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INVERSE PROBLEMS
IN MULTIFRACTAL ANALYSIS OF MEASURES

BY JurLieN BARRAL

ABSTRACT. — Multifractal formalism is designed to describe the distribution at small scales of the
elements of M} (R?), the set of positive, finite and compactly supported Borel measures on R?. It is
valid for such a measure p when its Hausdorff spectrum is the upper semi-continuous function given
by the concave Legendre-Fenchel transform of the free energy function 7, associated with y; this is the
case for fundamental classes of exactly dimensional measures.

For any function 7 candidate to be the free energy function of some . € M (R?), we construct
such a measure, exactly dimensional, and obeying the multifractal formalism. This result is extended
to a refined formalism considering jointly Hausdorff and packing spectra. Also, for any upper semi-
continuous function candidate to be the lower Hausdorff spectrum of some exactly dimensional
w € Mt (RY), we construct such a measure.

REsUME. — Le formalisme multifractal est un cadre adapté pour décrire la distribution aux
petites échelles des mesures de Borel finies positives a support compact dans R?, dont ’'ensemble
est ici noté MF (R?). Il est dit valide pour une mesure u lorsque son spectre de HausdorfT est la
fonction semi-continue supérieurement obtenue comme transformée de Legendre-Fenchel concave de
sa fonction d’énergie libre 7,; c’est le cas pour certaines classes fondamentales de mesures exactement
dimensionnelles.

Pour toute fonction 7 candidate a étre la fonction d’énergie libre d’un élément x de M7 (R?), nous
construisons une telle mesure, exactement dimensionnelle, et validant le formalisme. Ce résultat s’étend
a un formalisme plus fin considérant simultanément spectres de Hausdorff et de packing. D’autre part,
pour toute fonction semi-continue supérieurement candidate a étre le spectre de Hausdorff inférieur
d’une mesure exactement dimensionnelle, nous construisons une telle mesure.

1. Introduction and main statements

1.1. Inverse problems in multifractal analysis of measures

Let 1 (R?) stand for the set of compactly supported Borel positive and finite measures
onR? (d > 1), and for u € M} (R?) denote by supp(u) the topological support of  (i.e.,

The author is grateful to De-Jun Feng and Jacques Peyriére for their valuable comments on this work.
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1458 J. BARRAL

the compact set obtained as the complement of those points z for which u(B(z,r)) = 0 for
some r > 0, where B(z, r) stands for the closed ball of radius r centered at x).

The upper and lower box dimensions of a bounded set E ¢ R? will be denoted dimpFE
and dimp E respectively, and its Hausdorff and packing dimensions will be denoted by
dimgy F and dimp E respectively (see [33, 60, 70, 81] for introductions to dimension theory).

Multifractal analysis is a natural framework to finely describe geometrically the het-
erogeneity in the distribution at small scales of the elements of A} (R?). Specifically, if
w € MF(RY), this heterogeneity can be described via the lower and upper local dimensions
of u, namely

d(p, z) = lim inf log(u(B(z,))) and d(u, ) = limsup log((B(z, 1))
r—0+ log(r) 0+ log(r)

)

and the level sets
E(u,a,8) = {x € supp(u) : d(,2) = o, d(,z) = B} (o< fERU{o0}),

which form a partition of supp(u) (notice that E(u, , 3) = @ whenever a < 0). The sets

E(p, a)= {x € supp(p) : d(p, x) = a}, E(p,a) = {w € supp(p) : d(p, x) = a},

and

E(p,a) = E(p,a) N E(u,a) = E(p,a,a) (e € RU{oo})
are also very natural, and the most studied in the literature (although the sets defined above
are empty if & < 0 because p is a bounded function of Borel sets, it is convenient to include
negative values of « in connection with the using along the paper of the Legendre-Fenchel
transform of functions defined on R or R U {o0}).
The lower Hausdorff spectrum of u is the mapping defined as

if o€ RU{oo} — dimy E(p, o),

with the convention that dimyg @ = —oo, so that if (o) = —oo if @ < 0. This spectrum
provides a geometric hierarchy between the sets E(u, ), which partition the support of p.
Here, the lower local dimension is emphasized for it provides at any point the best pointwise
Holder control one can have on the measure p at small scales. However, the upper local
dimension is of course of interest, and much attention is paid in general to the sets E'(u, o) of
points at which one has an exact local dimension d(u, ) = d(u, =), especially when studying
ergodic measures in the context of hyperbolic and more generally non uniformly hyperbolic
dynamical systems.
The Hausdorff spectrum of p is the mapping defined as

ff :a € RU{oo} — dimyg E(u, ).

Inspired by the observations made by physicists of turbulence and statistical mechanics
[42, 40, 41], mathematicians derived, and in many situations justified the heuristic claiming
that for a measure possessing a self-conformal like property, its Hausdorff spectrum should
be obtained as the Legendre transform of a kind of free energy function, called L2-spectrum.
This gave birth to an abundant literature on the so-called multifractal formalisms [33, 21, 19,
63, 70, 52, 17, 71, 56], which aim at linking the asymptotic statistical properties of a given
measure with its fine geometric properties.
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INVERSE PROBLEMS IN MULTIFRACTAL ANALYSIS OF MEASURES 1459

To be more specific we need some definitions. Given I € {R, R U {co}} and a fonction
f: I — RU{—00}, the domain of f is defined as dom(f) = {z € I : f(z) > —c0}.

Let7: R - RU {—o0}. If dom(7) # &, the concave Legendre-Fenchel transform, or
concave conjugate function, of 7 is the upper-semi continuous concave function defined as
7™ :a € R — inf{ag—7(q) : ¢ € dom(7)} (see [77]). We will need a slight extension of this
definition.

Ifr:R - RU{—o0}, dom(7) # &, and 0 € dom(7), we define its (extended) concave
Legendre-Fenchel transform as

o€ RU {00} o {inf{aq —7(q) : ¢ € dom(7)} %foz eR,
inf{ag —7(q) : g € dom(7)NR_} ifa = oo,
with the conventions co x ¢ = —o0 if ¢ < 0 and co x 0 = 0. Consequently, co € dom(7*) if
and only if 0 = min(dom(7)), and in this case 7*(c0) = —7(0) = max(7*). In any case, 7* is
upper semi-continuous over dom(7*), and concave over the interval dom(7*)\ {oco} (here the
notion of upper semi-continuous function is relative to R U {oco} endowed with the topology
generated by the open subsets of R and the sets (a, 00) U {0}, @ € R).
Now, define the (lower) LI-spectrum of u € M} (R?) as

 logsup { %, pu(B(wi,7)}
Ty 1 ¢ € R liminf
r—0+ log(r)

b

where the supremum is taken over all the centered packings of supp(u) by closed balls of
radius 7.
By construction, 7, is concave and non decreasing, and

—d < 7,(0) = —dimp supp(p) < 0 = 7,(1),

so that one always has Ry C dom(7,); also 7;; takes values in [0, d]U{—oo}, and dom(7};) is
a closed subinterval of R} U {oo} (see Propositions 1.1 and 1.2).
For a € R we always have (see [63, Section 2.7] or [52, Section 3])

(1.1 ff(a) < iﬁl(a) < 75 (a) < max(a, —7,(0)) < max(a, d);

we also have
ful(00) < 7(00),
a dimension equal to —oo meaning that the set is empty (the second inequality is not stan-
dard, and will be proved in Section 5; the inequality 7;(a) < max(a, —7,(0)) is a direct
consequence of the definition of 7; and the fact that 7,(1) = 0).
We notice that due to (1.1), if f(e) > o at some o, then 0 < o < dand f(a) =

7 (@) = @, so that a is a fixed point of 7;. Moreover, since 7,,(1) = 0 and 7,, is concave, the

set of fixed points of 7; is the interval [r) (1), 7/,(17)].

We will say that p obeys the multifractal formalism at « € R U {oo} if if (@) = 75 (a),
and that the multifractal formalism holds (globally) for  if it holds at any o € R U {o0}.

If f f (a) can be replaced by f/fl (@) in the previous definition, we will say that the multi-
fractal formalism holds strongly, and it is in this form that this formalism has been introduced

and studied the most. It turns out that in this case one has

dimpy E(p, a) = dimp E(y, a) = dimy E(p, @) = dimg E(pu, o) = 7,5 (a).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1460 J. BARRAL

However, in general, nice families of discrete measures only obey the multifractal formalism
associated with the lower Hausdorff spectrum as defined above.

The multifractal formalism turns out to hold globally, or on some non trivial subinterval
of dom(7;;), for some important classes of continuous measures possessing (or close to have)
self-conformal properties, namely some classes of self-conformal measures (among which
some Bernoulli convolutions), Gibbs and weak Gibbs measures on conformal repellers (e.g.,
the harmonic measure on such a disconnected set) or attractors of Axiom A diffeomorphisms
[25, 29, 73, 72, 59, 21, 54, 55, 76, 69, 70, 68, 58, 43, 50, 38, 34, 46, 79, 80, 35, 37, 49,
36], harmonic measure on the Brownian frontier [53], and scale invariant limits of certain
multiplicative chaos [45, 30, 61, 1, 5, 8, 9, 74, 2]; in these cases it also holds strongly. It also
holds for scale invariant discrete measures obtained as limits in law of Gibbs measures in
the context of random directed polymers [48, 12, 11] (see also [3, 47, 32, 13, 67] for other
classes of discrete measures obeying the multifractal formalism). Other examples are special
self-affine or Gibbs measures on self-affine Sierpinski carpets [51, 64, 10, 6], or on almost all
the attractors of IFS associated with certain families of d x d invertible matrices with small
enough singular values [31, 7], as well as generic probability measures on a compact subset
of R4 [22, 23, 16].

The measures mentioned above share the geometric property to be exactly dimensional,
log(u(B(z,7)))

i.e., for such a measure p, there exists D € [0,d] such that lim+ Tog(r) = D,
r—0 og(r
p-almost everywhere. This implies f2' (D) > D, hence D € [r/,(1%), 7/,(17)] and p strongly

obeys the multifractal formalism at D by a remark made above. In fact, for any u € 1} (R9),
for p-almost every « one has 7,,(17) < d(u,z) < d(p,x) < 7,,(17) ([62]), and for most of
the continuous measures in the previous references, 7/, (1) exists, hence equals D; also, 7, is
piecewise C', and even analytic in certain cases, a typical example being Gibbs measures
associated with Holder potentials on repellers of C*+* conformal mappings.

Another property of the previous measures is, when they obey globally the multifractal
formalism, to be homogeneously multifractal (HM), this meaning that the lower Hausdorff
spectrum of the restriction of y to any closed ball whose interior intersects supp(u) is equal
to the lower Hausdorff spectrum of .

In this paper we solve the inverse problem consisting in constructing, for any concave func-
tion 7 satisfying the necessary conditions to be the L?-spectrum of an element of 1 (R%),
an exactly dimensional and (HM) measure whose L?-spectrum equals 7, and which strongly
satisfies the multifractal formalism. More specifically:

THEOREM 1.1. — Let 7 : R — R U {—o00} be a concave function satisfying the necessary
properties (see Propositon 1.1) to be the Li-spectrum of some element of M} (RY). Let D €
[7'(17),7'(17)]. There exists an (HM) measure u € M} (R?), exactly dimensional with
dimension D, and which strongly satisfies the multifractal formalism with T, = T.

Theorem 1.1 will be obtained as a consequence of more general statements which also
describe the Hausdorff and packing dimensions of the sets E(u, @, 8) (Theorem 1.3 and
Corollary 1.1 of Section 1.2). We will also study the inverse problem associated with a finer
multifractal formalism designed to describe the more general situation where the Hausdorff
spectrum ff and the packing spectrum ff : a — dimp E(u, «) differ (Theorem 1.4 and
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Corollary 1.2 of Section 1.2). As a by product of these results new multifractal behaviors are
exhibited.
In general, dom(ff) = {a € RU {0} : E(u,a) # &} is not necessarily a closed

subinterval of [0, cc], and even when it is the case, the restriction of f f to dom(f f )N R4
is not necessarily concave. Consequently, we also study the inverse problem consisting in
associating to a function f : RU{oco} — [0, d]U{—00} whose domain is a subset of Ry U{o0}
and such that f(«) < «a for all @ > 0, an (HM) measure whose lower Hausdorff spectrum is
equal to f. We construct such a measure p when dom(f) is a closed subset of Ry U{oo}, f is
upper semi-continuous, and f has at least one fixed point, three properties shared with 7;.
Moreover, the measure y is exactly dimensional.
Thus, we will prescribe lower Hausdorff spectra in the family:

Fix(f) # @
isacl f

F(d) = fRU {00} — [0.d] U {—o0} do'm(f) isac o'sed s1'1bset of [0, 0]

f is upper semi-continuous

fla) < aforall @ € dom(f)
where Fix(f) (C [0, d]) stands for the set of fixed points of f.

THEOREM 1.2, — Let f € F(d). For each D € Fix(f), there exists an (HM ) measure
w € M (RY), exactly dimensional with dimension D, such that f f =7

This result will be strengthened in Theorem 1.5 of Section 1.2. It turns out that the
approach used in this paper does not make it possible to replace if = f by ff = fin
the previous statement unless one of the following properties holds: dom(f) = Fix(f) (see
Theorem 1.5), or dom(f) is an interval and f is concave over dom(f) N R (in this case we
will get a measure obeying the strong multifractal formalism, see Theorem 1.3).

Before developing further results and comments, let us outline the main ideas leading
to the construction of the measure u provided by Theorem 1.2. To establish Theorem 1.1
one must improve this approach in order to control both the finer level sets E(u, @) and the
upper large deviations spectrum of u (to be defined in Section 1.2.1) when f is the concave
function 7*, and then use the duality property linking the L?-spectrum and the upper large
deviations spectrum to show that the multifractal formalism holds strongly.

For simplicity, we assume that dom(f) is a non trivial compact interval [@min, @max] C Ry,
f is continuous over [@min, @max), 0 < f(a) < min(«, d) over [@min, ¥max), and f(D) = D
for a unique point D in [tmin, &max]- The homogeneity of the construction of the measure y
automatically implies that the measure is (HM).

At first one shows (independently of f) that for any v € [0,d] and o > ~, one can find
two Borel probability measures i, -, and v, supported on [0,1]¢ such that p, , = v, -,

Vo~ 18 exactly dimensional with dimension v, and v, , is concentrated on E(pq,, o), as

log(p(In(z)))
—nlog(2)

I,,(x) stands for the closure of a dyadic cube semi-open to the right containing x.

Set A1 = {aq = D}, and for each integer m > 1, define A,, 11 = A U {1}, where
Om+1 € [@min, @max] \ Am, in such a way that the set {a,, : m > 1} be dense in [@min, ¥max]-
By using the previous property with v = f(«), for all m > 1 one gets an integer n,,, such that

well as on the set defined similarly but with a(u, x) replaced by lim,, . o, , where

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1462 J. BARRAL

forall« € A,,, foralln > n,y,, there is a collection G, , («) of about onf(e) dyadic subcubes
of [0,1]¢ such that for all I € Gy, n(a) one has pg f(a)(I) & 27", vy p(o)(I) & 2777 (@),
and ZIeGm,n(cx) Va, f(a) (I) S [1/2, 1]

For every integer m > 2, one considers m dyadic closed subcubes of [0,1]? of the
same generation n/,, Lq,, . . ., La,, , so that the 27"/ neighborhood of each L,, does not
intersect any of the other L.

The measure p is constructed on a Cantor set K = (1,5, U;eq, - Where the G, are
families of closed dyadic subcubes of [0,1]¢ of generation g,, tending to co as m — oo,
constructed recursively according to a scheme roughly as follows:

One obtains G; by considering the measure pqo, f(a,) = MDD, an integer Ny > ny
much bigger than n}, and setting G; = G, v, (@1) = Gi1,n, (D). This yields the probability
measure p; defined on Gy as
po,0(1)

Yrea, ND,D(I')) .

pi(l) = (

This measure satisfies p; (1) ~ 27N,

Suppose now that the set G,,, has been constructed, as well as a probability measure g,
on its elements. One takes Ny, 41 > N1 and integer much bigger than max(gm,n;,, ),
and for each 1 < ¢ < m + 1, one considers the measure p,, F(as) and the associated set
Gm+1(®i) := Gmy1,Npy (ag). Foreach 1 < i < m+ 1and I, € G,,, one defines the set
of the elements of G,,, 1 contained in I,,, as U:’:{l Git1(Im, @;), where G 1 (L, i) =
{Ih L, -I:1€Gpy1(a;)}, and the concatenation J - J’ of two closed subcubes of [0, 1]¢
is obtained as the cube f;(J), where £ is the natural contracting similitude mapping [0, 1]¢
onto J (this operation is associative). One gets a probability measure pi,,+1 on G,,+1 by
setting, for I € G141 (;):

Mo, f(as) (I)

(1.2) pim+1Im = La, - 1) = pim (Im) :
ZaeAm+1 ZI’GGm-H(a) Ha,f(e) (Il)

This makes it possible to define a Borel probability measure carried on K and coinciding
with p.,,, over G, forallm > 1.

Since f(a) < « except for @« = a3 = D, if N,,41 is taken big enough, in (1.2) for
each i > 1 the contribution of the elements of G,,.1(a;) is roughly 2Vm+1(f(ai)=ai)
hence is negligible so that the denominator is equivalent to the single contribution of
ZI’eGm+1(D) pp,p(I") € [1/2,1]. Consequently, for I,,11 € Gyt of the form I,,, - Ly, - I,
I € Gpyy1(a;), we have the following estimate:

(1.3) #Tmr1) 2 pom (L) e, g () (1) 22 i (L) 27 % N1 g 27 00ms

because ¢, < Nypt1. Also, we have that #G,,41(a;) = 2f(@i)Nm+1 hence

#{I € Gpyr : I € Gpoy1(Im, o) for some I, € G} = (#G ) (#CGmy1(0y)) r 2f(@)9m+s
again because ¢,, < N,,+1. The previous estimate and the continuity of f essentially yield

that f is an upper bound for f H Combined with (1.3), it shows that at generation m + 1, the
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mass of p is essentially carried by the intervals I,,, - Lp - I, I € G, 41(D), since we have
m+1 m—+1
1=~ Z 9f(@i)gm+19=®igm+1 — Z o(f(a)=ai)gm+1 o 9(Flar)—a1)gm+1 — |
i=1 i=1
(recall that @y = f(ay) = D). This can be strengthened to show that u is exact D-dimen-
sional.

Another important fact is the natural existence of a family of auxiliary measures used to
find a sharp lower bound for iH :with each 8 = (Bn)m>1 € [Io_; A is associated the
Cantor subset of K defined as

Ks=(1 U 1

m>1 IEGE,m

where Gﬁ,m is the subset of G,,, obtained by selecting only the intervals of the construction
for which one considers the exponent 3; € A; atstepiforalll < i < m. Using (1.3)
and finer properties of the measures p. ., one can show that Kﬁ Cc E(w,B), where
B = liminf,, .. Bm. Moreover, the measures v f(3,) can be used to construct a nice
auxiliary probability measure vz carried by K 5 At first one defines recursively a sequence
of measures (I/E )m>1 on the atoms of the sets GE m> M > 1, as follows: Vi, 1s the restric-

,m

tionof vp p to GB,I(: G1), and assuming that 1/3,"; is constructed on G@m; if I, € Gé,m’
for I € Grut1(Bm+1) One sets

Vi1, (Bns) )
ZI’EGM+1 (,@m+1) Vﬁ1rb+1»f(ﬁm+1) (I/)

V,Z-}\’erl(Im ' L,@m+1 ’ I) = Vﬁym(Im)
This yields a Borel probability measure vz supported on K 3 such that

VE(Im . Lﬁm+1 : I) = Vﬁ’m_;_l(-[m . L5m+1 . I) ~ Vﬁ,m(Im)Vﬂm,+1,f(ﬁm+1)(I)7

sothat vg(Ln - Lg,,, 1) R Vg, 1 f(Bsn)(I) 2 27/ Pre)omis (again since g < Nopg1).
This can be strengthened to dimH(Vg) =liminf,, o f(Bm), hence dimpyg K 52
liminf,, . f(Bm) by the mass distribution principle (see Section 6). Finally, if

B € [0miny @max] and lim,, o, B = 3, the continuity of f yields iH(ﬂ) =dimg E(u, ) > f(B).

1.2. Main statements, and comments
New definitions and properties are needed to state our main results.

1.2.1. Additional definitions and properties related to the multifractal formalism. — For
€ M (RY), recall that fZ and f7 stand for the Hausdorff spectrum a € R U {oo0} ~
dimg E(p, o) and the packing spectrum o € R U {oo} — dimp E(u, @) respectively.

The functions defined below, as well as some variants, are well known in the literature ([33,
21, 19, 63, 52]). They naturally complete 7, and 7; to describe, in terms of large deviations,
the asymptotic behavior of the distribution of the measure p at small scales. They also yield a
finer multifractal formalism, which connects geometric properties of the sets F(u, «) to large
deviations properties associated with p, both from the Hausdorff and packing dimensions
point of views. In Remark 1.3 (Section 1.2.2) we will explain the connection with another
multifractal formalism emphasized in [63], which is based on a purely geometric approach.
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1464 J. BARRAL

Define also the upper L?-spectrum of y as

. - togoup {3, w(Blai))}
= T =
4R -0 =lmep log(r)

(this function is not concave in general), as well as the lower and upper large deviations
LD —LD
spectra iu and f, :

log sup #{i srote < p(B(zi,r)) < ro‘_e}
aERHfI:D(a)z lim+1imigf Tog (")
— e—0t r—0 — log\r

—LD log sup #{i 1ot < p(B(zi, ) < Ta_e}
a€R— f, (o) = lim limsup

e ~Tog(r)

)

)

log sup #{i s w(B(z,7m)) < TA}

P (00) = lim liminf

—p A—oco r—0t — log(r) ’

D log sup #{i s w(B(zy, 7)) < rA}

f, (00) = lim limsup ,
: At “Tog(r)

where the suprema are taken over all the centered packings of supp(u) by closed balls of
radius r. Notice that 0 < dimgsupp(p) = —7(0) < d, and 7,(1) = 0 (by the same
arguments as for the equality 7,,(1) = 0, see [63, Section 2.7] or [52, Section 3]).

One always has ?; < and

(14) VaeRU{}, fif(e) < LI:D(a) < 75 (a) < max(a, —7,(0)) < max(a, d),
(1.5) VaeRU{oo}, fP(a) < 7. (@) < 7(a) < max(a, —7,(0)) < max(a, d).

We will say that u obeys the refined multifractal formalism at a € RU{oo} if £ (o) = 77, (ax)
and ff(a) = 7;(a). If o € dom(7;;) \ dom(7},), one necessarily has E(u, a) = @, so that in
(1.5), one can only expect the large deviations property f;LLD(a) = 7, (a) to hold.

The inequalities £ (o)) < 75, () and f¥ (a) < 77:() are established for o < co when y is
doubling in [63, Section 2.7]. The inequalities ff () < ?ED(a) < 7, () are established in
[52, Section 3] when a < oo. The other inequalities will be justified in Sections 5.2 and 5.3.

We notice that if u is exactly dimensional with dimension D, then D = f#(D) =
f‘D(D) = 7,(D) = fED(D) = 7;:(D), and in the case where 7, is concave, we have
D e [7,(1%),7,A7)I(C [r,(17),7,(17)]), since 7,,(1) = 0 implies that 7} (a) = « if and
only if o € [7,(1%),7,(17)].

Let us now describe the possible behaviors of the L?-spectrum and its Legendre transform.
Before stating the corresponding propositions, we need to extend the notion of Legendre-
Fentchel transform to functions f : RU {co} — RU {—o0}.

If f:RU{oo} - RU{—o0}and dom(f) "R # &, we define the concave Legendre-

Fenchel transform of f as
f*:qge R inf{ga — f(a) : « € dom(f)},

with the conventions g X co = ﬁ x ooifg# 0and 0 x co = 0.

4¢ SERIE - TOME 48 — 2015 N° 6



INVERSE PROBLEMS IN MULTIFRACTAL ANALYSIS OF MEASURES 1465

Consequently, if co € dom(f) and f is bounded from above, then 0 = min(dom(f*))
and f*(0) = — max(sup(fir), f(o0)); moreover, f* is concave over dom(f*), upper semi-
continuous over dom(f*) \ {0}, and upper semi-continuous at 0 if and only if f(c0) = max(f).

PROPOSITION 1.1. — Let u € M} (RY).

1. 7, is concave, non-decreasing, 7,(1) = 0, and —d < 7,,(0) = —dimp supp(p) < 0.

2. One has either dom(7,) = R, or dom(7,) = Ry, according to whether the exponent

log(inf{u(B(z,7)) : @ € supp(p)})
log(r)

is finite or not. Moreover T is non-

lim sup,._, o+ "

negative on its domain.

PRrROPOSITION 1.2. — Suppose that 7 : R — R U {—oo} satisfies the properties of the
Li-spectrum described in Proposition 1.1.

1. Suppose that dom(7r) = R. Then dom(7*) is the compact interval I = [t'(00), 7' (—00)],
T* is concave and continuous on its domain, and (7*)* = 7 on R.
2. Suppose that dom(7) = R,.. Then co € dom(7*) with 7*(c0) = —7(0) and:
(@) If7(0) = 0 thenT = Oover Ry, dom(7*) = Ry U{oo} andm* = 0 over R U{co}.
(b) If 7(0) < 0 and 7 is continuous at 0%, then dom(7*) is the interval [t'(c0), o0],
T* is concave, continuous, and increasing over [7'(c0), 7/ (01)), 7*(a) = —7(0) =
7*(00) = —7(0) for all a € [7'(0%"), 00) and T* is continuous at co; there are two
distinct behaviors according to whether 7' (0%) < oo or not.
(©) If 7(0) < 0 and T is discontinuous at 0%, then dom(7*) is the interval
I=1[r(c0),00]. Moreover, 7*(a)=—-7(0")<7*(c0)=—-7(0) for all
a € [lim,_,o+ 7'(¢7), 00), so that T* is concave and continuous on [1'(c0), c0) and
discontinuous at oo (there are also two cases, according to whether
lim,_,o+ 7'(¢”) = oo or not).
(d) In all the previous cases, (T*)* = 7 on R.

Proposition 1.1(1) is standard and proved for instance in [52] (Proposition 3.2). Proposi-
tions 1.1(2) and 1.2(1) are essentially restatements of Propositions 3.3-3.5 in [52]. However,
for the reader’s convenience we will provide a proof in Section 5, where the whole proofs of
Propositions 1.1(2) and 1.2 are given.

1.2.2. Fullillustration of the multifractal formalism. Complements to Theorem 1.1. — When
is a Gibbs measure on a conformal repeller or a self-similar measure on an attractor satisfying
suitable separation conditions, the Hausdorff and packing dimensions are also known for all
the sets E(u, a, B):

dimy E(p, o, 8) = min{7,;(7) : v € [, B},
dimp E(u, o, 8) = max{T;(’y) 2y € [, 0]},

dimg E(p, o) = 7, (a) = dimy E(u, a),

(1.6)

dimp E(p, @) = max{7,(y) : v > a}, dimp E(p,0) = max{7, (7)1 v < a}.

foralla < 8 € Ry U {oo} (see [66, 4, 83] and also [14, 39] for closely related questions).
We notice that (1.6) implies that dimpy supp(p) = dimgsupp(p) = dimpsupp(p) =
dimp supp(p) = —7,(0).
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It turns out that properties (1.6) enter in our exhaustive illustration of the multifractal
formalism.

THEOREM 1.3. — Let f € F(d). Suppose that dom(f) is a non empty closed subinterval
of [0, 00] and f is concave over J N R .

For eachfixedpoint D of f, there exists u € M} (R?), exactly dimensional with dimension D,
such that T, = f* =7, 7, = f, and (1.6) holds for all « < 8 € Ry U {oco}. Moreover, the
same properties hold if 1 is replaced by its restriction to any closed ball whose interior intersects

supp(u).

The following corollary, of which Theorem 1.1 is a consequence, then follows from the fact
that if 7 satisfies the properties of Proposition 1.1 (and so falls into the different situations
described in Proposition 1.2(1) and (2)), then 7* satisfies the assumptions of Theorem 1.3.

COROLLARY 1.1. — Let 7 : R — RU{—o0} be a function satisfying properties (1) and (2)
of Proposition 1.1. Let D € [7'(17),7/(17)].

There exists i € MF (R?), exactly dimensional with dimension D, satisfying (1.6) for all
a < peRyU{oo} witht, =T =T7,. Moreover, the same properties hold if i is replaced by
its restriction to any closed ball whose interior intersects supp(u).

REMARK 1.1. — The behavior described in Proposition 1.2(1) is illustrated, for instance,
by Gibbs and weak Gibbs measures on conformal repellers (see [63, 70, 38]). Such examples,
which live on dynamical systems semi-conjugate to subshifts of finite type, cannot exhibit
behaviors like those corresponding to Proposition 1.2(2). The behaviors described by Propo-
sition 1.2(2)(b) are illustrated by some Gibbs measures on countable Markov shifts and their
geometric realizations [46], which also obey the multifractal formalism, though in [46] the
set E(u, 00) is not studied. The fact that the behaviors described in Proposition 1.2(2)(a) and
(c) be illustrated by measures obeing the mutifractal formalism seems to be new. We notice
that the extension of the Legendre transform including oo in the domain in this case yields
Legendre transforms which are not necessarily upper semi-continuous, like 7 at 0 in case (c).

REMARK 1.2. — Our results illustrate all the possible situations, in term of the func-
tion 7, for which the measure p is exactly dimensional though 7/,(1) does not exist. In
[44], when d = 1, for each D € (0,1) one finds an exactly dimensional measure p with
dimension D and L?-spectrum equal to min(q — 1,0) over R. It is also worth mentioning
that in [15] one finds examples of inhomogeneous Bernoulli measures over [0, 1] with an
Li-gpectrum presenting countably many points of non differentiability over [1, +00).

In the previous results, due to (1.4) and (1.5) we have f = fF = LI:D = ?ED, which
reflects a strong homogeneity of the sets E(u, ). The purpose of the refined multifractal
formalism is to describe situations irregular enough so that the Hausdorff and packing
dimensions of E(u, «) differ for most of the .

The next two results extend in a non trivial way the two previous ones , in particular by
exhibiting a new formula for dimy E(u, a, 3). They invoke an extension of (1.4) and (1.5),
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which illustrates the following complement to the multifractal formalism: If 0 < o < oo and
a<fB<o00,1>r>0,ande > 0, set

log sup #{i Pt < p(B(ai,r)) < ro‘*f}
—log(r)

where the suprema are taken over all the centered packing of supp(u) by closed balls of
radius r, and with the convention that 7> = 0. Then define

LD T
I B) = ggr[l]hgégffu(a,ﬂ,ew)-

fﬂ(a,ﬁ,e,r) =

)

Also, define ﬁt‘D(oo, 00) = LI:D(OO)~

PROPOSITION 1.3. — Let u € M} (R?). Forany 0 < a < 3 < oo, one has

L dimpy E(p, o, 8) < fu(a, 8) = min(f,” (@), 1, (8), 1P (e, 8))
dimp E(u, a, 8) < fp(a, B) := max{?ﬁD(a') ca € |a, B}
2. dimy, E(p, o) < sup{fr(a,p): B8 > a}for L € {H, P},

dimy E(u,a) < sup{fr(B,a): B < a}for L € {H,P}.

THEOREM 1.4, — Letd € N,. Let J C 4 be two non empty closed subintervals of [0, oc].
Let f and g € F(d) such that dom(f) = 4, dom(g) = J, and f < g. Suppose also that f and
g are concave over I N Ry and J "R, respectively.

For each D € Fix(f), there exists p € MF(R?), exactly dimensional with dimension D,

such that

1. dom(f}) = dom(fF') = dom(f"P) = 7 and dom(f,,") = 4.
2. Forallae 4, ff1(a) = £°(a) = f(@), £ (@) = £, (@) = g(@) and F,.” (@) = g(@)

forae g\ J.
3. More generally, for alla < € Ry U {0},

P (a, ) = f(e, B) := max{f(¢/) : &’ € [a, B]},

i B, o, ) — {min<g<a>,g<ﬂ>, f(@8)) iflen Bl o andlo, G101 # 2

—00 otherwise,
dimp B 0, f) — {If:f{g(a') vl € [, 0]} ffﬁ] c S and [0, N S #

> a} = min(g(a), max{f(f) : 6 > a}),
a} = min(g(a), max{f(8) : f < a}),

<
> a}

dimpy E(p, o) = max{dimy E(u,,3) : 8
dimg E(u, o) = max{dimg E(u, 3, a) : B
dimp E(p, @) = max{dimp E(u, @, 5) : §

B {max{g(ﬂ) :B>a} ifac [min(f), max(s)]

—00 otherwise,
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dimp E(p, o) = max{dimp E(u, 3,a) : B < a}
_ {max{gw) B <al ifo€ min(d)max(s)

—00 otherwise.
4 7,=f 7, =f rn=9"andT; =g
Moreover, all the previous properties hold if u is replaced by its restriction to any closed ball
whose interior intersects supp(p).

Notice that properties (2) and (4) of the previous statement imply dim g supp(u) =
dim ; supp(p) = —7(0) and  dimpsupp(u) = dimp supp(u) = —7(0),  because
max{dimg E(a) : a € 4} = —7(0) and max{dimp E(a) : a« € J} = —7(0).

COROLLARY 1.2. — Let 7,7 : R — R U {—o00} be two functions satisfying properties (1)
and (2) of Proposition 1.1, and such that T < 7.

Let D € [7/(17),7(17)] C [7'(1F),7'(17)]. There exists an exactly dimensional measure
w € M (RY) with dimension D such that :

l.7y=71and7,=7;

2. dimg supp(p) = dimpsupp(u) = —7(0) and dimp supp(u) = dimpsupp(u) =
—7(0);

3. properties (1)-(3) of Theorem 1.4 hold with 4 = dom(7*), / = dom(7*), f = 7T* and
g="T1"

Moreover, all the previous properties hold if u is replaced by its restriction to any closed ball
whose interior intersects supp(u).

REMARK 1.3 (Link with Olsen’s multifractal formalism). — In [63], Olsen introduces
three “multifractal dimensions” functions b, < B,, < A, derived from “multifractal” general-
izations of Hausdorff and packing measures associated with y (A, and B,, are convex, while
b, may be not), so that f#(a) < (=b,)*(a) and f¥(a) < (—B,)*(a) (< (=A,)* (@) for
all « € Ry, one can then say that Olsen’s multifractal formalism holds at o € Ry U {0} if
the previous inequalities are equalities (adding a = oo in his formalism does not matter). The
pair {b,,, B,,} has a geometric meaning, while {t,,,7,} relies on large deviations properties.

This formalism has recently found new illustrations by inhomogeneous Bernoulli measures
on [0,1] (¢f- [18, 78]), and it is particularly well suited to describe dimyg E(u, @) for self-affine
measures or Gibbs measures on self-affine Sierpinski carpets and sponges [51, 64, 10, 6] (the
packing dimension of the sets E(u, «) in these situations remains an open question in general).

Olsen pays a particular attention to compare the pairs of functions {b,,, A, } and {7, 7,}. He
provesb, < —7,, and B,, < A, = —7,, when . is doubling, which according to both multifractal
Jormalisms inequalities, implies (=b,)* (o) = 7, (a) and (= B;)(a) = (=Ay)*(a)) = 7;(a)
when the refined multifractal formalism used in this paper holds at «, hence the validity of his
formalism. It turns out that even if the measure p we are going to construct to prove Corollary 1.2
are not doubling, they possess the weaker but close property that there exists a function e(r)
tending to 0" asr — 0% such that p(B(z,2r)) < v~ u(B(z,r)), uniformly in x € supp(u)
(see Section 4.2). This is enough for b, < —7, and B, < A, = —7, to hold, hence for
Olsen’s multifractal formalism to be valid at each o of dom(T},). Moreover, using the equality
(=bu)* =T,, over dom(7},), taking the Legendre-Fenchel transforms of these functions, and
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using the inequality b, < —7,, = —T, we can get b, = —7, = —T. Similarly B, = A, =
—Ty = —T.

General upper bounds for dimpg E(u, ) and dimg E(u,«) are given by [63, Theo-
rem 2.17(i)(iii)], namely (—(b, O B,))*(a) and (—(B, O b,))*(«) respectively, where
b0 B equals b over (—o0,0), b(0) A B(0) at 0, and B over (0,00). The previous remarks and
the formulas obtained in Theorem 1.4 for dimy E(u, ) and dimg E(p, o) show that for the
measure [, we construct, the upper bounds estimates (—(b, 0 B,,))*(a) and (—(B,, 0b,))* (c)
do provide the correct values for the Hausdorff dimensions.

1.2.3. Prescription of the lower Hausdorff spectrum. — Theorem 1.2 can be refined as follows,
according to the properties of the measure we construct:

THEOREM 1.5. — Let f € F(d). For each D € Fix(f), there exists an (HM ) measure
p € MF(RY), exactly dimensional with dimension D, such that f f = f.

Moreover, i can be constructed so that one has: (1) if « € Fix(f) then flfl (@) = aand (2)if
a € dom(f) \ Fix(f) # @ then E(u,a) = E(u, a,o0), and properties (1) and (2) hold if w is
replaced by its restriction to any closed ball whose interior intersects supp(u).

REMARK 1.4. — It can be shown for the measure we construct that dimp F(y, ) =
max{f(a’) : & > a}forall @ € R U {oo}. The Hausdorff and packing dimensions of
the sets E(p, ) and E(u, a, 3) can also be computed; we leave these calculations, based on
Corollaries 3.1 and 3.2, to the reader.

REMARK 1.5. — (1) The prescription of the lower Hausdorff spectrum has also been
studied in [24], where the authors work on R and construct (HM) continuous measures, not
exactly dimensional, but with upper Hausdorff dimension equal to 1, and whose support
is equal to [0, 1], with a prescribed lower Hausdorff spectrum in the class & of functions
f Ry — [0,1] U {—oo} which satisty: f(1) = 1, dom(f) is a closed subinterval of [0, 1]
of the form [« 1] such that & > 0, and fi[4,1) = max(gj[a,1),0), where (i) g is the supremum
of a sequence of functions (g, )n>1, such that each g, is constant over its domain supposed
to be a closed subinterval of [0, 1] and g, (8) < g for all 8 € [0,1]; (ii) e, 1] is the smallest
closed interval containing the support of g. It is also shown that for an (HM) measure to be
supported by the whole interval [0, 1], it is necessary that the support of its lower Hausdorff
spectrum contains an interval of the form [a, 1], (0 < a < 1).

The authors of [24] also study the case of non (HM) measures. In this case, they construct
non exactly dimensional measures with upper Hausdorff dimension 1 whose support is equal
to [0, 1], with a prescribed lower Hausdorff spectrum in the broader class 7 of functions f
which satisfy that f(1) = 1, 0 < inf(dom(f)), and f\dom(f)\{l}\ = gldom(H)\{1}|5 where
g satisfies property (i). This includes all such functions f for which g is lower semi-continuous.
Simultaneously, they also construct a non (HM) measure with lower Hausdorff spectrum
given by g.

(2) All the spectra defined in this paper make sense if measures are replaced by non nega-
tive functions of subsets of R? to which a notion of support is associated. This is the case for
instance of Choquet capacities. In [57], the prescription of the spectrum « — dimpgy E(C, «)
is studied, where C is a Choquet capacity on subsets of [0, 1] but not a positive measure, which
makes the situation easier to tract. The authors can find a capacity with spectrum given by f,
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for any function f = sup,s; f;, where the functions f; : R — [0,1] U {—oo} are such that
dom(f;) is a non empty closed subset of R, , and either f; = 0 over dom(Jf;) or f; is invertible
from dom(f;) onto f(dom(f;)), with a continuous inverse (this class of function contains ).
Moreover the capacity is (HM).

In [56], the authors construct non (HM) non negative functions C' of subsets of [0, 1],
which are not measures, for which the spectrum

o el_i)Igl+ dim g U ﬂ {x € supp(C) : r**¢ < C(B(z,r)) < r*}
s>00<r<s
is prescribed in the class of upper semi-continuous functions f : Ry +— [0,1] U {—oo} with
non empty compact domain. However, the spectrum which is prescribed is quite rough with
respect to the Hausdorff spectrum.

REMARK 1.6. — Itis worth mentioning that in this paper our constructions provide con-
tinuous measures even when their dimension equals 0, and are based on the properties of the
simplest multifractal measures, namely Bernoulli products. These properties are combined
in recursive concatenations (roughly described in Section 1 and more elaborated than those
used for instance to lower bound the Hausdorff dimensions of the sets E(u, ) in the study
of weak Gibbs measures) in order to converge asymptotically to a prescribed multifractal
structure.

We will first prove Theorem 1.5 because its proof is shorter than that of Theorem 1.4, and
it already contains some of the main ideas involved in the proof of Theorem 1.4. However,
none of the two proofs can be reduced to the other one regarding the computation of f f .

The paper is organized as follows. Section 2 introduces preliminary information about
Bernoulli measures. Section 3 is dedicated to the proof of Theorem 1.5, Section 4 to the
proof of Theorem 1.4, and Section 5 contains the proofs of Propositions 1.1, 1.2 and 1.3,
as well as some inequalities in (1.4) and (1.5). Section 6 gives a short account about the mass
distribution principle.

2. Some notations, and preliminary facts about Bernoulli measures

2.1. Notations

For n > 1, define

d
In = {H[kiQ_"» (ki+1)27":0< ki < 2”} .

i=1
If - € R? and n > 0 we denote by I,, () the closure of the unique dyadic cube, semi-open to
the right, of generation n, that contains x.
Given two elements I = Hle[kiZ_", (ki +1)27"]and I' = Hle[kﬂ_”', (K, +1)27"]
of U,>0 7, the concatenation I - I" of I and I" is defined as
d
2.1) I-1 =k + k2™ k27" + (K} + 1)27" .

i=1
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If J is a closed dyadic cube of generation j, we denote by A" (n, J) the set made of J and
the 3¢ — 1 dyadic cubes of generation n neighboring J, and denote by A '5(n, J) the union
of A1 (n, J) and the 5¢ — 3% closed dyadic cubes of generations n neighboring A1 (n, J).

Fix Lg a closed dyadic subcube of [0, 1]¢ of generation 2 which does not touch 9]0, 1]4.
For each integer £ > 1, we can fix a collection (k) of k closed dyadic cubes of generation
k) = [WJ + 3, all contained in Lg, such that the sets UIGW2(Z(k),L) I.L € £(k),
are pairwise disjoint. This property will imply that the measure constructed in Section 4.1 is
“weakly” doubling.

If v is a positive Borel measure supported on [0, 1]¢ and x belongs to the support of v, we

set
logv(I,(z))

dl,@,n) = —nlog(2) -

For the definitions of the s-dimensional Hausdorff and packing measures denoted respec-
tively as #° and 2° in this paper, the reader is referred to [33] or [60].

2.2. Some facts about Bernoulli measures

If ¢ € [0,1], let H(q) = —qlog,(g) — (1 — q) log,(1 — ¢), with the convention 0 x oo = 0.
Also, denote by v, the Bernoulli measure generated by (¢,1 — ¢) on [0, 1].

Foreach0 <y < dand a > v, we can fix (p,q) = (Pa,y,da,y) € [0,1]? such that

{a = —d - (qlogy(p) + (1 — g) logy(1 — p))
v=d-H(qg).

Indeed, since v/d € [0, 1], there are clearly two solutions to H(q) = v/d in [0,1] if v < d
and only one if 7 = d, namely 1/2. Fix ¢ one solution. Now we seek for p € [0, 1] such that
a(p) = —d(qlogs(p) + (1 — ) logy(1 — p)) be equal to a. If ¢ € {0, 1}, this is immediate.
Otherwise, the mapping «a(p) decreases over (0, ¢] from oo to a(g) = =, and it increases
on [g,00) from v to co. So in this case there is at least one and at most two solutions to
a(p) = a since we assumed that v < a.

We will use the following classical fact, which is just a consequence of the strong law of
large numbers.

PROPOSITION 2.1. — Suppose that d=1. Let (p,q) € [0,1]%. For vg-almost every
z € [0,1],
Jim d(vp, z,n) = —qlogy(p) — (1 — g) logy(1 — p),
lim d(vg,z,n) = H(qg).

n—oo
d d
COROLLARY 2.1. — Forevery 0 < < dand a > 7, for ugim-almosl every z € [0,1]
. d
nlirr;o d(sziw,x,n) = q,

lim d(Vgi‘i,x,n) =7.

n—oo
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Notice that if ¥ > 0, both the V;idﬁ mass and the 1/(%1w mass of the boundaries of closed
dyadic subcubes of [0, 1]¢ vanish.
Now forevery 0 < v <d,a>~v,n € Nand ¢ > 0 define

dw®? z,n) € [a—€ a+¢, }

Pa,~

d(”(%;’iwax7n) € [7_677+€]

E(a,v,n,¢) = {:1: e[0,1)¢: {

Let (€n)m>1 € (0,1)M+ be a decreasing sequence converging to 0.
By Corollary 2.1, for each m € N we can fix an integer n2, (c, y) such that

(2.2) V@4 (F(e,y) > 1/2, with Fr(a,7) = (] Ela, 7,1, 6m/2).

o,y
n>nd, (a,)

We notice that for all n > n2 («,~), since ug‘? (Fin(a,v)) < 1and foreach I € &, such
that I N Fy,(a,7) # @ we have 2-"(+em/2) < y(‘i’i (I), we have #{I € Fp, : IN Fp(a,v) # @}
< on(vtem/2),

Then, let

- log I/Qid (In(z) N Fr(a,y))
E(a,v,n,€) = x € F(a,y) : do.y “nlog(2)

€ [7_6m77+6m]}-

We can find n,, (o, ) > n® («,~) such that

(2.3) v2! (Fnla,y) >1/2 - 1/2™, with Fp(e,y) = () E(e,7,n,6m).

n>nm(a,y)

Indeed, for n > 72, (o, v) we have

v (Fin(0,7) \ B0, 7,1, €m))
= 1/gid,W ({x € Frp(a,7) : p®d (In(z) N Fp(a,v)) < zfn(vﬂm)})

Qo,y

< Z V(ii(lmFm(av'y))

I€Tn: 82 (INFm (a,7))<2-n(r+em)
< (#{I € Fp : IN Fr(a,v) # @})270+em)
2.4) < 2n(rtem/Dg—n(rtem) — g=nem /2,

so (2.3) follows if we choose n,, («, ) such that EHan(aﬁ) 27 Mem L 2TM,
We define

(2.5) Hay = V?ﬁfw and v, = Vgi‘i (- N EFp(ay7)).

We can now gather a series of properties which will be used in the proofs of our main
results.

PROPERTIES 2.1. — Letm € N, 0 <y <dand a > v.
() If N > np,(a,7), by construction we have

(2.6) 1/2 < Vo (Fn(a, 7)) = > Vay(I) <1
I€eI N INFy, (0,y)#QD
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(notice that if & = +, by construction the above property also holds for p,, o). Consequently,
since for each I € Jy such that I N F,,(a,7) # @ we have 27 NO+em) <, (1) <
2~ N(r=em) we get

2.7) 271oNO—em) < BT € T 1 TN Fpa,y) # 2} < 2NOFem),
By construction of F,, (a,v), we also have

(2.8) > Van(I) <27™.

I€IN: INFy (a,y)=9
(2) If J is a dyadic cube of generation n > n,,(a,7), J N F,,(a,v) # &, and N > n, then
we have by construction

(2.9) Var (D)= Y van(I) < |7,

JDIEI N,
INF,, (o,y)#2

and if, moreover, J N ﬁm(a, v) # 2,

(2.10) TP <van (D)= D van(D) S|P
JOIET N,
INFp, (a,y)#2
(3) If J is a dyadic cube of generation n > n,,, (a0, ), JN F(,v) # &, and N > n, we also
have

(2.11) > oy (D) < pray(J) < |J[F 75
JDIeI N,
INFp(a,y)#2

Also, (2.9) implies
#{JDI€ TN :INFn(a,y) # 2} < |J[y-emaNOFem),
hence

(2.12) Z praq(I) < 9—n(v—€m)9—N(a—y—2em)

JDIeEF N,
INFy, (o,y)#9

3. Prescription of lower Hausdorff spectra: Proof of Theorem 1.5

3.1. Construction of 1. and estimates of its local dimension

Setting apart some important details omitted in the outline provided in Section 1, the
proof we present for the general case will be more sophisticated because: (1) f is only upper
semi-continuous; (2) f may have more than one fixed point; (3) dom(f) may contain oo;
(4) we will manage that all the sets E(u, 3) are substantially big when they are not empty,
this meaning that they contain a Cantor set. Referring to our sketch of proof, since we will
use Bernoulli measures for piq, £(a,) and vy, f(a,), to getting such Cantor sets necessitates to
avoid using couples («;, f(a;)) for which f(a;) = 0 in the construction; indeed in this case
we know that the Bernoulli measure v, f(q,) is @ Dirac mass. These couples will be replaced
by couples (e, vm(c;)), where 0 < 7, (e;) tends to 0 as m — oco. In particular, to illustrate
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the case where f(0) = 0 and f(a) = —oo for all & # 0, instead of taking y = §,, for some
z € R?, we will construct a continuous measure on a Cantor set of dimension 0.

3.1.1. Construction of the measure u. — We will denote dom(f) by 4. Let D € Fix(f). Due
to our assumption requiring the upper semi-continuity of f, there exists a dense countable
subset A of 7\ {oo} such that for all & € ' \ {00}, there exists a sequence (., ),>1 in AN+
such that lim,, o (o, f(an)) = (@, f(a)) (if o € 4 and f is continuous at co the same
holds at (oo, f(00)), but we will not need this property). This important fact is elementary
(see for instance [56, Lemma 2] for a proof when dom( f) is a compact subset of R; the general
case considered here then follows immediately).

We fix once for all such a A, and assume without loss of generality that it contains a dense
subset of Fix(f).

Let apin = min(¢) and apax = max(J) € Ry U {oo}.
If A\ {0,D} # o, enumerate its elements in a sequence (osz)jzl (with necessary
redundancies if A \ {0, D} is finite), and for each m € N set

/Im:{ajA:lSjSm, af24em};
otherwise set gm = &. Also set

D,, = 2¢,, if D =0, and D,,, = D otherwise,
am(0) = Dy, if D = 0 and a,,(0) = min(2e,,, D)/2 otherwise,

p(00) = (rna»x(d,m,Inax(ozjA :1<5< m))2 if apax = 00.

Then let
A, U {Dn} if 0 < amin < Qpax < 00
A = Zm U{Dm} U{am(co)} if 0 < amin and amax = 00,
" ) A U{Dn} U {am(0)} if atmin = 0 and amax < 00,
A U{Dpm} U{am(0)} U{am(c0)}  if Gmin = 0 and amayx = 0o.

Fora € A, let

f(a) ifae Ay, and f(a)>0
f(oo) if o= am(oo) and f(oc0) > 0,
e ifa= D,

an(0)  if a = a.,(0),

€m ifa € A, and f(a) =0,

€m if @ = o, (00) and f(o0) = 0.

Notice that ,,, (o) < aforalla € A,,. For the values of o« € A,,\ {0, D} such that f(a) =0,
we choose 7y, () > 0 so that the measure v, , () be continuous but of dimension tending
to 0 as m — oo, and in our construction no level set E(u, §) be supported on a countable set;
indeed, with this choice every non empty such set will contain a Cantor set when f(3) > 0.
The choice of a,, (0) and 7, (@, (0)), and that of D,,, when D = 0, correspond to the same
goal.
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Using the definitions of Section 2, for a € A,,, set
Po = Paym(a) ANd Vg = Vg (o) fOr @ & Fix(v,) and po = Vo = Va,q for a € Fix(y,).

Strictly speaking, 11, and v, should be written p,,, , and v, o, but for the sake of readability
we will omit the index m.

Also, let

Ny, = max{n, (a, vm(a)) : a € A, }.

Now let (N, )nen be an increasing sequence of integers defined recursively satisfying the

following properties:
Vm 2> 1, Ny 2 npy,

G.1) max((m + #A;, + max(An))%, nm) = o(/Nm_1) as m — oo,
. m—1

(max({1} U Ap—1)) Y Ni = o(min({1} Uym(Am))v/Nim) as m — oo.

=1
Foreachm > 1and o € A,, set

Gn(a)={I € Fn,, : INF,(a,ym(a)) # 2}

1 ifa=D,,
pm(a) = _ .
2-™/#A,, otherwise.

and

Due to (2.6) we have

(3.2) 27 < Y wa()<1 (Vo€ Ay,
I€eG (@)
SO
(33) 27 ST pulDw) (up,, (1) = v, (1) < 1.
I1E€Gm (Dm)
Also,
9-m .
(34) > > pm@uaD) <Y 2 all <27
€A \{Dp} IE€Gm (a) a€An\{Dm} T
For each m € N, we enumerate the elements of A,, as oy, 1, ..., Qm, 24,,, We denote
by ¥, the set of disjoint closed dyadic cubes ¥ (# A,,,) defined in Section 2.1, and denote its
elements as Loy o, 15+ - s Linya wa,, - WE also denote Ly, q,, ; bY L i and £(#Ay,) by £y,

We can start the construction of u. We will construct a Cantor set K by defining recur-
sively the sequence of families of cubes (G, ) men such that K = (1,5, U ¢, J>and simul-
taneously a consistent sequence of measures u,, supported on | sea,, J to get the desired
measure y on K.

Let

G, = U {L1ilhi 1 € Gi(oay,)}

a1 ;€A
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(the concatenation of intervals has been defined in (2.1)). By construction, the interiors of
the elements of G are pairwise disjoint. Then the measure u; is defined on G; by

pr(a1i)ta, , (11,:)

o Y n@pall)

a€A;1 I€EG: (a)

(3.5) pi(Lyilis) =

Combining (3.3) and (3.4) we have

27'< Y > pile)pad) <1427

a€A1 I€G: (a)

Consequently, (3.5) yields

2
gpl(al,i)ual,i(l—l,i) < pi(Laidg) < 2p1(0a i) phay  (11,6)-

Then, we define recursively for m > 1:

Gm+1 = U U Gm+1(Imaam+1,i)7

I, €Gpm am41,i €EAm+1
where
Grt1(Imy mt1) = {ImLm+1,iIm+1,i t g1 € Gm+1(am+1,i)}
and a measure fy,+1 on G,,4+1 by setting

Pm+1 (am+1,i)/1’am+1,i (Ierl,i)

Mm-l—l(ImLm—i-l,iIm-i-l,i) = /J'm(Im) 5
Yo Y (@)
Q€A1 I€EG 11 ()
which by construction satisfies
(3.6) Fim1 ( +1,ilm1,0) <2

<
1+2=—m = Mm(Im)pm+1(am+1,i)ﬂam+1,i(Im-&-l,i)
by (3.3) and (3.4).

Each measure p,, can be trivially extended to a probability measure on ¥, ,, where
gm = —log, |I,,|, that we still denote by p,,,. This measure yields an absolutely continuous
Borel measure on [0, 1]¢, denoted by ., again, whose density with respect to the Lebesgue
measure is given by 2497 11, (I) over each cube I € 7, . By construction, the measures fi,,
(m € N) weakly converge to a Borel probability measure x on [0, 1]¢, supported on the
Cantor set K defined as

K= U 1

m>1I1€G,,

and satisfying u(I) = p,(I) forallm > land I € ¥, . Moreover, since K does not
intersect the boundary of any dyadic cube due to the definition of the sets #,,,, u vanishes on
such a boundary.
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3.1.2. Estimates of the local dimension of p. — Letz € K andn > g; = Ny +1logy | L1, |7 .
There exists a unique m € N such that g,, < n < gn+1. By construction, we have
Iy (z) € Gpand I, . () € Gpg1,and Iy, (z) C I(z) C I, (z). Moreover, there
exist a unique sequence of exponents a1 (z) € Ay, ...,an(z) € Ay, amy1(z) € Apy1, and

a unique sequence of pairs of intervals {L;, I; }1<j<m+1 such that
(37) Igm (.T) = L1[1 s LmIm and Igm+1 (.Z‘) = L]_Il cee LmImLm+1Im+17
with I; € Gj(a;(z)) and L; € #; foreach 1 < j < m + 1. The intervals invoked in (3.7)
will be used in the following statements.

ProProsSITION 3.1. — With the notations introduced above, there exists a positive sequence
(0n)n>1 converging to 0 as n — oo such that, uniformly inx € K, for g, < n < gpm41 one has

1.

I,

(3.8) p(In(z)) < 9ndn.

2_gm0‘m ()= (n—gm)amt1(z) —

2. ifeithern = gm, or amy1(x) € Fix(ym41) and[m+lmﬁm+l(am+1(x)’am-i—l(x)) # 9,
then

(39) 2—716” < /*‘(In(w)) < 277,5"7

= 2=gmam(z)—(n—gm)amti(z) =

3. if gm + lmt1 + N1 <N < gy then

(3.10) pln () < gt 2N 1o

2= 9mam () = (Nn=gm ) Ym+1(¥m+1(2)) = Nm41(¥m+1(2) =Ym+1(mt1(z)) —
COROLLARY 3.1. — Forall x € K we have
1. d(u,z) = liminf a,, ().
2. If for m large enough we have oy, (z) € Fix(ym) and Iy N Fyp(om(2), am(z)) £ 2,
then d(u, ) = limsup,, ., Cm(T).
3. Ifliminf,, . am(z) € I\ Fix(f) then d(u, ) = oco. In particular, if « € J \ Fix(f),
then E(u, o) = E(p, a, 00).

Proof of Proposition 3.1. We will write o for o ().
At first we notice that by construction, and due to (3.6), we have

m m
Cm H Ko (IJ) < ,U‘(Igm(z‘)) <2m H Ko (Ij)a
Jj=1 j=1

where ¢, = T[72, (14+27™) 7 T2, pjay) > e ' [T~ pj(e;). Then, due to the definition
of Gj(Oéj)
(3.11)
Cm XD ( =S (o + )N, log(2)> < u(l,, (z)) < 2™ exp ( — S (e — )N 1og(2)).
j=1 j=1

Proof of (1) and (2): We distinguish two cases. Let g/, = gm + m+t1-

CASE 1: Im < N < g;n + MNm+1- Write Ig;n+nm+1 (:C) = gm(w)Lm+1Jnm+1a where

J, =TI, ({29mz}), {t} standing for the vector whose entries are the fractional parts

Mm+1
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of the entries of t. We have Jp,,, ., D Im1, Imy1 N Frg1(@ma 1, Ymg1(@my1)) # 9, and the
generation of J,,, . 1S g1 > Nng1 (g 1s Qony1)-

We obviously have pu(I,(x)) < w(ly,, (z)), and by construction if api1 € Fix(Ym+1)
(remembering that g, ,, = Va,,,, and using the equality in (2.9)),

11y, () = p(In(z) = p(lg;, +n,... (7)) = > (I, (x) Lm 1)
Jrpm 1 21€Gmt1(am+1)
Z pm+1(am+1):u’am+1 (I)

J"m+1 DIEGm+1(O(m+1)

= u(ly,, (2))
g Z Z pm-&-l(a):u’a (I)

a€Am+1 I€Gm41(a)

Pm+1\Cm+1
_ +( +) ,LL(I

9m (I))Vam_H (Jnm+1 )
YooY pen(@pall)

a€Am11 IEGm41(a)

> Muugm () Va1 (Jnpmis)  (wehave used (3.3) and (3.4) again).

T 14 2-(m+D)
Combining this with (3.11), if a1 € Fix(Ym+1), we thus get
— I,(z - o
cm+1cmlyam+1(‘]ﬂm+1) = N;r(y, ( )) < cm2™,
exp ( - Z o N; log(2))
j=1

with ¢, = exp(327L, Nje;log(2)). If, moreover, I y1 N Frit1(Qmat1, my1) # @, then

A Fm+1(am+1, Qm+1) # 9, so due to (2.10) we have
cm+lc 12 nmt1 (@mtrFems) < lj;gln('r)) S Emzma
exp ( - Z a; N; log(2)>
j=1
which finally yields
m  — my
exp ( — amy1(n — gm)log(2 Z a;N;log(2 )
with Cp, = ¢} 1€, 2m22matnmss)(max(Ami)+emts) Moreover, it is readily seen that the

previous upper bound holds whatever a.,,+1 be.

Now, due to the conclitions (3.1) we have imposed to the sequence N, and the definition
of p;(a;), we have log(Cp,) = 0(gm) and

Sup{ Z a;Nj : (oj)1<j<m—1 € H A; } = o(min(4,,)gm)-

Consequently, there exists a sequence (4, )nen converging to 0 as n — oo, such that (3.8) and
(3.9) hold uniformly in z € K and g, <n < g/, + Nmt1-
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CASE 2: g, + g1 < 0 < gy Write In(x) = Iy, () L1y, Where Jp, g =

—gr ({29mx}). We have Ju—gr D ity Imt1 N Frng1(Qmgr, Yma1(@)) # 2, and the
generation of J,, g 181 — g, > Nmy1 > Nng1(Omg1, Qmg1)-

By construction:

p(In(z)) = > 1y, (€)Lm 1)

J ;nDIGGm,-{—l(am-%—l)

> Prmt1(Cm41) B yr (1)

Jn_gr, DIEGmi1(amy1)

Z Z prmt1 (@) o (1)

a€Ami1I€Gp41()

= u(ly,, (z))

m Am i
Prm+1(Cm1) Iy, (@) pap iy (Jn—g: ) using (2.11),

<
B Z Z perl(O‘):u'oz(I)

a€Am+1 I€Gm41(a)

with equality if a;, 41 € Fix(7yy,41), remembering that in this case pq,,., = Va,,,,» and
using the equality in (2.9). Consequently,

p(In (7)) < 2pm41 (am+1)N(Igm (x))ﬂam+1 (Jn*gin )s

and

Pm (o777
Ot O] Ty (@)W (nat) < #0(&)) < 20 (@ ()W, ()

if 41 € Fix(ym+1) (we have used (3.3) and (3.4) again). Set C,, ,, = C,n2(n=9m)em+1_ The
previous estimates combined with (3.11) and the estimates (2.11) and (2.10) of pia,,, ., (Jn—g7, )
and v, ,, (Jn—g: ) respectively, yield:

p(In(x))

exp ( — &my1(n — gm) log(2 Za]N log(2 )

< Cm,n7

and

ot < (1, (z)

m,n < Cm,n

exp ( — amr1(n — gm) log(2 Z a;N;log(2 >
if api1 € Fix(ymy1) and Iyp1 N ﬁm+1(am+1, amH) # . Then, due to (3.1) again, the
above sequence (J,)nen can be modified so that (3.8) also holds uniformly in z € K, and
gwln + Nmy1 <N < Im+1-

Proof of (3). — It suffices to use (2.12) instead of (2.11) to estimate pq,,,, (Jn—g ) in the
previous upper bounds for u(I,,(z)). O

Proof of Corollary 3.1. — (1) and (2) follow readily from (3.8) and (3.9), and the fact that
by construction the neighboring dyadic cubes of generation n of I,,(z) have a y-mass equal
to 0 or for which the estimates of Proposition 3.1(1)(2) also hold.

For (3), suppose that & = liminf,, o am(z) € 4 \ Fix(f). Since Fix(f) is closed
(because f(a) < a and f is upper semi-continuous), there exists a subsequence (1my)k>1
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such that oy, +1(z) converges to a and 7, +1(m, +1(z)) converges to f(a) < «). Take
n = n(k) = gm, + bmyt1 + "mp+1 + V/Nm,+1. By construction g,,, = o(n) and
N — Gm ~ N~ y/Np,+1, and using (3.10) we have

H(In($)) < 2n6n,+2n2€m,k+l
2o(n)—n'ymk+1(amk+1(l‘))—n2(amk+1(m)_’Ymk+1(amk+1(m)) - ’

SO
p(In(z)) > Y +1 (A 41(2)) +namk+1($) — Y +1 (O, 11(2)) +o(n).
—nlog(2) log(2) log(2)

Letting k tend to oo yields the desired conclusion on d(u, ), again because the neigh-

boring dyadic cubes of generation n of I,,(x) have a y-mass equal to 0 or with the same

behavior as p(I,(z)). Now, if a € 4\ Fix(f) and z € E(u, ), then (ap(z))m>1 must
take infinitely many values in 4 \ Fix(f) since Fix(f) is a closed set, and consequently

E(p, @) C E(p, o, 00). O

3.2. Auxiliary measures and lower bound for the lower Hausdorff spectrum

3.2.1. Construction of auxiliary measures. — Let & = (m)m>1 € [[ ey Am.
Now, we construct a measure v as follows: Let

Ga,1 = {L17a111 1 e Gl(al)},
and define on Gy ; the measure
Vay (Il)

S v @)

I€G1(a1)

(312) V&71(L1’a1[1) =

Due to (3.2), (3.12) yields
Vo, (I1) < va1(Li,a,11) < 200, (I1).
Then, recursively we define for m > 1
G&,m—i—l - U G&,m+1(Ima am-i—l)a
IMEGa’m
where
Ga,m+1(Imaam+1) = {ImLm+1,am+1Im+1 : Im-i—l S Gm+1(am+1)}

and a measure vg 41 0N Gg pmy1 by

Vo (Im
Va,m+1(ImLm+1,am+1Im+1) = Va,m(-[m) Z+ ( +1) (I)
Vam+1

IeGmy1(amt1)
Due to (3.2) we have

Va,m+1(ImLm+1,am+1Im+1)
Va,m(Im)Vap 1 (Im+1)
Each measure vg ., can be trivially extended into a probability measure on &, ; we still
denote this measure by v4 ,,,. This measure yields an absolutely continuous Borel measure
on [0,1]¢, denoted by Va,m again, whose density with respect to the Lebesgue measure is
given by 2%9m 5 .. (I) over each cube I € &, . By construction, the measures vz, (m € N)

(3.13) <2.
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converge weakly to a Borel probability measure v on [0, 1]¢, supported on the Cantor set K5

defined as

K>Kz=() U 4

m>1Je€Gg,m

and satistying v5(I) = vgn(I) forallm > land I € &, .
Estimation of the local dimension of vz. We use the same notations as in Section 3.1.2. Let
z € Kz andn > g = Ny + ¢;. There exists a unique m € N such that g, < n < gm+1. By
construction, we have I, (z) € Ga,m and Iy, . () € Ggmi1,and Iy, (z) C I(z) C
I,, (z). Moreover, we have (3.7).

PROPOSITION 3.2. — There exists a positive sequence (0, )n>1 converging to 0 as n — oo
such that, for vg-almost every x € Kg, for n large enough,

(3.14) 9=ndn < va(In()) < onén

- 2_gm'Ym (am)_(n_gm)'ym+1(am+l) -

The previous proposition, the fact that by construction the neighboring dyadic cubes of
generation n of I, (z) have a v4-mass equal to 0 or for which the estimates (3.14) hold, and
the mass distribution principle (Section 6) yield the Hausdorff and packing dimensions of v4:

COROLLARY 3.2. — We  have d(vg,r) = liminf,, o Ym(am) and d(va,z) =
lim sup,,,_, o ¥m () for vg-almost every x. Consequently, dimpy (vz) = liminf,, o v(am)
and dimp (vz) = limsup,,,_, .. v(m ).

Proof of Proposition 3.2. At first, we prove the following fact: there exists K& C K, of full
vg-measure, such that for all z € K, for m large enough, we have I, N Fy, (0, Ym () # 2,
with I,,, defined as in (3.7).

Indeed, due to the multiplicative structure of vz, by construction we have
va({z € Kz I N Fyn(am, Ym(0m)) = @})

Z Va,, (J)

JET N » JNF (Gt Y (0 ) ) =2
= > vama()=

I€G4 m_1 Z Vo, (J)

JET Npm s INFin (Y (@m ) # 9
2—m 1
< Z V&,m—l(I)F =g~ (m=1)
IeG&,mfl

where we have used the left hand side of (3.2), and (2.8). Then, by the Borel-Cantelli lemma,
we have the desired conclusion.

Now the proof of the proposition follows from lines similar to those used to prove Propo-
sition 3.1:

Let z € Kg. At first we notice that by construction, and due to (3.13) we have

(3.15) I ve, 1)) < vally, @) < 27 [ ] va, (I).
j=1 j=1
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Then, due to the definition of G(a;),

'CV—l < Va(Iym (.’E)) < 2mfcvm
exp (= 7 75(ey)N; log(2))
where ¢,, is defined as in the proof of Proposition 3.1.

We distinguish two cases.

Case 1: g < n < g, + Nyngr. Write Iy 1, (%) = I (o) Lmy1Jn,,,,» Where
Jnpir = nm+1({29maz}) We have
va(ly,, () 2 va(In(z)) = va(lg, +n, . (2) = > va(ly,, (z) LmI)

Iy 2TE€Gmi1(amy1)

Z l/Oém+1(I)

J"m+1 DIEGm+1(Oém+1)

Z VOtm-H (I)

I1€eGmt1(ams1)

= Vel O onisUhnis) 5 1, @),y (),

Z Vo i1 (I)

IeGmii(amt1)

where we have used the right hand side of (3.2). For m large enough so that
g1 0 Fr 1 (@meg 1, Y1 (@mg1)) # @ we have J, 0 Frng1 (@1, Y1 (Qmg)) # @
and the generation of J, ., 1S Wmy1 > n(0m1, Ymt1(@m+1)), so (2.10) holds for J,,, ., .,
and this combined with (3.15) and (2.10) yields

Er—n12—"m+1(’Ym+1(01m+1)+€m+1) < Z/a(In(ZL‘)) < 2ME..
exp ( = 21 vi(eg)N; log(2))

Consequently,

(3.16) Cl< va(In(@)) < Co,
exp (= ms1(am11)(n = gm) log(2) — X7, 7 () Ny log(2) )

m

with C,,, = €,,2m22(lm+1+0m+1) (max(ym+1(Am+1))+em+1)

Due to the conditions (3.1) we have imposed to the sequence (N,)m>1, We have
log(Cy,) = o(gm) and

m—1

SHP{ Z ()N : (ej)1<jem-1 € [] 4 } = o(min(ym (Am))gm)-

Jj=1

Consequently, there exists a sequence (4, )nen converging to 0 as n — oo, such that (3.14)
holds for all z € K, for m large enough and g,, < n < g}, + "m41-
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CASE 2: g, + g1 < 0 < gy Write In(x) = Iy, () L1y, Where Jp, g =
In,g;n({lemx}). We have

va(In(z)) = > va(ly,, (€)LimT)

J ot DIE€EGm41(amar)

Z Vam+1 (I)

Jn_g/m DIEGmy1(amy1)

> v

I€Gmiy1(amt1)

= va(ly, (2))

hence
Va(1g,, (2))Vami1 (Jn—g;,) < va(ln(z)) < 2051y, (%))Vay 1 (Jn—g, )
(we have used (3.2)). For m large enough we have I,,,11 N fm+1(am+1,'ym+1(am+1)) + .
This implies J,, g N ﬁmﬂ(am“, Omt1) # 2.
Since, moreover, n — g,, > n(m+41, Ym+1(m+1)), (2.10) holds for J,,_, and the
previous estimates combined with (3.15) yield

va(In (7)) ~

cl <
exp (= Y1 (@m 1) (0~ gm) log(2) = L7y 75(0;)N; log(2) )

m,n —

where

Con = Crp2m3x(Ym+1(Amt1))(ghn =gm) 9 (= )em41
Then, due to (3.1), the above sequence (8, ),en can be modified so that (3.8) also holds for
all z € K3, for m large enough and g/, + nym < n < gmt1- O

3.2.2. Lower bound for the lower Hausdorff spectrum

PROPOSITION 3.3. — For any closed ball B whose interior intersects K = supp(u), we have
dimg (BN E(p,a)) > f(a) forall a € J.

Proof. — Fix B, a closed ball whose interior intersects K. There exist mg € N, a sequence
(aj)1<j<mo € TI72) Ay, as well as pairs of dyadic cubes ({L;, Ia, }1<j<m,» With L; € Z;
and I, € G;(a; ) such that

LI, - Lp,I

Oémo

C B.

Now fix o € J.

Ifa € 4\ {0,D,c0} then for each m > mg, fix ay, € Ay, \ {Dn}, so that
lim 00 (Ym (am) = flam)) = f(a). If, moreover, a € Fix(f) \ D, take a,,, € Fix(f).

If @ = 0 then for each m > my let a;y, = @, (0).

We have lim,, — oo (Ym (0m) = am) = 0= f(a).

If « = D then for each m > mg let o, = D,,,.

We have limy,, o0 (Ym (@) = am) = a = f(a).

If o = oo then for each m > myg let ay, = uy (00). We have v, () = f(00) if f(o0) > 0
and lim,;, —, oo (Ym (@m) = €) = 0 = f(0c0) otherwise.

Let @ = (aun)m>1, and consider the measure v5 constructed in the previous section.
This measure is supported on the set IN{a C K exhibited at the beginning of the proof of
Proposition 3.2, and by construction v5(B N Kz) > 0, so due to Corollary 3.2 we have
dimy K5 N B > f(a).
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Moreover, due to Corollary 3.1(1), we have K5 C E(u, @), so dimg (BNE(u,a)) > f(a).
If, moreover, o € Fix(f), then by Corollary 3.1(2), our choice of (o, )m>1 implies that
K5 C E(u,a),sodimg (BN E(p, @) = f(a). O

3.3. Upper bound for the lower Hausdorff spectrum
Recall that f is upper semi-continuous. Also, its domain, denoted by 4 is a closed subset
of [0, 00], so due to Corollary 3.1(1), if & ¢ 4 then E(u, ) = &, hence dimy E(p, @) =

—00 = f(a).
Let o € 4\ {oo}. Fixn > 0. Then choose § > 0 such that f(3) < f(a)+nif |8 —a| <4.
Due to Corollary 3.1(1), E(p, @) = {z € K : liminf,, o an(z) = a}, so

Ewo)c (VU U U U  InLmtral

MeNm>M I,,eGnp, O/EAm+1: IEGm+1(a')
o' €la—6,a+4)

For a fixed m > 1, all the cubes I,;, Ly, 11,4/ are of the same generation g,,+1. Moreover the
set G, of these cubes has a cardinality

HCm= > Y #Gmia(e)) < (#Gm)(#Ami1) max G (o).
e et
We can deduce from (2.7) and the definition of +,, 41 that
#G g1 () < 2Nmar(F(@)F3em 1),
Thus, by using the upper semi-continuity of f we get

#ECm < (#Gm)(#Am+1)2Nm+1(f(a)+77+36m+1)_

Moreover,
4G, =] (3 #6,9).
j=1 BeA;
Now, we deduce from (3.1) that log(#G,) +log(#Am+1) = o((f(a+n)Nyn11), and finally
obtain
log(#6C'm)

lim su < fla) +n.
D N R (2) fla)+n

Noting that lim,, —c0 gm+1/Nm+1 = 1, this is enough to conclude that for all € > 0 we have

Z Z Z Z Z I L1 o T OF7H€ < 00,

MeNmMm>M I, eGp, C\(’GAm+1: IEGT,L+1((X')
o’ €la—68,a+6)

so HIOTIH(B(p,a)) = limp oo KT (B(1,0)) = 0, and dimy B(p,a) <

f(a) +n + €. Since this holds for all » > 0 and € > 0, we get the conclusion.

Now suppose that @ = co € J. Letn > 0and A > 0 such that f(a) < f(co) + n for
a > A (f is upper semi-continuous over I). We have

Epeoyc NV U U U U  InLmsial

MeNM>M I, €Gy /€A y1:0 2ATEG 41 (a’)

and following the same lines as for the case o < oo yields dimy E(u, 00) < f(o0), since f is
upper semi-continuous at oo.
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3.4. pis exactly dimensional, with dimension D

By construction, for each m > 2, we have
p({z € K : am(z) # Din}) = Z Z Z p(I Lo J)
I€Gm—1 a€A\{Dm} JEG M (a)

> M(I)ZQGA”\{DM}ZJGGWL(M pm (@) (J)

I1€Gm_1 Daed,, 22066 (o) Pm(@)ba(T)
2—m i
< > uln) 5 =2 (m-1).
1€Gpm—1

where we have used (3.3) and (3.4). By the Borel-Cantelli lemma we get that p-almost
everywhere, a,,, (x) = D,, for m large enough. Moreover, denoting by I,,, the same interval
asin (3.7), we have

p({z € K : am(z) = Dy, Iy O Fp (D, D) = 2})
> vp,, (J)
JEF Ny s INFon (Do, Do) =2
= Z Um—l(I) =

IGGa,m71 ZaGAm ZJGGm(a) pm(a)p’a(‘])

9-m
< Z um_l([)FZQ( o)
IGGa,m71

where we have used (2.8) and (3.3). Then, a new application of the Borel-Cantelli lemma
implies that for p-almost every z, for m large enough, we have both a,,(z) = D,, and
I,N Fm(Dm, D,,) # @. We can then conclude from (3.9) and Corollary 3.1(1)(2) that u is
exactly dimensional with dimension D, since D,,, converges to D as m — oo.

4. Full illustration of the multifractal formalism: Proof of Theorem 1.4

4.1. Construction of 1

We will modify the scheme used in the proof of Theorem 1.5 by repeating recursively,
for all m > 1, for some integers Ry, anf RY, to be specified, R/, times the mth step with
~vm () approximating f(c), followed by R, times the mth step with ,,(«) approximating
g(a); this will make it possible to both guarantee the non emptyness of the sets E(u, «),
a € J, and the control of the difference between the associated Hausdorff and packing
spectra. Additional conditions on v,, (o) will be also needed to obtain an exactly dimensional
measure.

Let D be a fixed point of f (it is automatically a fixed point of g). Due to our assump-
tion on the upper semi-continuity of f, there exists a countable subset Ay of / \ {oo}
such that for all @ € 4 \ {oo}, there exists a sequence (ay,)p>1 In A?* such that
limy, 00 (@, f(an)) = (e, f(a)). Similarly, there exists a countable subset A, of 4\ {oo}
such that for all a € 4\ {oo}, there exists a sequence (a),>1 in AL* such that
limy, o0 (0, g(an)) = (a, g(a)).
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We fix once for all such Ay and A, and we can assume that they both contain D. Also
take
em = (m+1)72
Set of . = min(¥), of,, = max(J) € Ry U {0}, a’,, = min(J), and af,, =

max(/) € Ry U {oo}. For h € {f,g},if Ap \ {0,D} # @, enumerate the elements of
Ay \ {0, D} in a sequence (ajAh)jzl, and for each m € N set

Al ={afr 1< j<m, af > 4el*Y

otherwise, set A" = . Also set

Dy, = 2e? if D=0,

D,,=D otherwise,

ol (0) = D, ifD=0

0 (0) = min(2e4/®, D) /2 otherwise,

al (c0) = (max(d,m,max(ajA" :1<5< m))2 ifal, = oo.

Then let
Ar U{D,,} ifo<al, <ol  <oo
At~ A U{Dn} U ol ()} if0 < afl, and o, = oo,
" Al U{D,,} U {al (0)} ifa". =0anda”,, < oo,

Ah U{D,} U{a" (0)} U{ah (0)} ifal, =0andal,, = oc.

For a € Al let
(h(a) ifae A" and h(a) >0
h(co) ifa = al (00) and h(co) > 0,
_ o ifa=D,,,
Fm(@) = . .

amn(0) if a=a;,(0),
ef? if o € A" and h(a) =0,

e/ ifa=ah(co)and h(co) =0

(notice that f(co) = 0 (resp. g(oo) = 0) onlyif f = 0 (resp. g = 0) over J (resp. /) due to our
assumptions on f (resp. g)). Then, set (this will be used to entail that y is exactly dimensional)

h azﬁﬁl(a) ifa= Dy,
T (@) = AN ,
(1—=06)7 () otherwise,

where 07 € (0, 1) tends to 0 slowly enough so that
a—n(e) =a—(1-05)7(a) 2 Dny/em
(1 - em)a =+ (a) > 0.

We then have in particular 7% (o) < a for all« € A2 \ {D,,,}.

4.1) Vae A" \ {D,.}, {

Using the definitions of Section 2, for a € A", set

Pa = Baqh () A0 Vo = Vg 4n (o) for a € Al \{D,,} and up,, =vp, =vp, p, fora= Dy,
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Strictly speaking, u,, and v, should be written ,um , and v s
we will omit the indices m and h.
Also, set

but for the sake of readability

nh = max{nm,(a,7" () : a € A" }.

Now let (R,)m>1, (R%,)m>1 and (N,,)m>1 be three increasing sequences of positive
integers defined recursively and satisfying the following properties:
4.2)
(1)¥m>1,em < Rf < RS, <RI
(2)Ym > 1, N,, > max(n? ,exp(#A~),exp(m)) for h € {f, g}, and, asm — o0 :

(3) (max({1} U Af, U A9)))N,, = 0((m1n({1} UAl L uag_ mz: R! + RY)N, )

(4) max({1YU Al _,uA? mz R + RN, = = o(min({1} Uy, (A7) RL N,y );

(5) (max({1} U AL U A9)))(RS Nm-l—mz Rf-i—Rg ;) = o(min({1} Uym (A% )R, Nyp).
i=1

Then, for a € A?, set
Gh(a)={I € In, : 1IN Fpla,h () # o}
and

1 ifa=D
4.3 (o) = "
*+3) pm(@) {(ZM/#Ah )2 otherwise.

We enumerate the elements of A% as ol ;.1 < i < #AP and denote by L. .,
1 < i < #AP, the disjoint closed dyadic cubes of generation £, = ((#A") of the set
L = L(#A}) defined in Section 2.1. We also denote L7, , by L

Let us start the construction of u. We consider the same measure p; on G; as in Sec-
tion 3.1, except that we take the sets G{(a), o€ A{, instead of the sets G1(a), a € Ay, and
the collection f{ instead of #;. Then, for1 < s < R{ — 1 we define recursively

S+1 U U G Isyalz

LEG, o, ;e Al
where
Gi(Iy,a1,) = {I,L{;I1;: I1; € G{(ar,)}
and a measure ps41 on Ggiq as
pl (01, oy, (I1,1)
EaeAl E[egf(a) p{ (a)pa (1) .

Then, we define recursively a sequence (G;)s>10f sets of intervals of the same generation
and a sequence of measures (f,)s>1 as follows:
Forallm > 1,and RY, + Y7 'Rl + R <s+1< 7" | Rl + RY,

s+1 U U G (Isaam z)

I;€Gs ay,,,€A7,

/st—}-l(IsL{’iIl,i) = uS(IS)
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where
Gm(Isaam,i) = {Istn,iIm,i : Im,i S an(am,i)}
and the measure ps11 on Gy is defined as
Pgn(am,i)ﬂam,ium,i)
ZOLEA?,L ZIEG% (e) pfn(a)/la (I)
Forallm >2,and Y77 ' Rl + R < s+ 1< R}, + ¥, R} + RY,
G’s+1 = U U Gm(Isvam,i))

1€Gs am,ieAfn

Hs+1 (IngmIm,i) = Us (IS)

where
G (L, @) = {111, T+ Imi € Ghy(aimi)}
and the measure ps11 on Gy is defined as
Pl (@m, i) s ; (Im,i)
> acal, Drech (@) Pn(@a(l)

This yields (in the same way as in Section 3.1) a Borel probability measure p supported

on K:mUI

s>11€G,
such that u(I) = ps(I) foralls > 1and I € Gs.

Ms+1 (IsL»{nﬂIm,z) = Us (Is)

For each m > 1, we define

Sm = an+mZ_IR{+R;’ and s/, = iR{+R§.
i=1 i=1
Then, for s > 1, we denote by n(s) the generation of the cubes belonging to Gg, i.e.,
n(s)=(s—s._)(Npm+0)+ mi RI(N; + ¢7) + RY(N; + 9)
i=1
ifs], 1 <s< 8m,and
n(s) = (s — 8m)(Nem + £9,) + RS (N, + £5) + mi R} (N; +€]) + RY(N; + £9)
i=1

if sy, <s<sl,.
The following property, which follows immediately from (4.2) will be useful.
Ifs),_1 <8< s, set

m—1
(4.4) n'(s) = (s — shy_1)Nm + > RIN; + RIN;,
i=1
and if s, < s < s/, set
m—1
n/(s) = (5 = $m)Nm + R, N + > RIN; + RIN;.
=1
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ProrosiTioN 4.1, — If ;1 < 8 < 8y, then

max(1, max(AS U A9) Z RI ¢+ RI 19 = o(n(s)).
i=1

In particular, n’(s) ~ n(s) as s — oc.

REMARK 4.1. — By construction, due to our choice for the cubes Lfm if
J = Is_lLZm-Imﬂ- € Gy and I is a dyadic cube in N 3(n(s),J) (see Section 2.1 for the
definition), either u(I) = 0 or I takes the form I,_y Ll I . and p(J)27<=() < pu(I) <

w(J)2¢E) swhere e(s) is independent of J and the sequence (e(s))s>1 tends to 0 as s — co.

4.2. Reduction of the problem

In this section we explain why the measure p constructed in the previous section has the
nice property that it is possible to replace centered balls by dyadic cubes in all the sets and
quantities involved in the multifractal formalism without modifying them (it is of course
impossible to do so for any measure in 4, (R9)).

Let us start with two properties which easily follow from (4.2)(1-3) by construction:

n(s+1)

li =1
el n(s)
1 Ly s 1 Ly
and  lim sup 08y (1(In(s) (%)) logy (p(Ln +1)($))‘ _0

Jm, s | =) nfs + 1)
Moreover, if 2776+ <« < 2-7(5) we have

Insy1)(®) € B(z,7) C B(z,2r) C U I,
IeN 2 (n(s),In(s)(z))

and if I € N 2(n(s), Lns)(2)), either p(L,s)e ™ < pu(I) < p(ly )@ or
u(I) = 0, where €(s) is independent of z and I, by Remark 4.1.

It follows that for all z € K we have

1 Lns = 1 I(s

4.5  d(u,) = liminf logy (1Ino) (@), 4 (s, ) = lim sup log, (#(In) (2))

5—00 —n(s) s§—00 —n(s)
and . is weakly doubling in the sense that there exists a function €(r) tending to 0" asr — 07
such that

Vz e K, u(B(x,2r) < r " u(B(z,r)).

Also, the above properties and standard covering arguments (see in particular [63, Sec-
tion 4.6] where doubling measures are used) yield, for all ¢ € R,

lo I,)4 lo I)?
Tu(q):hsnlg.}f gQZiS;(GSS)H( ) and?u(q)zliiris;.}p gQZiS;(C:)/‘( )
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Similarly, for & € R4 we have

log, #{z € G, : 2t < (1) < 2—n<s><a—s>}
f*P(a) = lim liminf )
—H e—0+ s—oo n(s)

—LD

log, #{z € G, : 27+ < () < Q,H(S)(a,s)}
fu (a) = lim limsup

e—0t 5500 n(s) ’

and

LD . L. log, #{I €G,:u(l) < 27n(s)A}
f*7(c0) = lim liminf

< Aaoo 55— 00 n(S) 5
—LD log, #{I €eG,:u(l) < 2—n<s)A}
o) = it ) ,

and for 0 < a < 8 < oo such that (o, 3) # (00, 0),

log, #{I €@, : 2B+ < y(]) < 2—n<s)<a—e>}

LD . -
= lim 1 f
Lot ) = g tinie )

Finally, due to the multiplicative nature of the construction of u, defining for each m > 1
andg € R

ZaeAfn ZIern(a) Pzﬂb(a)qﬂa(f)q
q
(ZaeAfn ZIGGTfn (a) an (Oé)/.l,a (I))

T'r{z (q) = log,

and
ZOLEAgn ZIGG?,L(&) p%t (a)qu’a (I)q

TgL(Q) = log, p 7
(ZaeAin 221668 (o) pm(a)ua(I)>

we have fors > landg e R
m—1
logs Y () =Y RIT!(q)+ RIT!(q) + (s — s}p_y) T (9)
I,€G, i=1
ifsl, 1 <s<snyand

m—1

logy Y. w(L)" = (Y RIT/ () + RIT{(q)) + RETh(a) + (5 — m) T (a)
I,€G; i=1

if s, < s < /.. It follows that

lo 1,)? lo I1.)e
(4.6)  7,(q) = liminf B2 2.1.ec. M) and 7,(¢) = limsup 822 e, 1)

S3s—o0 —’I’L(S) S3s—00 —77,(8) ’

where S = {sp,, s}, : m > 1}.
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4.3. Local dimension estimates for p, auxiliary measures, and lower bounds for the different
spectra

4.3.1. Local dimension estimates for the measure . — Let x € K and s > 1.
Ifs],_; <8< sm,foralll <i < m — 1, there are, uniquely determined, Rf elements
(of (@))1j<ps € (ADRL, RY elements (af;(2))1<j<re € (A))™, and 8" = s — ), ,

elements (af i(@)igj<s € (Af)*' and for each exponenta ;(z) of this collection a unique

element I,n (5 of Gh(a m(a:)) and a unique element L" of # such that

z,a?,j(ac)
Lyy(@) = (or5! (%, 17 Is ) (O L et @) - (@5 L s )
n(s) i=1 jod L@ e ;(@) i=1"j,0f ;(z) @ (@) Oj=1 m7a£‘n’j(m) af, (z)

(where the notation ®7 _, I, stands for the cube obtained by concatenation I - I - - - I of the
cubes Iy, ..., I;).

By construction, using the analogue of (3.6) we get, writing ah for o (),
; m—1

(o) (11 (5 lz-i)Rw)HPm (H(sz 7])(§P?<a?,j>)

=1 i=1 j=1
pIn(s)) )
Tt (T ) (T (T b, (g )) (T g, (g )

4,7

<

< oms'+ X7 UR{+RY)

Consequently, due to the fact that I, () € G} (ol ;(x)) for b € {f, g}, using (4.2)(1)(2) and
Proposition 4.1 we get

—e(s)n(s) ( "(3)( )) 9€ (s)n(s)
4.7 2 < e )

with

S5 Nady ;@) + (15 S0 Neod () + D% Niad ()
§'Np + 7" RIN, + RIN;,

and lim,_, », €(s) = 0. Due to (4.2)(3-5),

as(z) =

RS
Zj:ml Nm%};,j (z)
RIN,,

(4.8) if s = s,,, we have ay(x) = +€(s),

with lim;_, o €(s) = 0 uniformly in z.

If now s, < s < 5], and s’ = s — s}, with similar notations we get

(4.9) Ly (z) = (® (® Lf Ly (w)) (® L],al (@t (m)))

g (@) e
-(@f;"lLfn,a JO A BT AR AR
and
(4.10) g-c(oin(s) < PIn@ @) _ oc(an(s)

= o n(s)as (@)
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with
s/ R} m—1 R} RY
_ 21 Nmog, (@) + 3250 Nmafn,j(x) + 201 2 Nia{,j(x) + 2254 Nio (@)
§'Np + RNy + 7" RIN; + RIN;

and lim;_, o, €(s) = 0. In addition,

as(z)

Rg
m Npod (x
4.11) if s = s/, wehave as(z)= ZJ_IRg Nm’]( ) +€'(s),
with lim;_, o €(s) = 0 uniformly in z.
4.3.2. Auxiliary measures. — Leta = (ol 0f,...,af,,09,,...) € [T, Af x AY,.

We construct a measure vy as follows: Let

Ga1 = {Lf’a{h I € G{(af)},

)

and define
v, (1)
f @3
1/@71(L1 afll) =1
1 > (D
1eGcf(af)

Then, for1 < s < R{ — 1 we define recursively
Ga,s+1 - U Ga,s+1(Isa Oé{),
I.€Ga s

where

Gaos1(Is,0f) = {IsLia{Il I e G (a])}

and a measure v s+1 on Gg s41 as
Vo (1)
2! (of) Val (1)
Then, define recursively a sequence (G s)s>1 of sets of intervals of the same generation and

a sequence of measures (Vg s)s>1 as follows:
Forallm >1,and s,,, <s+1<s],

Gasii= |J Gastils,ad),
ISEG&,S

l/a,s+1(stic 1) =vas(ls)
71

where
Ga,si1(Ls, ) = {LLY oo Im : Im € G, (a,)}
and the measure v5 ;11 on Gy 441 is defined as

Vos (Im)
Vs IL.L? Lm .
aesl > recs (ot Yot (1)

m,aq,

Im) = Va,s(Is)

Forallm >2,and s, _; < s+ 1< s,

Gas1i= |J Gasrilsaf),
IseG’&,s
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where
Ga,s+1(IS7Oé£7,) = {Istn af Im : Im € G{n(OéTfn)}

and the measure v5 o1 on Gg ¢41 is defined as

14 f (I )
Vasr1(Is LY, In) = va (I
+ m,od, ZIer (o) af (I)

This yields a Borel probability measure v5 supported on
KoKs=() U I
s>11€CGg,,

and such that v5(I) = v5s(I) foralls > 1and I € Gg,. Moreover, estimates similar
to those used to control the local dimension of p show that there exists a positive sequence
(e(s))s>1 such that lim,_,o, €(s) = Oand forallz € Kz and s > 1,if s, _; < s < s,, and
we have

s=s—s_1,

In(s) (7))
—e(s)n(s) C"( n(s)\L e(s)n(s)
(4-12) 2 S G =2

with
S5 N @) + (D05 S Neod (o () + S5 Nind (0 (2) )
N + S0 RIN; + RIN;

3 / !
and if s, < s <s), and s’ = s — s,,,, we have

¥s(w) =

7

—e(s)n(s) ( n(s) ($)) e(s)n(s)
(.13) S @ =2
with
s an m—1 R{ Rig
N Nw (@l @)+ Y Nl (o, ;@) + Y S Nivf (of j(2) + )7 Ninf (o ()
7(35):j: j=1 i=1 j=1 j=1

§'Np + RGN + X7 RIN, + RIN,
Moreover, since by construction for z € K3, we have a{ ;@) = ai and o ;(z) = o] for all
1<5< R{ and 1 < j < RY respectively, from (4.7) and (4.12) we get
s'Npaf, + 307 "RINaf + RIN;of
§'Np + 57" RIN;, + RIN;,
()= SN (ed) £ S RN (0]) + RIN (ad)
’ §' Ny + zizl RIN; + RYN;,
ifs],_; <8< sm,and from (4.10) and (4.13) we get
§'Npmad, + Rf Npod, + 577" RINjof + RINa?
§' Ny + RNy + 37 RfN + RIN;
Y (0) + RE Ny (ag )+ X0 RN (af) + RINin! (o)
§' Ny + RE N + 37 RfN + RIN;

as(z) =
(4.14)

as(z) =
(4.15)

vs(2) =

if sy, <s<s),
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We also have

I & In s - 1 a In s
(4.16) d(va,z) = liminf 08> (Va(In(s) (7)) and d(va,z) = limsup 082 (Va(n(s) (7))
§—00 —TL(S) 8—00 —n(s)

for all z € K, for the same reasons as those leading to (4.5).

4.3.3. Lower bounds for the dimensions. — Suppose that we have proven that for all
0 < a < B < oo we have iED(a,ﬁ) = max{f(a) : & € [a,0]}, a property which
will be established in Section 4.4.3. Then, the lower bounds of Theorem 1.4(3) follow
readily from the mass distribution principle (see Section 6), property (4.16), and the follow-
ing proposition, which is a direct consequence of the estimates (4.14) and (4.15), and the
assumptions (4.2)(4-5).

PROPOSITION 4.2. — With the notations of the previous section, fix 0 < a < 8 < oo such
that [a, 8] C J and [, B] N I # @. Let o/ = argmax(fi[a,g)) and 3’ = argmax(g|(a,g))-

Fix a sequence Q= (af o, .ol ad ) e[, Af x A9 such  that
q 11 m»~“'m m=1 m m

limy, 00 0f, = &, iy, 00 72, (0,) = £(@), limpy— o0 @45 = @, limyy— 00 Yoo (05m_2) = 9(),
lime o0 05, 1 = B, o0 Vi1 (@5 —1) = 9(8), im0 05, = B, and limp, oo 73, (05) = 9(8").
Then for all x € Kg, one has

d(:uwx) =aQ, 8(:“‘)-7;) =8, d(l/&>x) = min{f(a/)’g(a)ag(ﬁ)}v anda(ya,x) = g(ﬂ/),

Consequently, v (E(p, o, 8)) = 1, dimpg vz = min{ f(a'), g(a), 9(8)} and dimp v = g(8'),
so that dimg E(u,a, 8) > min{ f (), g(a), g(8)} and dimp E(u, o, 8) > f(5').

4.4. Large deviations spectra and L?-spectra

4.4.1. The large deviations spectra LI:D(a) and fI:D(a). — It is clear from the construction

of p, (4.7,4.10) and (4.2) that LI:D(Q) = —oifa ¢ J (take s = s, and use (4.8)) and

ftD(a) = —ooifa ¢ 4 (use (4.7) and (4.10)). Moreover, by (1.4) we have LI:D(a) >

dimg E(p, o), hence iED(a) > f(a) for all @ € J by Proposition 4.2. Similarly, ftD(a) >
dimp E(u, ), hence Proposition 4.2 yields TED(a) > g(a)foralla € J.

Let us show that ?ED(Q) < g(a)fora e 4.

Suppose first that « € 4 \ {oc0}. Fix n > 0 and ¢, > 0 such that g(a’) < g(a) + 7 if
o' € [a— 26,0+ 2¢). Fixe € (0,¢,). If s, _; < s < sp,, due to (4.7), for s large enough,
if I, € G, satisfies 27"()(@F9) < y(I,) < 27)@=9) then for any x € I, = I,(5)(z) we

! () and o ;(z) do not depend

have a — 2e < a5 1= as(z) < a + 2¢, and the exponents a; ;

onz € I.

Due to the multiplicative structure of the construction of u, for each such collection of

exponents of a? .}, the set Gy of . a? 1) of those dyadic cubes I, € G, such that
1,7 1,7 2,7 3
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o} (z) = o} forallz € I, and h € {f, g} is such that (setting s’ = s — s}, _;)

m—

#G.({ad;f H#Gf jH](H#ﬁ ”)H#m
i=1 j=1
s’ m—1 R{
< Hsz(vﬁ,(afn,jHem) I1 (H oN:(v] (o] ;) +61)) HZN 7 (@f j)te),
j=1 =1 j=1 j=1

Since for o € A by construction we have v (@) < h(e) + 2¢,”*, we get

sttt <200 [Tt T ([T2000) [T 20

i=1 ]1

< 2n(s)n'(s) HQngmm]) H <H2Ng {i )H2N19<a,,
=1 j=1

with lims_, o, 7(s) = 0 and n/(s) defined like in (4.4). Now recall that g is concave over 4 \
{o0}. Thus

s’ R{ R;’
> Nagled, )+ Nigled ;) + ) Nig(af
j=1 J=1 J=1

Z] 1Nm05mj+z Z] lNaZ]+Z] lNa23

<n/(s)g

n'(s)
= n/(s)g(a,) < '(s)(9(a) +n)-
Consequently, due to Proposition 4.1 we get
#G ({a”, ) < 2(g(@)F+n+n()n(s)

Moreover, the number of such collectlons cannot exceed the total number of possible real-
izations of such a family when the condition a; € [a — €, @ + ¢,] is dropped, which by con-
struction is equal to (#A7))* H;’:ll(#A{)Rif (#ANYED = 27" ()7() with lim, o0 7/ () = 0,
by (4.2)(2)(3). We can conclude that

#{Is € G, : 27+ < (1) < 2—n<s)<a—e>} < 9(9(@)+ntn(s)+n’ (s))n(s)

The same estimates hold if s,,, < s < /., and this yields fED (o) < f(a)+n. Since this holds
for all n > 0, the have the desired conclusion.

Now suppose that a = oo € 4. Since g(oo) > sup{g(a) : a € J \ {oo}}, with the same
notations as above, the only change is that for any A > 0 we must consider those intervals
in G; such that s > A, and conditioning on the realization of {a{ (), ()}, the same
calculations as above yield, even without using the concavity of g,

#{Is €G,: () < an(sm} < 2(9(ee)+ntn(s)+u' ()n(s)

hence the result.
Let us prove that LI:D(a) < f(a)fora e d.
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if o € [a@ —2¢,,a0+ 2¢,]. Fix e € (0,¢,). Suppose that s = s,,. Due to (4.8), for s

large enough, if I, € G, satisfies 277t < y(1,) < 277()@=€) then for any

S8 Nad, (@)
Rl N,

the set G, ({0% P ;1) of those dyadic cubes I5 € G, such that al () = aﬁj forallz € I,

and h € {f,g}is bounded as above by

Suppose first that @ < oo. Fixn > 0and ¢, > 0 such that f(o/) < f(a) + 1

€l =I(z )we have a — 2¢ < @, = < a+ 2e. Also, given {aﬁj,af’j},

1

i=1 =

R}, m-1 R} RY
]2 (v (e, ) Fem) ( H oNi(v] (] ) +ei ) I1 N (! (af ;) +ei)
j=1 j=1

which yields
#G,({of ;0. }) < 9o(Rp, N >22§f"1 Nmvfi (o) < 20<R;Nm>22§ff; N f(ad, ;)
due to (4.2)(4). Using the concavity of f this implies

4G, ({aw < QRN Nm (F(@5)+0(1)) < gRI N (f(e)+2m)

for s large enough. Finally, counting the possible number of collections {a
yields

af
1500 ;1 as above

4.17) #{Is €G,: 27+ < (1) < 2—n(s>(a—e>} < 9(f(@)+3m)n(s)

for s = s,, large enough. Since 7 is arbitrary, this is enough to conclude.

If @« = oo, the previous estimates with v/, (ay,, ;) bounded by f(00) + 2e,, yield the
conclusion.

It remains to prove that ?I:D(a) > g(a) fora € 4\ . In fact the argument is valid
for all aeg. Let ae€d. Suppose first that o < oco. Choose a sequence
a = (of,ad,....af,a9,..) € T[>, Af, x A9, such that lim,, .o @, = a and
lim,, 00 ¥9, (ad,) = g(a). We leave the reader check that there exists a sequence €’(s)
converging to 0 as s = s}, tends to oo such that, for all z € K (the Cantor set constructed
in Section 4.3.2), we have a;(z) = a + €(s) (this uses (4.11)) and

#{Ga = [J(#C7 (1) ™ (#G (i,00) ™ > 2007
=1
(this uses the left hand side of (2.7), and (4.2)(5)). This implies that f,.(c) > g(a).

If & = o0, the same argument with a2, = aZ, (co) yields the desired lower bound.

We notice that a similar argument would give another proof of f II:D (a) > f(a)fora e J.
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REMARK 4.2. — Infact, the arguments developedin this section provide us with the following
precious information: for o € Ry we have

log, #{1 €G,, 2 sm)etd) < (1) < 2,n<sm)<a,e>}

= lim liminf
flo) = lig, iy (o)

log, #{1 €G,, 27 sm)erd) < (1) < 2,n<sm)(a,e>}

= lim limsup ;

€—>0+ m— 00 n(sm)

logy #{1 € Gy, : 270 < (1) < 2nChe=0) )

g(a) = lim liminf

e—0t m—oo n(s;n)
10g2 #{I c Gs;” . 2—n(s’m)(a+e) < H(I) < 2—n(s;n)(oz—e)}
- 61;1)%1+ lglnjgop n(s!,) ’

and we also have

log, #{I €G,, u()< 2—"(Sm)A}

f(o0) = lim liminf

A—oco0 m—oo n(Sm)
logQ#{I € Gy, p() < 2—n(sm)A}
= lim limsup

and

log, #{I € Gy pu(l) < 2*"(8%)A}

g(c0) = lim liminf

A—oco m—oo n(s’m)
logy #{1 € Guy, - (1) < 27704}
= lim limsup
A—00 m-—oo n(s;n)

4.4.2. The functions 1, and7,. — It follows from Remark 4.2 and standard large deviations
estimates similar to those used for instance in the proof of [75, Theorem 4.2], that forall¢g € R
we have

log, >° w(I)? logy D, G. w(I)?
i 82 2rec.,, M) = f*(g) and lim ke

m—o0 —’I’L(Sm) m—oo —’I’L(S;n)

=g"(q)

(in case the domains of f and g are compact, this is a direct consequence of Laplace-
Varadhan’s integral lemma [28, Theorem 4.3.1]). Consequently, due to (4.6) we get 7, = g*
and T, = f*. Moreover, it is direct from the duality between upper semi-continuous concave
functions [77, Theorem 12.2, Corollary 12.2.2] that if oo ¢ dom(f), we have 7; = g and
7, = f,and if co € dom(f), then dom(r, = f*) = Ry, and 7 coincides with f
over R. Then, by our definition of the extended concave conjugate function, we have 7; (co) =

_Tu(o) = f(00).
4.4.3. The large deviations spectrum iED(a,ﬁ). — Recall thatfor0 < a < 8 < oo, f(a, 8) is
defined as max{f(¢’) : & € [e, B]}.

If [o, 8] € Ry U {oo} \ 4, due to (4.8), we have LI;D(oz,ﬂ) = —00 = f(o, B).
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Assume now that [a, 5] N # &, and (e, 3) # (00, 00). Denote the interval [a, 3] N J
by [a1, £1], and notice that f(«, 8) = f(a1,61).

Suppose first that 8; < co. Let n > 0 and for each o/ € [aq, 81] let e(a’) > 0 such that
f(B) < f(&/)+nforall 8 € [@ —e(a'), ' + ¢(a)]. There exists o], . . ., &y in [, B1] such
that a1, 81] C vazl[a; —e(a}), o} —e(af)]. Let € < min{e(a}) : 1 < i < N}. Property (4.8)
implies that for m large enough, if I € G, and 27"(m)B+) < (1) < 27nlsm)(a=e),
since there exists x+ € K such that I = In(sm)(x), in fact there exists 1 < ¢ < N such
that 2—n(sm)(eite(e) < w(l) < 2—n(sm)(@i—<(a)) Then, the estimate (4.17) achieved in
Section 4.4.1 yields

#{I € G,, : 2 sm)@ite@)) < (1) < 2—n<sm><a;—e<a;)>} < 9(f(ad)+3mn(sm)
for m large enough. This implies that for m large enough

#{1 € G, 2 nmB+ < (1) < 2—n<sm)<a—e>}

< i 9 (@ +3mn(sm) < N (@B)+3mn(sm)
i=1
If follows that L];D(a, B) < f(a,B)+3nforalln > 0, hence the desired upper bound f(«, 5)
for iLD(a,ﬁ).

F:r the lower bound, we just use the fact that by Proposition 4.2 we know that if
o = argmax(fij.,5)) Wwe have f(a') <dimg E(p,o’), and on the other hand
dimg E(p, o) < LI:D(O/) < LI:D(a, £3), the last inequality being obvious.

If 81 = oo, the upper bound for f I:D (a, B) just comes from the observation already done

in Section 4.4.1 that if s = s,,,, we have #G, < 27()(f(22)+0(1)) "and the lower bound comes
from the lower bound f(c0) for dimgy E(u, 00).
4.5. Upper bounds for the different spectra

It is a direct application of Proposition 1.3, using the fact that LI:D(a, B8) = f(a, B).

4.6. u is exactly dimensional, with dimension D

Fixe > 0. Foreach s > 1,if s), ; < s < s, and s’ = s — s/,_4, an application of

Markov’s inequality yields, for any > 0:

N(In(s)(m)) —(n(s)—n'(s7,_1))(Dm—¢)
Es . = K@ ———— > 27T Em 1 AEm e
A O 2

:U‘(In(s)) n RN, b
S Z :u’(In(s)) — 27](n (8)—n'(s7,,_1))(Dm—e¢)
I.(»eG, (“(In(s;n,l)))

SR A (LU Bl TR )

In(s)€Gs m N iIns, )
where Lo ) stands for the unique element of Gy | containing I,,(5). We notice that
by construction, given I,,(» ) in Gy, the distribution of the collection {7“ na)) },

/‘L(In(sinil))
where I,(5) € Gs and I,,(5) C I,y ), is independent of I, _ ), and taking into account
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the fact that between the steps s/, _; and s one uses s’ times the same motive in the recursion
defining u, we can get

(ZaeAfn ZIEGf (m,a) pﬁL (a)l—HIMa (I)I—HI)
)(1+77)8’

W(Es ) < gn(n’ ()= (sl 1)) (Drm—e)

DAl 221G (myo) (@) pa(I)

< 2(1+n)s’< Z Z pa(a)1+nua(1)l+n>Sl2n(n'(8)7n'(s:n_l))(Dm76)'

acAf, IEGT (m,a)

We have
> D), (D =S pp, (DM
I1€Gf(m,D,,) I1€eGf(m,D.,)

S (#Gf(m7Dm))Q_NM(Dm_EM)(l"'n) S 2Nm(Dm+€M)2_Nm(Dm_€M)(1+n)

— 2_NmD1n772Nm5m(2+ﬁ).

On the other hand, if A7, \ {D,,} # @, fixing one of its elements g, we have
> Y @ (D
a€ALN{D} 1€GS (m,a)
< Z ph (@)™ (#GF (m, a))2~ Nm(@em)(14m)
a€Al\{Dm}
< Z pfn(a)1+n2Nm(73;(a)+em)2_Nm(a_6m)(1+n)
a€AL\{Dm}

< pf (o) TH#ALY( sup 2Nm(7»{n(a)_a))2Nm€m(2+77)‘
acAL\{Dm}

Now, take ) = 7,, = \/€m. Due to the Definition (4.3) of pf, we have pf, (co) 7 (#A47,) <1,
and due to (4.1), we have sup, 7 \ 2Nm (1 (0)=a) < 9=NmDmnm Finally,
w(Esy) < 2° - 204mm)s (2—NmDmnm2Nmem<2+nm>)8’2%(n'<s>—n'<s;,1>><Dm—e>
— 25, . 2(1+"]m)5/ (2_NmDm7]m 2Nm€m (2+77m))s/277mNmsl(Dm_e)
< 235'2—Nms'nm(e—3nm)'
Also, using a similar estimate as above, and with the same choice n = n,,, = \/€,,,, We have

u({eek m < 270 Dm0 )

- (Zecat Treorma (@) halD)' )
- f (1_77)5/
(Lacat, Trcarima Ph(@na(D)

(1—n)s’ f (o)1 17\ % 5=n(n/(s)=n' (s}, _1))(Dum+e)
<23 S ) (D)) 2 DD+,
acAf, IEGS (m,a)

9=’ ()= (5}, _1)) (D +)
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On the one hand, we have

> ph (D) " up, ()= pip,, (I)*"
IeGf(m,D.n,) I1€Gf(m,D.,)
< 2Nm(Dm+€m)2—Nm(Dm—em)(1—n) — 2NmDmn22Nmem.

On the other hand, if Af, \ {D,,} # @, fixing one of its elements oy, we have
> > (@) ()
ac AL N\{D,} I€GT (m,a)
< Z pfn(a)1—n2Nm(ern(a)+em)2—Nm(a—em)(1—n)
acAL\{D..}
< pf (ao) " "(#AL)( sup 2Nm(7fn(a)—(1—n)a))22Nmem'
acAL\{D.}

Due to the Definition (4.3) of pf, since /e, =(m+1)"1<1/2, we have
pf (ag)t~ " (#Af) < 1, and due to (4.1), we have SUP e 47\ (D)} 2Nm (Vi (@) =(1=nme) < 1,
Consequently, the previous estimates yield
N(Es,— = {:C eK: M < 2*("/(5)*”'(5%—1))(Dm+6)}) < 935" 9—Nm 't (€=31m)

M(In(S’m,l)(x))

Similarly, if s, < s < s}, and s’ = s — s,,, we can get

:U'(ES+ _ {x cK- p(In(s) () > 2—(n’(s)—n'(sm))(Dm—e)}> < 9359~ Nons"nm (e=3n1m)
’ H(In(sm)(x))

PIn(s) () o (5) =0 (5)) (Do) 85" 9= Nyt (c=311m)
plEs - =Jr € K1 ———————5 <27\ 87 ism/)Jim e < 235 9= Nms nm(e=3mm)

Finally, for mq big enough so that 3n,, < €/2, and N,,nme/2 > 4 (remember that
N,, > e™and n,, = (m + 1)~ 1), we have

Y. > wBELUE + Y u(BeiUE,

m2>mo s, _<s<sm, sm<s<s!,

an/ R::]"/
<9 E E 235'27Nms'77me/2 + E 238’27Nm5/’r]m€/2
m>mg s’'=1 =1

9= Nmnme/2 N /2
—INmMme€
<2 ) 16.1_8.2_%%6/25642 9~ Nmnme/2 < o0,

m>mg m>mg

By the Borel-Cantelli lemma, we deduce that for p-almost every z, there exists an integer m,,
such that for all m > m,, forall s}, _; < s < s,, one has

9@y Pmte) ¢ FIn@ @) o i)'l (Pme)
/"’(In(s:n_l)(zv))

and for all s,,, < s < s/, one has
o= ()= (o)) (Pte) < P @) o (' (s) ' () (D).
M(In(sm)(x))
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Using these inequalities telescopically and noting that D,,, converges to D as m — oo and
n'(s) ~ n(s)ass — ocowe get D — e < d(u,z) < d(u,z) < D + € for y-almost every z.
Since € is arbitrary, we have the desired exactly dimensionality.

4.7. Restrictions of u

Let B be a closed ball whose interior intersects supp(u) at some point z. Let v = .
We naturally have the inequalities dim, (v, ,8) < dimp(p,a,8) for L € {H,P} and
0<a<pf<oco,aswell as iED(a) < LI:D(a),?I;D(a) < YED(a),ﬂjD(oe,ﬂ) < LI:D(Q,B),
T, > T, and 7, > T,. On the other hand, denoting by s, the smallest integer such that
Iy (s)(x) C Int(B), we can modify the first terms of the sequence @ of Proposition 4.2 so
that I,,(s,) (%) € Y5, hence vz(B N Kz) > 0, and we have dimp E(v, o, 8) > f(e, 8) and
dimp E(v,a, 8) > g(, ). This is enough to reverse all the previous inequalities since we
also have for v the general inequalities provided by (1.4), (1.5) and Proposition 1.3.

5. Proofs of Propositions 1.1(2), 1.2 and 1.3, and some inequalities in (1.4) and (1.5)

5.1. Proofs of Propositions 1.1(2) and 1.2

5.1.1. Proposition 1.1(2). — The fact that Ry C dom(r,) was explained after we defined 7,
in the introduction. Now suppose at first that there exist « € Ry and g > 0 such that
for all 7 € (0,79) and = € supp(p) we have u(B(z,r)) > r®. Then, the definition of the
L4-spectrum yields 7,(¢) > 7,(0) 4+ ga for all ¢ < 0, hence 7, is finite over R. If, on the
contrary, for all & > 0, for all ¢ > 0, there exist r € (0,7¢) and z € supp(u) such that
u(B(z,7)) < r*, by using again the definition of the L?-spectrum we have 7,(¢) < agq for
all @ > 0 and ¢ < 0, hence 7,(¢) = —oo for ¢ < 0, so dom(7,) = R;.

Now let @ € dom(7;) and suppose that —co < 7;(a) < 0. Necessarily o < oo0.
Indeed one always has 7 (c0) € {—o0, —7,(0)}. Then, suppose first that a < 7/,(0%). Let
ap = inf{B € (a,7,(0%)) : 75(8) > 0}. The continuity of 7} over the interior of its
domain implies 7; (o) = 0. Then for all 8 < ap we have 7;(3) < 0, hence 7LD(ﬂ) < 0.
Consequently, for all € > 0 there exists rg > 0 such that for all » € (0,7¢) and z € supp(u)
we have p(B(z,r)) < r*~c. This implies that 7,(q) > 7,(0) + aoq for all ¢ > 0, and
finally 7;(8) < inf{8¢ — aoq + 7,(0) : ¢ > 0} = —oo for all 3 < ay, which contradicts

the fact that —oo < 7;;(). Next suppose a > 7/,(07) and dom(7,) = R. The same lines

as above also yield a contradiction. If now o € [—7/,(07), 7/,(07)] and dom(7,) = R, then
74(a) = —7,(0) > 0; new contradiction. It remains the case dom(7,,) = Ry and o > 7/,(07).

In this case, we necessarily have 7;(a) = lim,_,o+ —7,(g) > 0. Finally, 7} is non-negative
on its domain.

5.1.2. Proposition 1.2. — (1) If dom(7) = R, the property dom(7*) = [r'(c0),7'(—00)]
follows from standard considerations in convex analysis. Then, the fact that this inter-
val 1s bounded from above follows from the boundedness from below of 7*. Also, since
dom(7*) C R, the equality (7*)* = 7 on dom(7) = R is just the usual duality between 7 and
its conjugate function ([77, Theorem 12.2, Corollary 12.2.2]) when this one is only defined
on R and not also on R U {co} as in the convention used in this paper.
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(2)(a) Since 7(0) = 7(1) = 0, by concavity of the non decreasing function 7, we have
7 = 0 over R, and a simple verification shows that 7* = 7 over RU {c0}.

(2)(b) We suppose that 7(0) < 0 and 7 is continuous at 0*. Here again, standard consid-
erations in convex analysis show that min dom(7*) = 7/,(c0) and [1'(c0),limg_+ 7'(¢7)] C
dom(7*), as well as the continuity and the concavity of 7* over [7/(00), lim,_,o+ 7/(¢7)]. If

lim, o+ 7/(¢7) < oo, by using the definition of 7* one checks that 7*(a) = —7(0") =
—7(0) = 7*(o0) for all & € [lim,_,o+ 7'(¢™), 00]. So dom(7*) = [r(0), o0]. The continu-
ity of 7* over dom(7*) comes from the fact that 7*(c0) = —7(0). The fact that (7*)* = 7

over R is a direct consequence of the usual duality between 7 and the restriction of 7* to R,
and the fact that 7 is continuous at 07. The equality (7*)* = 7 over R* is obvious.

(2)(c) If 7 is discontinuous at 0T, clearly 7/(07) = oo. It is standard from convex
analysis that min dom(7*) = 7/,(c0), and [1'(c0),limy_o+ 7'(¢7)] C dom(7*). Moreover,
if lim,_,o+ 7/(¢~) < oo, by using the definition of 7* one checks that 7*(a) = —7(07) <
—7(0) = 7*(00) for all @ € [lim,_ o+ 7'(¢7),00). Consequently, we have dom(7*) =
[7'(00), o0], as well as the concavity and continuity of 7* over [, (00), 00). By using the usual
duality between 7 and the restriction of 7* to R, we would find that (7*)* isequal to 7 over R
and equal to 7(0T) at 0. Here, taking into account that « = oo € dom(7*), we find that
(7*)*(0) = —7*(0c0) = 7(0). Finally, (7*)* = 7 on Ry. The equality (7*)* = 7 over R_ is
obvious.

(2)(d) It has been proved in the previous lines.

5.2. Proof of Proposition 1.3

(1) Fix0 < a < 8 < oo (the case « = ( is covered by (1.4) and (1.5)). Without loss of
generality we assume that iED(a, B) > —oo, for otherwise one clearly has E(u, a, 8) = @.

We first show that dimpy F(«, 8) < LI:D(a, 0), where

F(a, 8) = {x € supp(p) : @ < d(p, z) < d(p,z) < S}).
Since E(u, o, 8) C F(a, B), this yields dimy E (g, a, 8) < iED(a, B).
Fix n > 0. There exists € > 0 such that for infinitely many r > 0, we have f,(a, 3,¢,7) <
LI:D(a,,B) + n. Let (r;);>1 be a sequence converging to 0 such that for all j we have

Fule, Bye,1i) < [P (a, ) + 1.
By definition, we have F'(a, 3) C UN21 Fy, where
Fy = ﬂ {x € supp(p) : P < u(B(z,r)) < r"‘_e}.
0<r<2-N
Fix N > 1. It follows from the previous line that for any n > N, there exists j > 1 such that
r; < 27™ and we have
Fy C {x € supp(p) : 7‘?‘“ < u(B(z,rj)) < 7‘;"_6}.
It follows from Besicovitch’s covering theorem (see [60]) that there exists an integer Q(d)
such that, defining Fj(e) = {z € supp(u) : rf“ < p(B(z,rj)) < r;-"_e}, we can extract
from {B(z,r;) : * € Fj(e)}, Q(d) families ¥ (1 < k < Q(d)) of disjoint balls such that
d
Fj(e) C U§=(1) Uspey, B-

4¢ SERIE - TOME 48 — 2015 N° 6



INVERSE PROBLEMS IN MULTIFRACTAL ANALYSIS OF MEASURES 1503

Now, setting v = LI:D(oz, B) + 2n, and using the covering of Fy by the balls in UQ(d) Ik,
we see that for j large enough we have

2 n+1 FN Z Z |B|’Y

k=1 BeTy
—(£;P (e.B)+m)+ _
< Q(A)(#T k) (2r;)” <27Q(d)r; <27Q(d)2
Letting n tend to oo yields #7(Fy) = 0,s0 dimFy < v forall N > 1, and finally
dim F(a, 8) < LI:D(a, B) + 2n. Since n was arbitrary, we are done.

Now let us prove that dimz E(u, a, 3) < min(?ED(a),ﬁ:D(,@)). For a’ € RU{oo}, define

Gor = {o :3(n)) /" o0 : lim; oo ELBLE2)) — o7}, We have E(u, @, 8) C Ga N G,

Consequently, the conclusion follows from the fact that dim G, < ﬂ:D(a’ ). Indeed, if
o < oo,fixn > 0. Thenlet e > 0and ro € Ny such that for all0 < r < ry we have

fla,er) < ftD(a’) + 1, where

log sup #{i 1rote < p(B(zi, ) < ra—e}
—log(r)

f(a,7 6’ T) =

)

the supremum being taken over the packings of supp(u) by balls of radii equal to r. For each
n > 1such that 27" < 7o, we have Gor C U, Gor,p, Where Gorp, = {z € supp(p) :

22’ +e) < 1(B(z,27P) < 27P(@'+)} Setting y = fZD(o/) + 2n and using Besicovitch’s
covering theorem as above, we get #J .., (Go) < 27Q(d) 3,5, op (£, (@) tm)=p, Letting
n tend to oo yields #7 (G4/) = 0, hence dimy G < YED(O/) + 2n, n > 0 being arbitrary.
The case o’ = oo can be treated similarly.

Now we prove that dimp F(«, 8) < fp(a,8) = sup{flI:D(o/) : o' € [o, 8]} Suppose
first that 8 < oo.

Fix n > 0, and for each o’ € [a, (] fix e(a) > 0 and r(a/) > 0 such that for all
0 < r < r(d), one has f(a/,e(a’),r) < f (o/) + 7. Then let of, ..., @}, such that
[, ] € Uy Bat, e(a)).

Set € = min{e(a}) : 1 < i < k}and r, = min{r(of) : 1 <@ < k}.

Fix N > 1 and define Fy as above. We have

k

e (1 Uf{eesmp(n 2@ < y(Bla,2r) < g i),
0<2-P<min(2=N,r,) i=1

Let A C [0,1]%. Let n € N such that 2" < min(27",r,) and {B(z;,;)} a 27 "-packing

of AN Fy. For each integer p > n + 1,set S, = {i : 277 < r; < 27P*1} The balls in

{B(z;,27?) : i € Sp, g—plaite(ed)) < 1 (B(z,27P)) < 2-P(ei—e(®))} form a 2~P-packing

of supp(s) of cardinality less than 22T @D+ 50 4.5, < kav(fr(@p)+m)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1504 J. BARRAL

Lety > fp(a, ) + 27n. We have

2(27"1')7 < Z Z 22771y < 47 Z(#Sp)Qfm

i p2ni€S, p2n
<47k Z op(f(@B)+n=7) < 47 Z 2P,
p=>n p>n

the upper bound being independent of the 2~ "-packing {B(z;,r;)}, and going to 0 as
n — oo. It follows that the pre-packing measure FW(A N Fy) equals 0 for all A, hence
PV (Fn)=0, so dimp(Fy) < ~. Since 7 is arbitrary this yields dimp Fy < fp(a, 3), hence
dimp F(Ot, /8) < fP(aa 5)a and ﬁnally dimp E(,U,, a, ﬂ) < fP(a7 /3)

If 8 = oo, take B > Oand r(B) such that forall 0 < r < r(00), f(B1,00,7) < f,." (00)+1,
where

logsup#{i : u(B(zs, 1)) < rﬂl}
f(Br, 00,m) = —log(r)

the supremum being taken over the packings of supp(u) by balls of radii equal to r. Then
use a covering of [«, 81] by intervals B(a}, e(a})) as above. The argument to conclude is
the same as above, except that we have to bound the cardinality of {B(z;,27?) : i € S,
w(B(z,277)) < 27751} by op(F," (00)+n)

(2) The result for packing dimensions easily follows from the inclusions E(u,a) C
Ussa T F(a,B) and E(p,a) C Uo<p<a T F(B,a), and the previous estimates for
dimp F(a, B).

The upper bound for dimp E(u, ) is obtained by writing E(u, a) = Ugs,, T {z € supp(p) :

)

d(p,z) = «, d(u,z) < B}. If a = oo, there is nothing to prove, for E(u,00) = E(u, o).
Suppose o < oo. Then, for each § < oo, due to the estimates achieved to find an upper
bound for dimyg FE(u, a, 3), given n > 0, for each o/ € [a, ] one can fix ¢(a/) > 0
such that dimy{z € supp(p) : d(u,z) = a, & — €(@) < d(p,z) < o + €e(a’)} <
min{f;"(a), ?ZD(a’),ftD(a, o)} +n = fu(a,a’)+n. Since we can cover [a, 8] by finitely
many intervals of the form [/ — e(a'), &’ + €(&)], &' € [a, B], we get dimpy{z € supp(u) :
d(p,z) = a,d(p,z) < B} < sup{fu(a,a’) : & € [a,B]} + nforany n > 0, hence
dimg{z € supp(p) : d(u,z) = @, d(p,z) < B} < sup{fu(a,a’) : o € [a,B]}. Since we
also know that dimpy E(u, @, 00) < fu(a,00), writing E(u, @) = E(p,,00) UUos e T
{z € supp(p) : d(u,7) = a,d(u,r) < B} and using the previous estimates for the
Hausdorff dimensions yields dim gy E(u, o) < sup{fu(a, ) : 8 > a}.
The upper bound for dimy E(u, «) is obtained by using similar arguments.

5.3. Proof of some inequalities in (1.4) and (1.5)
. . . . . —LD
We justify the inequalities £/ (o) < LI:D(a) < 7, (a) and dimp E(u, @) < f,, () for
a € Ry U{oc}, and f)." (00) < 7 (c0).
Let a € Ry U {oo}. Suppose that E(u,a) # @. The inequality f (a) < iED(a) isa
special case of the upper bound established for dim g F(«, 3) in Section 5.2.

Similarly, the inequality dimp F(u, ) < TZD(a) follows from lines similar to those used
to bound dimp E(u, @, 3) in Section 5.2. Also, by Proposition 1.1(2), if dom(7,) = R, then
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one has fED(oo) = 775(00) = —oo; otherwise dim g (supp(u)) = —7,,(0) = 7;;(c0), and by
definition we have flI:D(oo) < dimpg(supp(u)). In any case, dimp E(u,00) < YED(oo) <
7, (00).

To prove that LI:D(a) < 7}, (a), we assume without loss of generality that iED(a) > —00,
hence LI:D(a) > 0. The case oo = oo then occurs only if 7,,(¢) = —oo if ¢ < 0 (same proof
as when 7,(¢q) = —oo for ¢ < 0); then it is direct that fED(oo) < —7,(0) = 7},(c0). Suppose
now that o < oco. It is enough to prove that 7, (¢) < (LI:D)*(q) for all ¢ € R. Then the result

follows by taking the Legendre-transform and using (with h = f II:D) the general inequality
(h*)* > h valid for any function whose domain is not empty. Fixg € R, 5 € Rand ¢ > 0. If
{B(z;,7)} is a packing of supp(u) by disjoint balls, we have

ra(B—e) ifg>0

ra(f+e)  otherwise.

ZM(B(%T))" > (#{i 7 < p(Blair)) <r77Y) - {

Taking the supremum over the packings, dividing by log(r), and taking the lim sup as
r — 0% yields 7,(q) < q(8 F €) — liminf, o+ f(B,€,r), and taking the limit as e — 0F
gives 7, (q) < g8 — f1:°(B) for all 5, hence 7,.(q) < (f,)*(a).

6. Dimensions of measures and mass distribution principle

Given v € M} (R9), if d(v, x) (resp. d(v, z)) takes the same value D (resp. D) at v-almost
every z, then dimg v (resp. dimp v) stands for the Hausdorff (resp. packing) dimension of
the measure v, defined as the number D (resp. D). Then, v(E) > 0 implies dimy E > D
(resp. dimp E > D) for any Borel set E. This is the mass distribution principle we use to get
lower bounds for the Hausdorff and packing dimensions of the level sets studied in this paper
(about mass distribution principle and dimensions of measures, see the accounts proposed
in [33, Section 4.2], [70, Ch. 2] and [44] (other possible references being [20, Section 14], [82],
[26, 27] and in connection with multifractal formalism [43], [62] and [65]).
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