave Legendre-
Fenchel transform of f as

f∗ : q ∈ R 7→ inf{qα− f(α) : α ∈ dom(f)},

with the conventions q ×∞ = q
|q| ×∞ if q 6= 0 and 0×∞ = 0.
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Consequently, if ∞ ∈ dom(f) and f is bounded from above, then 0 = min(dom(f∗))

and f∗(0) = −max(sup(f|R), f(∞)); moreover, f∗ is concave over dom(f∗), upper semi-
continuous over dom(f∗) \ {0}, and upper semi-continuous at 0 if and only if f(∞) = max(f).

P 1.1. – Let µ ∈ M+
c (Rd).

1. τµ is concave, non-decreasing, τµ(1) = 0, and −d ≤ τµ(0) = −dimB supp(µ) ≤ 0.
2. One has either dom(τµ) = R, or dom(τµ) = R+, according to whether the exponent

lim supr→0+

log(inf{µ(B(x, r)) : x ∈ supp(µ)})
log(r)

is finite or not. Moreover τ∗µ is non-

negative on its domain.

P 1.2. – Suppose that τ : R → R ∪ {−∞} satisfies the properties of the
Lq-spectrum described in Proposition 1.1.

1. Suppose that dom(τ) = R. Then dom(τ∗) is the compact interval I = [τ ′(∞), τ ′(−∞)],
τ∗ is concave and continuous on its domain, and (τ∗)∗ = τ on R.

2. Suppose that dom(τ) = R+. Then∞ ∈ dom(τ∗) with τ∗(∞) = −τ(0) and:
(a) If τ(0) = 0 then τ = 0 overR+, dom(τ∗) = R+∪{∞} and τ∗ = 0 overR+∪{∞}.
(b) If τ(0) < 0 and τ is continuous at 0+, then dom(τ∗) is the interval [τ ′(∞),∞],

τ∗ is concave, continuous, and increasing over [τ ′(∞), τ ′(0+)), τ∗(α) = −τ(0) =

τ∗(∞) = −τ(0) for all α ∈ [τ ′(0+),∞) and τ∗ is continuous at∞; there are two
distinct behaviors according to whether τ ′(0+) <∞ or not.

(c) If τ(0) < 0 and τ is discontinuous at 0+, then dom(τ∗) is the interval
I = [τ ′(∞),∞]. Moreover, τ∗(α) = −τ(0+) < τ∗(∞) = −τ(0) for all
α ∈ [limq→0+ τ ′(q−),∞), so that τ∗ is concave and continuous on [τ ′(∞),∞) and
discontinuous at ∞ (there are also two cases, according to whether
limq→0+ τ ′(q−) =∞ or not).

(d) In all the previous cases, (τ∗)∗ = τ on R.

Proposition 1.1(1) is standard and proved for instance in [52] (Proposition 3.2). Proposi-
tions 1.1(2) and 1.2(1) are essentially restatements of Propositions 3.3–3.5 in [52]. However,
for the reader’s convenience we will provide a proof in Section 5, where the whole proofs of
Propositions 1.1(2) and 1.2 are given.

1.2.2. Full illustration of the multifractal formalism. Complements to Theorem 1.1. – When µ
is a Gibbs measure on a conformal repeller or a self-similar measure on an attractor satisfying
suitable separation conditions, the Hausdorff and packing dimensions are also known for all
the sets E(µ, α, β):

dimH E(µ, α, β) = min{τ∗µ(γ) : γ ∈ [α, β]},
dimP E(µ, α, β) = max{τ∗µ(γ) : γ ∈ [α, β]},

dimH E(µ, α) = τ∗µ(α) = dimH E(µ, α),

dimP E(µ, α) = max{τ∗µ(γ) : γ ≥ α}, dimP E(µ, α) = max{τ∗µ(γ) : γ ≤ α}.

(1.6)

for all α ≤ β ∈ R+ ∪ {∞} (see [66, 4, 83] and also [14, 39] for closely related questions).
We notice that (1.6) implies that dimH supp(µ) = dimB supp(µ) = dimP supp(µ) =

dimB supp(µ) = −τµ(0).
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It turns out that properties (1.6) enter in our exhaustive illustration of the multifractal
formalism.

T 1.3. – Let f ∈ F (d). Suppose that dom(f) is a non empty closed subinterval
of [0,∞] and f is concave over I ∩ R+.

For each fixed pointD of f , there existsµ ∈ M+
c (Rd), exactly dimensional with dimensionD,

such that τµ = f∗ = τµ, τ∗µ = f , and (1.6) holds for all α ≤ β ∈ R+ ∪ {∞}. Moreover, the
same properties hold if µ is replaced by its restriction to any closed ball whose interior intersects
supp(µ).

The following corollary, of which Theorem 1.1 is a consequence, then follows from the fact
that if τ satisfies the properties of Proposition 1.1 (and so falls into the different situations
described in Proposition 1.2(1) and (2)), then τ∗ satisfies the assumptions of Theorem 1.3.

C 1.1. – Let τ : R→ R ∪ {−∞} be a function satisfying properties (1) and (2)
of Proposition 1.1. Let D ∈ [τ ′(1+), τ ′(1−)].

There exists µ ∈ M+
c (Rd), exactly dimensional with dimension D, satisfying (1.6) for all

α ≤ β ∈ R+ ∪ {∞} with τµ = τ = τµ. Moreover, the same properties hold if µ is replaced by
its restriction to any closed ball whose interior intersects supp(µ).

R 1.1. – The behavior described in Proposition 1.2(1) is illustrated, for instance,
by Gibbs and weak Gibbs measures on conformal repellers (see [63, 70, 38]). Such examples,
which live on dynamical systems semi-conjugate to subshifts of finite type, cannot exhibit
behaviors like those corresponding to Proposition 1.2(2). The behaviors described by Propo-
sition 1.2(2)(b) are illustrated by some Gibbs measures on countable Markov shifts and their
geometric realizations [46], which also obey the multifractal formalism, though in [46] the
setE(µ,∞) is not studied. The fact that the behaviors described in Proposition 1.2(2)(a) and
(c) be illustrated by measures obeing the mutifractal formalism seems to be new. We notice
that the extension of the Legendre transform including∞ in the domain in this case yields
Legendre transforms which are not necessarily upper semi-continuous, like τ at 0 in case (c).

R 1.2. – Our results illustrate all the possible situations, in term of the func-
tion τµ, for which the measure µ is exactly dimensional though τ ′µ(1) does not exist. In
[44], when d = 1, for each D ∈ (0, 1) one finds an exactly dimensional measure µ with
dimension D and Lq-spectrum equal to min(q − 1, 0) over R+. It is also worth mentioning
that in [15] one finds examples of inhomogeneous Bernoulli measures over [0, 1] with an
Lq-spectrum presenting countably many points of non differentiability over [1,+∞).

In the previous results, due to (1.4) and (1.5) we have fHµ = fPµ = fLD

µ
= f

LD

µ , which
reflects a strong homogeneity of the sets E(µ, α). The purpose of the refined multifractal
formalism is to describe situations irregular enough so that the Hausdorff and packing
dimensions of E(µ, α) differ for most of the α.

The next two results extend in a non trivial way the two previous ones , in particular by
exhibiting a new formula for dimH E(µ, α, β). They invoke an extension of (1.4) and (1.5),
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which illustrates the following complement to the multifractal formalism: If 0 ≤ α <∞ and
α ≤ β ≤ ∞, 1 > r > 0, and ε > 0, set

fµ(α, β, ε, r) =
log sup #

{
i : rβ+ε ≤ µ(B(xi, r)) ≤ rα−ε

}
− log(r)

,

where the suprema are taken over all the centered packing of supp(µ) by closed balls of
radius r, and with the convention that r∞ = 0. Then define

fLD

µ
(α, β) = lim

ε→0
lim inf
r→0+

fµ(α, β, ε, r).

Also, define fLD

µ
(∞,∞) = fLD

µ
(∞).

P 1.3. – Let µ ∈ M+
c (Rd). For any 0 ≤ α ≤ β ≤ ∞, one has

dimH E(µ, α, β) ≤ fH(α, β) := min(f
LD

µ (α), f
LD

µ (β), fLD

µ
(α, β))1.

dimP E(µ, α, β) ≤ fP (α, β) := max{fLD

µ (α′) : α′ ∈ [α, β]}
dimLE(µ, α) ≤ sup{fL(α, β) : β ≥ α} for L ∈ {H,P},2.

dimLE(µ, α) ≤ sup{fL(β, α) : β ≤ α} for L ∈ {H,P}.

T 1.4. – Let d ∈ N+. Let I ⊂ J be two non empty closed subintervals of [0,∞].
Let f and g ∈ F (d) such that dom(f) = I , dom(g) = J , and f ≤ g. Suppose also that f and
g are concave over I ∩ R+ and J ∩ R+ respectively.

For each D ∈ Fix(f), there exists µ ∈ M+
c (Rd), exactly dimensional with dimension D,

such that

1. dom(fHµ ) = dom(fPµ ) = dom(fLD

µ
) = I and dom(f

LD

µ ) = J .

2. For all α ∈ I , fHµ (α) = fLD

µ
(α) = f(α), fPµ (α) = f

LD

µ (α) = g(α) and f
LD

µ (α) = g(α)

for α ∈ J \ I .
3. More generally, for all α ≤ β ∈ R+ ∪ {∞},

fLD

µ
(α, β) = f(α, β) := max{f(α′) : α′ ∈ [α, β]},

dimH E(µ, α, β) =

{
min(g(α), g(β), f(α, β)) if [α, β] ⊂ J and [α, β] ∩ I 6= ∅
−∞ otherwise,

dimP E(µ, α, β) =

{
max{g(α′) : α′ ∈ [α, β]} if [α, β] ⊂ J and [α, β] ∩ I 6= ∅
−∞ otherwise,

dimH E(µ, α) = max{dimH E(µ, α, β) : β ≥ α} = min(g(α),max{f(β) : β ≥ α}),

dimH E(µ, α) = max{dimH E(µ, β, α) : β ≤ α} = min(g(α),max{f(β) : β ≤ α}),
dimP E(µ, α) = max{dimP E(µ, α, β) : β ≥ α}

=

{
max{g(β) : β ≥ α} if α ∈ [min( J ),max( I )]

−∞ otherwise,
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dimP E(µ, α) = max{dimP E(µ, β, α) : β ≤ α}

=

{
max{g(β) : β ≤ α} if α ∈ [min( I ),max( J )]

−∞ otherwise.

4. τµ = f∗, τ∗µ = f , τµ = g∗ and τ∗µ = g.

Moreover, all the previous properties hold if µ is replaced by its restriction to any closed ball
whose interior intersects supp(µ).

Notice that properties (2) and (4) of the previous statement imply dimH supp(µ) =

dimB supp(µ) = −τ(0) and dimP supp(µ) = dimB supp(µ) = −τ(0), because
max{dimH E(α) : α ∈ I } = −τ(0) and max{dimP E(α) : α ∈ J } = −τ(0).

C 1.2. – Let τ, τ : R → R ∪ {−∞} be two functions satisfying properties (1)
and (2) of Proposition 1.1, and such that τ ≤ τ .

Let D ∈ [τ ′(1+), τ ′(1−)] ⊂ [τ ′(1+), τ ′(1−)]. There exists an exactly dimensional measure
µ ∈ M+

c (Rd) with dimension D such that :

1. τµ = τ and τµ = τ ;
2. dimH supp(µ) = dimB supp(µ) = −τ(0) and dimP supp(µ) = dimB supp(µ) =

−τ(0);
3. properties (1)-(3) of Theorem 1.4 hold with I = dom(τ∗), J = dom(τ∗), f = τ∗ and
g = τ∗.

Moreover, all the previous properties hold if µ is replaced by its restriction to any closed ball
whose interior intersects supp(µ).

R 1.3 (Link with Olsen’s multifractal formalism). – In [63], Olsen introduces
three “multifractal dimensions” functions bµ ≤ Bµ ≤ Λµ derived from “multifractal” general-
izations of Hausdorff and packing measures associated with µ (Λµ and Bµ are convex, while
bµ may be not), so that fH(α) ≤ (−bµ)∗(α) and fP (α) ≤ (−Bµ)∗(α) (≤ (−Λµ)∗(α)) for
all α ∈ R+; one can then say that Olsen’s multifractal formalism holds at α ∈ R+ ∪ {∞} if
the previous inequalities are equalities (adding α =∞ in his formalism does not matter). The
pair {bµ, Bµ} has a geometric meaning, while {τµ, τµ} relies on large deviations properties.

This formalism has recently found new illustrations by inhomogeneous Bernoulli measures
on [0, 1] (cf. [18, 78]), and it is particularly well suited to describe dimH E(µ, α) for self-affine
measures or Gibbs measures on self-affine Sierpiński carpets and sponges [51, 64, 10, 6] (the
packing dimension of the sets E(µ, α) in these situations remains an open question in general).

Olsen pays a particular attention to compare the pairs of functions {bµ,Λµ} and {τµ, τµ}. He
proves bµ ≤ −τµ andBµ ≤ Λµ = −τµ when µ is doubling, which according to both multifractal
formalisms inequalities, implies (−bµ)∗(α) = τ∗µ(α) and (−B∗µ)(α) = (−Λµ)∗(α)) = τ∗µ(α)

when the refined multifractal formalism used in this paper holds at α, hence the validity of his
formalism. It turns out that even if the measureµwe are going to construct to prove Corollary 1.2
are not doubling, they possess the weaker but close property that there exists a function ε(r)
tending to 0+ as r → 0+ such that µ(B(x, 2r)) ≤ r−ε(r)µ(B(x, r)), uniformly in x ∈ supp(µ)

(see Section 4.2). This is enough for bµ ≤ −τµ and Bµ ≤ Λµ = −τµ to hold, hence for
Olsen’s multifractal formalism to be valid at each α of dom(τ∗µ). Moreover, using the equality
(−bµ)∗ = τ∗µ over dom(τ∗µ), taking the Legendre-Fenchel transforms of these functions, and
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using the inequality bµ ≤ −τµ = −τ , we can get bµ = −τµ = −τ . Similarly Bµ = Λµ =

−τµ = −τ .
General upper bounds for dimH E(µ, α) and dimH E(µ, α) are given by [63, Theo-

rem 2.17(ii)(iii)], namely (−(bµ � Bµ))∗(α) and (−(Bµ � bµ))∗(α) respectively, where
b�B equals b over (−∞, 0), b(0) ∧ B(0) at 0, and B over (0,∞). The previous remarks and
the formulas obtained in Theorem 1.4 for dimH E(µ, α) and dimH E(µ, α) show that for the
measure µ we construct, the upper bounds estimates (−(bµ�Bµ))∗(α) and (−(Bµ� bµ))∗(α)

do provide the correct values for the Hausdorff dimensions.

1.2.3. Prescription of the lower Hausdorff spectrum. – Theorem 1.2 can be refined as follows,
according to the properties of the measure we construct:

T 1.5. – Let f ∈ F (d). For each D ∈ Fix(f), there exists an (HM) measure
µ ∈ M+

c (Rd), exactly dimensional with dimension D, such that fH
µ

= f .

Moreover, µ can be constructed so that one has: (1) if α ∈ Fix(f) then fHµ (α) = α and (2) if
α ∈ dom(f) \ Fix(f) 6= ∅ then E(µ, α) = E(µ, α,∞), and properties (1) and (2) hold if µ is
replaced by its restriction to any closed ball whose interior intersects supp(µ).

R 1.4. – It can be shown for the measure we construct that dimP E(µ, α) =

max{f(α′) : α′ ≥ α} for all α ∈ R ∪ {∞}. The Hausdorff and packing dimensions of
the sets E(µ, α) and E(µ, α, β) can also be computed; we leave these calculations, based on
Corollaries 3.1 and 3.2, to the reader.

R 1.5. – (1) The prescription of the lower Hausdorff spectrum has also been
studied in [24], where the authors work on R and construct (HM) continuous measures, not
exactly dimensional, but with upper Hausdorff dimension equal to 1, and whose support
is equal to [0, 1], with a prescribed lower Hausdorff spectrum in the class F of functions
f : R+ → [0, 1] ∪ {−∞} which satisfy: f(1) = 1, dom(f) is a closed subinterval of [0, 1]

of the form [α, 1] such that α > 0, and f|[α,1) = max(g|[α,1), 0), where (i) g is the supremum
of a sequence of functions (gn)n≥1, such that each gn is constant over its domain supposed
to be a closed subinterval of [0, 1] and gn(β) ≤ β for all β ∈ [0, 1]; (ii) [α, 1] is the smallest
closed interval containing the support of g. It is also shown that for an (HM) measure to be
supported by the whole interval [0, 1], it is necessary that the support of its lower Hausdorff

spectrum contains an interval of the form [α, 1], (0 ≤ α ≤ 1).
The authors of [24] also study the case of non (HM) measures. In this case, they construct

non exactly dimensional measures with upper Hausdorff dimension 1 whose support is equal
to [0, 1], with a prescribed lower Hausdorff spectrum in the broader class F̃ of functions f
which satisfy that f(1) = 1, 0 < inf(dom(f)), and f|dom(f)\{1}| = g|dom(f)\{1}|, where
g satisfies property (i). This includes all such functions f for which g is lower semi-continuous.
Simultaneously, they also construct a non (HM) measure with lower Hausdorff spectrum
given by g.

(2) All the spectra defined in this paper make sense if measures are replaced by non nega-
tive functions of subsets of Rd to which a notion of support is associated. This is the case for
instance of Choquet capacities. In [57], the prescription of the spectrum α 7→ dimH E(C,α)

is studied, whereC is a Choquet capacity on subsets of [0, 1] but not a positive measure, which
makes the situation easier to tract. The authors can find a capacity with spectrum given by f ,
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for any function f = supi≥1 fi, where the functions fi : R → [0, 1] ∪ {−∞} are such that
dom(fi) is a non empty closed subset of R+, and either fi = 0 over dom(fi) or fi is invertible
from dom(fi) onto f(dom(fi)), with a continuous inverse (this class of function contains F̃ ).
Moreover the capacity is (HM).

In [56], the authors construct non (HM) non negative functions C of subsets of [0, 1],
which are not measures, for which the spectrum

α 7→ lim
ε→0+

dimH

⋃
s>0

⋂
0<r<s

{x ∈ supp(C) : rα+ε ≤ C(B(x, r)) ≤ rα−ε}

is prescribed in the class of upper semi-continuous functions f : R+ 7→ [0, 1] ∪ {−∞} with
non empty compact domain. However, the spectrum which is prescribed is quite rough with
respect to the Hausdorff spectrum.

R 1.6. – It is worth mentioning that in this paper our constructions provide con-
tinuous measures even when their dimension equals 0, and are based on the properties of the
simplest multifractal measures, namely Bernoulli products. These properties are combined
in recursive concatenations (roughly described in Section 1 and more elaborated than those
used for instance to lower bound the Hausdorff dimensions of the sets E(µ, α) in the study
of weak Gibbs measures) in order to converge asymptotically to a prescribed multifractal
structure.

We will first prove Theorem 1.5 because its proof is shorter than that of Theorem 1.4, and
it already contains some of the main ideas involved in the proof of Theorem 1.4. However,
none of the two proofs can be reduced to the other one regarding the computation of fH

µ
.

The paper is organized as follows. Section 2 introduces preliminary information about
Bernoulli measures. Section 3 is dedicated to the proof of Theorem 1.5, Section 4 to the
proof of Theorem 1.4, and Section 5 contains the proofs of Propositions 1.1, 1.2 and 1.3,
as well as some inequalities in (1.4) and (1.5). Section 6 gives a short account about the mass
distribution principle.

2. Some notations, and preliminary facts about Bernoulli measures

2.1. Notations

For n ≥ 1, define

F n =

{
d∏
i=1

[ki2
−n, (ki + 1)2−n] : 0 ≤ ki < 2n

}
.

If x ∈ Rd and n ≥ 0 we denote by In(x) the closure of the unique dyadic cube, semi-open to
the right, of generation n, that contains x.

Given two elements I =
∏d
i=1[ki2

−n, (ki + 1)2−n] and I ′ =
∏d
i=1[k′i2

−n′ , (k′i + 1)2−n
′
]

of
⋃
p≥0 F p, the concatenation I · I ′ of I and I ′ is defined as

(2.1) I · I ′ =

d∏
i=1

[ki2
−n + k′i2

−n−n′ , ki2
−n + (k′i + 1)2−n−n

′
].
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If J is a closed dyadic cube of generation j, we denote by N 1(n, J) the set made of J and
the 3d − 1 dyadic cubes of generation n neighboring J , and denote by N 2(n, J) the union
of N 1(n, J) and the 5d − 3d closed dyadic cubes of generations n neighboring N 1(n, J).

Fix L0 a closed dyadic subcube of [0, 1]d of generation 2 which does not touch ∂[0, 1]d.
For each integer k ≥ 1, we can fix a collection L(k) of k closed dyadic cubes of generation

`(k) =
⌊

log2(6dk)
d

⌋
+ 3, all contained in L0, such that the sets

⋃
I∈ N 2(`(k),L) I, L ∈ L(k),

are pairwise disjoint. This property will imply that the measure constructed in Section 4.1 is
“weakly” doubling.

If ν is a positive Borel measure supported on [0, 1]d and x belongs to the support of ν, we
set

d(µ, x, n) =
log ν(In(x))

−n log(2)
.

For the definitions of the s-dimensional Hausdorff and packing measures denoted respec-
tively as H s and Ps in this paper, the reader is referred to [33] or [60].

2.2. Some facts about Bernoulli measures

If q ∈ [0, 1], let H(q) = −q log2(q)− (1− q) log2(1− q), with the convention 0×∞ = 0.
Also, denote by νq the Bernoulli measure generated by (q, 1− q) on [0, 1].

For each 0 ≤ γ ≤ d and α ≥ γ , we can fix (p, q) = (pα,γ , qα,γ) ∈ [0, 1]2 such that{
α = −d · (q log2(p) + (1− q) log2(1− p))
γ = d ·H(q).

Indeed, since γ/d ∈ [0, 1], there are clearly two solutions to H(q) = γ/d in [0, 1] if γ < d

and only one if γ = d, namely 1/2. Fix q one solution. Now we seek for p ∈ [0, 1] such that
α(p) = −d(q log2(p) + (1 − q) log2(1 − p)) be equal to α. If q ∈ {0, 1}, this is immediate.
Otherwise, the mapping α(p) decreases over (0, q] from ∞ to α(q) = γ, and it increases
on [q,∞) from γ to ∞. So in this case there is at least one and at most two solutions to
α(p) = α since we assumed that γ ≤ α.

We will use the following classical fact, which is just a consequence of the strong law of
large numbers.

P 2.1. – Suppose that d = 1. Let (p, q) ∈ [0, 1]2. For νq-almost every
x ∈ [0, 1],

lim
n→∞

d(νp, x, n) = −q log2(p)− (1− q) log2(1− p),

lim
n→∞

d(νq, x, n) = H(q).

C 2.1. – For every 0 ≤ γ ≤ d and α ≥ γ, for ν⊗dqα,γ -almost every x ∈ [0, 1]d

lim
n→∞

d(ν⊗dpα,γ , x, n) = α,

lim
n→∞

d(ν⊗dqα,γ , x, n) = γ.
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Notice that if γ > 0, both the ν⊗dpα,γ mass and the ν⊗dqα,γ mass of the boundaries of closed
dyadic subcubes of [0, 1]d vanish.

Now for every 0 ≤ γ ≤ d, α ≥ γ, n ∈ N and ε > 0 define

E(α, γ, n, ε) =

{
x ∈ [0, 1)d :

{
d(ν⊗dpα,γ , x, n) ∈ [α− ε, α+ ε],

d(ν⊗dqα,γ , x, n) ∈ [γ − ε, γ + ε]

}
.

Let (εm)m≥1 ∈ (0, 1)N+ be a decreasing sequence converging to 0.

By Corollary 2.1, for each m ∈ N+ we can fix an integer n0
m(α, γ) such that

(2.2) ν⊗dqα,γ (Fm(α, γ)) ≥ 1/2, with Fm(α, γ) =
⋂

n≥n0
m(α,γ)

E(α, γ, n, εm/2).

We notice that for all n ≥ n0
m(α, γ), since ν⊗dqα,γ (Fm(α, γ)) ≤ 1 and for each I ∈ F n such

that I ∩ Fm(α, γ) 6= ∅ we have 2−n(γ+εm/2) ≤ ν⊗dqα,γ (I), we have #{I ∈ F n : I ∩ Fm(α, γ) 6= ∅}
≤ 2n(γ+εm/2).

Then, let

Ẽ(α, γ, n, ε) =

{
x ∈ Fm(α, γ) :

log ν⊗dqα,γ (In(x) ∩ Fm(α, γ))

−n log(2)
∈ [γ − εm, γ + εm]

}
.

We can find nm(α, γ) ≥ n0
m(α, γ) such that

(2.3) ν⊗dqα,γ (F̃m(α, γ)) ≥ 1/2− 1/2m, with F̃m(α, γ) =
⋂

n≥nm(α,γ)

Ẽ(α, γ, n, εm).

Indeed, for n ≥ ñ0
m(α, γ) we have

ν⊗dqα,γ (Fm(α, γ) \ Ẽ(α, γ, n, εm))

= ν⊗dqα,γ
(
{x ∈ Fm(α, γ) : ν⊗dqα,γ (In(x) ∩ Fm(α, γ)) < 2−n(γ+εm)}

)
≤

∑
I∈ F n: ν⊗dqα,γ (I∩Fm(α,γ))<2−n(γ+εm)

ν⊗dqα,γ (I ∩ Fm(α, γ))

≤ (#{I ∈ F n : I ∩ Fm(α, γ) 6= ∅})2−n(γ+εm)

≤ 2n(γ+εm/2)2−n(γ+εm) = 2−nεm/2,(2.4)

so (2.3) follows if we choose nm(α, γ) such that
∑
n≥nm(α,γ) 2−nεm ≤ 2−m.

We define

(2.5) µα,γ = ν⊗dpα,γ and να,γ = ν⊗dqα,γ (· ∩ Fm(α, γ)).

We can now gather a series of properties which will be used in the proofs of our main
results.

P 2.1. – Let m ∈ N+, 0 ≤ γ ≤ d and α ≥ γ.

(1) If N ≥ nm(α, γ), by construction we have

(2.6) 1/2 ≤ να,γ(Fm(α, γ)) =
∑

I∈ FN :I∩Fm(α,γ)6=∅

να,γ(I) ≤ 1
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(notice that if α = γ, by construction the above property also holds for µα,α). Consequently,
since for each I ∈ F N such that I ∩ Fm(α, γ) 6= ∅ we have 2−N(γ+εm) ≤ να,γ(I) ≤
2−N(γ−εm), we get

(2.7) 2−12N(γ−εm) ≤ #{I ∈ F N : I ∩ Fm(α, γ) 6= ∅} ≤ 2N(γ+εm).

By construction of F̃m(α, γ), we also have∑
I∈ FN : I∩F̃m(α,γ)=∅

να,γ(I) ≤ 2−m.(2.8)

(2) If J is a dyadic cube of generation n ≥ nm(α, γ), J ∩ Fm(α, γ) 6= ∅, and N ≥ n, then
we have by construction

(2.9) να,γ(J) =
∑

J⊃I∈ FN ,
I∩Fm(α,γ) 6=∅

να,γ(I) ≤ |J |γ−εm ,

and if, moreover, J ∩ F̃m(α, γ) 6= ∅,

(2.10) |J |γ+εm ≤ να,γ(J) =
∑

J⊃I∈ FN ,
I∩Fm(α,γ)6=∅

να,γ(I) ≤ |J |γ−εm .

(3) If J is a dyadic cube of generation n ≥ nm(α, γ), J ∩Fm(α, γ) 6= ∅, and N ≥ n, we also
have

(2.11)
∑

J⊃I∈ FN ,
I∩Fm(α,γ)6=∅

µα,γ(I) ≤ µα,γ(J) ≤ |J |α−εm .

Also, (2.9) implies

#{J ⊃ I ∈ F N : I ∩ Fm(α, γ) 6= ∅} ≤ |J |γ−εm2N(γ+εm),

hence

(2.12)
∑

J⊃I∈ FN ,
I∩Fm(α,γ)6=∅

µα,γ(I) ≤ 2−n(γ−εm)2−N(α−γ−2εm).

3. Prescription of lower Hausdorff spectra: Proof of Theorem 1.5

3.1. Construction of µ and estimates of its local dimension

Setting apart some important details omitted in the outline provided in Section 1, the
proof we present for the general case will be more sophisticated because: (1) f is only upper
semi-continuous; (2) f may have more than one fixed point; (3) dom(f) may contain ∞;
(4) we will manage that all the sets E(µ, β) are substantially big when they are not empty,
this meaning that they contain a Cantor set. Referring to our sketch of proof, since we will
use Bernoulli measures for µαi,f(αi) and ναi,f(αi), to getting such Cantor sets necessitates to
avoid using couples (αi, f(αi)) for which f(αi) = 0 in the construction; indeed in this case
we know that the Bernoulli measure ναi,f(αi) is a Dirac mass. These couples will be replaced
by couples (αi, γm(αi)), where 0 < γm(αi) tends to 0 as m→∞. In particular, to illustrate
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the case where f(0) = 0 and f(α) = −∞ for all α 6= 0, instead of taking µ = δx for some
x ∈ Rd, we will construct a continuous measure on a Cantor set of dimension 0.

3.1.1. Construction of the measure µ. – We will denote dom(f) by I . Let D ∈ Fix(f). Due
to our assumption requiring the upper semi-continuity of f , there exists a dense countable
subset ∆ of I \ {∞} such that for all α ∈ I \ {∞}, there exists a sequence (αn)n≥1 in ∆N+

such that limn→∞(αn, f(αn)) = (α, f(α)) (if ∞ ∈ I and f is continuous at ∞ the same
holds at (∞, f(∞)), but we will not need this property). This important fact is elementary
(see for instance [56, Lemma 2] for a proof when dom(f) is a compact subset ofR; the general
case considered here then follows immediately).

We fix once for all such a ∆, and assume without loss of generality that it contains a dense
subset of Fix(f).

Let αmin = min( I ) and αmax = max( I ) ∈ R+ ∪ {∞}.
If ∆ \ {0, D} 6= ∅, enumerate its elements in a sequence (α∆

j )j≥1 (with necessary
redundancies if ∆ \ {0, D} is finite), and for each m ∈ N set

Ãm =
{
α∆
j : 1 ≤ j ≤ m, α∆

j ≥ 4εm
}

;

otherwise set Ãm = ∅. Also set
Dm = 2εm if D = 0, and Dm = D otherwise,

αm(0) = Dm if D = 0 and αm(0) = min(2εm, D)/2 otherwise,

αm(∞) =
(

max(d,m,max(α∆
j : 1 ≤ j ≤ m)

)2
if αmax =∞.

Then let

Am =


Ãm ∪ {Dm} if 0 < αmin ≤ αmax <∞
Ãm ∪ {Dm} ∪ {αm(∞)} if 0 < αmin and αmax =∞,
Ãm ∪ {Dm} ∪ {αm(0)} if αmin = 0 and αmax <∞,
Ãm ∪ {Dm} ∪ {αm(0)} ∪ {αm(∞)} if αmin = 0 and αmax =∞.

For α ∈ Am let

γm(α) =



f(α) if α ∈ Ãm and f(α) > 0

f(∞) if α = αm(∞) and f(∞) > 0,

α if α = Dm,

αm(0) if α = αm(0),

εm if α ∈ Ãm and f(α) = 0,

εm if α = αm(∞) and f(∞) = 0.

Notice that γm(α) ≤ α for allα ∈ Am. For the values ofα ∈ Am\{0, D} such that f(α) = 0,
we choose γm(α) > 0 so that the measure να,γm(α) be continuous but of dimension tending
to 0 asm→∞, and in our construction no level setE(µ, β) be supported on a countable set;
indeed, with this choice every non empty such set will contain a Cantor set when f(β) ≥ 0.
The choice of αm(0) and γm(αm(0)), and that of Dm when D = 0, correspond to the same
goal.
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Using the definitions of Section 2, for α ∈ Am, set

µα = µα,γm(α) and να = να,γm(α) for α 6∈ Fix(γm) and µα = να = να,α for α ∈ Fix(γm).

Strictly speaking, µα and να should be written µm,α and νm,α, but for the sake of readability
we will omit the index m.

Also, let

nm = max{nm(α, γm(α)) : α ∈ Am}.

Now let (Nm)n∈N be an increasing sequence of integers defined recursively satisfying the
following properties:

(3.1)


∀m ≥ 1, Nm ≥ nm,
max((m+ #Am + max(Am))2, nm) = o(

√
Nm−1) as m→∞,

(max({1} ∪Am−1))

m−1∑
i=1

Ni = o
(

min({1} ∪ γm(Am))
√
Nm
)

as m→∞.

For each m ≥ 1 and α ∈ Am set

Gm(α) = {I ∈ F Nm : I ∩ Fm(α, γm(α)) 6= ∅}

and

ρm(α) =

{
1 if α = Dm

2−m/#Am otherwise.

Due to (2.6) we have

(3.2) 2−1 ≤
∑

I∈Gm(α)

να(I) ≤ 1 (∀ α ∈ Am),

so

(3.3) 2−1 ≤
∑

I∈Gm(Dm)

ρm(Dm) (µDm(I) = νDm(I)) ≤ 1.

Also,

(3.4)
∑

α∈Am\{Dm}

∑
I∈Gm(α)

ρm(α)µα(I) ≤
∑

α∈Am\{Dm}

2−m

#Am
‖µα‖ ≤ 2−m.

For each m ∈ N+, we enumerate the elements of Am as αm,1, . . . , αm,#Am , we denote
by Lm the set of disjoint closed dyadic cubes L(#Am) defined in Section 2.1, and denote its
elements as Lm,αm,1 , . . . , Lm,αm,#Am . We also denote Lm,αm,i by Lm,i and `(#Am) by `m.

We can start the construction of µ. We will construct a Cantor set K by defining recur-
sively the sequence of families of cubes (Gm)m∈N such thatK =

⋂
m≥1

⋃
J∈Gm

J , and simul-
taneously a consistent sequence of measures µm supported on

⋃
J∈Gm

J to get the desired
measure µ on K.

Let

G1 =
⋃

α1,i∈A1

{L1,iI1,i : I1,i ∈ G1(α1,i)}
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(the concatenation of intervals has been defined in (2.1)). By construction, the interiors of
the elements of G1 are pairwise disjoint. Then the measure µ1 is defined on G1 by

(3.5) µ1(L1,iI1,i) =
ρ1(α1,i)µα1,i

(I1,i)∑
α∈A1

∑
I∈G1(α)

ρ1(α)µα(I)
.

Combining (3.3) and (3.4) we have

2−1 ≤
∑
α∈A1

∑
I∈G1(α)

ρ1(α)µα(I) ≤ 1 + 2−1.

Consequently, (3.5) yields

2

3
ρ1(α1,i)µα1,i(I1,i) ≤ µ1(L1,iI1,i) ≤ 2ρ1(α1,i)µα1,i(I1,i).

Then, we define recursively for m ≥ 1:

Gm+1 =
⋃

Im∈Gm

⋃
αm+1,i∈Am+1

Gm+1(Im, αm+1,i),

where

Gm+1(Im, αm+1,i) =
{
ImLm+1,iIm+1,i : Im+1,i ∈ Gm+1(αm+1,i)

}
and a measure µm+1 on Gm+1 by setting

µm+1(ImLm+1,iIm+1,i) = µm(Im)
ρm+1(αm+1,i)µαm+1,i

(Im+1,i)∑
α∈Am+1

∑
I∈Gm+1(α)

ρm+1(α)µα(I)
,

which by construction satisfies

(3.6)
1

1 + 2−m
≤ µm+1(ImLm+1,iIm+1,i)

µm(Im)ρm+1(αm+1,i)µαm+1,i
(Im+1,i)

≤ 2

by (3.3) and (3.4).

Each measure µm can be trivially extended to a probability measure on F gm , where
gm = − log2 |Im|, that we still denote by µm. This measure yields an absolutely continuous
Borel measure on [0, 1]d, denoted by µm again, whose density with respect to the Lebesgue
measure is given by 2dgmµm(I) over each cube I ∈ F gm . By construction, the measures µm
(m ∈ N) weakly converge to a Borel probability measure µ on [0, 1]d, supported on the
Cantor set K defined as

K =
⋂
m≥1

⋃
I∈Gm

I,

and satisfying µ(I) = µm(I) for all m ≥ 1 and I ∈ F gm . Moreover, since K does not
intersect the boundary of any dyadic cube due to the definition of the sets Lm, µ vanishes on
such a boundary.
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3.1.2. Estimates of the local dimension of µ. – Let x ∈ K and n > g1 = N1 + log2 |L1,i1 |−1.
There exists a unique m ∈ N such that gm < n ≤ gm+1. By construction, we have
Igm(x) ∈ Gm and Igm+1

(x) ∈ Gm+1, and Igm+1
(x) ⊂ In(x) ⊂ Igm(x). Moreover, there

exist a unique sequence of exponents α1(x) ∈ A1, . . . , αm(x) ∈ Am, αm+1(x) ∈ Am+1, and
a unique sequence of pairs of intervals {Lj , Ij}1≤j≤m+1 such that

(3.7) Igm(x) = L1I1 · · ·LmIm and Igm+1
(x) = L1I1 · · ·LmImLm+1Im+1,

with Ij ∈ Gj(αj(x)) and Lj ∈ Lj for each 1 ≤ j ≤ m + 1. The intervals invoked in (3.7)
will be used in the following statements.

P 3.1. – With the notations introduced above, there exists a positive sequence
(δn)n≥1 converging to 0 as n→∞ such that, uniformly in x ∈ K, for gm ≤ n ≤ gm+1 one has

1.

(3.8)
µ(In(x))

2−gmαm(x)−(n−gm)αm+1(x)
≤ 2nδn ;

2. if eithern = gm, orαm+1(x) ∈ Fix(γm+1) and Im+1∩F̃m+1(αm+1(x), αm+1(x)) 6= ∅,
then

(3.9) 2−nδn ≤ µ(In(x))

2−gmαm(x)−(n−gm)αm+1(x)
≤ 2nδn ,

3. if gm + `m+1 + nm+1 < n ≤ gm+1 then

(3.10)
µ(In(x))

2−gmαm(x)−(n−gm)γm+1(αm+1(x))−Nm+1(αm+1(x)−γm+1(αm+1(x))
≤ 2nδn+2Nm+1εm+1 .

C 3.1. – For all x ∈ K we have

1. d(µ, x) = lim inf
m→∞

αm(x).

2. If for m large enough we have αm(x) ∈ Fix(γm) and Im ∩ F̃m(αm(x), αm(x)) 6= ∅,
then d(µ, x) = lim supm→∞ αm(x).

3. If lim infm→∞ αm(x) ∈ I \ Fix(f) then d(µ, x) =∞. In particular, if α ∈ I \ Fix(f),
then E(µ, α) = E(µ, α,∞).

Proof of Proposition 3.1. We will write αj for αj(x).
At first we notice that by construction, and due to (3.6), we have

cm

m∏
j=1

µαj (Ij) ≤ µ(Igm(x)) ≤ 2m
m∏
j=1

µαj (Ij),

where cm =
∏m
j=1(1+2−m)−1

∏m
j=1 ρj(αj) ≥ e−1

∏m
j=1 ρj(αj). Then, due to the definition

of Gj(αj)
(3.11)

cm exp
(
−

m∑
j=1

(αj + εj)Nj log(2)
)
≤ µ(Igm(x)) ≤ 2m exp

(
−

m∑
j=1

(αj − εj)Nj log(2)
)
.

Proof of (1) and (2): We distinguish two cases. Let g′m = gm + `m+1.

C 1: gm < n ≤ g′m + nm+1. Write Ig′m+nm+1
(x) = Igm(x)Lm+1Jnm+1

, where
Jnm+1 = Inm+1({2g′mx}), {t} standing for the vector whose entries are the fractional parts
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of the entries of t. We have Jnm+1
⊃ Im+1, Im+1∩Fm+1(αm+1, γm+1(αm+1)) 6= ∅, and the

generation of Jnm+1
is nm+1 ≥ nm+1(αm+1, αm+1).

We obviously have µ(In(x)) ≤ µ(Igm(x)), and by construction if αm+1 ∈ Fix(γm+1)

(remembering that µαm+1 = ναm+1 and using the equality in (2.9)),

µ(Igm(x)) ≥ µ(In(x)) ≥ µ(Ig′m+nm+1
(x)) =

∑
Jnm+1

⊃I∈Gm+1(αm+1)

µ(Igm(x)LmI)

= µ(Igm(x))

∑
Jnm+1

⊃I∈Gm+1(αm+1)

ρm+1(αm+1)µαm+1(I)

∑
α∈Am+1

∑
I∈Gm+1(α)

ρm+1(α)µα(I)

=
ρm+1(αm+1)∑

α∈Am+1

∑
I∈Gm+1(α)

ρm+1(α)µα(I)
µ(Igm(x))ναm+1(Jnm+1)

≥ ρm+1(αm+1)

1 + 2−(m+1)
µ(Igm(x))ναm+1

(Jnm+1
) (we have used (3.3) and (3.4) again).

Combining this with (3.11), if αm+1 ∈ Fix(γm+1), we thus get

cm+1c̃
−1
m ναm+1(Jnm+1) ≤ µ(In(x))

exp
(
−

m∑
j=1

αjNj log(2)
) ≤ c̃m2m,

with c̃m = exp(
∑m
j=1Njεj log(2)). If, moreover, Im+1 ∩ F̃m+1(αm+1, αm+1) 6= ∅, then

Jnm+1
∩ F̃m+1(αm+1, αm+1) 6= ∅, so due to (2.10) we have

cm+1c̃
−1
m 2−nm+1(αm+1+εm+1) ≤ µ(In(x))

exp
(
−

m∑
j=1

αjNj log(2)
) ≤ c̃m2m,

which finally yields

C−1
m ≤ µ(In(x))

exp
(
− αm+1(n− gm) log(2)−

m∑
j=1

αjNj log(2)
) ≤ Cm,

with Cm = c−1
m+1c̃m2m22(`m+1+nm+1)(max(Am+1)+εm+1). Moreover, it is readily seen that the

previous upper bound holds whatever αm+1 be.

Now, due to the conditions (3.1) we have imposed to the sequence Nm and the definition
of ρj(αj), we have log(C̃m) = o(gm) and

sup
{m−1∑
j=1

αjNj : (αj)1≤j≤m−1 ∈
m−1∏
j=1

Aj

}
= o(min(Am)gm).

Consequently, there exists a sequence (δn)n∈N converging to 0 as n→∞, such that (3.8) and
(3.9) hold uniformly in x ∈ K and gm < n ≤ g′m + nm+1.
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C 2: g′m + nm+1 < n ≤ gm+1. Write In(x) = Igm(x)Lm+1Jn−g′m , where Jn−g′m =

In−g′m({2g′mx}). We have Jn−g′m ⊃ Im+1, Im+1 ∩ Fm+1(αm+1, γm+1(α)) 6= ∅, and the
generation of Jn−g′m is n− g′m ≥ nm+1 ≥ nm+1(αm+1, αm+1).

By construction:

µ(In(x)) =
∑

Jn−g′m
⊃I∈Gm+1(αm+1)

µ(Igm(x)LmI)

= µ(Igm(x))

∑
Jn−g′m

⊃I∈Gm+1(αm+1)

ρm+1(αm+1)µαm+1(I)

∑
α∈Am+1

∑
I∈Gm+1(α)

ρm+1(α)µα(I)

≤ ρm+1(αm+1)∑
α∈Am+1

∑
I∈Gm+1(α)

ρm+1(α)µα(I)
µ(Igm(x))µαm+1

(Jn−g′m) using (2.11),

with equality if αm+1 ∈ Fix(γm+1), remembering that in this case µαm+1
= ναm+1

, and
using the equality in (2.9). Consequently,

µ(In(x)) ≤ 2ρm+1(αm+1)µ(Igm(x))µαm+1
(Jn−g′m),

and
ρm+1(αm+1)

1 + 2−(m+1)
µ(Igm(x))ναm+1

(Jn−g′m) ≤ µ(In(x)) ≤ 2ρm+1(αm+1)µ(Igm(x))ναm+1
(Jn−g′m)

if αm+1 ∈ Fix(γm+1) (we have used (3.3) and (3.4) again). Set Cm,n = C̃m2(n−g′m)εm+1 . The
previous estimates combined with (3.11) and the estimates (2.11) and (2.10) ofµαm+1

(Jn−g′m)

and ναm+1
(Jn−g′m) respectively, yield:

µ(In(x))

exp
(
− αm+1(n− gm) log(2)−

m∑
j=1

αjNj log(2)
) ≤ Cm,n,

and

C−1
m,n ≤

µ(In(x))

exp
(
− αm+1(n− gm) log(2)−

m∑
j=1

αjNj log(2)
) ≤ Cm,n

if αm+1 ∈ Fix(γm+1) and Im+1 ∩ F̃m+1(αm+1, αm+1) 6= ∅. Then, due to (3.1) again, the
above sequence (δn)n∈N can be modified so that (3.8) also holds uniformly in x ∈ K, and
g′m + nm+1 < n ≤ gm+1.

Proof of (3). – It suffices to use (2.12) instead of (2.11) to estimate µαm+1(Jn−g′m) in the
previous upper bounds for µ(In(x)).

Proof of Corollary 3.1. – (1) and (2) follow readily from (3.8) and (3.9), and the fact that
by construction the neighboring dyadic cubes of generation n of In(x) have a µ-mass equal
to 0 or for which the estimates of Proposition 3.1(1)(2) also hold.

For (3), suppose that α = lim infm→∞ αm(x) ∈ I \ Fix(f). Since Fix(f) is closed
(because f(α) ≤ α and f is upper semi-continuous), there exists a subsequence (mk)k≥1
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such that αmk+1(x) converges to α and γmk+1(αmk+1(x)) converges to f(α) < α). Take
n = n(k) = gmk + `mk+1 + nmk+1 +

√
Nmk+1. By construction gmk = o(n) and

n− gm ∼ n ∼
√
Nmk+1, and using (3.10) we have

µ(In(x))

2o(n)−nγmk+1(αmk+1(x))−n2(αmk+1(x)−γmk+1(αmk+1(x))
≤ 2nδn+2n2εmk+1 ,

so
µ(In(x))

−n log(2)
≥ γmk+1(αmk+1(x))

log(2)
+ n

αmk+1(x)− γmk+1(αmk+1(x))

log(2)
+ o(n).

Letting k tend to ∞ yields the desired conclusion on d(µ, x), again because the neigh-
boring dyadic cubes of generation n of In(x) have a µ-mass equal to 0 or with the same
behavior as µ(In(x)). Now, if α ∈ I \ Fix(f) and x ∈ E(µ, α), then (αm(x))m≥1 must
take infinitely many values in I \ Fix(f) since Fix(f) is a closed set, and consequently
E(µ, α) ⊂ E(µ, α,∞).

3.2. Auxiliary measures and lower bound for the lower Hausdorff spectrum

3.2.1. Construction of auxiliary measures. – Let α̂ = (αm)m≥1 ∈
∏∞
m=1Am.

Now, we construct a measure να̂ as follows: Let

Gα̂,1 = {L1,α1I1 : I1 ∈ G1(α1)},

and define on Gα̂,1 the measure

(3.12) να̂,1(L1,α1
I1) =

να1
(I1)∑

I∈G1(α1)

να1
(I)

.

Due to (3.2), (3.12) yields

να1(I1) ≤ να̂,1(L1,α1I1) ≤ 2να1(I1).

Then, recursively we define for m ≥ 1

Gα̂,m+1 =
⋃

Im∈Gα̂,m

Gα̂,m+1(Im, αm+1),

where
Gα̂,m+1(Im, αm+1) = {ImLm+1,αm+1

Im+1 : Im+1 ∈ Gm+1(αm+1)}
and a measure να̂,m+1 on Gα̂,m+1 by

να̂,m+1(ImLm+1,αm+1Im+1) = να̂,m(Im)
ναm+1

(Im+1)∑
I∈Gm+1(αm+1)

ναm+1(I)
.

Due to (3.2) we have

(3.13) 1 ≤
να̂,m+1(ImLm+1,αm+1Im+1)

να̂,m(Im)ναm+1(Im+1)
≤ 2.

Each measure να̂,m can be trivially extended into a probability measure on F gm ; we still
denote this measure by να̂,m. This measure yields an absolutely continuous Borel measure
on [0, 1]d, denoted by να̂,m again, whose density with respect to the Lebesgue measure is
given by 2dgmνα̂,m(I) over each cube I ∈ F gm . By construction, the measures να̂,m (m ∈ N)
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converge weakly to a Borel probability measure να̂ on [0, 1]d, supported on the Cantor setKα̂

defined as

K ⊃ Kα̂ =
⋂
m≥1

⋃
J∈Gα̂,m

J,

and satisfying να̂(I) = να̂,m(I) for all m ≥ 1 and I ∈ F gm .

Estimation of the local dimension of να̂. We use the same notations as in Section 3.1.2. Let
x ∈ Kα̂ and n > g1 = N1 + `1. There exists a unique m ∈ N such that gm < n ≤ gm+1. By
construction, we have Igm(x) ∈ Gα̂,m and Igm+1

(x) ∈ Gα̂,m+1, and Igm+1
(x) ⊂ In(x) ⊂

Igm(x). Moreover, we have (3.7).

P 3.2. – There exists a positive sequence (δn)n≥1 converging to 0 as n → ∞
such that, for να̂-almost every x ∈ Kα̂, for n large enough,

(3.14) 2−nδn ≤ να̂(In(x))

2−gmγm(αm)−(n−gm)γm+1(αm+1)
≤ 2nδn .

The previous proposition, the fact that by construction the neighboring dyadic cubes of
generation n of In(x) have a να̂-mass equal to 0 or for which the estimates (3.14) hold, and
the mass distribution principle (Section 6) yield the Hausdorff and packing dimensions of να̂:

C 3.2. – We have d(να̂, x) = lim infm→∞ γm(αm) and d(να̂, x) =

lim supm→∞ γm(αm) for να̂-almost every x. Consequently, dimH(να̂) = lim infm→∞ γ(αm)

and dimP (να̂) = lim supm→∞ γ(αm).

Proof of Proposition 3.2. At first, we prove the following fact: there exists K̃α̂ ⊂ Kα̂, of full
να̂-measure, such that for all x ∈ K̃α̂, for m large enough, we have Im ∩ F̃m(αm, γm(αm)) 6= ∅,
with Im defined as in (3.7).

Indeed, due to the multiplicative structure of να̂, by construction we have

να̂({x ∈ Kα̂ :Im ∩ F̃m(αm, γm(αm)) = ∅})

=
∑

I∈Gα̂,m−1

να̂,m−1(I)

∑
J∈ FNm , J∩F̃m(αm,γm(αm))=∅

ναm(J)

∑
J∈ FNm , J∩Fm(αm,γm(αm))6=∅

ναm(J)

≤
∑

I∈Gα̂,m−1

να̂,m−1(I)
2−m

2−1
= 2−(m−1),

where we have used the left hand side of (3.2), and (2.8). Then, by the Borel-Cantelli lemma,
we have the desired conclusion.

Now the proof of the proposition follows from lines similar to those used to prove Propo-
sition 3.1:

Let x ∈ K̃α̂. At first we notice that by construction, and due to (3.13) we have

(3.15)
m∏
j=1

ναj (Ij) ≤ να̂(Igm(x)) ≤ 2m
m∏
j=1

ναj (Ij).
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Then, due to the definition of Gj(αj),

c̃−1
m ≤

να̂(Igm(x))

exp
(
−
∑m
j=1 γj(αj)Nj log(2)

) ≤ 2mc̃m

where c̃m is defined as in the proof of Proposition 3.1.

We distinguish two cases.

C 1: gm < n ≤ g′m + nm+1. Write Ig′m+nm+1(x) = Igm(x)Lm+1Jnm+1 , where
Jnm+1

= Inm+1
({2g′mx}). We have

να̂(Igm(x)) ≥ να̂(In(x)) ≥ να̂(Ig′m+nm+1
(x)) =

∑
Jnm+1

⊃I∈Gm+1(αm+1)

να̂(Igm(x)LmI)

= να̂(Igm(x))

∑
Jnm+1

⊃I∈Gm+1(αm+1)

ναm+1
(I)

∑
I∈Gm+1(αm+1)

ναm+1
(I)

=
να̂(Igm(x))ναm+1

(Jnm+1
)∑

I∈Gm+1(αm+1)

ναm+1
(I)

≥ να̂(Igm(x))ναm+1
(Jnm+1

),

where we have used the right hand side of (3.2). For m large enough so that
Im+1 ∩ F̃m+1(αm+1, γm+1(αm+1)) 6= ∅ we have Jnm+1

∩ F̃m+1(αm+1, γm+1(αm+1)) 6= ∅
and the generation of Jnm+1

is nm+1 ≥ n(αm+1, γm+1(αm+1)), so (2.10) holds for Jnm+1
,

and this combined with (3.15) and (2.10) yields

c̃−1
m 2−nm+1(γm+1(αm+1)+εm+1) ≤ να̂(In(x))

exp
(
−
∑m
j=1 γj(αj)Nj log(2)

) ≤ 2mc̃m.

Consequently,

(3.16) C̃−1
m ≤ να̂(In(x))

exp
(
− γm+1(αm+1)(n− gm) log(2)−

∑m
j=1 γj(αj)Nj log(2)

) ≤ C̃m,
with C̃m = c̃m2m22(`m+1+nm+1)(max(γm+1(Am+1))+εm+1).

Due to the conditions (3.1) we have imposed to the sequence (Nm)m≥1, we have
log(C̃m) = o(gm) and

sup
{m−1∑
j=1

γj(αj)Nj : (αj)1≤j≤m−1 ∈
m−1∏
j=1

Aj

}
= o(min(γm(Am))gm).

Consequently, there exists a sequence (δn)n∈N converging to 0 as n → ∞, such that (3.14)
holds for all x ∈ K̃α̂, for m large enough and gm < n ≤ g′m + nm+1.
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C 2: g′m + nm+1 < n ≤ gm+1. Write In(x) = Igm(x)Lm+1Jn−g′m , where Jn−g′m =

In−g′m({2g′mx}). We have

να̂(In(x)) =
∑

Jn−g′m
⊃I∈Gm+1(αm+1)

να̂(Igm(x)LmI)

= να̂(Igm(x))

∑
Jn−g′m

⊃I∈Gm+1(αm+1)

ναm+1(I)

∑
I∈Gm+1(αm+1)

ναm+1
(I)

,

hence
να̂(Igm(x))ναm+1

(Jn−g′m) ≤ να̂(In(x)) ≤ 2να̂(Igm(x))ναm+1
(Jn−g′m)

(we have used (3.2)). For m large enough we have Im+1 ∩ F̃m+1(αm+1, γm+1(αm+1)) 6= ∅.
This implies Jn−g′m ∩ F̃m+1(αm+1, αm+1) 6= ∅.

Since, moreover, n − g′m ≥ n(αm+1, γm+1(αm+1)), (2.10) holds for Jn−g′m and the
previous estimates combined with (3.15) yield

C̃−1
m,n ≤

να̂(In(x))

exp
(
− γm+1(αm+1)(n− gm) log(2)−

∑m
j=1 γj(αj)Nj log(2)

) ≤ C̃m,n,
where

C̃m,n = C̃m2max(γm+1(Am+1))(g′m−gm)2(n−g′m)εm+1 .

Then, due to (3.1), the above sequence (δn)n∈N can be modified so that (3.8) also holds for
all x ∈ K̃α̂, for m large enough and g′m + nm < n ≤ gm+1. �

3.2.2. Lower bound for the lower Hausdorff spectrum

P 3.3. – For any closed ballB whose interior intersectsK = supp(µ), we have
dimH(B ∩ E(µ, α)) ≥ f(α) for all α ∈ I .

Proof. – FixB, a closed ball whose interior intersectsK. There existm0 ∈ N, a sequence
(αj)1≤j≤m0 ∈

∏m0

j=1Aj , as well as pairs of dyadic cubes ({Lj , Iαj}1≤j≤m0 , with Lj ∈ Lj
and Iαj ∈ Gj(αj) such that

L1Iα1
· · ·Lm0

Iαm0
⊂ B.

Now fix α ∈ I .
If α ∈ I \ {0, D,∞} then for each m > m0, fix αm ∈ Am \ {Dm}, so that

limm→∞(γm(αm) = f(αm)) = f(α). If, moreover, α ∈ Fix(f) \D, take αm ∈ Fix(f).
If α = 0 then for each m > m0 let αm = αm(0).
We have limm→∞(γm(αm) = αm) = 0 = f(α).
If α = D then for each m > m0 let αm = Dm.
We have limm→∞(γm(αm) = αm) = α = f(α).
If α =∞ then for eachm > m0 let αm = αm(∞). We have γm(αm) = f(∞) if f(∞) > 0

and limm→∞(γm(αm) = εm) = 0 = f(∞) otherwise.
Let α̂ = (αm)m≥1, and consider the measure να̂ constructed in the previous section.

This measure is supported on the set K̃α̂ ⊂ K exhibited at the beginning of the proof of
Proposition 3.2, and by construction να̂(B ∩ K̃α̂) > 0, so due to Corollary 3.2 we have
dimH K̃α̂ ∩B ≥ f(α).
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Moreover, due to Corollary 3.1(1), we have K̃α̂ ⊂ E(µ, α), so dimH(B∩E(µ, α)) ≥ f(α).
If, moreover, α ∈ Fix(f), then by Corollary 3.1(2), our choice of (αm)m≥1 implies that
K̃α̂ ⊂ E(µ, α), so dimH(B ∩ E(µ, α)) = f(α).

3.3. Upper bound for the lower Hausdorff spectrum

Recall that f is upper semi-continuous. Also, its domain, denoted by I is a closed subset
of [0,∞], so due to Corollary 3.1(1), if α 6∈ I then E(µ, α) = ∅, hence dimH E(µ, α) =

−∞ = f(α).
Let α ∈ I \{∞}. Fix η > 0. Then choose δ > 0 such that f(β) ≤ f(α) + η if |β−α| ≤ δ.

Due to Corollary 3.1(1), E(µ, α) = {x ∈ K : lim infm→∞ αm(x) = α}, so

E(µ, α) ⊂
⋂
M∈N

⋃
m≥M

⋃
Im∈Gm

⋃
α′∈Am+1:

α′∈[α−δ,α+δ]

⋃
I∈Gm+1(α′)

ImLm+1,α′I.

For a fixedm ≥ 1, all the cubes ImLm+1,α′I are of the same generation gm+1. Moreover the
set Cm of these cubes has a cardinality

# Cm =
∑

Im∈Gm

∑
α′∈Am+1:

α′∈[α−δ,α+δ]

#Gm+1(α′) ≤ (#Gm)(#Am+1) max
α′∈Am+1:

α′∈[α−δ,α+δ]

#Gm+1(α′).

We can deduce from (2.7) and the definition of γm+1 that

#Gm+1(α′) ≤ 2Nm+1(f(α′)+3εm+1).

Thus, by using the upper semi-continuity of f we get

# Cm ≤ (#Gm)(#Am+1)2Nm+1(f(α)+η+3εm+1).

Moreover,

#Gm =

m∏
j=1

( ∑
β∈Aj

#Gj(β)
)
.

Now, we deduce from (3.1) that log(#Gm)+log(#Am+1) = o((f(α+η)Nm+1), and finally
obtain

lim sup
m→∞

log(# Cm)

Nm+1 log(2)
≤ f(α) + η.

Noting that limm→∞ gm+1/Nm+1 = 1, this is enough to conclude that for all ε > 0 we have∑
M∈N

∑
m≥M

∑
Im∈Gm

∑
α′∈Am+1:

α′∈[α−δ,α+δ]

∑
I∈Gm+1(α′)

|ImLm+1,α′I|f(α)+η+ε <∞,

so H f(α)+η+ε(E(µ, α)) = limm→∞ H f(α)+η+ε

2−gm+1
(E(µ, α)) = 0, and dimH E(µ, α) ≤

f(α) + η + ε. Since this holds for all η > 0 and ε > 0, we get the conclusion.

Now suppose that α = ∞ ∈ I . Let η > 0 and A > 0 such that f(α) ≤ f(∞) + η for
α ≥ A (f is upper semi-continuous over I). We have

E(µ,∞) ⊂
⋂
M∈N

⋃
m≥M

⋃
Im∈Gm

⋃
α′∈Am+1:α′≥A

⋃
I∈Gm+1(α′)

ImLm+1,α′I

and following the same lines as for the case α <∞ yields dimH E(µ,∞) ≤ f(∞), since f is
upper semi-continuous at∞.
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3.4. µ is exactly dimensional, with dimension D

By construction, for each m ≥ 2, we have

µ({x ∈ K : αm(x) 6= Dm}) =
∑

I∈Gm−1

∑
α∈Am\{Dm}

∑
J∈Gm(α)

µ(ILm,αJ)

=
∑

I∈Gm−1

µ(I)

∑
α∈Am\{Dm}

∑
J∈Gm(α) ρm(α)µα(J)∑

α∈Am
∑
J∈Gm(α) ρm(α)µα(J)

≤
∑

I∈Gm−1

µ(Im)
2−m

2−1
= 2−(m−1),

where we have used (3.3) and (3.4). By the Borel-Cantelli lemma we get that µ-almost
everywhere, αm(x) = Dm for m large enough. Moreover, denoting by Im the same interval
as in (3.7), we have

µ({x ∈ K : αm(x) = Dm, Im ∩ F̃m(Dm, Dm) = ∅})

=
∑

I∈Gα̂,m−1

µm−1(I)

∑
J∈ FNm , J∩F̃m(Dm,Dm)=∅

νDm(J)

∑
α∈Am

∑
J∈Gm(α) ρm(α)µα(J)

≤
∑

I∈Gα̂,m−1

µm−1(I)
2−m

2−1
= 2−(m−1),

where we have used (2.8) and (3.3). Then, a new application of the Borel-Cantelli lemma
implies that for µ-almost every x, for m large enough, we have both αm(x) = Dm and
Im ∩ F̃m(Dm, Dm) 6= ∅. We can then conclude from (3.9) and Corollary 3.1(1)(2) that µ is
exactly dimensional with dimension D, since Dm converges to D as m→∞.

4. Full illustration of the multifractal formalism: Proof of Theorem 1.4

4.1. Construction of µ

We will modify the scheme used in the proof of Theorem 1.5 by repeating recursively,
for all m ≥ 1, for some integers Rfm anf Rgm to be specified, Rfm times the mth step with
γm(α) approximating f(α), followed by Rgm times the mth step with γm(α) approximating
g(α); this will make it possible to both guarantee the non emptyness of the sets E(µ, α),
α ∈ I , and the control of the difference between the associated Hausdorff and packing
spectra. Additional conditions on γm(α) will be also needed to obtain an exactly dimensional
measure.

Let D be a fixed point of f (it is automatically a fixed point of g). Due to our assump-
tion on the upper semi-continuity of f , there exists a countable subset ∆f of I \ {∞}
such that for all α ∈ I \ {∞}, there exists a sequence (αn)n≥1 in ∆

N+

f such that
limn→∞(αn, f(αn)) = (α, f(α)). Similarly, there exists a countable subset ∆g of J \ {∞}
such that for all α ∈ J \ {∞}, there exists a sequence (αn)n≥1 in ∆

N+
g such that

limn→∞(αn, g(αn)) = (α, g(α)).
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We fix once for all such ∆f and ∆g and we can assume that they both contain D. Also
take

εm = (m+ 1)−2.

Set αfmin = min( I ), αfmax = max( I ) ∈ R+ ∪ {∞}, αgmin = min( J ), and αgmax =

max( J ) ∈ R+ ∪ {∞}. For h ∈ {f, g}, if ∆h \ {0, D} 6= ∅, enumerate the elements of
∆h \ {0, D} in a sequence (α∆h

j )j≥1, and for each m ∈ N set

Ãhm =
{
α∆h
j : 1 ≤ j ≤ m, α∆h

j ≥ 4ε1/3m

}
;

otherwise, set Ãhm = ∅. Also set

Dm = 2ε
1/3
m if D = 0,

Dm = D otherwise,

αhm(0) = Dm if D = 0

αm(0) = min(2ε
1/3
m , D)/2 otherwise,

αhm(∞) =
(

max(d,m,max(α∆h
j : 1 ≤ j ≤ m)

)2
if αhmax =∞.

Then let

Ahm =


Ãhm ∪ {Dm} if 0 < αhmin ≤ αhmax <∞
Ãhm ∪ {Dm} ∪ {αhm(∞)} if 0 < αhmin and αhmax =∞,
Ãhm ∪ {Dm} ∪ {αhm(0)} if αhmin = 0 and αhmax <∞,
Ãhm ∪ {Dm} ∪ {αhm(0)} ∪ {αhm(∞)} if αhmin = 0 and αhmax =∞.

For α ∈ Ahm let

γ̃hm(α) =



h(α) if α ∈ Ãhm and h(α) > 0

h(∞) if α = αhm(∞) and h(∞) > 0,

α if α = Dm,

αm(0) if α = αhm(0),

ε
1/3
m if α ∈ Ãhm and h(α) = 0,

ε
1/3
m if α = αhm(∞) and h(∞) = 0

(notice that f(∞) = 0 (resp. g(∞) = 0) only if f = 0 (resp. g = 0) over I (resp. J ) due to our
assumptions on f (resp. g)). Then, set (this will be used to entail that µ is exactly dimensional)

γhm(α) =

{
α = γ̃hm(α) if α = Dm

(1− θhm)γ̃hm(α) otherwise,

where θhm ∈ (0, 1) tends to 0 slowly enough so that

(4.1) ∀α ∈ Ahm \ {Dm},

{
α− γhm(α) = α− (1− θhm)γ̃hm(α) ≥ Dm

√
εm

(1−√εm)α− γhm(α) ≥ 0.

We then have in particular γhm(α) < α for all α ∈ Ahm \ {Dm}.

Using the definitions of Section 2, for α ∈ Ahm set

µα = µα,γhm(α) and να = να,γhm(α) for α ∈ Ahm \ {Dm} and µDm = νDm = νDm,Dm for α = Dm.
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Strictly speaking, µα and να should be written µhm,α and νhm,α, but for the sake of readability
we will omit the indices m and h.

Also, set
nhm = max{nm(α, γhm(α)) : α ∈ Ahm}.

Now let (Rfm)m≥1, (Rgm)m≥1 and (Nm)m≥1 be three increasing sequences of positive
integers defined recursively and satisfying the following properties:
(4.2)

(1) ∀m ≥ 1, em+1 ≤ Rfm ≤ Rgm ≤ R
f
m+1;

(2) ∀m ≥ 1, Nm ≥ max(nhm, exp(#Ahm), exp(m)) for h ∈ {f, g}, and, as m→∞ :

(3) (max({1} ∪Afm ∪Agm))Nm = o
(

(min({1} ∪Afm−1 ∪A
g
m−1))

m−1∑
i=1

(Rfi +Rgi )Ni

)
;

(4) (max({1} ∪Afm−1 ∪A
g
m−1))

m−1∑
i=1

(Rfi +Rgi )Ni = o
(

min({1} ∪ γm(Afm))RfmNm
)
;

(5) (max({1} ∪Afm ∪Agm))(RfmNm +
m−1∑
i=1

(Rfi +Rgi )Ni) = o
(

min({1} ∪ γm(Agm))RgmNm
)
.

Then, for α ∈ Ahm set

Ghm(α) = {I ∈ F Nm : I ∩ Fm(α, γhm(α)) 6= ∅}

and

(4.3) ρhm(α) =

{
1 if α = Dm

(2−m/#Ahm)2 otherwise.

We enumerate the elements of Ahm as αhm,i, 1 ≤ i ≤ #Ahm and denote by Lhm,αi ,
1 ≤ i ≤ #Ahm, the disjoint closed dyadic cubes of generation `hm = `(#Ahm) of the set
Lm = L(#Ahm) defined in Section 2.1. We also denote Lhm,αi by Lhm,i.

Let us start the construction of µ. We consider the same measure µ1 on G1 as in Sec-
tion 3.1, except that we take the sets Gf1 (α), α ∈ Af1 , instead of the sets G1(α), α ∈ A1, and
the collection Lf1 instead of L1. Then, for 1 ≤ s ≤ Rf1 − 1 we define recursively

Gs+1 =
⋃

Is∈Gs

⋃
α1,i∈Af1

Gf
1 (Is, α1,i),

where
G1(Is, α1,i) =

{
IsL

f
1,iI1,i : I1,i ∈ Gf1 (α1,i)

}
and a measure µs+1 on Gs+1 as

µs+1(IsL
f
1,iI1,i) = µs(Is)

ρf1 (α1,i)µα1,i(I1,i)∑
α∈A1

∑
I∈Gf1 (α) ρ

f
1 (α)µα(I)

.

Then, we define recursively a sequence (Gs)s≥1of sets of intervals of the same generation
and a sequence of measures (µs)s≥1 as follows:

For all m ≥ 1, and Rfm +
∑m−1
j=1 Rfj +Rgj < s+ 1 ≤

∑m
j=1R

f
j +Rgj ,

Gs+1 =
⋃

Is∈Gs

⋃
αm,i∈Agm

Gm(Is, αm,i),
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where
Gm(Is, αm,i) =

{
IsL

g
m,iIm,i : Im,i ∈ Ggm(αm,i)

}
and the measure µs+1 on Gs+1 is defined as

µs+1(IsL
g
m,iIm,i) = µs(Is)

ρgm(αm,i)µαm,i(Im,i)∑
α∈Agm

∑
I∈Ggm(α) ρ

f
m(α)µα(I)

.

For all m ≥ 2, and
∑m−1
j=1 Rfj +Rgj < s+ 1 ≤ Rfm +

∑m
j=1R

f
j +Rgj ,

Gs+1 =
⋃

Is∈Gs

⋃
αm,i∈Afm

Gm(Is, αm,i),

where
Gm(Is, αm,i) =

{
IsL

f
m,iIm,i : Im,i ∈ Gfm(αm,i)

}
and the measure µs+1 on Gs+1 is defined as

µs+1(IsL
f
m,iIm,i) = µs(Is)

ρfm(αm,i)µαm,i(Im,i)∑
α∈Afm

∑
I∈Gfm(α) ρ

f
m(α)µα(I)

.

This yields (in the same way as in Section 3.1) a Borel probability measure µ supported
on

K =
⋂
s≥1

⋃
I∈Gs

I

such that µ(I) = µs(I) for all s ≥ 1 and I ∈ Gs.

For each m ≥ 1, we define

sm = Rfm +

m−1∑
i=1

Rfi +Rgi and s′m =

m∑
i=1

Rfi +Rgi .

Then, for s ≥ 1, we denote by n(s) the generation of the cubes belonging to Gs, i.e.,

n(s) = (s− s′m−1)(Nm + `fm) +

m−1∑
i=1

Rfi (Ni + `fi ) +Rgi (Ni + `gi )

if s′m−1 < s ≤ sm, and

n(s) = (s− sm)(Nm + `gm) +Rfm(Nm + `fm) +

m−1∑
i=1

Rfi (Ni + `fi ) +Rgi (Ni + `gi )

if sm < s ≤ s′m.
The following property, which follows immediately from (4.2) will be useful.
If s′m−1 < s ≤ sm, set

(4.4) n′(s) = (s− s′m−1)Nm +

m−1∑
i=1

Rfi Ni +RgiNi,

and if sm < s ≤ s′m, set

n′(s) = (s− sm)Nm +RfmNm +

m−1∑
i=1

Rfi Ni +RgiNi.
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P 4.1. – If sm−1 < s ≤ sm, then

max(1,max(Afm ∪Agm)

m∑
i=1

Rfm`
f
m +Rgm`

g
m = o(n′(s)).

In particular, n′(s) ∼ n(s) as s→∞.

R 4.1. – By construction, due to our choice for the cubes Lhm,i, if
J = Is−1L

h
m,iIm,i ∈ Gs and I is a dyadic cube in N 2(n(s), J) (see Section 2.1 for the

definition), either µ(I) = 0 or I takes the form Is−1L
h
m,iI

′
m,i and µ(J)2−ε(s)n(s) ≤ µ(I) ≤

µ(J)2ε(s)n(s), where ε(s) is independent of J and the sequence (ε(s))s≥1 tends to 0 as s→∞.

4.2. Reduction of the problem

In this section we explain why the measure µ constructed in the previous section has the
nice property that it is possible to replace centered balls by dyadic cubes in all the sets and
quantities involved in the multifractal formalism without modifying them (it is of course
impossible to do so for any measure in M+

c (Rd)).

Let us start with two properties which easily follow from (4.2)(1–3) by construction:

lim
s→∞

n(s+ 1)

n(s)
= 1

and lim
s→∞

sup
x∈K

∣∣∣ log2(µ(In(s)(x))

n(s)
−

log2(µ(In(s+1)(x))

n(s+ 1)

∣∣∣ = 0.

Moreover, if 2−n(s+1) < r ≤ 2−n(s) we have

In(s+1)(x) ⊂ B(x, r) ⊂ B(x, 2r) ⊂
⋃

I∈ N 2(n(s),In(s)(x))

I,

and if I ∈ N 2(n(s), In(s)(x)), either µ(In(s))e
−ε(s)n(s) ≤ µ(I) ≤ µ(In(s))e

ε(s)n(s) or
µ(I) = 0, where ε(s) is independent of x and I, by Remark 4.1.

It follows that for all x ∈ K we have

(4.5) d(µ, x) = lim inf
s→∞

log2(µ(In(s)(x))

−n(s)
and d(µ, x) = lim sup

s→∞

log2(µ(In(s)(x))

−n(s)
,

and µ is weakly doubling in the sense that there exists a function ε̃(r) tending to 0+ as r → 0+

such that

∀x ∈ K, µ(B(x, 2r)) ≤ r−ε̃(r)µ(B(x, r)).

Also, the above properties and standard covering arguments (see in particular [63, Sec-
tion 4.6] where doubling measures are used) yield, for all q ∈ R,

τµ(q) = lim inf
s→∞

log2

∑
Is∈Gs

µ(Is)
q

−n(s)
and τµ(q) = lim sup

s→∞

log2

∑
Is∈Gs

µ(Is)
q

−n(s)
.
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Similarly, for α ∈ R+ we have

fLD

µ
(α) = lim

ε→0+
lim inf
s→∞

log2 #
{
I ∈ Gs : 2−n(s)(α+ε) ≤ µ(I) ≤ 2−n(s)(α−ε)

}
n(s)

,

f
LD

µ (α) = lim
ε→0+

lim sup
s→∞

log2 #
{
I ∈ Gs : 2−n(s)(α+ε) ≤ µ(I) ≤ 2−n(s)(α−ε)

}
n(s)

,

and

fLD

µ
(∞) = lim

A→∞
lim inf
s→∞

log2 #
{
I ∈ Gs : µ(I) ≤ 2−n(s)A

}
n(s)

,

f
LD

µ (∞) = lim
A→∞

lim sup
s→∞

log2 #
{
I ∈ Gs : µ(I) ≤ 2−n(s)A

}
n(s)

,

and for 0 ≤ α ≤ β ≤ ∞ such that (α, β) 6= (∞,∞),

fLD

µ
(α, β) = lim

ε→0+
lim inf
s→∞

log2 #
{
I ∈ Gs : 2−n(s)(β+ε) ≤ µ(I) ≤ 2−n(s)(α−ε)

}
n(s)

.

Finally, due to the multiplicative nature of the construction of µ, defining for each m ≥ 1

and q ∈ R

T fm(q) = log2

∑
α∈Afm

∑
I∈Gfm(α) ρ

f
m(α)qµα(I)q(∑

α∈Afm

∑
I∈Gfm(α) ρ

f
m(α)µα(I)

)q
and

T gm(q) = log2

∑
α∈Agm

∑
I∈Ggm(α) ρ

g
m(α)qµα(I)q(∑

α∈Agm
∑
I∈Ggm(α) ρ

g
m(α)µα(I)

)q ,
we have for s ≥ 1 and q ∈ R

log2

∑
Is∈Gs

µ(Is)
q =

m−1∑
i=1

Rfi T
f
i (q) +Rgi T

g
i (q) + (s− s′m−1)T fm(q)

if s′m−1 < s ≤ sm and

log2

∑
Is∈Gs

µ(Is)
q =

(m−1∑
i=1

Rfi T
f
i (q) +Rgi T

g
i (q)

)
+RfmT

f
m(q) + (s− sm)T gm(q)

if sm < s ≤ s′m. It follows that

(4.6) τµ(q) = lim inf
S3s→∞

log2

∑
Is∈Gs

µ(Is)
q

−n(s)
and τµ(q) = lim sup

S3s→∞

log2

∑
Is∈Gs

µ(Is)
q

−n(s)
,

where S = {sm, s′m : m ≥ 1}.
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4.3. Local dimension estimates for µ, auxiliary measures, and lower bounds for the different
spectra

4.3.1. Local dimension estimates for the measure µ. – Let x ∈ K and s ≥ 1.

If s′m−1 < s ≤ sm, for all 1 ≤ i ≤ m − 1, there are, uniquely determined, Rfi elements

(αfi,j(x))1≤j≤Rfi
∈ (Afi )R

f
i , Rgi elements (αgi,j(x))1≤j≤Rgi ∈ (Agi )

Rgi , and s′ = s − s′m−1

elements (αfm,j(x))1≤j≤s′ ∈ (Afm)s
′
, and for each exponentαhi,j(x) of this collection a unique

element Iαhi,j(x) of Ghi (αhi,j(x)) and a unique element Lh
i,αhi,j(x)

of Lhi such that

In(s)(x) =
(
�m−1
i=1 (�R

f
i

j=1L
f

j,αf1,j(x)
Iαf1,j(x)) · (�

Rgi
j=1L

g
j,αg1,j(x)

Iαg1,j(x))
)
· (�s

′

j=1L
f

m,αfm,j(x)
Iαfm,j(x))

(where the notation�qp=1Ip stands for the cube obtained by concatenation I1 ·I2 · · · Iq of the
cubes I1, . . . , Iq).

By construction, using the analogue of (3.6) we get, writing αhi,j for αhi,j(x),

( 1

1 + 2−m

)s′(m−1∏
i=1

( 1

1 + 2−i

)Rfi +Rgi
) s′∏
j=1

ρfm(αfm,j)
(m−1∏
i=1

( Rfi∏
j=1

ρfi (αfi,j)
)( Rgi∏

j=1

ρgi (α
g
i,j)
)

≤
µ(In(s))∏s′

j=1 µαfm,j
(Iαfm,j)

)
(∏m−1

i=1

(∏Rfi
j=1 µαfi,j

(Iαfi,j
)
)(∏Rgi

j=1 µαgi,j (Iα
g
i,j

)

)
≤ 2ms

′+
∑m−1
i=1 i(Rfi +Rgi ).

Consequently, due to the fact that Iαhi,j(x) ∈ Ghi (αhi,j(x)) for h ∈ {f, g}, using (4.2)(1)(2) and
Proposition 4.1 we get

(4.7) 2−ε(s)n(s) ≤
µ(In(s)(x))

2−n(s)αs(x)
≤ 2ε(s)n(s)

with

αs(x) =

∑s′

j=1Nmα
f
m,j(x) +

(∑m−1
i=1

∑Rfi
j=1Niα

f
i,j(x) +

∑Rgi
j=1Niα

g
i,j(x)

)
s′Nm +

∑m−1
i=1 Rfi Ni +RgiNi

and lims→∞ ε(s) = 0. Due to (4.2)(3-5),

(4.8) if s = sm, we have αs(x) =

∑Rfm
j=1Nmα

f
m,j(x)

RfmNm
+ ε′(s),

with lims→∞ ε′(s) = 0 uniformly in x.

If now sm < s ≤ s′m and s′ = s− s′m, with similar notations we get

In(s)(x) =
(
�m−1
i=1 (�R

f
i

j=1L
f

j,αf1,j(x)
Iαf1,j(x)) · (�

Rgi
j=1L

g
j,αg1,j(x)

Iαg1,j(x))
)

(4.9)

· (�R
f
m

j=1L
f

m,αfm,j(x)
Iαfm,j(x)) · (�

s′

j=1L
g
m,αgm,j(x)

Iαgm,j(x))

and

(4.10) 2−ε(s)n(s) ≤
µ(In(s)(x))

2−n(s)αs(x)
≤ 2ε(s)n(s)
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with

αs(x) =

∑s′

j=1Nmα
g
m,j(x) +

∑Rfm
j=1Nmα

f
m,j(x) +

∑m−1
i=1

∑Rfi
j=1Niα

f
i,j(x) +

∑Rgi
j=1Niα

g
i,j(x)

s′Nm +RfmNm +
∑m−1
i=1 Rfi Ni +RgiNi

and lims→∞ ε(s) = 0. In addition,

(4.11) if s = s′m, we have αs(x) =

∑Rgm
j=1Nmα

g
m,j(x)

RgmNm
+ ε′(s),

with lims→∞ ε′(s) = 0 uniformly in x.

4.3.2. Auxiliary measures. – Let α̂ = (αf1 , α
g
1, . . . , α

f
m, α

g
m, . . .) ∈

∏∞
m=1A

f
m ×Agm.

We construct a measure να̂ as follows: Let

Gα̂,1 = {Lf
1,αf1

I1 : I1 ∈ Gf1 (αf1 )},

and define

να̂,1(Lf
1,αf1

I1) =
ναf1

(I1)∑
I∈Gf1 (αf1 )

ναf1
(I)

.

Then, for 1 ≤ s ≤ Rf1 − 1 we define recursively

Gα̂,s+1 =
⋃

Is∈Gα̂,s

Gα̂,s+1(Is, α
f
1 ),

where

Gα̂,s+1(Is, α
f
1 ) =

{
IsL

f

1,αf1
I1 : I1 ∈ Gf1 (αf1 )

}
and a measure να̂,s+1 on Gα̂,s+1 as

να̂,s+1(IsL
f

1,αf1
I1) = να̂,s(Is)

ναf1
(I1)∑

I∈Gf1 (αf1 ) ναf1
(I)

.

Then, define recursively a sequence (Gα̂,s)s≥1 of sets of intervals of the same generation and
a sequence of measures (να̂,s)s≥1 as follows:

For all m ≥ 1, and sm < s+ 1 ≤ s′m,

Gα̂,s+1 =
⋃

Is∈Gα̂,s

Gα̂,s+1(Is, α
g
m),

where

Gα̂,s+1(Is, α
g
m) =

{
IsL

g
m,αgm

Im : Im ∈ Ggm(αgm)
}

and the measure να̂,s+1 on Gα̂,s+1 is defined as

να̂,s+1(IsL
g
m,αgm

Im) = να̂,s(Is)
ναgm(Im)∑

I∈Ggm(αgm) ναgm(I)
.

For all m ≥ 2, and s′m−1 < s+ 1 ≤ sm,

Gα̂,s+1 =
⋃

Is∈Gα̂,s

Gα̂,s+1(Is, α
f
m),
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where
Gα̂,s+1(Is, α

f
m) =

{
IsL

f

m,αfm
Im : Im ∈ Gfm(αfm)

}
and the measure να̂,s+1 on Gα̂,s+1 is defined as

να̂,s+1(IsL
f

m,αfm
Im) = να̂,s(Is)

ναfm(Im)∑
I∈Gfm(αfm) ναfm(I)

.

This yields a Borel probability measure να̂ supported on

K ⊃ Kα̂ =
⋂
s≥1

⋃
I∈Gα̂,s

I

and such that να̂(I) = να̂,s(I) for all s ≥ 1 and I ∈ Gα̂,s. Moreover, estimates similar
to those used to control the local dimension of µ show that there exists a positive sequence
(ε(s))s≥1 such that lims→∞ ε(s) = 0 and for all x ∈ Kα̂ and s ≥ 1, if s′m−1 < s ≤ sm and
s′ = s− s′m−1, we have

(4.12) 2−ε(s)n(s) ≤
να̂(In(s)(x))

2−n(s)γs(x)
≤ 2ε(s)n(s)

with

γs(x) =

∑s′

j=1Nmγ
f
m(αfm,j(x)) +

(∑m−1
i=1

∑Rfi
j=1Niγ

f
i (αfi,j(x)) +

∑Rgi
j=1Niγ

g
i (αgi,j(x))

)
s′Nm +

∑m−1
i=1 Rfi Ni +RgiNi

,

and if sm < s ≤ s′m and s′ = s− sm, we have

(4.13) 2−ε(s)n(s) ≤
να̂(In(s)(x))

2−n(s)γs(x)
≤ 2ε(s)n(s)

with

γs(x) =

s′∑
j=1

Nmγ
g
m(αgm,j(x)) +

Rfm∑
j=1

Nmγ
f
m(αfm,j(x)) +

m−1∑
i=1

Rfi∑
j=1

Niγ
f
i (αfi,j(x)) +

Rgi∑
j=1

Niγ
g
i (αgi,j(x))

s′Nm +RfmNm +
∑m−1
i=1 Rfi Ni +RgiNi

.

Moreover, since by construction for x ∈ Kα̂, we have αfi,j(x) = αfi and αgi,j(x) = αgi for all

1 ≤ j ≤ Rfi and 1 ≤ j ≤ Rgi respectively, from (4.7) and (4.12) we get

αs(x) =
s′Nmα

f
m +

∑m−1
i=1 Rfi Niα

f
i +RgiNiα

g
i

s′Nm +
∑m−1
i=1 Rfi Ni +RgiNi

γs(x) =
s′Nmγ

f
m(αfm) +

∑m−1
i=1 Rfi Niγ

f
i (αfi ) +RgiNiγ

g
i (αgi )

s′Nm +
∑m−1
i=1 Rfi Ni +RgiNi

(4.14)

if s′m−1 < s ≤ sm, and from (4.10) and (4.13) we get

αs(x) =
s′Nmα

g
m +RfmNmα

f
m +

∑m−1
i=1 Rfi Niα

f
i +RgiNiα

g
i

s′Nm +RfmNm +
∑m−1
i=1 Rfi Ni +RgiNi

γs(x) =
s′Nmγ

g
m(αgm) +RfmNmγ

f
m(αgm) +

∑m−1
i=1 Rfi Niγ

f
i (αfi ) +RgiNiγ

g
i (αgi )

s′Nm +RfmNm +
∑m−1
i=1 Rfi Ni +RgiNi

(4.15)

if sm < s ≤ s′m.
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We also have

(4.16) d(να̂, x) = lim inf
s→∞

log2(να̂(In(s)(x))

−n(s)
and d(να̂, x) = lim sup

s→∞

log2(να̂(In(s)(x))

−n(s)

for all x ∈ Kα̂, for the same reasons as those leading to (4.5).

4.3.3. Lower bounds for the dimensions. – Suppose that we have proven that for all
0 ≤ α ≤ β ≤ ∞ we have fLD

µ
(α, β) = max{f(α′) : α′ ∈ [α, β]}, a property which

will be established in Section 4.4.3. Then, the lower bounds of Theorem 1.4(3) follow
readily from the mass distribution principle (see Section 6), property (4.16), and the follow-
ing proposition, which is a direct consequence of the estimates (4.14) and (4.15), and the
assumptions (4.2)(4-5).

P 4.2. – With the notations of the previous section, fix 0 ≤ α ≤ β ≤ ∞ such
that [α, β] ⊂ J and [α, β] ∩ I 6= ∅. Let α′ = argmax(f|[α,β]) and β′ = argmax(g|[α,β]).

Fix a sequence α̂ = (αf1 , α
g
1, . . . , α

f
m, α

g
m, . . .) ∈

∏∞
m=1A

f
m ×Agm such that

limm→∞ αfm = α′, limm→∞ γfm(αfm) = f(α′), limm→∞ αg3m−2 = α, limm→∞ γg3m−2(αg3m−2) = g(α),
limm→∞ αg3m−1 = β, limm→∞ γg3m−1(αg3m−1) = g(β), limm→∞ αg3m = β′, and limm→∞ γg3m(αg3m) = g(β′).
Then for all x ∈ Kα̂, one has

d(µ, x) = α, d(µ, x) = β, d(να̂, x) = min{f(α′), g(α), g(β)}, and d(να̂, x) = g(β′).

Consequently, να̂(E(µ, α, β)) = 1, dimH να̂ = min{f(α′), g(α), g(β)} and dimP να̂ = g(β′),
so that dimH E(µ, α, β) ≥ min{f(α′), g(α), g(β)} and dimH E(µ, α, β) ≥ f(β′).

4.4. Large deviations spectra and Lq-spectra

4.4.1. The large deviations spectra fLD

µ
(α) and f

LD

µ (α). – It is clear from the construction

of µ, (4.7,4.10) and (4.2) that fLD

µ
(α) = −∞ if α 6∈ I (take s = sm and use (4.8)) and

f
LD

µ (α) = −∞ if α 6∈ J (use (4.7) and (4.10)). Moreover, by (1.4) we have fLD

µ
(α) ≥

dimH E(µ, α), hence fLD

µ
(α) ≥ f(α) for all α ∈ I by Proposition 4.2. Similarly, f

LD

µ (α) ≥

dimP E(µ, α), hence Proposition 4.2 yields f
LD

µ (α) ≥ g(α) for all α ∈ I .

Let us show that f
LD

µ (α) ≤ g(α) for α ∈ J .

Suppose first that α ∈ J \ {∞}. Fix η > 0 and εη > 0 such that g(α′) ≤ g(α) + η if
α′ ∈ [α − 2εη, α + 2εη]. Fix ε ∈ (0, εη). If s′m−1 < s ≤ sm, due to (4.7), for s large enough,
if Is ∈ Gs satisfies 2−n(s)(α+ε) ≤ µ(Is) ≤ 2−n(s)(α−ε), then for any x ∈ Is = In(s)(x) we
have α− 2ε ≤ αs := αs(x) ≤ α+ 2ε, and the exponents αfi,j(x) and αgi,j(x) do not depend
on x ∈ Is.

Due to the multiplicative structure of the construction of µ, for each such collection of
exponents {αfi,j , α

g
i,j}, the set Gs({αfi,j , α

g
i,j}) of those dyadic cubes Is ∈ Gs such that
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αhi,j(x) = αhi,j for all x ∈ Is and h ∈ {f, g} is such that (setting s′ = s− s′m−1)

#Gs({αfi,j , α
g
i,j}) =

s′∏
j=1

#Gfm(αfm,j)

m−1∏
i=1

( Rfi∏
j=1

#Gfi (αfi,j)
) Rgi∏
j=1

#Ggj (α
g
i,j)

≤
s′∏
j=1

2Nm(γfm(αfm,j)+εm)
m−1∏
i=1

( Rfi∏
j=1

2Ni(γ
f
i (αfi,j)+εi)

) Rgi∏
j=1

2Ni(γ
g
i (αgi,j)+εi).

Since for α ∈ Ahi by construction we have γhi (α) ≤ h(α) + 2ε
1/3
i , we get

#Gs({αfi,j , α
g
i,j}) ≤ 2η(s)n′(s)

s′∏
j=1

2Nmf(αfm,j)
m−1∏
i=1

( Rfi∏
j=1

2Nif(αfi,j)
) Rgi∏
j=1

2Nig(α
g
i,j)

≤ 2η(s)n′(s)
s′∏
j=1

2Nmg(α
f
m,j)

m−1∏
i=1

( Rfi∏
j=1

2Nig(α
f
i,j)
) Rgi∏
j=1

2Nig(α
g
i,j)

with lims→∞ η(s) = 0 and n′(s) defined like in (4.4). Now recall that g is concave over J \
{∞}. Thus

s′∑
j=1

Nmg(αfm,j) +

Rfi∑
j=1

Nig(αfi,j) +

Rgi∑
j=1

Nig(αgi,j)

≤ n′(s)g

∑s′

j=1Nmαm,j +
∑m−1
i=1

∑Rfi
j=1Niα

f
i,j +

∑Rgi
j=1Niα

g
i,j

n′(s)


= n′(s)g(αs) ≤ n′(s)(g(α) + η).

Consequently, due to Proposition 4.1 we get

#Gs({αfi,j , α
g
i,j}) ≤ 2(g(α)+η+η(s))n(s).

Moreover, the number of such collections cannot exceed the total number of possible real-
izations of such a family when the condition αs ∈ [α− εη, α+ εη] is dropped, which by con-
struction is equal to (#Afm)s

′∏m−1
i=1 (#Afi )R

f
i (#Agi )

Rgi = 2η
′(s)n(s), with lims→∞ η′(s) = 0,

by (4.2)(2)(3). We can conclude that

#
{
Is ∈ Gs : 2−n(s)(α+ε) ≤ µ(Is) ≤ 2−n(s)(α−ε)

}
≤ 2(g(α)+η+η(s)+η′(s))n(s).

The same estimates hold if sm < s ≤ s′m, and this yields f
LD

µ (α) ≤ f(α)+η. Since this holds
for all η > 0, the have the desired conclusion.

Now suppose that α = ∞ ∈ J . Since g(∞) ≥ sup{g(α) : α ∈ J \ {∞}}, with the same
notations as above, the only change is that for any A > 0 we must consider those intervals
in Gs such that αs ≥ A, and conditioning on the realization of {αfi,j(x), αgi,j(x)}, the same
calculations as above yield, even without using the concavity of g,

#
{
Is ∈ Gs : µ(Is) ≤ 2−n(s)A

}
≤ 2(g(∞)+η+η(s)+η′(s))n(s),

hence the result.
Let us prove that fLD

µ
(α) ≤ f(α) for α ∈ I .
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Suppose first that α < ∞. Fix η > 0 and εη > 0 such that f(α′) ≤ f(α) + η

if α′ ∈ [α− 2εη, α+ 2εη]. Fix ε ∈ (0, εη). Suppose that s = sm. Due to (4.8), for s
large enough, if Is ∈ Gs satisfies 2−n(s)(α+ε) ≤ µ(Is) ≤ 2−n(s)(α−ε), then for any

x ∈ Is = In(s)(x) we have α−2ε ≤ α̃s :=
∑R

f
m

j=1Nmα
f
m,j(x)

RfmNm
≤ α+ 2ε. Also, given {αfi,j , α

g
i,j},

the set Gs({αfi,j , α
g
i,j}) of those dyadic cubes Is ∈ Gs such that αhi,j(x) = αhi,j for all x ∈ Is

and h ∈ {f, g} is bounded as above by

Rfm∏
j=1

2Nm(γfm(αfm,j)+εm)
m−1∏
i=1

( Rfi∏
j=1

2Ni(γ
f
i (αfi,j)+εi)

) Rgi∏
j=1

2Ni(γ
g
i (αgi,j)+εi),

which yields

#Gs({αfi,j , α
g
i,j}) ≤ 2o(R

f
mNm)2

∑R
f
m

j=1Nmγ
f
m(αfm,j) ≤ 2o(R

f
mNm)2

∑R
f
m

j=1Nmf(αfm,j)

due to (4.2)(4). Using the concavity of f this implies

#Gs({αfi,j , α
g
i,j}) ≤ 2R

f
mNm(f(α̃s)+o(1)) ≤ 2R

f
mNm(f(α)+2η)

for s large enough. Finally, counting the possible number of collections {αfi,j , α
g
i,j} as above

yields

(4.17) #
{
Is ∈ Gs : 2−n(s)(α+ε) ≤ µ(Is) ≤ 2−n(s)(α−ε)

}
≤ 2(f(α)+3η)n(s)

for s = sm large enough. Since η is arbitrary, this is enough to conclude.

If α = ∞, the previous estimates with γfm(αm,j) bounded by f(∞) + 2εm yield the
conclusion.

It remains to prove that f
LD

µ (α) ≥ g(α) for α ∈ J \ I . In fact the argument is valid
for all α ∈ J . Let α ∈ J . Suppose first that α <∞. Choose a sequence
α̂ = (αf1 , α

g
1, . . . , α

f
m, α

g
m, . . .) ∈

∏∞
m=1A

f
m × Agm such that limm→∞ αgm = α and

limm→∞ γgm(αgm) = g(α). We leave the reader check that there exists a sequence ε′′(s)
converging to 0 as s = s′m tends to∞ such that, for all x ∈ Kα̂ (the Cantor set constructed
in Section 4.3.2), we have αs(x) = α+ ε(s) (this uses (4.11)) and

#{Gα̂,s =

m∏
i=1

(#Gf (i, αf ))R
f
i (#Gf (i, αg))R

f
i ≥ 2n(s)(g(α)−ε′′(s))

(this uses the left hand side of (2.7), and (4.2)(5)). This implies that f
LD

µ (α) ≥ g(α).

If α =∞, the same argument with αgm = αgm(∞) yields the desired lower bound.

We notice that a similar argument would give another proof of fLD

µ
(α) ≥ f(α) for α ∈ I .
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R 4.2. – In fact, the arguments developed in this section provide us with the following
precious information: for α ∈ R+ we have

f(α) = lim
ε→0+

lim inf
m→∞

log2 #
{
I ∈ Gsm : 2−n(sm)(α+ε) ≤ µ(I) ≤ 2−n(sm)(α−ε)

}
n(sm)

= lim
ε→0+

lim sup
m→∞

log2 #
{
I ∈ Gsm : 2−n(sm)(α+ε) ≤ µ(I) ≤ 2−n(sm)(α−ε)

}
n(sm)

;

g(α) = lim
ε→0+

lim inf
m→∞

log2 #
{
I ∈ Gs′m

: 2−n(s′m)(α+ε) ≤ µ(I) ≤ 2−n(s′m)(α−ε)
}

n(s′m)

= lim
ε→0+

lim sup
m→∞

log2 #
{
I ∈ Gs′m : 2−n(s′m)(α+ε) ≤ µ(I) ≤ 2−n(s′m)(α−ε)

}
n(s′m)

,

and we also have

f(∞) = lim
A→∞

lim inf
m→∞

log2 #
{
I ∈ Gsm : µ(I) ≤ 2−n(sm)A

}
n(sm)

= lim
A→∞

lim sup
m→∞

log2 #
{
I ∈ Gsm : µ(I) ≤ 2−n(sm)A

}
n(sm)

and

g(∞) = lim
A→∞

lim inf
m→∞

log2 #
{
I ∈ Gs′m

: µ(I) ≤ 2−n(s′m)A
}

n(s′m)

= lim
A→∞

lim sup
m→∞

log2 #
{
I ∈ Gs′m

: µ(I) ≤ 2−n(s′m)A
}

n(s′m)
.

4.4.2. The functions τµ and τµ. – It follows from Remark 4.2 and standard large deviations
estimates similar to those used for instance in the proof of [75, Theorem 4.2], that for all q ∈ R
we have

lim
m→∞

log2

∑
I∈Gsm

µ(I)q

−n(sm)
= f∗(q) and lim

m→∞

log2

∑
I∈Gs′m

µ(I)q

−n(s′m)
= g∗(q)

(in case the domains of f and g are compact, this is a direct consequence of Laplace-
Varadhan’s integral lemma [28, Theorem 4.3.1]). Consequently, due to (4.6) we get τµ = g∗

and τµ = f∗. Moreover, it is direct from the duality between upper semi-continuous concave
functions [77, Theorem 12.2, Corollary 12.2.2] that if ∞ 6∈ dom(f), we have τ∗µ = g and
τ∗µ = f , and if ∞ ∈ dom(f), then dom(τµ = f∗) = R+, and τ∗µ coincides with f

overR. Then, by our definition of the extended concave conjugate function, we have τ∗µ(∞) =

−τµ(0) = f(∞).

4.4.3. The large deviations spectrum fLD

µ
(α, β). – Recall that for 0 ≤ α ≤ β ≤ ∞, f(α, β) is

defined as max{f(α′) : α′ ∈ [α, β]}.
If [α, β] ⊂ R+ ∪ {∞} \ I , due to (4.8), we have fLD

µ
(α, β) = −∞ = f(α, β).
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Assume now that [α, β] ∩ I 6= ∅, and (α, β) 6= (∞,∞). Denote the interval [α, β] ∩ I
by [α1, β1], and notice that f(α, β) = f(α1, β1).

Suppose first that β1 < ∞. Let η > 0 and for each α′ ∈ [α1, β1] let ε(α′) > 0 such that
f(β) ≤ f(α′) + η for all β ∈ [α′− ε(α′), α′+ ε(α′)]. There exists α′1, . . . , α

′
N in [α1, β1] such

that [α1, β1] ⊂
⋃N
i=1[α′i− ε(α′i), α′i− ε(α′i)]. Let ε ≤ min{ε(α′i) : 1 ≤ i ≤ N}. Property (4.8)

implies that for m large enough, if I ∈ Gsm and 2−n(sm)(β+ε) ≤ µ(I) ≤ 2−n(sm)(α−ε),
since there exists x ∈ K such that I = In(sm)(x), in fact there exists 1 ≤ i ≤ N such
that 2−n(sm)(α′i+ε(α

′
i)) ≤ µ(I) ≤ 2−n(sm)(α′i−ε(α

′
i)). Then, the estimate (4.17) achieved in

Section 4.4.1 yields

#
{
I ∈ Gsm : 2−n(sm)(α′i+ε(α

′
i)) ≤ µ(I) ≤ 2−n(sm)(α′i−ε(α

′
i))
}
≤ 2(f(α′i)+3η)n(sm)

for m large enough. This implies that for m large enough

#
{
I ∈ Gsm : 2−n(sm)(β+ε) ≤ µ(I) ≤ 2−n(sm)(α−ε)

}
≤

N∑
i=1

2(f(α′i)+3η)n(sm) ≤ N2(f(α,β)+3η)n(sm).

If follows that fLD

µ
(α, β) ≤ f(α, β)+3η for all η > 0, hence the desired upper bound f(α, β)

for fLD

µ
(α, β).

For the lower bound, we just use the fact that by Proposition 4.2 we know that if
α′ = argmax(f|[α,β]) we have f(α′) ≤ dimH E(µ, α′), and on the other hand
dimH E(µ, α′) ≤ fLD

µ
(α′) ≤ fLD

µ
(α, β), the last inequality being obvious.

If β1 =∞, the upper bound for fLD

µ
(α, β) just comes from the observation already done

in Section 4.4.1 that if s = sm, we have #Gs ≤ 2n(s)(f(∞)+o(1)), and the lower bound comes
from the lower bound f(∞) for dimH E(µ,∞).

4.5. Upper bounds for the different spectra

It is a direct application of Proposition 1.3, using the fact that fLD

µ
(α, β) = f(α, β).

4.6. µ is exactly dimensional, with dimension D

Fix ε > 0. For each s ≥ 1, if s′m−1 < s ≤ sm and s′ = s − s′m−1, an application of
Markov’s inequality yields, for any η > 0:

µ
(
Es,+ =

{
x ∈ K :

µ(In(s)(x))

µ(In(s′m−1)(x))
≥ 2−(n′(s)−n′(s′m−1))(Dm−ε)

})
≤

∑
In(s)∈Gs

µ(In(s))
( µ(In(s))

µ(In(s′m−1))

)η
2η(n′(s)−n′(s′m−1))(Dm−ε)

=
∑

In(s)∈Gs

µ(In(s′m−1))
( µ(In(s))

µ(In(s′m−1))

)1+η

2η(n′(s)−n′(s′m−1))(Dm−ε),

where In(s′m−1) stands for the unique element of Gs′m−1
containing In(s). We notice that

by construction, given In(s′m−1) in Gs′m−1
, the distribution of the collection

{
µ(In(s))

µ(In(s′
m−1

))

}
,

where In(s) ∈ Gs and In(s) ⊂ In(s′m−1), is independent of In(s′m−1), and taking into account
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the fact that between the steps s′m−1 and s one uses s′ times the same motive in the recursion
defining µ, we can get

µ(Es,+) ≤

(∑
α∈Afm

∑
I∈Gf (m,α) ρ

f
m(α)1+ηµα(I)1+η

)s′
(∑

α∈Afm

∑
I∈Gf (m,α) ρ

f
m(α)µα(I)

)(1+η)s′
2η(n′(s)−n′(s′m−1))(Dm−ε)

≤ 2(1+η)s′
( ∑
α∈Afm

∑
I∈Gf (m,α)

ρfm(α)1+ηµα(I)1+η
)s′

2η(n′(s)−n′(s′m−1))(Dm−ε).

We have∑
I∈Gf (m,Dm)

ρfm(Dm)1+ηµDm(I)1+η =
∑

I∈Gf (m,Dm)

µDm(I)1+η

≤ (#Gf (m,Dm))2−Nm(Dm−εm)(1+η) ≤ 2Nm(Dm+εm)2−Nm(Dm−εm)(1+η)

= 2−NmDmη2Nmεm(2+η).

On the other hand, if Afm \ {Dm} 6= ∅, fixing one of its elements α0, we have∑
α∈Afm\{Dm}

∑
I∈Gf (m,α)

ρfm(α)1+ηµα(I)1+η

≤
∑

α∈Afm\{Dm}

ρfm(α)1+η(#Gf (m,α))2−Nm(α−εm)(1+η)

≤
∑

α∈Afm\{Dm}

ρfm(α)1+η2Nm(γfm(α)+εm)2−Nm(α−εm)(1+η)

≤ ρfm(α0)1+η(#Afm)( sup
α∈Afm\{Dm}

2Nm(γfm(α)−α))2Nmεm(2+η).

Now, take η = ηm =
√
εm. Due to the Definition (4.3) of ρfm we have ρfm(α0)1+η(#Afm) ≤ 1,

and due to (4.1), we have supα∈Afm\{Dm} 2Nm(γfm(α)−α) ≤ 2−NmDmηm . Finally,

µ(Es,+) ≤ 2s
′
· 2(1+ηm)s′

(
2−NmDmηm2Nmεm(2+ηm)

)s′
2ηm(n′(s)−n′(s′m−1))(Dm−ε)

= 2s
′
· 2(1+ηm)s′

(
2−NmDmηm2Nmεm(2+ηm)

)s′
2ηmNms

′(Dm−ε)

≤ 23s′2−Nms
′ηm(ε−3ηm).

Also, using a similar estimate as above, and with the same choice η = ηm =
√
εm, we have

µ
({
x ∈ K :

µ(In(s)(x))

µ(In(s′m−1)(x))
≤ 2−(n′(s)−n′(s′m−1))(Dm+ε)

})

≤

(∑
α∈Afm

∑
I∈Gf (m,α) ρ

f
m(α)1−ηµα(I)1−η

)s′
(∑

α∈Afm

∑
I∈Gf (m,α) ρ

f
m(α)µα(I)

)(1−η)s′
2−η(n′(s)−n′(s′m−1))(Dm+ε)

≤ 2(1−η)s′
( ∑
α∈Afm

∑
I∈Gf (m,α)

ρfm(α)1−ηµα(I)1−η
)s′

2−η(n′(s)−n′(s′m−1))(Dm+ε).
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On the one hand, we have∑
I∈Gf (m,Dm)

ρfm(Dm)1−ηµDm(I)1−η =
∑

I∈Gf (m,Dm)

µDm(I)1−η

≤ 2Nm(Dm+εm)2−Nm(Dm−εm)(1−η) = 2NmDmη22Nmεm .

On the other hand, if Afm \ {Dm} 6= ∅, fixing one of its elements α0, we have∑
α∈Afm\{Dm}

∑
I∈Gf (m,α)

ρfm(α)1−ηµα(I)1−η

≤
∑

α∈Afm\{Dm}

ρfm(α)1−η2Nm(γfm(α)+εm)2−Nm(α−εm)(1−η)

≤ ρfm(α0)1−η(#Afm)( sup
α∈Afm\{Dm}

2Nm(γfm(α)−(1−η)α))22Nmεm .

Due to the Definition (4.3) of ρfm, since
√
εm = (m+ 1)−1 ≤ 1/2, we have

ρfm(α0)1−ηm(#Afm) ≤ 1, and due to (4.1), we have supα∈Afm\{Dm} 2Nm(γfm(α)−(1−ηmα) ≤ 1.
Consequently, the previous estimates yield

µ
(
Es,− =

{
x ∈ K :

µ(In(s)(x))

µ(In(s′m−1)(x))
≤ 2−(n′(s)−n′(s′m−1))(Dm+ε)

})
≤ 23s′2−Nms

′ηm(ε−3ηm).

Similarly, if sm < s ≤ s′m and s′ = s− sm we can get

µ
(
Es,+ =

{
x ∈ K :

µ(In(s)(x))

µ(In(sm)(x))
≥ 2−(n′(s)−n′(sm))(Dm−ε)

})
≤ 23s′2−Nms

′ηm(ε−3ηm)

µ
(
Es,− =

{
x ∈ K :

µ(In(s)(x))

µ(In(sm)(x))
≤ 2−(n′(s)−n′(sm))(Dm+ε)

})
≤ 23s′2−Nms

′ηm(ε−3ηm).

Finally, for m0 big enough so that 3ηm ≤ ε/2, and Nmηmε/2 > 4 (remember that
Nm ≥ em and ηm = (m+ 1)−1), we have∑

m≥m0

∑
s′m−1<s≤sm

µ(Es,+ ∪ Es,−) +
∑

sm<s≤s′m

µ(Es,+ ∪ Es,−)

≤ 2
∑
m≥m0

Rfm∑
s′=1

23s′2−Nms
′ηmε/2 +

Rgm∑
s′=1

23s′2−Nms
′ηmε/2

≤ 2
∑
m≥m0

16 · 2−Nmηmε/2

1− 8 · 2−Nmηmε/2
≤ 64

∑
m≥m0

2−Nmηmε/2 <∞.

By the Borel-Cantelli lemma, we deduce that for µ-almost every x, there exists an integermx

such that for all m ≥ mx, for all s′m−1 < s ≤ sm one has

2−(n′(s)−n′(s′m−1))(Dm+ε) ≤
µ(In(s)(x))

µ(In(s′m−1)(x))
≤ 2−(n′(s)−n′(s′m−1))(Dm−ε),

and for all sm < s ≤ s′m one has

2−(n′(s)−n′(sm))(Dm+ε) ≤
µ(In(s)(x))

µ(In(sm)(x))
≤ 2−(n′(s)−n′(sm))(Dm−ε).

4 e SÉRIE – TOME 48 – 2015 – No 6



INVERSE PROBLEMS IN MULTIFRACTAL ANALYSIS OF MEASURES 1501

Using these inequalities telescopically and noting that Dm converges to D as m → ∞ and
n′(s) ∼ n(s) as s → ∞ we get D − ε ≤ d(µ, x) ≤ d(µ, x) ≤ D + ε for µ-almost every x.
Since ε is arbitrary, we have the desired exactly dimensionality.

4.7. Restrictions of µ

Let B be a closed ball whose interior intersects supp(µ) at some point x. Let ν = µ|B .
We naturally have the inequalities dimL(ν, α, β) ≤ dimL(µ, α, β) for L ∈ {H,P} and

0 ≤ α ≤ β ≤ ∞, as well as fLD

ν
(α) ≤ fLD

µ
(α), f

LD

ν (α) ≤ f
LD

µ (α), fLD

ν
(α, β) ≤ fLD

µ
(α, β),

τν ≥ τµ and τν ≥ τµ. On the other hand, denoting by s0 the smallest integer such that
In(s0)(x) ⊂ Int(B), we can modify the first terms of the sequence α̂ of Proposition 4.2 so
that In(s0)(x) ∈ Gα̂,s0 , hence να̂(B ∩Kα̂) > 0, and we have dimH E(ν, α, β) ≥ f(α, β) and
dimP E(ν, α, β) ≥ g(α, β). This is enough to reverse all the previous inequalities since we
also have for ν the general inequalities provided by (1.4), (1.5) and Proposition 1.3.

5. Proofs of Propositions 1.1(2), 1.2 and 1.3, and some inequalities in (1.4) and (1.5)

5.1. Proofs of Propositions 1.1(2) and 1.2

5.1.1. Proposition 1.1(2). – The fact that R+ ⊂ dom(τµ) was explained after we defined τµ
in the introduction. Now suppose at first that there exist α ∈ R+ and r0 > 0 such that
for all r ∈ (0, r0) and x ∈ supp(µ) we have µ(B(x, r)) > rα. Then, the definition of the
Lq-spectrum yields τµ(q) ≥ τµ(0) + qα for all q < 0, hence τµ is finite over R. If, on the
contrary, for all α > 0, for all r0 > 0, there exist r ∈ (0, r0) and x ∈ supp(µ) such that
µ(B(x, r)) ≤ rα, by using again the definition of the Lq-spectrum we have τµ(q) ≤ αq for
all α > 0 and q < 0, hence τµ(q) = −∞ for q < 0, so dom(τµ) = R+.

Now let α ∈ dom(τ∗µ) and suppose that −∞ < τ∗µ(α) < 0. Necessarily α < ∞.
Indeed one always has τ∗µ(∞) ∈ {−∞,−τµ(0)}. Then, suppose first that α < τ ′µ(0+). Let
α0 = inf{β ∈ (α, τ ′µ(0+)) : τ∗µ(β) ≥ 0}. The continuity of τ∗µ over the interior of its

domain implies τ∗µ(α0) = 0. Then for all β < α0 we have τ∗µ(β) < 0, hence f
LD

(β) < 0.
Consequently, for all ε > 0 there exists r0 > 0 such that for all r ∈ (0, r0) and x ∈ supp(µ)

we have µ(B(x, r)) ≤ rα0−ε. This implies that τµ(q) ≥ τµ(0) + α0q for all q ≥ 0, and
finally τ∗µ(β) ≤ inf{βq − α0q + τµ(0) : q ≥ 0} = −∞ for all β < α0, which contradicts
the fact that −∞ < τ∗µ(α). Next suppose α > τ ′µ(0−) and dom(τµ) = R. The same lines
as above also yield a contradiction. If now α ∈ [−τ ′µ(0+), τ ′µ(0−)] and dom(τµ) = R, then
τ∗µ(α) = −τµ(0) ≥ 0; new contradiction. It remains the case dom(τµ) = R+ andα ≥ τ ′µ(0+).
In this case, we necessarily have τ∗µ(α) = limq→0+ −τµ(q) ≥ 0. Finally, τ∗µ is non-negative
on its domain.

5.1.2. Proposition 1.2. – (1) If dom(τ) = R, the property dom(τ∗) = [τ ′(∞), τ ′(−∞)]

follows from standard considerations in convex analysis. Then, the fact that this inter-
val is bounded from above follows from the boundedness from below of τ∗. Also, since
dom(τ∗) ⊂ R, the equality (τ∗)∗ = τ on dom(τ) = R is just the usual duality between τ and
its conjugate function ([77, Theorem 12.2, Corollary 12.2.2]) when this one is only defined
on R and not also on R ∪ {∞} as in the convention used in this paper.
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(2)(a) Since τ(0) = τ(1) = 0, by concavity of the non decreasing function τ , we have
τ = 0 over R+, and a simple verification shows that τ∗ = τ over R ∪ {∞}.

(2)(b) We suppose that τ(0) < 0 and τ is continuous at 0+. Here again, standard consid-
erations in convex analysis show that min dom(τ∗) = τ ′µ(∞) and [τ ′(∞), limq→0+ τ ′(q−)] ⊂
dom(τ∗), as well as the continuity and the concavity of τ∗ over [τ ′(∞), limq→0+ τ ′(q−)]. If
limq→0+ τ ′(q−) < ∞, by using the definition of τ∗ one checks that τ∗(α) = −τ(0+) =

−τ(0) = τ∗(∞) for all α ∈ [limq→0+ τ ′(q−),∞]. So dom(τ∗) = [τ ′(∞),∞]. The continu-
ity of τ∗ over dom(τ∗) comes from the fact that τ∗(∞) = −τ(0). The fact that (τ∗)∗ = τ

over R+ is a direct consequence of the usual duality between τ and the restriction of τ∗ to R,
and the fact that τ is continuous at 0+. The equality (τ∗)∗ = τ over R∗− is obvious.

(2)(c) If τ is discontinuous at 0+, clearly τ ′(0+) = ∞. It is standard from convex
analysis that min dom(τ∗) = τ ′µ(∞), and [τ ′(∞), limq→0+ τ ′(q−)] ⊂ dom(τ∗). Moreover,
if limq→0+ τ ′(q−) < ∞, by using the definition of τ∗ one checks that τ∗(α) = −τ(0+) <

−τ(0) = τ∗(∞) for all α ∈ [limq→0+ τ ′(q−),∞). Consequently, we have dom(τ∗) =

[τ ′(∞),∞], as well as the concavity and continuity of τ∗ over [τ ′µ(∞),∞). By using the usual
duality between τ and the restriction of τ∗ toR, we would find that (τ∗)∗ is equal to τ overR∗+
and equal to τ(0+) at 0. Here, taking into account that α = ∞ ∈ dom(τ∗), we find that
(τ∗)∗(0) = −τ∗(∞) = τ(0). Finally, (τ∗)∗ = τ on R+. The equality (τ∗)∗ = τ over R− is
obvious.

(2)(d) It has been proved in the previous lines.

5.2. Proof of Proposition 1.3

(1) Fix 0 ≤ α < β ≤ ∞ (the case α = β is covered by (1.4) and (1.5)). Without loss of
generality we assume that fLD

µ
(α, β) > −∞, for otherwise one clearly has E(µ, α, β) = ∅.

We first show that dimH F (α, β) ≤ fLD

µ
(α, β), where

F (α, β) = {x ∈ supp(µ) : α ≤ d(µ, x) ≤ d(µ, x) ≤ β}).

Since E(µ, α, β) ⊂ F (α, β), this yields dimH E(µ, α, β) ≤ fLD

µ
(α, β).

Fix η > 0. There exists ε > 0 such that for infinitely many r > 0, we have fµ(α, β, ε, r) ≤
fLD

µ
(α, β) + η. Let (rj)j≥1 be a sequence converging to 0 such that for all j we have

fµ(α, β, ε, rj) ≤ fLD

µ
(α, β) + η.

By definition, we have F (α, β) ⊂
⋃
N≥1 FN , where

FN =
⋂

0<r≤2−N

{
x ∈ supp(µ) : rβ+ε ≤ µ(B(x, r)) ≤ rα−ε

}
.

Fix N ≥ 1. It follows from the previous line that for any n ≥ N , there exists j ≥ 1 such that
rj ≤ 2−n and we have

FN ⊂
{
x ∈ supp(µ) : rβ+ε

j ≤ µ(B(x, rj)) ≤ rα−εj

}
.

It follows from Besicovitch’s covering theorem (see [60]) that there exists an integer Q(d)

such that, defining Fj(ε) = {x ∈ supp(µ) : rβ+ε
j ≤ µ(B(x, rj)) ≤ rα−εj

}
, we can extract

from {B(x, rj) : x ∈ Fj(ε)}, Q(d) families F k (1 ≤ k ≤ Q(d)) of disjoint balls such that
Fj(ε) ⊂

⋃Q(d)
k=1

⋃
B∈ F k B.
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Now, setting γ = fLD

µ
(α, β) + 2η, and using the covering of FN by the balls in

⋃Q(d)
k=1 F k,

we see that for j large enough we have

H γ
2−n+1(FN ) ≤

Q(d)∑
k=1

∑
B∈ F k

|B|γ

≤ Q(d)(# F k)(2rj)
γ ≤ 2γQ(d)r

−(fLD

µ
(α,β)+η)+γ

j ≤ 2γQ(d)2−nη.

Letting n tend to ∞ yields H γ(FN ) = 0, so dimFN ≤ γ for all N ≥ 1, and finally
dimF (α, β) ≤ fLD

µ
(α, β) + 2η. Since η was arbitrary, we are done.

Now let us prove that dimH E(µ, α, β) ≤ min(f
LD

µ (α), f
LD

µ (β)). Forα′ ∈ R∪{∞}, define

Gα′ = {x : ∃ (nj) ↗ ∞ : limj→∞
log(µ(B(x,2−nj )))

log(2−nj )
= α′}. We have E(µ, α, β) ⊂ Gα ∩Gβ .

Consequently, the conclusion follows from the fact that dimGα′ ≤ f
LD

µ (α′). Indeed, if
α′ < ∞, fix η > 0. Then let ε > 0 and r0 ∈ N+ such that for all 0 < r ≤ r0 we have

f(α′, ε, r) ≤ fLD

µ (α′) + η, where

f(α′, ε, r) =
log sup #

{
i : rα+ε ≤ µ(B(xi, r)) ≤ rα−ε

}
− log(r)

,

the supremum being taken over the packings of supp(µ) by balls of radii equal to r. For each
n ≥ 1 such that 2−n ≤ r0, we have Gα′ ⊂

⋃
p≥nGα′,p, where Gα′,p = {x ∈ supp(µ) :

2−p(α
′+ε) ≤ µ(B(x, 2−p) ≤ 2−p(α

′+ε)}. Setting γ = f
LD

µ (α′) + 2η and using Besicovitch’s

covering theorem as above, we get H γ
2−n+1(Gα′) ≤ 2γQ(d)

∑
p≥n 2p(f

LD
µ (α′)+η)−pγ . Letting

n tend to∞ yields H γ(Gα′) = 0, hence dimH Gα′ ≤ f
LD

µ (α′) + 2η, η > 0 being arbitrary.
The case α′ =∞ can be treated similarly.

Now we prove that dimP F (α, β) ≤ fP (α, β) = sup{fLD

µ (α′) : α′ ∈ [α, β]}. Suppose
first that β <∞.

Fix η > 0, and for each α′ ∈ [α, β] fix ε(α′) > 0 and r(α′) > 0 such that for all

0 < r < r(α′), one has f(α′, ε(α′), r) ≤ f
LD

µ (α′) + η. Then let α′1, . . . , α
′
k such that

[α, β] ⊂
⋃k
i=1B(α′i, ε(α

′
i)).

Set ε = min{ε(α′i) : 1 ≤ i ≤ k} and rη = min{r(α′i) : 1 ≤ i ≤ k}.

Fix N ≥ 1 and define FN as above. We have

FN ⊂
⋂

0<2−p<min(2−N ,rη)

k⋃
i=1

{
x ∈ supp(µ) : 2−p(α

′
i+ε(α

′
i)) ≤ µ(B(x, 2−p)) ≤ 2−p(α

′
i−ε(α

′
i))
}
.

Let A ⊂ [0, 1]d. Let n ∈ N such that 2−n ≤ min(2−N , rη) and {B(xi, ri)} a 2−n-packing
of A ∩ FN . For each integer p ≥ n + 1, set Sp = {i : 2−p < ri ≤ 2−p+1}. The balls in
{B(xi, 2

−p) : i ∈ Sp, 2−p(α
′
i+ε(α

′
i)) ≤ µ(B(x, 2−p)) ≤ 2−p(α

′
i−ε(α

′
i))} form a 2−p-packing

of supp(µ) of cardinality less than 2p(f
LD
µ (α′i)+η), so #Sp ≤ k2p(fP (α,β)+η).
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Let γ > fP (α, β) + 2η. We have∑
i

(2ri)
γ ≤

∑
p≥n

∑
i∈Sp

(2 · 2−p+1)γ ≤ 4γ
∑
p≥n

(#Sp)2
−pγ

≤ 4γk
∑
p≥n

2p(f(α,β)+η−γ) ≤ 4γk
∑
p≥n

2−pη,

the upper bound being independent of the 2−n-packing {B(xi, ri)}, and going to 0 as
n → ∞. It follows that the pre-packing measure P

γ
(A ∩ FN ) equals 0 for all A, hence

Pγ(FN )=0, so dimP (FN ) ≤ γ. Since η is arbitrary this yields dimP FN ≤ fP (α, β), hence
dimP F (α, β) ≤ fP (α, β), and finally dimP E(µ, α, β) ≤ fP (α, β).

If β =∞, take β1 > 0 and r(β) such that for all 0 < r ≤ r(∞), f(β1,∞, r) ≤ f
LD

µ (∞)+η,
where

f(β1,∞, r) =
log sup #

{
i : µ(B(xi, r)) ≤ rβ1

}
− log(r)

,

the supremum being taken over the packings of supp(µ) by balls of radii equal to r. Then
use a covering of [α, β1] by intervals B(α′i, ε(α

′
i)) as above. The argument to conclude is

the same as above, except that we have to bound the cardinality of {B(xi, 2
−p) : i ∈ Sp,

µ(B(x, 2−p)) ≤ 2−pβ1} by 2p(f
LD
µ (∞)+η).

(2) The result for packing dimensions easily follows from the inclusions E(µ, α) ⊂⋃
β≥α ↑ F (α, β) and E(µ, α) ⊂

⋃
0≤β≤α ↑ F (β, α), and the previous estimates for

dimP F (α, β).
The upper bound for dimH E(µ, α) is obtained by writing E(µ, α) =

⋃
β≥α ↑ {x ∈ supp(µ) :

d(µ, x) = α, d(µ, x) ≤ β}. If α = ∞, there is nothing to prove, for E(µ,∞) = E(µ,∞).
Suppose α < ∞. Then, for each β < ∞, due to the estimates achieved to find an upper
bound for dimH E(µ, α, β), given η > 0, for each α′ ∈ [α, β] one can fix ε(α′) > 0

such that dimH{x ∈ supp(µ) : d(µ, x) = α, α′ − ε(α′) ≤ d(µ, x) ≤ α′ + ε(α′)} ≤
min{fLD

µ (α), f
LD

µ (α′), f
LD

µ (α, α′)}+η = fH(α, α′) +η. Since we can cover [α, β] by finitely
many intervals of the form [α′ − ε(α′), α′ + ε(α′)], α′ ∈ [α, β], we get dimH{x ∈ supp(µ) :

d(µ, x) = α, d(µ, x) ≤ β} ≤ sup{fH(α, α′) : α′ ∈ [α, β]} + η for any η > 0, hence
dimH{x ∈ supp(µ) : d(µ, x) = α, d(µ, x) ≤ β} ≤ sup{fH(α, α′) : α′ ∈ [α, β]}. Since we
also know that dimH E(µ, α,∞) ≤ fH(α,∞), writing E(µ, α) = E(µ, α,∞)

⋃⋃
∞>β≥α ↑

{x ∈ supp(µ) : d(µ, x) = α, d(µ, x) ≤ β} and using the previous estimates for the
Hausdorff dimensions yields dimH E(µ, α) ≤ sup{fH(α, β) : β ≥ α}.

The upper bound for dimH E(µ, α) is obtained by using similar arguments.

5.3. Proof of some inequalities in (1.4) and (1.5)

We justify the inequalities fHµ (α) ≤ fLD

µ
(α) ≤ τ∗µ(α) and dimP E(µ, α) ≤ f

LD

µ (α) for

α ∈ R+ ∪ {∞}, and f
LD

µ (∞) ≤ τ∗µ(∞).

Let α ∈ R+ ∪ {∞}. Suppose that E(µ, α) 6= ∅. The inequality fHµ (α) ≤ fLD

µ
(α) is a

special case of the upper bound established for dimH F (α, β) in Section 5.2.

Similarly, the inequality dimP E(µ, α) ≤ fLD

µ (α) follows from lines similar to those used
to bound dimP E(µ, α, β) in Section 5.2. Also, by Proposition 1.1(2), if dom(τµ) = R, then
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one has f
LD

µ (∞) = τ∗µ(∞) = −∞; otherwise dimB(supp(µ)) = −τµ(0) = τ∗µ(∞), and by

definition we have f
LD

µ (∞) ≤ dimB(supp(µ)). In any case, dimP E(µ,∞) ≤ f
LD

µ (∞) ≤
τ∗µ(∞).

To prove that fLD

µ
(α) ≤ τ∗µ(α), we assume without loss of generality that fLD

µ
(α) > −∞,

hence fLD

µ
(α) ≥ 0. The case α = ∞ then occurs only if τµ(q) = −∞ if q < 0 (same proof

as when τµ(q) = −∞ for q < 0); then it is direct that fLD

µ
(∞) ≤ −τµ(0) = τ∗µ(∞). Suppose

now that α <∞. It is enough to prove that τµ(q) ≤ (fLD

µ
)∗(q) for all q ∈ R. Then the result

follows by taking the Legendre-transform and using (with h = fLD

µ
) the general inequality

(h∗)∗ ≥ h valid for any function whose domain is not empty. Fix q ∈ R, β ∈ R and ε > 0. If
{B(xi, r)} is a packing of supp(µ) by disjoint balls, we have∑

i

µ(B(xi, r))
q ≥ (#{i : rβ+ε ≤ µ(B(xi, r)) ≤ rβ−ε}) ·

{
rq(β−ε) if q ≥ 0

rq(β+ε) otherwise.

Taking the supremum over the packings, dividing by log(r), and taking the lim sup as
r → 0+ yields τµ(q) ≤ q(β ∓ ε) − lim infr→0+ f(β, ε, r), and taking the limit as ε → 0+

gives τµ(q) ≤ qβ − fLD

µ
(β) for all β, hence τµ(q) ≤ (fLD

µ
)∗(q).

6. Dimensions of measures and mass distribution principle

Given ν ∈ M+
c (Rd), if d(ν, x) (resp. d(ν, x)) takes the same value D (resp. D) at ν-almost

every x, then dimH ν (resp. dimP ν) stands for the Hausdorff (resp. packing) dimension of
the measure ν, defined as the number D (resp. D). Then, ν(E) > 0 implies dimH E ≥ D

(resp. dimP E ≥ D) for any Borel set E. This is the mass distribution principle we use to get
lower bounds for the Hausdorff and packing dimensions of the level sets studied in this paper
(about mass distribution principle and dimensions of measures, see the accounts proposed
in [33, Section 4.2], [70, Ch. 2] and [44] (other possible references being [20, Section 14], [82],
[26, 27] and in connection with multifractal formalism [43], [62] and [65]).
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gularity spectrum, Ergodic Theory Dynam. Systems 27 (2007), 1419–1443.

[11] J. B, R. R, V. V, Limiting laws of supercritical branching random
walks, C. R. Math. Acad. Sci. Paris 350 (2012), 535–538.

[12] J. B, S. S, The singularity spectrum of Lévy processes in multifractal time,
Adv. Math. 214 (2007), 437–468.

[13] J. B, S. S, The singularity spectrum of the inverse of cookie-cutters,
Ergodic Theory Dynam. Systems 29 (2009), 1075–1095.

[14] L. B, J. S, Sets of “non-typical” points have full topological entropy
and full Hausdorff dimension, Israel J. Math. 116 (2000), 29–70.

[15] A. B, B. T, Multifractal analysis of inhomogeneous Bernoulli products,
J. Stat. Phys. 142 (2011), 1105–1120.

[16] F. B, Multifractal spectra of typical and prevalent measures, Nonlinearity 26
(2013), 353–367.

[17] F. B N, I. B, Y. H, The validity of the multifractal formalism:
results and examples, Adv. Math. 165 (2002), 264–284.

[18] F. B N, J. P, Revisiting the multifractal analysis of measures, Rev. Mat.
Iberoam. 29 (2013), 315–328.

[19] F. B N, Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math. 319
(1994), 807–810.

4 e SÉRIE – TOME 48 – 2015 – No 6

http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#4
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#9
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#10
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#11
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#15
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#18
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#19


INVERSE PROBLEMS IN MULTIFRACTAL ANALYSIS OF MEASURES 1507

[20] P. B, Ergodic theory and information, John Wiley & Sons, Inc., 1965.

[21] G. B, G. M, J. P, On the multifractal analysis of measures,
J. Statist. Phys. 66 (1992), 775–790.

[22] Z. B, J. N, Hölder spectrum of typical monotone continuous functions,
Real Anal. Exchange 26 (2000/01), 133–156.

[23] Z. B, S. S, Typical Borel measures on [0, 1]d satisfy a multifractal
formalism, Nonlinearity 23 (2010), 2905–2918.

[24] Z. B, S. S, Measures and functions with prescribed homogeneous
multifractal spectrum, J. Fractal Geom. 1 (2014), 295–333.

[25] P. C, J. L. L, A. P, The dimension spectrum of some dynam-
ical systems, in Proceedings of the symposium on statistical mechanics of phase
transitions mathematical and physical aspects (Trebon, 1986), 47, 1987, 609–644.

[26] C. D. C, The Hausdorff dimension distribution of finite measures in Euclidean
space, Canad. J. Math. 38 (1986), 1459–1484.

[27] C. D. C, Measure disintegrations with respect to σ-stable monotone indices and
the pointwise representation of packing dimension, Rend. Circ. Mat. Palermo (2)
Suppl. 28 (1992), 319–339.

[28] A. D, O. Z, Large deviations techniques and applications, second ed.,
Applications of Mathematics 38, Springer, 1998.

[29] G. A. E, R. D. M, Multifractal decompositions of digraph recursive
fractals, Proc. London Math. Soc. 65 (1992), 604–628.

[30] K. F, The multifractal spectrum of statistically self-similar measures, J. The-
oret. Probab. 7 (1994), 681–702.

[31] K. F, Generalized dimensions of measures on self-affine sets, Nonlinearity 12
(1999), 877–891.

[32] K. F, Representation of families of sets by measures, dimension spectra and
Diophantine approximation, Math. Proc. Cambridge Philos. Soc. 128 (2000), 111–
121.

[33] K. F, Fractal geometry, third ed., John Wiley & Sons, Ltd., Chichester, 2014.

[34] D.-J. F, The limited Rademacher functions and Bernoulli convolutions associated
with Pisot numbers, Adv. Math. 195 (2005), 24–101.

[35] D.-J. F, Gibbs properties of self-conformal measures and the multifractal formal-
ism, Ergodic Theory Dynam. Systems 27 (2007), 787–812.

[36] D.-J. F, Multifractal analysis of Bernoulli convolutions associated with Salem
numbers, Adv. Math. 229 (2012), 3052–3077.

[37] D.-J. F, K.-S. L, Multifractal formalism for self-similar measures with weak
separation condition, J. Math. Pures Appl. 92 (2009), 407–428.

[38] D.-J. F, E. O, Multifractal analysis of weak Gibbs measures and phase
transition—application to some Bernoulli convolutions, Ergodic Theory Dynam.
Systems 23 (2003), 1751–1784.

[39] D.-J. F, J. W, The Hausdorff dimension of recurrent sets in symbolic spaces,
Nonlinearity 14 (2001), 81–85.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#20
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#21
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#22
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#23
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#24
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#25
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#26
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#27
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#28
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#29
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#30
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#31
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#32
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#33
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#34
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#35
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#36
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#37
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#38
http://smf.emath.fr/Publications/AnnalesENS/4_48/html/ens_ann-sc_48_6.html#39


1508 J. BARRAL

[40] U. F, G. P, Fully developped turbulence and intermittency in turbulence,
and predictability in geophysical fluid dynamics and climate dynamics, in Interna-
tional school of Physics “Enrico Fermi” (M. Ghil, ed.), North Holland, 84–88.

[41] T. C. H, M. H. J, L. P. K, I. P, B. I. S,
Fractal measures and their singularities: the characterization of strange sets, Phys.
Rev. A 33 (1986), 1141–1151.

[42] H. G. E. H, I. P, The infinite number of generalized dimensions
of fractals and strange attractors, Phys. D 8 (1983), 435–444.

[43] Y. H, Estimations de la dimension inférieure et de la dimension supérieure
des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), 309–338.

[44] Y. H, Dimension of measures: the probabilistic approach, Publ. Mat. 51
(2007), 243–290.

[45] R. H, E. C. W, Multifractal dimensions and scaling exponents for
strongly bounded random cascades, Ann. Appl. Probab. 2 (1992), 819–845.

[46] G. I, Multifractal analysis for countable Markov shifts, Ergodic Theory Dynam.
Systems 25 (2005), 1881–1907.

[47] S. J, Old friends revisited: the multifractal nature of some classical functions,
J. Fourier Anal. Appl. 3 (1997), 1–22.

[48] S. J, The multifractal nature of Lévy processes, Probab. Theory Related Fields
114 (1999), 207–227.

[49] T. J, M. R, Multifractal analysis of weak Gibbs measures for non-uniformly
expanding C1 maps, Ergodic Theory Dynam. Systems 31 (2011), 143–164.

[50] M. K, Large deviation for weak Gibbs measures and multifractal spectra,
Nonlinearity 14 (2001), 395–409.

[51] J. F. K, The singularity spectrum for general Sierpiński carpets, Adv. Math. 116
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