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PROPAGATION OF SINGULARITIES AROUND A LAGRANGIAN
SUBMANIFOLD OF RADIAL POINTS

by Nick Haber & András Vasy

Abstract. — In this work we study the wavefront set of a solution u to Pu = f ,
where P is a pseudodifferential operator on a manifold with real-valued homogeneous
principal symbol p, when the Hamilton vector field corresponding to p is radial on
a Lagrangian submanifold Λ contained in the characteristic set of P . The standard
propagation of singularities theorem of Duistermaat-Hörmander gives no information
at Λ. By adapting the standard positive-commutator estimate proof of this theorem,
we are able to conclude additional regularity at a point q in this radial set, assuming
some regularity around this point. That is, the a priori assumption is either a weaker
regularity assumption at q, or a regularity assumption near but not at q. Earlier results
of Melrose and Vasy give a more global version of such analysis. Given some regular-
ity assumptions around the Lagrangian submanifold, they obtain some regularity at
the Lagrangian submanifold. This paper microlocalizes these results, assuming and
concluding regularity only at a particular point of interest. We then proceed to prove
an analogous result, useful in scattering theory, followed by analogous results in the
context of Lagrangian regularity.
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680 N. HABER & A. VASY

Résumé (Propagation des singularités près d’une sous-variété Lagrangienne des points
radiaux)

Dans cet article on étudie le spectre singulier, WF(u), pour les solutions de l’équa-
tion Pu = f , où P est un operateur pseudo-différentiel sur une variété de la classe
C∞, X, avec symbole principal homogène p, si le champ Hamiltonien de p est radial
sur une sous-variété lagrangienne, Λ, contenue dans l’ensemble caractéristique de P .
Le théorème classique de Duistermaat et Hörmander ne fournit aucune information
sur Λ. Nous adaptons la preuve de ce théorème utilisant des commutateurs positifs,
et prouvons que la solution possède d’une régularité additionelle près d’un point q

si on suppose certaine régularité au fond. C’est à dire, l’hypothèse a priori est soit
une hypothèse de régularité plus faible à q, soit une hypothèse de régularité près de,
mais pas à q. Les résultats plus anciens de Melrose et Vasy donnent une version plus
globale de cette analyse. Cet article fournit une version microlocale des résultats de
ces auteurs; on suppose et prouve la régularité seulement près du point d’intérêt, q.
Nous prouvons aussi un résultat similaire qui est utile dans la théorie de la diffusion,
et aussi des résultats de la régularité lagrangienne.

1. Introduction

This paper studies the wavefront set of a solution u to Pu = f , where P
is a pseudodifferential operator on a manifold with real-valued homogeneous
principal symbol p, when the Hamilton vector field corresponding to p is radial
on a Lagrangian submanifold contained in the characteristic set of P . Accord-
ing to a theorem of Duistermaat-Hörmander, see [3], singularities propagate
along bicharacteristics of this Hamilton vector field. This theorem gives us no
information about the wavefront set when the Hamilton vector field is radial.
Melrose in [13] and Vasy in [16] gave a global analysis of the propagation of sin-
gularities around a Lagrangian submanifold of radial points. By adapting the
standard positive commutator estimate proof of this theorem, we microlocalize
these results. (This had been done in a special case by Vasy in [15].)

After proving such a result, we proceed to prove an analogous result, use-
ful in scattering theory, in particular in resolvent estimates. Analogous to the
standard propagation of singularities, microlocal Sobolev bounds on uτ which
are uniform in τ ∈ [0, 1] or (0, 1] propagate forward along bicharacteristics, as-
suming uniform Sobolev bounds for (P − iτ)u, where now P is of order 0 (see,
for instance, [13]). We prove a corresponding statement around a Lagrangian
submanifold of radial points, generalizing to solutions of P − iQτ , with P,Qτ
of equal order (not necessarily 0), with suitable boundedness and positivity
assumptions on Qτ . This is again a microlocal result which generalizes a global
result given in [13].
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PROPAGATION AROUND A LAGRANGIAN SUBMANIFOLD OF RADIAL POINTS 681

Lastly, we prove analogs in the context of Lagrangian regularity, essentially
replacing “u is microlocally Hs(X)” with “u is microlocally a Lagrangian dis-
tribution”. This follows the analyses of Hassell, Melrose and Vasy in [5] and [6].

It should be emphasized that these results are completely local. That is, in
order to conclude regularity for u at a point q in this Lagrangian submanifold,
we need only have regularity for f in an arbitrarily small neighborhood of q.
At times we also need regularity assumptions on u around the bicharacteristics
approaching the smallest conic subset containing the R+-orbit containing q,
and at other times we also need a priori regularity assumptions on u-–it is
important to note that these requirements are again local around q. Thus we do
not, for instance, require regularity assumptions around the whole Lagrangian
submanifold.

Under the nondegeneracy assumption dp 6= 0, the largest-dimensional sub-
space on which a Hamilton vector field can be radial is a Lagrangian subman-
ifold. This occurs naturally in many applications, including geometric scatter-
ing theory. Indeed, these results generalize a series of results in [13]. For the
treatment of the opposite extreme, that is, that of an isolated radial point,
see for instance the paper of Guillemin and Schaeffer [4], as well as the above
mentioned papers of Hassell, Melrose and Vasy [5, 6]. The works of Herbst and
Skibsted [7, 8] also study cases of this last scenario, while Bony, Fujiié, Ramond
and Zerzeri in [1] study a semiclassical version of this last scenario.

In Section 1.1, we introduce basic microlocal terminology. We then state
the standard (principal-type) propagation of singularities theorems and discuss
radial points in Section 1.2. In Section 1.3, we discuss the cosphere bundle as
a quotient of the cotangent bundle (excluding the zero section). As it is at
times easier to discuss dynamics on the cosphere bundle than it is on the
cotangent bundle, we regard certain conic sets, such as wavefront sets, to be
subsets of the cosphere bundle. We then state the main theorems of the paper in
Section 1.4, leaving out the more technical statements of Theorems 6.3 and 6.4
and instead giving Theorem 1.7, a simplified version. In Section 1.5, we sketch
the proofs of these theorems. The theorems contain ‘threshold’ values (s0, s1)
that have explicit values which are complicated to state in generality but can
be refined considerably under additional assumptions. We thus delay discussing
these values until Section 1.5.1. We then proceed to prove Theorem 1.5 in
Sections 2, 3, and 4. Theorem 1.4 follows as a special case. In Section 2, we
analyze the Hamiltonian dynamics around the radial points. In Section 3, we
give the positive commutator proof of Theorem 1.5, assuming the existence of
certain operators. In Section 4, we construct these operators. In Section 5, we
adapt these constructions for Theorem 1.6. In Section 6, we review the notion
from [5] of iterative regularity, in the context of Lagrangian regularity, state
and prove Theorems 6.3 and 6.4.
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682 N. HABER & A. VASY

In proving these theorems we make arguments which are intended to be
adaptable to other situations. In particular, it may be possible to find a more
explicit normal form for the Hamilton vector field around a Lagrangian sub-
manifold of radial points, with Lemmas 2.1 and 2.2 as easy consequences. These
lemmas are, however, closer to the bare minimum needed to prove the main
theorems, and thus indicate how the proofs might be adapted in cases where
such a normal form cannot be found. As remarked after Lemmas 3.2 and 3.3,
we can assume that certain error terms (Ft) are smoothing, which is stronger
than the lemma statements. This is, however, not needed for the proof of The-
orem 1.5, and requires a bit more work. An analogous error term improvement
is needed in the proof of Theorem 1.6, and we prove this in Section 5.2.

Acknowledgements. — The authors would like to thank the anonymous referee
for the many comments, which led to a significantly improved manuscript.

1.1. Basic Setup. — We recall several definitions so as to fix notation. Analysis
will take place on X, an n-dimensional manifold without boundary. Given P ∈
Ψm(X), the mth order pseudodifferential operators on X, we let

σm(P ) ∈ Sm(T ∗X)/Sm−1(T ∗X)

denote the principal symbol of P , where Sm(T ∗X) is the set of m-th order
Kohn-Nirenberg symbols on T ∗X.

Let o be the 0-section of T ∗X. Denote by µ : T ∗X \ o×R+ → T ∗X \ o the
natural dilation of the fibers of T ∗X \ o: given v ∈ T ∗xX, v 6= 0, µ((x, v), t) =

(x, tv). We call a subset of T ∗X \ o conic if µ acts on it. We call a function f
on T ∗X \ o homogeneous of order m if

(µ(·, t)∗f)(x, v) = tmf(x, v)

and a vector field V on T ∗X \ o homogeneous of order m if

(µ−1(·, t)∗)V (x, v) = tmV (x, v).

At times we will assume that P ∈ Ψm(X) has a homogeneous (of order m)
principal symbol p (i.e., a homogeneous representative for σm(P ) - note that,
if this exists, it is unique), defined on T ∗X \ o. Given such a p, real-valued, we
let Hp be the associated Hamilton vector field on T ∗X \ o. Note that then Hp

is homogeneous of order m− 1.
Given P ∈ Ψm(X), let Σ(P ) ⊂ T ∗X \ o denote the characteristic set of P ,

and let Ell(P ) ⊂ T ∗X \ o be the complement. Note that if we assume that P
has a homogeneous principal symbol p, Σ(P ) = p−1(0). Given u ∈ D′(X), we
let

WFs(u) =
⋂

A∈Ψs(u),Au∈L2
loc(X)

Σ(A)

tome 143 – 2015 – no 4



PROPAGATION AROUND A LAGRANGIAN SUBMANIFOLD OF RADIAL POINTS 683

be the Sobolev wavefront sets of u. That is, q /∈ WFs(u) if there exists an
A ∈ Ψs(X), elliptic at q, with Au ∈ L2

loc(X).

Given A ∈ Ψm(X), let WF′(A) be the microsupport of A, that is q /∈
WF′(A) if there exists a B ∈ Ψ0(X) with q ∈ Ell(B) and BA ∈ Ψ−∞. If
At ∈ L∞([0, 1]t,Ψ

m), then
q /∈WF′(A)

if there exists such a B with q ∈ Ell(B) and BAt ∈ L∞([0, 1],Ψ−∞(X)).
Similarly, given a ∈ Sm(T ∗X), we let the essential support of a be denoted
by esssup(a) ⊆ T ∗X \ o, that is,

q /∈ esssup(a)

if there is a conic open neighborhood of q on which a satisfies order −∞ bounds.
Given at ∈ L∞([0, 1]t, S

m(T ∗X)), let

q /∈ esssupL∞([0,1])(at)

if there is a conic open neighborhood of q on which at satisfies order −∞ bounds
independent of t.

If u = (uτ )τ∈[0,1] ∈ L∞([0, 1], D′(X)), then say that

q /∈WFsL∞([0,1])(u)

if there exists an A ∈ Ψs(X) with q ∈ Ell(A) and Auτ ∈ L∞([0, 1]τ , L
2
loc(X));

with the obvious modification if u = (uτ )τ∈(0,1]. We can relax the requirement
of a fixed A, making it τ -dependent, as follows. Given Aτ ∈ L∞([0, 1]τ ,Ψ

s(X))

with choice of principal symbol aτ ∈ L∞([0, 1], Ss(T ∗X)), then in local coordi-
nates (x, ξ), we say that

(x̂, ξ̂) ∈ EllL∞([0,1])(Aτ )

if, in a conic neighborhood U ⊂ T ∗X \ o of x̂, ξ̂, |aτ (x, ξ)| ≥ C〈ξ〉s
for sufficiently large ξ, with C and U independent of τ . We then have
q /∈WFsL∞([0,1])(u) if there is such an Aτ with q ∈ EllL∞([0,1])(Aτ ).

Note that all the sets defined in the preceding paragraphs are conic subsets
of T ∗X \ o. Shortly, we shall regard them as subsets of the cosphere bundle -
more on those in Section 1.3.

1.2. Standard Propagation of Singularities. — We now recall a standard result
([3]). As is customary, we refer to the integral curves of Hp as bicharacteristics.
We do not limit ourselves to bicharacteristics within Σ(P ) when using this
term; we will specify inclusion in Σ(P ) in theorem statements.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



684 N. HABER & A. VASY

Theorem 1.1 (Duistermaat-Hörmander, [3, Theorem 6.1.1′])
Suppose P ∈ Ψm(X) with real-valued homogeneous principal symbol p. Then

given u ∈ D′(X),
WFs(u) \ WFs−m+1(Pu)

is a union of maximally extended bicharacteristics in Σ(P ) \ WFs−m+1(Pu).

We now recall an analogous result, useful in scattering theory. Statements
similar to this can be found in many places (see, for instance, [13]). The semi-
classical version of this is proved in [2] (Lemma 5.1), and the proof carries over
without difficulty.

Theorem 1.2 (Datchev-Vasy, [2, Lemma 5.1]). — Given P ∈ Ψm(X), Q =

(Qτ )τ∈[0,1] ∈ L∞([0, 1]τ ,Ψ
m(X)), and uτ ∈ L∞([0, 1]τ , D

′(X)) such that
– P has real-valued homogeneous principal symbol p,
– Qτ has real-valued (choice of) principal symbol qτ ≥ 0,
– P − iQτ is elliptic for τ > 0 (so in particular we can choose qτ > 0

for τ > 0),
then

WFsL∞([0,1])(uτ ) \ WFs−m+1
L∞([0,1])((P − iQτ )uτ )

is a union of maximally backward-extended bicharacteristics in

Σ(P ) \ WFs−m+1
L∞([0,1])((P − iQτ )uτ ).

Note that, while regularity propagates both forward and backward along
bicharacteristics in Theorem 1.1, regularity only propagates forward along
bicharacteristics in Theorem 1.2.

Definition 1.3. — We call the vector field f(·) 7→ d
dt |t=0f(µ(·, t)) the radial

vector field. We say that Hp is radial at a point q ∈ Σ(P ) if Hp is a scalar
multiple of the radial vector field at q, and we then call q a radial point of Hp.

Equivalently, if we choose local canonical coordinates (x, ξ) for T ∗X, then
Hp is radial at q if it is a scalar multiple of ξ·∂ξ at q. Note then that Theorem 1.1
and Theorem 1.2 say nothing at radial points: if q is a radial point, then Hp

is also radial along q’s orbit under µ (by the homogeneity of Hp). Thus the
bicharacteristic going through q is a conic set. As WFs(u) \ WFs−m+1(Pu) is
conic, the theorem says nothing here.

It is worth pointing out that if the order m of P is nonzero, then this as-
sumption that q ∈ Σ(P ) is automatically fulfilled. Indeed, as p is homogeneous
of degree m, ∑

i

ξi∂ξip = mp,
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whereas ∂ξip = 0 for all i at a radial point.
It turns out, however, that we can conclude more about the regularity of u

at the R+-orbit of a radial point q, depending on the dynamics of Hp around
the orbit of q. We restrict our attention to the case where Hp is radial on a
Lagrangian submanifold Λ of T ∗X \ o. As mentioned in the introduction, this
is the largest submanifold on which P is radial, assuming Hp does not vanish
here. To see this, note that the identity LHpω = 0 implies that ω vanishes on
a submanifold for which Hp is radial and non-vanishing. That is, all manifolds
for which a Hamilton vector field is radial and non-vanishing are isotropic.

Before stating the results, we make some further definitions (some slightly
nonstandard) to avoid making statements in terms of the R+ orbit of a point
or bicharacteristics approaching such an orbit.

1.3. The cosphere bundle picture. — Let

κ : T ∗X \ o→ (T ∗X \ o)/R+ = S∗X

be the quotient map identifying the orbits of µ. We identify (T ∗X \ o)/R+ with
S∗X, the cosphere bundle of X. Given q ∈ S∗X, let U be a conic neighborhood
of κ−1(q) with ζ : U → R+, homogeneous of degree 1 and non-vanishing. On U ,
we can then define the vector field Wp = ζ1−mHp. This is then homogeneous
of degree 0, so it pushes forward to a vector field on κ(U) ⊂ S∗X (which we
will at times also call Wp). Note then that Hp is radial at κ−1(q) if and only if
κ∗Wp vanishes at q.

It is of course possible to have such a ζ globally defined on T ∗X \ o (we
can, for instance, let ζ be the norm on the cotangent fibers induced by the
choice of a Riemannian metric), and thus taking a globally well-defined Wp

and q ∈ S∗X, let

Γq = {x ∈ S∗X \ q | lim
t→∞

exp(tκ∗Wp)(x) = q or lim
t→∞

exp(−tκ∗Wp)(x) = q}.

As we will see below, in our setting, the Lagrangian submanifold of radial
points is a submanifold of either sources or sinks; hence, only one of the two
limits is needed in the above definition. Note that while Wp depends on the
choice of ζ, the integral curves do not (different choices of ζ correspond to
different parameterizations of these integral curves). In particular, if we define
ζ only locally, then the integral curves of the locally-defined Wp agree with the
globally-defined ones.

If U has a coordinate chart φ = φ0 × ζ : U → V0 × R+ where φ0 is homo-
geneous of order 0 (and ζ homogeneous of order 1), then ∂ζ is radial. If we
set U0 = κ(U), then φ0 induces a coordinate chart ψ0 : U0 → V0 determined
by ψ0 ◦ κ = φ0.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



686 N. HABER & A. VASY

Since WFs(u),WF′(A),Ell(A), esssup(a) and their L∞([0, 1])-counterparts
are conic subsets, it is natural to regard these as subsets of the cosphere bundle,
and from here on we elect to do so:

WFs(u),WF′(A),Ell(A), esssup(a) ⊂ S∗X.

We set, for P ∈ Ψm(X), Σ̂(P ) = κ(Σ(P )), and fixing a Lagrangian submanifold
Λ of T ∗X, L = κ(Λ).

Assuming Hp is radial on a conic Lagrangian submanifold Λ ⊂ T ∗X, Wp

vanishes on L. If we assume further that dp 6= 0 on Λ, then L is either a sink
or a source for Wp|Σ̂. In fact, if we look at the linearization of Wp|Σ̂ at a point
q ∈ L, it has two eigenvalues: a nonzero λ0 corresponding to the conormal
bundle of L, and 0. We will see this quite explicitly in Section 2.1; for a more
general discussion on why this must be true, see, for instance, [6, Section 2].

1.3.1. The compactified cotangent bundle picture. — This section is optional
and is included in order to give a nice picture of the classical (Hp) dynamics
involved. In further sections we will work in the cotangent bundle and the co-
sphere bundle, and use this for supplementary commentary. We denote by T

∗
X

the (fibre-) compactified cotangent bundle of X. See [13] for an introduction to
this, and in particular a proof that it is globally well-defined; here we simply
state the essential properties of it and give a local coordinate chart.
T
∗
X is a disk bundle overX, constructed by compactifying each fiber of T ∗X

to a (closed) disk. There is an inclusion j : T ∗X ↪→ T
∗
X, and the boundary

∂T
∗
X can be identified with the cosphere bundle S∗X. Given q ∈ S∗X, along

with conic open neighborhood U = κ−1(U0) ⊂ T ∗X \ o of κ−1(q) and coordi-
nate chart φ as above, we can give a coordinate chart ϕ : Ũ → U0 × [0, 1]x for
an open neighborhood Ũ ⊂ T

∗
X of q as follows. Given w ∈ U , let ϕ(j(w)) =

(φ0(w), 1
ζ (w)), and for w ∈ S∗X, let ϕ(w) = (φ0(κ−1(w)), 0). We have a

boundary-defining function x defined by x = 1
ζ on the interior and x = 0

on the boundary.
Again taking the vector field Wp = ζ1−mHp defined on U , Wp extends

uniquely (see [13]) to a vector field on Ũ , which we will also denote by Wp. Wp

is tangent to the boundary ∂T
∗
X, i.e., Wp ∈ V b(U) (the Lie algebra of vector

fields tangent to the boundary). Wp|S∗X then agrees with κ∗Wp as defined in
Section 1.3.

As noted at the end of Section 1.3, L is either a sink or a source forWp|Σ̂. As
we will see in Section 2.1, more is true: L is in fact a sink or a source for Wp|Σ,
where Σ = Σ ∪ Σ̂ ⊂ T ∗X. The linearization of this has the same eigenvalue λ0

corresponding to any boundary defining function. Our proofs of the following
theorems depend on the behavior of Wp near L not just in the cosphere bundle
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but also in the interior of T
∗
X, and that L is a source or sink in this sense will

be very important.

1.4. Statement of Theorems. — First, we state a simple version, valid, for in-
stance, when P ∈ Ψm

cl (X). Here we choose a density on X in order to define
P ∗; however s0 in the statement below does not depend on this choice. See
Section 1.5.1 for more on this independence. In particular, the homogeneous
requirement on σm−1(P−P

∗

2i ) does not depend on the choice of density.

Theorem 1.4. — Given P ∈ Ψm(X) with a real-valued homogeneous princi-
pal symbol p such that Hp is radial (and non-vanishing) on a conic Lagrangian
submanifold Λ ⊂ Σ(P ), with the additional assumption that σm−1(P−P

∗

2i ) has
homogeneous representative, then given q ∈ κ(Λ), there exist s0 ∈ R such that

– For s < s0, if there is an open neighborhood U0 ⊂ S∗X of q disjoint from
WFs−m+1(Pu) and from Γq ∩WFs(u), then q /∈WFs(u).

– For every s > s1 > s0, q /∈ WFs1(u) implies q /∈ WFs(u) \
WFs−m+1(Pu).

Next, we state a more general version, taking away the assumption
on σm−1(P−P

∗

2i ).

Theorem 1.5. — Given P ∈ Ψm(X) with a real-valued homogeneous princi-
pal symbol p such that Hp is radial (and non-vanishing) on a conic Lagrangian
submanifold Λ ⊂ Σ(P ), then given q ∈ κ(Λ), there exist s0, s1 ∈ R such that

– For s < s0, if there is an open neighborhood U0 ⊂ S∗X of q disjoint from
WFs−m+1(Pu) and from Γq ∩WFs(u), then q /∈WFs(u).

– If s > s1,then q /∈WFs1(u) implies q /∈WFs(u) \ WFs−m+1(Pu).

We next state a theorem useful in scattering theory. As noted above, L is
either a submanifold of sinks or a submanifold of sources forWp. As a technical
assumption, we take as given a choice of density on X. This is needed for the
positive-semidefinite assumption below; as discussed below, some more effort
should allow this to be removed.

Theorem 1.6. — Given P ∈ Ψm(X), Q = (Qτ )τ∈[0,1] ∈ L∞([0, 1]τ ,Ψ
m(X)),

and
uτ ∈ L∞([0, 1]τ , D

′(X)) such that

– P has a real-valued homogeneous principal symbol p such that Hp is radial
(and non-vanishing) on a conic Lagrangian submanifold Λ ⊂ Σ(P ),

– Qτ is positive-semidefinite for τ > 0, and
– P − iQτ is elliptic for τ > 0,

then for q ∈ κ(Λ), there exist s0, s1 ∈ R such that
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– if κ(Λ) is a sink for Wp|S∗X , then for s < s0, the existence of an open
neighborhood U0 ⊂ S∗X of q disjoint from

WFs−m+1
L∞([0,1])((P − iQτ )uτ )

and from
Γq ∩WFsL∞([0,1])(uτ )

implies q /∈WFsL∞([0,1])(uτ ).
– if κ(Λ) is a source for Wp|S∗X , then for s > s1,

q /∈WFsL∞([0,1])(uτ ) \ WFs−m+1
L∞([0,1])((P − iQτ )uτ ).

The value of s0 for Theorem 1.6 is the same as in Theorem 1.5, and s1 can
be taken to be the lower bound on what s1 can be in Theorem 1.5.

Remark. — Note that, unlike the statements of Theorems 1.4 and 1.5, the
analogous assumption q ∈WFs1L∞(uτ ) is not required for the s > s1 statement.
Implicit in this statement is that such regularity is assured by the assumption
q /∈ WF s−m+1

L∞([0,1])((P − iQτ )uτ ) for any s > s1. Also, note that the lack of
symmetry in the statement with respect to sources and sinks is due to the
arbitrary choice of sign P − iQτ with Qτ positive. If we had instead chosen the
sign P + iQτ , the source/sink condition would switch.

It is worth noting that we can relax the assumption that Qτ is positive-
semidefinite for τ > 0. If we have a choice of σm(Qτ ) that is positive for τ > 0,
then we would like to be able to apply a sharp Gårding inequality Qτ ≥ Q′τ
for Q′τ of lower order. If we can make Q′τ independent of τ , or at least give it
some uniform control in τ , then Q′ can then be absorbed in P , and the net
effect would be a shift in s0 and s1. We elect not to pursue such a uniform
sharp Gårding inequality in this paper, as it is besides the central point. It is
easier to relax this positive-semidefinite assumption in special circumstances,
though. If, for instance, Qτ = τQ with a choice of σm(Q) positive, then we
may simply apply sharp Gårding or a related construction and again absorb a
term into P .

For all three theorems, s0 and s1 are determined entirely by σm−1(P−P
∗

2i )

and dp around κ−1(q). We give explicit formulas for them in Section 1.5.1, but
it is helpful to motivate their formulas in the following sketch.

As mentioned above, two more theorems are contained in Section 6. We post-
pone their statements, as the results require further definitions, and state a sim-
plified version here. We denote by I(s)(X,Λ) the L2-based space of Lagrangian
distributions of order s associated to Λ. That is, we say that u ∈ I(s)(X,Λ)

if A1 . . . Aku ∈ Hs for all Ai ∈ Ψ1(X) with Λ ⊂ Σ(Ai), 1 ≤ i ≤ k, for all k.
Note that this differs slightly from the standard (Besov space based) definition
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of Lagrangian distributions (see [9, 12]) due to the different spaces relative to
which regularity is measured, but one has the containments:

I(−s−n4 )(X,Λ) ⊂ Is(X,Λ) ⊂ I(−s−n4−ε)(X,Λ),

for all ε > 0. Here n is the dimension of X.

Theorem 1.7. — Given P ∈ Ψm(X) with real-valued homogeneous principal
symbol p such that Hp is radial (and non-vanishing) on a conic Lagrangian
submanifold Λ ⊂ Σ(P ), then given q ∈ κ(Λ) and s0, s1 as in Theorem 1.5, we
have the following.

– For s < s0, if there is an A ∈ Ψ0(X) elliptic at q such that APu ∈
I(s−m+1)(X,Λ) and WF(Au) ⊆ Λ, then for all B ∈ Ψ0(X) with WF′(B)

contained in a sufficiently small neigborhood of q, Bu ∈ I(s)(X,Λ).
– For s ≥ s1 + 1, if there is an A ∈ Ψ0(X) elliptic at q such that
APu ∈ I(s−m+1)(X,Λ) and WFs1(Au) = ∅, then for all B ∈ Ψ0(X)

with WF′(B) contained in a sufficiently small neigborhood of q,
Bu ∈ I(s)(X,Λ).

As mentioned in Section 6, we believe that the restriction s ≥ s1 + 1 is
artificial, and other methods could improve this to s > s1.

1.5. Sketch of Proofs. — In this section, we sketch the proofs that follow. This
should help motivate the theorem statements, as well as help the reader to
separate the essential details of the proofs from the technical details which
can be arranged more easily. In the proofs of these statements, we adapt the
positive commutator argument that is now standard in microlocal analysis (see,
for instance, [10], Proposition 3.5.1).

In particular, in order to prove Theorem 1.5, we would like to construct
families of pseudodifferential operators At, G1,t, G2,t, Et, Ft so that

1

2i
(AtP − P ∗At) = ±(G2

1,t +G2
2,t) + Et + Ft,

where all are of acceptably low order when t > 0 (we can take order −∞ when
s < s0, but when s > s1, we must stay at or above this threshold). That way,
we can make sense of the following pairing with u for t > 0:

1

2i
〈u, (AtP − P ∗At)u〉 = 〈u, (±(G∗1,tG1,t +G∗2,tG2,t) + Et + Ft)u〉

Im(〈Atu, Pu〉) = ±(‖G1,tu‖2 + ‖G2,tu‖2) + 〈u,Etu〉+ 〈u, Ftu〉

We have implicitly chosen (in writing these inner products and P ∗) a density
for X-–as we will argue later, it does not matter which. As t→ 0, we would like
G2,t to approach an operator of order s, elliptic at the point q ∈ L which we
would like to prove is not in WFs(u). This is accomplished if we can bound the
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left hand side of the above equation, as well as 〈u,Etu〉 and 〈u, Ftu〉. We bound
the left hand side by requiring that At not only have the correct order but also
microsupport contained in some open neighborhood U0 ⊂ S∗X on which we
assume that Pu has regularity. We bound the Et term by requiring that Et
have microsupport contained in some neighborhood where we can assume u
has regularity. Lastly, we bound the Ft term by requiring that Ft has order
2s−1, and work by induction, assuming that U0∩WFs−

1
2 (u) = ∅. Notice that

‖G1,tu‖2 gets bounded for free here, since it is of the same sign as ‖G2,tu‖2.
Its inclusion is simply meant to make the operator constructions easier.

We construct these operators by quantizing real-valued symbols at, g1,t, g2,t,
et so that

1

2
Hpat + σm−1

(P − P ∗
2i

)
at = ±(g2

1,t + g2
2,t) + et.

To do that, we further assume that U has a coordinate chart φ = φ0× ζ : U →
V0 × R+ as in Section 1.3. In order to localize to U , we take

at = (χ(φ0))2(ρt(ζ))2.

Here χ : V0 → R is a cutoff function localizing to U , and ρt gives us the correct
order properties (so for t = 0, it is the correct power of ζ, and for t > 0, of
suitably lower order in ζ). Taking at to be a square fixes its sign; as argued in
the sketch of Theorem 1.6, there is a better reason for making this a square.

Define
λ = −Hpζ.

This is a symbol, homogeneous of degree m − 1, defined on U . Under the
assumption that dp 6= 0 on Λ (and hence that Hp 6= 0 on Λ), we may assume,
possibly after shrinking U , that λ is elliptic on U . The thresholds s0, s1 are
chosen precisely so that when s < s0,

χ(φ0)2

(
1

2
Hp(ρt(ζ)2) + σm−1

(P − P ∗
2i

)
ρt(ζ)2

)
(1.1)

and λ are of the same sign, and when s > s1, they are of opposite sign. Note that
ρt(ζ) = ρt(ζ, s) depends on our choice of s. Shortly, we give explicit formulas
for these, (1.2) for the s < s0 case, and (1.3) for the s > s1 case. For both cases,
we need only have this condition satisfied for ζ sufficiently large (as we only
need to determine our operators up to order −∞), and we may also shrink U .
We develop explicit formulae in Section 1.5.1.

Note that since Hp is radial at q, Hp(χ(φ0)2) must vanish at q, so the

1

2
χ(φ0)2Hp(ρt(ζ)2)
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term must be what contributes to g2
2,t. This also explains the inclusion of

σm−1

(P − P ∗
2i

)
at

in the definitions of s0 and s1 above. As we assume no control over this term, we
must dominate it by 1

2Hpat. In the positive commutator proof of Theorem 1.1,
we can dominate this term with ρ2

tHp(χ(φ0)2), but here, this is not an option,
and we must rely on the growth rate of ρt to dominate this term.

As we shall see in Section 2.1, κ∗Wp|hS(= κ∗(ζ
1−mHp)|Σ̂) is a sink or source

depending on whether λ is negative or positive (see also Section 2.1.1, for what
is perhaps a clearer picture). Thus in the s < s0 case, the sign of (1.1) does
not match with the sign of ρtHp(χ ◦ φ0) everywhere. We must then have the
regularity assumption on u in some deleted neighborhood of q. As we will show
below in Section 2.2, this amounts to assuming regularity on bicharacteristics
which approach q, as stated in Theorem 1.5. When s > s1, the signs of these two
terms can be made to match everywhere on the characteristic set, and we no
longer need this assumption. In regularizing, however, we cannot pass through
this threshold s1 as t → 0, as the sign would switch, taking away any hope
of getting the desired bound. Thus we need an a priori regularity assumption
q /∈WFs1(u), and we regularize from that level. This a priori assumption also
allows us to have the inductive assumption U ∩WFs−

1
2 (u) = ∅, as we can start

the induction at s = s1 + 1
2 (if the expected conclusion is to be stronger than

this), but as we shall see below in Section 5.2, this is for convenience rather
than necessity, as we can actually take Ft ∈ Ψ−∞(X).

We use a similar argument in the proof of Theorem 1.6. One key difference is
that, by assumption, P − iQτ is elliptic for τ > 0, so elliptic regularity implies
some regularity for uτ for τ > 0. In a sense, this regularizes for us, and we
can use our limiting, t = 0, operators (hence in what follows we take away the
subscripts and write, for instance, A for A0). This allows us to take away the
a priori assumption q /∈ WFs1(u). In taking away this a priori regularity, we
can no longer have the inductive assumption U ∩WFs−

1
2 (u) = ∅ (which would

control the 〈u, F0u〉 term), as we cannot start our induction at s = s1 − 1
2 .

As mentioned above, though, with greater care in symbol construction, we can
actually take F ∈ Ψ−∞, so this is not a real issue.

Another key difference is that, as we have regularity on (P−iQτ )u, we modify
the argument to involve the “commutator” 1

2i (A(P − iQτ )−(P ∗+ iQτ )A) (note
that since Qτ is positive semidefinite, we assume Q∗τ = Qτ ). This gives us an
extra term:

1

2i
(A(P − iQτ )− (P ∗ + iQτ )A) =

1

2i
(AP − P ∗A)− 1

2
(AQτ +QτA)
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We must be careful with this extra term: for τ > 0, it is one order higher than
we would like G2 to be, so the only way to control it is to ensure that it is,
up to two orders lower, of the same sign as ±(G2

1 + G2
2) (i.e., have them both

positive semidefinite or negative semidefinite). We chose, arbitrarily, A to have
nonnegative principal symbol, but in order to get another order of control, we
take (as this is easy to arrange) A = B2 with B∗ = B. We can then construct
operators so that:

1

2i
(B2(P − iQτ )− (P ∗ + iQτ )B2) = ±(G2

1 +G2
2)−BQτB + E + Fτ .

BQτB is a positive semidefinite operator, so we must ensure that the ± above
is a −. As a result, the s < s0 argument works only when λ < 0, and the s > s1

argument works only when λ > 0; hence the sink/source assumptions in the
statement of Theorem 1.6.

In order so that we do not need to construct At for the proof of Theorem 1.5
and then go back and construct B so that A0 = B2 for the proof of Theorem 1.6,
we simply work with Bt, the quantization of bt, throughout.

1.5.1. Explicit formulas for s0, s1. — Here we give explicit formulas for the
thresholds s0 and s1, using the coordinates and definitions of Section 1.5. At
the end of the section, we argue that the formulas are independent of choices
made. In the formulas below, we choose any representative for σm−1(P−P

∗

2i )

and write it simply as σm−1(P−P
∗

2i ). In the homogeneous case of Theorem 1.4,
the homogeneous choice is unique.

We start by determining the values for Theorem 1.5. As noted in the above
sketch, we choose s0 so that (1.1) remains the same sign as λ on U , for all
t ∈ [0, 1], and we choose s1 so that (1.1) has sign opposite to that of λ. This
does not depend on the form of ρt, but only on its order of growth in ζ. A quick
calculation verifies that at a point w ∈ U , the critical order is the following:

f(w) :=
σm−1(P−P

∗

2i )ζ

λ
(w).

That is, at a point w ∈ U , (1.1) is the same sign as λ if and only if ρ
′
t

ρt
(ζ(w)) <

f
ζ (w), and of the opposite sign as that of λ if and only if ρ

′
t

ρt
> f

ζ (w).

As noted in Section 3, we need B0 to have order 2s−m+1
2 in both the s < s0

case and the s > s1 case. We then define s0 so that on the support of the
symbols, s < f + m−1

2 . We may, of course, make the supports as small as we
like, so long as g2,0 is nonzero on κ−1(q), and further, as the values of the
symbols are irrelevant for ζ ≤ ζ0(in the sense that order −∞ error terms are
irrelevant), we only need this to hold for ζ > ζ0 > 0. It is thus optimal to
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choose (and so we take as definition)

s0 := sup
U ′0⊂U0 with q∈U ′0,ζ0>0

(
inf

{w∈U |κ(w)∈U ′0,ζ(w)>ζ0}
f(w) +

m− 1

2

)
.

If we assume that σm−1(P−P
∗

2i ) has homogeneous representative, then this
simplifies. With that choice for σm−1(P−P

∗

2i ) in the definition of f , f is homo-
geneous of degree 0, so we may consider it a function on S∗X, and take

s0 = f(q) +
m− 1

2
.

To be concrete, we note that in the s < s0 case, we take

(1.2) ρt(ζ) = ζ
2s−m+1

2 χ̂(tζ),

where χ̂ ∈ C∞c (R) is identically 1 in a neighborhood of 0. The reader may
explicitly verify that the above choice of s0 works.

In the s > s1 case, we must regularize so that g2,t has, for t > 0, order s1

because of the assumed a priori regularity q /∈WFs1(u). For t > 0 we must then
have bt of order 2s1−m+1

2 . Thus we must have s1 > f + m−1
2 on the supports of

the symbols. As above, we may shrink the supports of the symbols, and further
this only need be valid for ζ > ζ0 > 0. It is thus optimal to choose (and so for
Theorem 1.5 we take as the defining requirement) any s1 such that

(Thm 1.5) s1 > inf
U ′0⊂U0,q∈U ′0,ζ0>0

(
sup

{w∈U |κ(w)∈U ′0,ζ(w)>ζ0}
f(w) +

m− 1

2

)
.

If we assume that σm−1(P−P
∗

2i ) has homogeneous representative, then this
again simplifies:

s1 > f(q) +
m− 1

2
where since f is then homogeneous of degree 0, we take it to be a function
on S∗X. Hence, as in the statement of Theorem 1.4, we may choose any s1 > s0.

To be concrete, we note that when s > s1, we take

(1.3) ρt(ζ) = ζ
2s−m+1

2 (1 + tζ)s1−s.

The reader may again explicitly verify that any such above choice of s1 works.
In order to prove Theorem 1.6, we do not need to regularize, and we simply

take the operators and symbols with t = 0. Thus the value of s0 is the same in
this case, and we can take s1 to realize the lower bound for s1 in Theorem 1.6:

(Thm 1.6) s1 = inf
U ′0⊂U0,q∈U ′0,ζ0>0

(
sup

{w∈U |κ(w)∈U ′0,ζ(w)>ζ0}
f(w) +

m− 1

2

)
.

In the case where σm−1(P−P
∗

2i ) has a homogeneous choice, we can take s0 = s1.
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The above determined values of s0 and s1 may appear to depend on the
choices of ζ, representative of σm−1(P−P

∗

2i ) (when σm−1(P−P
∗

2i ) is not assumed
to have a homogeneous choice), and density on X (which determines P ∗). The
values are (as one should hope) independent of such choices.

– If we instead chose any other ζ1 : U → R+, homogeneous of degree 1,
then we would have ζ1 = g(φ0)ζ for some g : V0 → R+. As λ depends
on ζ, we would define a different

λ1 = −Hpζ1

= −ζHpg(φ0)− g(φ0)Hpζ

= −ζHpg(φ0) + g(φ0)λ

As Hp is radial along κ−1(q), the first term vanishes on κ−1(q), so it does
not contribute in the formulas. Further, the g(φ0) factors cancel in the
fraction. Thus our formulas are independent of choice of λ.

– That our choice of representative for σm−1(P−P
∗

2i ) does not affect the
values of s0 and s1 is clearer: the choice is determined up to one order
lower, which does not contribute in the limit ζ0 →∞.

– If we chose a different density, then the adjoint operator to P would be
of the form f−1P ∗f , where P ∗ is the adjoint from the original density
choice, and f ∈ C∞(X). We have f−1P ∗f = P ∗+f−1[P ∗, f ]. Since Hp is
radial at κ−1(q), Hpf = 0, so σm−1(f−1[P ∗, f ]) vanishes at κ−1(q). This
difference does not contribute in the formulas for s0 and s1.

2. Classical Dynamics

In order to prove Theorem 1.5, we first must have some understanding of
the symplectic geometry. First, we choose some convenient coordinates, then
as a consequence we derive a geometric lemma useful for the s < s0 case. From
now on, we fix P as in Theorem 1.5, and set

Σ = Σ(P ).

2.1. Choice of coordinates. — Let I Λ,U = {f ∈ C∞(Σ ∩ U)| f |Λ = 0}, the
ideal of smooth functions on Σ∩U which vanish on Λ, where U is a conic open
subset of T ∗X \ o. Using the facts that Hp is radial on Λ and that Λ is conic,
we have

Hp : I Λ,U → I Λ,U

and thus, as would be a consequence with any such vector field,

Hp : I 2
Λ,U → I 2

Λ,U
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so we have the induced

H̃p : C∞(Σ ∩ U)/ I 2
Λ,U → C∞(Σ ∩ U)/ I 2

Λ,U .

Our goal in this section is to choose coordinates which correspond to eigenvec-
tors of this map, for a particular choice of U . We assume that P ∈ Ψm(X) is
as in the statement of Theorem 1.5.

Lemma 2.1. — There exists a conic open neighborhood U ⊂ T ∗X \ o of κ−1(q)

with coordinate chart

φ : U → V ⊂ Rη0 × Rn−1
α × Rn−1

β × R+,ζ

such that κ−1(q) = {η0 = 0, α = β = 0}, Λ ∩ U = {η0 = 0, α = 0}, and
Σ∩U = {η0 = 0}, with ζ is homogeneous of degree 1 and η0, α, β homogeneous
of degree 0 (with respect to the R+ action µ); in addition,

ι∗Hpαi ∈
λ

ζ
αi + I 2

Λ,U(2.1)

ι∗Hpβi ∈ I 2
Λ,U(2.2)

Hpζ = −λ(2.3)

with λ ∈ Sm(U) elliptic, where ι : Σ(P ) ∩ U ↪→ U is the inclusion map.

Remark. — If U ′ is any other conic open neighborhood of κ−1(q), then U∩U ′
also has such a coordinate chart, i.e., we can always shrink U , so long as it still
contains κ−1(q), and it will still have the desired coordinate chart. This will be
useful as we prove Theorem 1.5.

Proof. — We start off by choosing U , an open conic neighborhood of κ−1(q),
so that it has a canonical coordinate chart ϕ : U → V ′ ⊆ Rnx × Rnξ , such that
ϕ(Λ ∩ U) = V ′ ∩ N∗{xn = 0} \ o and κ−1(q) = {x = 0, ξ1 = . . . = ξn−1 =

0, ξn > 0}, where N∗Y is the conormal bundle of Y ⊂ X, so in this case
Λ ∩ U = U ′ ∩ {xn = 0, ξ1 = . . . = ξn−1 = 0}. This choice can be made: see, for
instance, [11], Theorem 21.2.8. We shrink U so that ξn > 0 on U .

Define an intermediate coordinate chart

φ1 : V ′ → V ′′ ⊆ Rn−1
y × Rz × Rn−1

θ × Rζ
by

yi = xi, i < n

z = xn

θi =
ξi
ξn
, i < n

ζ = ξn,
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so y, z, θ are homogeneous of degree 0, and ζ is homogeneous of degree 1.
In what follows we sometimes write p for p ◦ ϕ−1 ◦ φ−1

1 , and similarly for
other functions, in order to make formulas less cluttered. We have

φ1∗∂ξi =
1

ζ
∂θi , i < n

φ1∗∂ξn = ∂ζ −
∑
i

θi
ζ
∂θi

(φ−1
1 )∗dξi = ζdθi + θidζ

(φ−1
1 )∗dξn = dζ

and thus

φ1∗ϕ∗Hp = ∂ζp∂z +
1

ζ

( n−1∑
i=1

(θi∂zp− ∂yip)∂θi + ∂θip(∂yi − θi∂z)
)
−(∂zp)∂ζ .

If we let ω be the standard symplectic form on T ∗Rn, we have

(ϕ−1 ◦ φ−1
1 )∗ω = dz ∧ dζ +

n−1∑
i=1

dyi ∧ (ζdθi + θidζ).

Noting that φ1(ϕ(Λ)) = {z = 0, θ = 0}, p|Λ = 0 implies that ∂yip = ∂ζp = 0

on φ1(ϕ(Λ)). In order that Hp be radial on Λ, we must have that ∂θip = 0

on φ1(ϕ(Λ)) as well. In order for nondegeneracy dp 6= 0 to hold, we must have
∂zp 6= 0 on Λ. After potentially shrinking U further (and so also shrinking V ′

and V ′′), there is, by the implicit function theorem, an

f : {(y, θ, ζ) | ∃ z with (y, z, θ, ζ) ∈ V ′′} → R

such that
p(φ−1

1 (y, f(y, θ, ζ), θ, ζ)) = 0

and f(0, 0, 1) = 0. As p is homogeneous, we have ∂ζf = 0, and using the
above conditions on p at Λ, we have ∂yif = ∂θif = 0 on φ1(ϕ(Λ)), for all
i, so in particular f(y, 0, ζ) = 0. As this implies that ∂θi∂yjf = ∂yi∂yjf = 0,
f(y, θ, ζ) ∈ I 2

Λ,U (considered a function on Σ∩U because y, θ, ζ are coordinates
for Σ ∩ U). Thus we have the following:

ι∗ϕ∗φ∗1∂yip ∈ I 2
Λ,U

ι∗ϕ∗φ∗1∂θip ∈ I Λ,U

We choose αi = ϕ∗θi and η0 = p
ϕ∗ζm . To finish the lemma, it suffices to

choose βi(y, θ) with ∂yjβi = δij on Λ and

ι∗ϕ∗φ∗1

∑
j

θj∂zp ∂θjβi + ∂θjp ∂yjβi

 ∈ I 2
Λ,U .
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This is easy to accomplish: we can, for instance, let

βi = ϕ∗(yi −
∂θip

∂zp
(y, f(y, θ), θ))

where we above omit dependence on ζ, since ∂θip

∂zp
is homogeneous of degree

0. Lastly, in order to assure that λ = ϕ∗φ∗1(∂zp) is elliptic, we may need to
shrink U .

2.1.1. The compactified cotangent bundle picture, continued. — This section
is optional and meant to give a nice picture of the dynamics involved. Let Σ =

Σ ∪ Σ̂ ⊂ T ∗X ∪ S∗X = T
∗
X, and Λ = Λ ∪ L ⊂ T

∗
X. Then given coordinates

as in Lemma 2.1, we define x, a boundary defining function defined on Ũ =

U ∪ κ(U) ⊂ T ∗X, as in Section 1.3.1: x = 1
ζ on U , and x = 0 on the boundary

κ(U). Further, η0, α, and β extend to Ũ , and together with x give a coordinate
chart for Ũ . Wp = xm−1Hp extends to a vector field on Ũ , tangent to the
boundary (that is, Wp ∈ V b(Ũ)), and for this section we take Wp to be this
extension.

The eigenvalue λ0 mentioned in Sections 1.3 and 1.3.1 is the value of xmλ
at q (note that λ

ζm is homogeneous of order 0, so it extends to Ũ), so here we
define λ0 = xmλ ∈ C∞(Ũ). If we set I Λ,Ũ = {f ∈ C∞(Σ ∩ Ũ)| f |L = 0} and
ιΣ : Σ ↪→ T

∗
X inclusion, then

ι∗
Σ
Wpαi ∈ λ0αi + I 2

Λ,Ũ

ι∗
Σ
Wpβi ∈ I 2

Λ,Ũ

Wpx = λ0x.

In particular, the linearization of Wp|Σ at q has two eigenvalues, λ0(q) (of mul-
tiplicity n) and 0 (of multiplicity n− 1). Thus we see the sink/source behavior
at L.

2.2. Geometric Lemma. — We now state and prove a lemma which takes the
regularity assumed on u in the s < s0 case in the statement of Theorem 1.5,
and gives us regularity in an open subset of S∗X. This essentially depends on
the fact that the flow lines of κ∗Wp are well-behaved close to L. As before, we
take Σ̂ = κ(Σ). We take P as in the statement of Theorem 1.5, and Qτ as in
the statement of Theorem 1.6. Recall that, by definition, Γq does not contain q.

Lemma 2.2. — Given an open neighborhood W ⊂ Σ̂ of Γq ∩U0 for some open
neighborhood U0 ⊂ S∗X of q, there is an open neighborhood W ′ ⊂ Σ̂ of q
such that W ′ \ L ⊆ {exp(tκ∗Wp)w | w ∈ W, t ≥ 0} if L is a sink for κ∗Wp

(respectively, t ≤ 0 if L is a source for κ∗Wp).
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x

β

α

q

L

Σ̂

Σq

Λ

Figure 1. Σ, in the case where L is a sink, using the coordinates x, α, β.

Proof. — We first shrink U0 so that U0 = κ(U) with U as in Lemma 2.1. Using
the coordinates given by Lemma 2.1, we have a coordinate chart

ψ : U0 ∩ Σ̂→ VΣ̂ ⊆ Rn−1
α × Rn−1

β .

Here
ψ∗(κ∗Wp)Σ̂ =

∑
i

λ(α, β)(αi + wi(α, β))∂αi + ri(α, β)∂βi

where wi, ri ∈ I 2
L,U0

(where we define, analogously, IL,U0 = {f ∈ C∞(Σ̂ ∩
U0) | f |L = 0}). To analyze this, we introduce a blow up of L ∩ U0 with
blowdown map

B : [U0 ∩ Σ̂;U0 ∩ L]→ U0 ∩ Σ̂.

This can easily be described in terms of coordinates: [U0∩Σ̂;U0∩L] is diffeomor-
phic to a neighborhood of {r = 0, β = 0} in R+,r×Sn−2

ω ×Rn−1
β . In these coor-

dinates and the coordinates (α, β) for Σ̂∩U0, B is the map (r, ω, β) 7→ (rω, β).
We then have r as a boundary defining function for B−1(L).
κ∗Wp|Σ̂ then lifts uniquely to a vector field on [U0 ∩ Σ̂;U0 ∩L], and in these

coordinates, it is of the form

(λ(r, ω, β)r + w(r, ω, β))∂r + wi(r, ω, β)∂ωi + ri(r, ω, β)∂βi

where w,wi, ri ∈ I 2
L. This is of the form

rV⊥
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ω

r

β

BÑ

B´1pLq

B´1pqq
q

L

β

α1

α2 . . . αn´1

Figure 2. The blow up construction

BÑ

Flow lines of VK

B´1pLq

rU0 X S;U0 X Ls B´1pLq ˆ r0, 1s

B´1pLq ˆ t1uB´1pLq ˆ t0u

Figure 3. The map ψ

where V⊥ is transverse to B−1(L). The lifts of the integral curves of κ∗Wp|Σ̂
are the same as the flow lines of V⊥ away from B−1(L), so to prove the lemma
we may simply study the latter.
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As is standard ODEs (see, for instance, Chapter 1 of [14]), the flow of V⊥
gives a diffeomorphism

ϕ : W ′′ ⊂ [U0 ∩ Σ̂;U0 ∩ L]→ B−1(L)× [0, 1]

which extends the ‘identity’ B−1(L) → B−1(L) × {0} (and W ′′ is an open
neighborhood of B−1(L)).

The set W in the assumption of the lemma gives an open set U ′ ⊂ B−1(L)

of B−1(q) such that
U ′ × {1} ⊂ ϕ(B−1(W )).

Note that by the compactness of B−1(q), U ′ contains B−1(V ) for some neigh-
borhood of q in L. Hence B(ϕ−1(U ′ × [0, 1))) contains an open neighborhood
W ′ ⊂ Σ̂ of q as desired.

Corollary 2.3. — If WFs(u) ∩ U0 ∩ Γq = ∅ for some open neighborhood
U0 ⊂ S∗X of q with WFs−m+1(Pu) ∩ U0 = ∅, then WFs(u) ∩ (W ′ \ L) = ∅
for some open neighborhood W ′ ⊂ Σ̂ of q.

Proof. — Since WF s(u) is a closed set, U0 \ WFs(u) is such a W as in the
statement of Lemma 2.2. The result then follows from Lemma 2.2 and Theo-
rem 1.1.

Corollary 2.4. — If L is a sink for κ∗Wp and WFL∞([0,1])(uτ )∩U0∩Γq = ∅
for some open neighborhood U0 ⊂ S∗X of q with WFs−m+1

L∞([0,1])((P − iQτ )uτ ) ∩
U0 = ∅, then WFsL∞([0,1])(uτ ) ∩ (W ′ \ L) = ∅ for some open neighborhood
W ′ ⊂ Σ̂ of q.

Proof. — This follows in the same way as the above corollary, this time apply-
ing Lemma 2.2 and Theorem 1.2.

3. Commutator Argument

In this section, we introduce the operators which we will construct in Sec-
tion 4, and then assuming their construction, prove Theorem 1.5. First, we
need a general lemma regarding families of pseudodifferential operators. This
will help when regularizing.

Lemma 3.1. — If At ∈ L∞([0, 1]t,Ψ
r(X)) for any r ∈ R, with At → A0 in

the topology of Ψr+δ(X) for some δ > 0, then At → A0 in the strong operator
topology of operators Hs(X)→ Hs−r(X), for all s ∈ R, for any density choice
for X.
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Proof. — If v ∈ Hs+δ(X), then given the continuity assumption At → A0

and the fact that the standard map Ψr+δ(X) → L(Hs+δ(X), Hs−r(X)) is
continuous, we have that Atv → A0v in the topology of Hs−r. The assumption
At ∈ L∞([0, 1]t,Ψ

r(X)) implies that, if u ∈ Hs(X), then Atu is bounded
in Hs−r(X). As Hs+δ(X) is dense in Hs(X), Atu→ A0u in Hs−r(X).

3.1. s < s0 case

Lemma 3.2. — Given an open neighborhood U0 ⊂ S∗X of q, there exist

B = (Bt)t∈[0,1] ∈ L∞([0, 1]t,Ψ
2s−m+1

2 (X)),

G1 = (G1,t)t∈[0,1],

G2 = (G2,t)t∈[0,1] ∈ L∞([0, 1]t,Ψ
s(X)),

E = (Et)t∈[0,1] ∈ L∞([0, 1]t,Ψ
2s(X)),

F = (Ft)t∈[0,1] ∈ L∞([0, 1]t,Ψ
2s−1(X)),

H = (Ht)t∈[0,1] ∈ L∞([0, 1]t,Ψ
s−m+1(X)),

J = (Jt)t∈[0,1] ∈ L∞([0, 1]t,Ψ
2s−m(X)),

such that
B2
t P − P ∗B2

t

2i
= sgn(λ)(G∗1,tG1,t +G∗2,tG2,t) + Et + Ft

B2
t = G2,tHt + Jt

and

1. all operators are in Ψ−∞(X) for t > 0,
2. Bt, Gj,t are continuous in the topologies of Ψ

2s−m+1
2 +δ(X),Ψs+δ(X), re-

spectively, for all δ > 0,
3. all operators have WF′L∞([0,1]) contained in U0,
4. WF′L∞([0,1])(Et) ∩ L = ∅,
5. B∗t = Bt (assuming a choice of density for X),
6. q ∈ Ell(G2,0).

Remark. — More is true: we can actually take Ft, Jt ∈ L∞([0, 1]t,Ψ
−∞).

This is not needed in this proof of Theorem 1.5, but we prove an analogue in
Section 5.2 which carries over.

For now, we assume this lemma and proceed to prove the s < s0 case of
Theorem 1.5.

Proof of s < s0 case of Theorem 1.5. — We may assume, by shrinking U0 if
necessary, the following:
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– WFs−
1
2 (u) ∩U0 = ∅, as q /∈WFs

′
(u) for some s′ and we can inductively

improve regularity by 1
2 , each time making U0 smaller.

– WFs(u) ∩ Σ̂ ∩ (U0 \ L) = ∅, by Corollary 2.3
– WFs−m+1(Pu) ∩ U0 = ∅.

As in the sketch of the proof, we begin by choosing a density for X, which
gives us distributional pairings. In order to avoid some complications with
pairings, we if necessary modify the constructed operators to have compactly
supported Schwartz kernels. For t > 0, the following pairings are well-defined,
and equality holds:

1

2i
〈u, (B2

t P − P ∗B2
t )u〉 = sgn(λ)(〈u,G∗1,tG1,tu〉+ 〈u,G∗2,tG2,tu〉)

+ 〈u,Etu〉+ 〈u, Ftu〉.

We have 〈u,G2
j,tu〉 = ‖Gj,tu‖2, and on the left-hand side,

| 1
2i
〈u,B2

t P − P ∗B2
t u〉| = |

1

2i

(
〈u,B2

t Pu〉 − 〈B2
t Pu, u〉)|

= |Im〈u,B2
t Pu〉|

= |Im(〈u,G2,tHtPu〉+ 〈u, JtPu〉)|
= |Im(〈G2,tu,HtPu〉+ 〈u, JtPu〉)|
≤ |Im〈u, JtPu〉|+ ‖G2,tu‖‖HtPu‖

≤ |Im〈u, JtPu〉|+
c

2
‖G2,tu‖2 +

1

2c
‖HtPu‖2

for any c > 0, which we choose to be < 2. We then have

‖G1,t‖2 + (1− c

2
)‖G2,tu‖2 ≤

1

2c
‖HtPu‖2 + |Im〈u, JtPu〉|

+ |〈u,Etu〉|+ |〈u, Ftu〉|

By the assumed regularity of Pu, ‖HtPu‖ and 〈u, JtPu〉 remain bounded as
t → 0. Since WF′L∞([0,1])(Et) ∩WFs(u) = ∅ (away from Σ̂, too, by elliptic
regularity), 〈u,Etu〉 remains bounded as t → 0. Lastly, by assumption on the
regularity of u in κ(U), 〈u, Ftu〉 remains bounded. Thus G1,tu and G2,tu remain
bounded in L2(X). By Banach-Alaoglu,G2,tu has a weakly convergent sequence
G2,tnu in L2(X). On the other hand, by the continuity assumption on G2,t,
G2,tu → Gj,0u in the sense of distributions. Thus G2,tnu → G2,0u in L2(X),
so G2,0u ∈ L2(X). Thus Ell(G2,0) ∩WFs(u) = ∅, so q /∈WFs(u).
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3.2. s > s1 case

Lemma 3.3. — Given an open neighborhood U0 ⊂ S∗X of q, there exist

B = (Bt)t∈[0,1] ∈ L∞([0, 1]t,Ψ
2s−m+1

2 (X)),

G1 = (G1,t)t∈[0,1],

G2 = (G2,t)t∈[0,1] ∈ L∞([0, 1]t,Ψ
s(X)),

E = (Et)t∈[0,1] ∈ L∞([0, 1]t,Ψ
2s(X)),

F = (Ft)t∈[0,1] ∈ L∞([0, 1]t,Ψ
2s−1(X)),

H = (Ht)t∈[0,1] ∈ L∞([0, 1]t,Ψ
s−m+1(X)),

J = (Jt)t∈[0,1] ∈ L∞([0, 1]t,Ψ
2s−m(X),

such that
B2
t P − P ∗B2

t

2i
= −sgn(λ)(G∗1,tG1,t +G∗2,tG2,t) + Et + Ft

B2
t = G2,tHt + Jt

with

1. for t > 0, Bt ∈ Ψ
2s1−m+1

2 (X), Gj,t ∈ Ψs1(X), Et ∈ Ψ2s1(X),
Ft ∈ Ψ2s1−1(X), Ht ∈ Ψs1−m+1, Jt ∈ Ψ2s1−m(X),

2. Bt, Gj,t are continuous in the topologies of Ψ
2s+m−1

2 +δ(X),Ψs+δ(X), re-
spectively, for all δ > 0,

3. all operators have WF′L∞([0,1]) contained in U0,
4. WF′L∞([0,1])(Et) ∩ Σ̂ = ∅,
5. B∗t = Bt (assuming a choice of density for X),
6. q ∈ Ells(G2,0).

Remark. — As with Lemma 3.2, we can actually take

Ft, Jt ∈ L∞([0, 1]t,Ψ
−∞(X)).

As above, we assume this lemma is true and proceed to prove the rest of
Theorem 1.5.

Proof of s > s1 case of Theorem 1.5. — We may assume, by shrinking U0 if
necessary, the following:

– WFs−
1
2 (u) ∩ U0 = ∅, as q /∈ WFs1(u), and we can inductively improve

regularity by 1
2 , each time making U0 smaller.

– WFs1(u) ∩ U0 = ∅.
– WFs−m+1(Pu) ∩ U0 = ∅.
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As before, we choose a density for X, which gives us distributional pairings,
and again we may take the constructed operators to have compactly supported
Schwartz kernels. For t > 0, the following pairings are well-defined (here we
use WFs1(u) ∩ U0 = ∅), and equality holds:

1

2i
〈u, (B2

t P − P ∗B2
t )u〉 =− sgn(λ)(〈u,G∗1,tG1,tu〉+ 〈u,G∗2,tG2,tu〉)

+ 〈u,Etu〉+ 〈u, Ftu〉,

To deal with the left-hand side, we need a lemma:

Lemma 3.4. — For t > 0,

〈u, (B2
t P − P ∗B2

t )u〉 = 〈u,B2
t Pu〉 − 〈B2

t Pu, u〉.

Proof. — It is tempting to simply conclude this immediately, but note that it
is not clear just by the regularity assumptions that 〈u, P ∗B2

t u〉 is well-defined.
This was not a problem in the s < s0 setting because there Bt ∈ Ψ−∞(X)

for t > 0, but now the order is higher. Thus to prove this, we regularize again.
This is a fairly standard argument, but since there are several details that
need to be verified in order to be sure that it works in this instance, we write
the argument out in some detail. Let At′ ∈ L∞([0, 1]t′ ,Ψ

0(X)) be such that
At′ ∈ Ψ−∞(X) for t′ > 0, and At′ → Id as t′ → 0 in Ψδ(X) for δ > 0.

Fixing t > 0, then for t′ > 0, we have

〈u,At′(B2
t P − P ∗B2

t )u〉 = 〈u,At′B2
t Pu〉 − 〈u, P ∗B2

tAt′u〉
+ 〈u, [P ∗B2

t , At′ ]u〉
= 〈u,At′B2

t Pu〉 − 〈At′B2
t Pu, u〉

+ 〈u, [P ∗B2
t , At′ ]u〉.

Note that, as t′ → 0, [P ∗B2
t , At′ ]→ 0 in Ψ2s1+δ(X) for δ > 0.

Let A′ ∈ Ψ0(X) be such that WF′(A′) ⊂ U0 and WF′(Id−A′)∩WF′(Bt) =

∅. Then

〈u,At′B2
t Pu〉 = 〈A′u,At′B2

tA
′Pu〉+ 〈u, (Id−A′∗)At′B2

tA
′Pu〉

+ 〈u,At′B2
t (Id−A′)Pu〉.

Since we have not assumed any regularity for u outside U0, we include two copies
of A′ in the above, so that Sobolev pairing is well-defined. We have B2

tA
′Pu ∈

Hs−2s1(X) ⊂ H−s1(X), (Id−A′∗)At′B2
tA
′P ∈ L∞([0, 1]t′ ,Ψ

−∞(X)), and
At′B

2
t (Id−A′)P ∈ L∞([0, 1]t′ ,Ψ

−∞(X)). Thus, we can apply Lemma 3.1, and
obtain

〈u,At′B2
t Pu〉 → 〈u,B2

t Pu〉
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as t′ → 0. Handling the other terms similarly, we have

〈u,At′(B2
t P − P ∗B2

t )u〉 → 〈u, (B2
t P − P ∗B2

t )u〉,
〈At′B2

t Pu, u〉 → 〈B2
t Pu, u〉

〈u, [P ∗B2
t , At′ ]u〉 → 0

as t′ → 0. This proves the lemma.

Finishing the proof of Theorem 1.5, we have, as in the s < s0 case,

|Im(〈B2
t u, Pu〉)| ≤ |Im〈u, JtPu〉|+

c

2
‖G2,tu‖2 +

1

2c
‖HtPu‖2,

for any c > 0, which we again take to be < 2. We then have, for t > 0,

‖G1,t‖2 + (1− c

2
)‖G2,tu‖2 ≤

1

2c
‖HtPu‖2 + |Im〈u, JtPu〉|

+ |〈u,Etu〉|+ |〈u, Ftu〉|

All terms on the right side remain bounded as t → 0 (the only difference
from the s < s0 case is that WF′L∞([0,1])(Et) ∩ Σ̂ = ∅, so 〈u,Etu〉 remains
bounded simply by elliptic regularity). As in the s < s0 case, we conclude that
G2,0u ∈ L2(X), so q /∈WFs(u).

4. Construction of Operators

Here we prove Lemmas 3.2 and 3.3. To do this, we construct symbols sup-
ported in U = κ−1(U0), and quantize these. For this section, we do not need
to be too careful about our choice of quantization. We require that our quan-
tization q satisfies

WF′L∞([0,1])(q(at)) = esssupL∞[0,1](at),

where at ∈ L∞([0, 1], Sr(X)). We also require that if a ∈ Sr(T ∗X) is real-
valued, q(a)− q(a)∗ ∈ Ψr−1(X). These are both easy to accomplish: the stan-
dard left and Weyl quantizations in Rn satisfy this, and we can simply patch
either of these together.

Before proving these lemmas, we aim to give a heuristic for why these sym-
bols are as they are, building on the discussion of Section 1.5. To simplify this
discussion, we assume that P ∈ Ψ1(X), i.e., m = 1, and that we can choose a
density on X so that σ0(P−P ∗) is identically 0 (this implies that s0 = 0, for in-
stance). In constructing the symbol bt of the commutant Bt, we must have that
b0 is elliptic of order s in order to run the commutator argument which proves
that u has regularity of order s. In addition, bt must microlocalize around the
point q of interest. For simplicity, we assume that

bt = χρt(s)
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where χ is a cutoff of order 0 and ρt(s) is the weight of order s, not nec-
essarily microlocalized. We would like to construct this so that Hpb

2
t has a

term which is of definite sign around q, plus an error term, which we must
control with assumptions. The first essential difference between commutator
arguments around radial points and principal-type commutator arguments is
that, at the radial points, the only term contributing to Hpb

2
t is 2btχHpρt,

whereas the other term 2btρtHpχ vanishes when Hp is radial. In other words,
at radial points, the only contribution to a definite sign from the commutant is
its growth in ζ. Thus, the definite sign is determined by whether ρt has posi-
tive order or negative order. Given that, in the compactified cotangent picture,
Lagrangian submanifolds of radial points are always sinks or always sources,
then, when ρt is of positive order, 2btχHpρt and 2btρtHpχ can be made to have
signs which agree, and when ρt is of negative order, these cannot have the same
sign everywhere.

Thus, in the low regularity case, we define bt to localize with a cutoff such
that, when these signs do not agree, we have the assumed regularity on the
flow lines Γq. The symbols g1 and g2 are then defined to collect the terms
of 1

2Hpb
2
t which are globally of the same sign as Hpb

2
t is at q, whereas the term

e collects the part of opposite sign. We add the further wrinkle that b2t = g2,tht
so as to accomodate that extra part of the commutator argument involving the
operator H, but this is not difficult to set up.

In the high regularity case, Hpb
2
t can then be made to have definite sign on

the whole characteristic set, provided that ρt never has negative order. This is
where the s1-regularity requirement for u is used, as we must regularize starting
(with t > 0) at this positive order. We then choose g1 and g2 to collect the
terms of 1

2Hpb
2
t which agree in sign with it at q, and e collects the opposite

sign terms, supported off the characteristic set.

In switching back to the general m case, this simply provides a shift in what
order bt must be to prove that u has s-regularity. This thus shifts the values
of s0 and s1. Removing the assumption that σm−1(P − P ∗) vanishes, we see
another way in which commutator arguments are essentially different at radial
points than in the principal-type setting. In the principal-type setting, we can
always choose the cutoff for the commutant so that it rises or falls quickly
enough to dominate the σm−1(P − P ∗). In the radial setting, the derivative of
the cutoff χ vanishes at q, and the only thing which can dominate this term is
2btχHpρt. This thus gives an extra shift in s0 and s1.
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4.1. Proof of Lemma 3.2. — It suffices to produce symbols

b = (bt)t∈[0,1] ∈ L∞([0, 1]t, S
2s−m+1

2 (T ∗X)),

g1 = (g1,t)t∈[0,1], g2 = (g2,t)t∈[0,1] ∈ L∞([0, 1]t, S
s(T ∗X)),

e = (et)t∈[0,1] ∈ L∞([0, 1]t, S
2s(T ∗X)),

h = (ht)t∈[0,1] ∈ L∞([0, 1]t, S
s−m+1(T ∗X)),

such that
1

2
Hpb

2
t + σm−1(P−P

∗

2i )b2t = sgn(λ)(g2
1,t + g2

2,t) + et

b2t = g2,tht

with:

1. all symbols of order −∞ for t > 0,
2. bt, gj,t are continuous in the topologies of S

2s−m+1+δ
2 (T ∗X) and Ss+δ,

respectively, for all δ > 0,
3. supp(bt), supp(et), supp(gj,t) ⊂ κ−1(U0),
4. esssupL∞([0,1])(et) ∩ Λ = ∅,
5. all symbols real-valued,
6. q ∈ Ell(g2,t).

Indeed, let Bt = q(bt)+q(bt)
∗

2 , Gj,t = q(gj,t), Et = q(et) and Ht = q(ht). Then
σ2s(B

2P − P ∗B2 − sgn(λ)(G∗1,tG1,t +G∗2,tG2,t)−Et) = 0, so the error Ft is as
desired. Further, we have

B2
t = HtG2,t + Jt

for some Jt as desired.
To construct bt, we first assume (by shrinking U := κ−1(U0) if neces-

sary) that U has a coordinate chart φ as in Lemma 2.1. We choose functions
χ0, χ1, χ2 ∈ C∞(U) homogeneous of degree 0, and ρt ∈ L∞([0, 1]t, S

2s−m+1
2 (X)),

so that χ0χ1χ2 functions as the cutoff χ(φ0) did in Section 1.5, and ρt is the
weight with desired order properties. As in Section 1.5.1, we let χ̂ ∈ C∞c (R)

be identically 1 in a neighborhood of 0. Then let ρt = ζ
2s−m+1

2 χ̂(tζ). As in
our definition of s0, choose an open neighborhood U ′0 ⊆ U0 of q, along with
ζ0 ∈ R+, so that

ρtHpρt + σm−1

(P − P ∗
2i

)
ρ2
t

remains the same sign as λ inside κ−1(U ′0) ∩ ζ−1((ζ0,∞)). As this is only true
for ζ > ζ0, we need to include an additional cutoff (this also serves to make
homogeneous symbols smooth up to the zero-section of T ∗X) ρ̂ : U → R such
that ρ̂ is identically 0 for ζ ≤ ζ0 and identically 1 for ζ ≥ ζ0 + 1. We then let

bt = ρ̂(ζ)χ0χ1χ2ρt
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L η1 “ T

η1 “ T

η2 “ Tη2 “ T

η2 “ εη2 “ ε

q

η1 “ ε

η1 “ ε

Figure 4. Values of η1, η2 on Σ̂

inside U and identically 0 outside U . This will have the desired properties if:

–
√

sgn(λ)χ1Hpχ1 is real-valued and smooth,
– κ(supp(χ0χ1χ2)) is a compact subset of U ′0.
– supp(χ0χ1Hpχ2) ∩ Λ = ∅, and
– suppχ1χ2Hpχ0 ∩ Σ = ∅,

To construct χ0, χ1, and χ2, let η1, η2 : U → R be defined by η1 = |β|2 +

C|α|2, η2 = |α|2, with C < 0 to be chosen. Recall that we define η0 = p
ζm a

coordinate of φ in Lemma 2.1. Let χ̃ ∈ C∞(R) so that

– χ̃ ≥ 0,
– χ̃ = 1 for t ∈ (−∞, ε),
– χ̃(t) = 0 for t ≥ T ,
– χ̃′ ≤ 0,
–
√
−χ̃χ̃′ ∈ C∞(R),

with T to be chosen, and 0 < ε < T arbitrary.
To choose C, T appropriately, note that, by Lemma 2.1,

Hpη1 = 2C
λ

ζ
|α|2 + 2Cr + s,

where r, s are homogeneous of order m − 1 in ζ, and ι∗s ∈ I 2
Λ,U , ι

∗r ∈ I 3
Λ,U ,

where as before we let ι : Σ∩U ↪→ U be inclusion. Choose C so that C λ
ζ |α|

2 +s

is of the opposite sign as λ on Σ ∩ U . Then choose T > 0 sufficiently small so
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that Hpη1 is of the opposite sign as λ on supp(χ̃(η1)χ̃(η2)χ̃(η2
0)), whose image

under κ is a compact subset of U ′0. We then let

χ0 = χ̃(η2
0),

χ1 = χ̃(η1),

χ2 = χ̃(η2).

We then define

g1,t = ρ̂(ζ)χ1χ2ρt

√
sgn(λ)χ0Hpχ0

g2,t = ρ̂(ζ)χ0χ1χ2

√
sgn(λ)(ρtHpρt + σm−1(

P − P ∗
2i

)ρ2
t )

et = ρ̂2χ2
0χ

2
2χ1Hpχ1 + ρ̂2χ2

0χ
2
1χ2Hpχ2 + χ2

0χ
2
1χ

2
2ρ

2
t ρ̂Hpρ̂

in U , and extend these to all of X as identically 0 outside of U . Note that
the above choices of C, T , and ε ensure that g1,t and g2,t are smooth and
real-valued, and that q ∈ Ell(g2,0). The above choices also ensure the desired
essential support for et, and we have

1

2
Hpb

2
t + ab2t = sgn(λ)(g2

1,t + g2
2,t) + et.

Lastly, we can set

ht =
b2t
g2,t

= ρ̂χ1χ2χ3
ρ2
t√

sgn(λ)(ρtHpρt + σm−1(P−P
∗

2i )ρ2
t )

inside U , and identically 0 outside of U . The symbols thus have the desired
properties.

4.2. Proof of Lemma 3.3. — It suffices to produce symbols

b = (bt)t∈[0,1] ∈ L∞([0, 1]t, S
2s−m+1

2 (T ∗X)),

g1 = (g1,t)t∈[0,1],

g2 = (g2,t)t∈[0,1] ∈ L∞([0, 1]t, S
s(T ∗X)),

e = (et)t∈[0,1] ∈ L∞([0, 1]t, S
2s(T ∗X)),

h = (ht)t∈[0,1] ∈ L∞([0, 1]t, S
s−m+1(T ∗X))

such that
1

2
Hpb

2
t + σm−1(

P − P ∗

2i
)b2t = −sgn(λ)(g2

1,t + g2
2,t) + et

b2t = g2,tht

up to order −∞, with:
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1. for t > 0, bt ∈ S
2s1−m+1

2 (T ∗X), gj,t ∈ Ss1(T ∗X), et ∈ S2s1(T ∗X), and
ht ∈ Ss1−m+1(T ∗X),

2. bt and gj,t are continuous in the topologies of S
2s−m+1+δ

2 (T ∗X) and
Ss+δ(T ∗X), respectively, for all δ > 0,

3. all symbols are supported in κ−1(U0),
4. esssup(et) ∩ Σ̂ = ∅,
5. all symbols real-valued,
6. q ∈ Ell(g2,0).

We then quantize as in Section 4.1. To construct bt, we again assume (by
shrinking U = κ−1(U0) if necessary) that U has a coordinate chart φ as in
Lemma 2.1. We choose functions χ0, χ1 ∈ C∞(V ) homogeneous of degree 0,
and

ρt ∈ L∞([0, 1]t, S
2s−m+1

2 (X))

to serve similar roles as in Section 4.1. As in Section 1.5.1, we let ρt =

ζ
2s−m+1

2 (1 + tζ)s1−s. As in our definition of s1, choose an open neighborhood
U ′0 ⊂ U0 of q, along with ζ0 ∈ R+, so that

ρtHpρt + σm−1

(P − P ∗
2i

)
ρ2
t

remains the opposite sign of λ inside κ−1(U ′0) ∩ ζ−1((ζ0,∞)). We then take
ρ̂ : U → R to be as in Section 4.1. We then let

bt = ρ̂χ0χ1ρt

inside U and identically 0 outside U . This will have the desired properties if:

–
√
−sgn(λ)χ1Hpχ1 is real-valued and smooth.

– κ(supp(χ0χ1)) is a compact subset of U ′0.
– suppχ1Hpχ0 ∩ Σ = ∅.

To construct χ0 and χ1, let η1 : U → R be as before, but this time we will
take C > 0. Let χ̃ ∈ C∞(R) be as before, with T to be chosen. We again have

Hpη1 = 2C
λ

ζ
|α|2 + 2Cr + s

with r, s homogeneous of order m − 1 in ζ, and ι∗s ∈ I 2
Λ,U , ι

∗r ∈ I 3
Λ,U (as

before ι : Σ ∩ U → U is inclusion). Choose C > 0 so that C λ
ζ |α|

2 + s has the
same sign as λ on Σ ∩ U . Then choose T > 0 sufficiently small so that Hpη1

has the same sign as λ on supp(χ̃(η1)χ̃(η2
0), whose image under κ is a compact

subset of U ′0. We then set, as in Section 4.1, χ0 = χ̃(η2
0) and χ1 = χ̃(η1).
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We then let

g1,t = ρ̂χ0

√
−sgn(λ)χ1Hpχ1

g2,t = ρ̂χ1χ0

√
−sgn(λ)(ρtHpρt + σm−1(

P − P ∗
2i

)ρ2
t )

et = ρ̂2χ2
1ρ

2
tχ0Hpχ0

in U , and extend these to all of X as identically 0 outside U . Note that the
above choices of C, T , and ε ensure that ensure that g1,t and g2,t are real-valued
and smooth, and that q ∈ Ell(g2,0). The above choices also ensure the desired
essential support for et, and we have

1

2
Hpb

2
t + ab2t = −sgn(λ)(g2

1,t + g2
2,t) + et

up to order −∞. We leave out χ2
0χ

2
1ρ

2
t ρ̂Hpρ̂ for convenience in adapting this to

the proof of Theorem 1.6.
Lastly, we can set

ht =
b2t
g2,t

= ρ̂χ0χ1
ρ2
t√

−sgn(λ)(ρtHpρt + σm−1(P−P
∗

2i ))

on U and identically 0 outside of U . The symbols thus have the desired prop-
erties.

5. Proof of Theorem 1.6

In the previous proofs, we constructed an operator Bt such that 1
2i (B

2
t P −

P ∗B2
t ) had some desired properties. The fact that we actually have a squared

operator in that expression did not come into play much, and in fact was not
needed. Here, however, the extra arrangement shall pay off.

5.1. Sink Case. — Using the operator definitions as in Section 4.1, let B = B0,
Gj = Gj,0, E = E0, M = M0, F = F0, and N = N0. Then for all τ ∈ [0, 1], we
have

1

2i
(B2(P − iQτ )− (P ∗ + iQτ )B2) =

1

2i
(B2P − P ∗B2)− 1

2
(B2Qτ +QτB

2)

= sgn(λ)(G∗1G1 +G∗2G2)−BQτB

+ E + F +
1

2
[[B,Qτ ], B]

= −G∗1G1 −G∗2G2 −BQτB + E + F

+
1

2
[[B,Qτ ], B]
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where we used the fact that since q is a sink, λ < 0. We can assume (by
induction) that WF

s− 1
2

L∞([0,1])(uτ ) ∩ U0 = ∅. This time we further choose U0 to
be disjoint from WFs−m+1

L∞([0,1])((P − iQτ )uτ ) and (WFsL∞([0,1])(uτ ) \ L)∩ Σ̂. The
latter can be arranged by Corollary 2.4. For τ > 0, we pair with uτ as before:

1

2i
〈uτ , (B2(P − iQτ )− (P ∗ + iQτ )B2)uτ 〉 =− 〈uτ , G∗1G1uτ 〉 − 〈uτ , G∗2G2uτ 〉

− 〈uτ , BQτBuτ 〉+ 〈uτ , Euτ 〉

+ 〈uτ , (F +
1

2
[[B,Qτ ], B])uτ 〉.

Note that for τ > 0, these are all well-defined: since P − iQτ is elliptic
for τ > 0, by elliptic regularity, V ∩WFs+1(uτ ) = ∅. Hence

〈uτ , G2
juτ 〉 = ‖Gjuτ‖2,

and
〈uτ , BQτBuτ 〉 = 〈Buτ , QτBuτ 〉

are well-defined. By the regularity assumption on uτ ,

WFsL∞([0,1])(uτ ) ∩WF′(E) = ∅,

so 〈uτ , Euτ 〉 is well-defined and remains bounded as τ → 0. By our inductive
assumption WF

s− 1
2

L∞([0,1])(uτ )∩V = ∅, along with the fact that F, [[B,Qτ ], B] ∈
Ψ2s−1(X),

〈uτ , (F +
1

2
[[B,Qτ ], B])uτ 〉

is well-defined and remains bounded as τ → 0. Further, for τ > 0,
1

2i
〈uτ , (B2(P − iQτ )− (P ∗ + iQτ ))uτ 〉 = Im(〈uτ , B2(P − iQτ )uτ 〉)

is well-defined, and as before, we have

|Im〈uτ , B2(P − iQτ )uτ 〉|

≤ |Im〈uτ , N(P − iQτ )uτ 〉|+
c

2
‖G2uτ‖2 +

1

2c
‖M(P − iQτ )uτ‖2

for any c > 0. By the regularity assumptions on uτ and (P − iQτ )uτ , both
|Im〈uτ , N(P − iQτ )uτ 〉| and ‖M(P − iQτ )uτ‖2 remain bounded as τ → 0.

‖G1uτ‖2+(1− c

2
)‖G2uτ‖2 + 〈Buτ , QτBuτ 〉

≤ |Im〈uτ , N(P − iQτ )uτ 〉|+
1

2c
‖M(P − iQτ )uτ‖2 + |〈uτ , Euτ 〉|

+ |〈uτ , (F +
1

2
[[B,Qτ ], B])uτ 〉|
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Since Qτ is positive semidefinite, 〈Buτ , QτBuτ 〉 ≥ 0, so since all terms on
the right hand side remain bounded, all terms on the left hand side remain
bounded, and the proof proceeds as in earlier cases.

5.2. Source Case. — As we assume no a priori regularity on uτ (as we as-
sumed q /∈ WFs1(u) in the previous theorem, for instance) the argument car-
ries over to this theorem only after some extra preparation. Specifically, we
can no longer work by induction, improving regularity by 1

2 at each step. Since
uτ ∈ L∞([0, 1], D′(X)), we only have that uτ ∈ L∞([0, 1], H−N (X)) for some
N , but if we were to run the commutator argument and attempt to get regu-
larity −N + 1

2 , the sign of the G2 term would oppose the sign of BQτB, and so
we cannot control the sum of these terms. Thus we will instead be more careful
with our operator construction and ensure that F, J ∈ Ψ−∞(X). As we are
controlling errors which vary in τ , we should expect that more of our operators
depend on τ . Below, G2, H, F and J become τ -dependent operators. While we
are making things more precise, we might as well construct G1 and G2,τ to be
self-adjoint along with B.

We will construct operators so that we have

1

2i
(B2(P − iQτ )− (P ∗ + iQτ )B2) = −sgn(λ)(G2

1 +G2
2,τ )−BQτB + E + Fτ

= −G2
1 −G2

2,τ −BQτB + E + Fτ

B2 = HτG2,τ + Jτ

with

– B ∈ Ψ
2s−m+1

2 (X) with B∗ = B,
– G1 ∈ Ψs(X) with G∗1 = G1,
– G2 = (G2,τ )τ∈[0,1] ∈ L∞([0, 1]τ ,Ψ

s(X)) with q ∈ EllL∞[0,1](G2,τ ) with
G∗τ = Gτ ,

– E ∈ Ψ2s(X) with WF′(E) ∩ Σ = ∅, and
– Fτ ∈ L∞([0, 1]τ ,Ψ

−∞(X)).
– J = (Jτ )τ∈[0,1] ∈ L∞([0, 1]τ ,Ψ

−∞(X)), and
– H = (Hτ )τ∈[0,1] ∈ L∞([0, 1]τ ,Ψ

s−m+1(X)).

We want similar supports as before: all operators have WF′ (in the case of oper-
ators varying in τ , WF′L∞([0,1])) contained in U0, chosen so that WFL∞([0,1])(P−
iQτ ) ∩ U0 = ∅.
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Assuming this, the argument proceeds as usual: we obtain

‖G1uτ‖2+(1− c

2
)‖G2,τuτ‖2 + 〈Buτ , QτBuτ 〉

≤ |Im〈uτ , Jτ (P − iQτ )uτ 〉|+
1

2c
‖Hτ (P − iQτ )uτ‖2

+ |〈uτ , Euτ 〉|+ |〈uτ , Fτuτ 〉|.

Since Jτ , Fτ ∈ L∞([0, 1]τ ,Ψ
−∞(X)), 〈uτ , J(P − iQτ )uτ 〉 and 〈uτ , Fuτ 〉 remain

bounded as τ → 0. By the regularity assumption on (P − iQτ )uτ , ‖H(P −
iQτ )uτ‖ remains bounded as well. The proof proceeds as in the previous proofs,
and we obtain Gτuτ ∈ L∞([0, 1], L2(X)). Thus q /∈WF sL∞([0,1])(uτ ).

Now we must construct these operators. As we need extra control, we must
be more careful in specifying our quantization map q. Essentially, since we are
working in a coordinate neighborhood, it suffices to use the standard Weyl
quantization (we could use another quantization, but we want some operators
to be self-adjoint, and this makes that easier) in that neighborhood, and the
corresponding full symbol map. To be more precise, let π : T ∗X → X be
projection to the base. By shrinking U , we may assume that there is an open
U ′X ⊂ X of π(U) and canonical coordinate chart ψ : U ′ = π−1(U ′X) → V ′ ⊂
Rnx × Rnξ . Let ψX : U ′X → π(V ′) be the corresponding map for the base.
Let g ∈ C∞c (X,R) be identically 1 in π(U) and supported inside π(U ′). We
define a quantization

q : Sr0(U)→ Ψr(X)

as follows, where Sr0(U) is the space of symbols onX whose support is contained
in U . Given a ∈ Sr0(U) and v ∈ C∞(X), define

q(a)v = gψ∗X(qW ((ψ−1)∗a)(ψ−1
X )∗(gv)),

extended as identically 0 outside of U ′ (implicitly in the formula, we extend
(ψ−1
X )∗(gv) as 0 outside U ′X , and we extend (ψ−1)∗a as 0 outside of U ′). Further,

we have a full symbol map

σ : Ψr(X)→ Sr(Rnx ;Rnξ ),

defined as follows. Given A ∈ Ψr(X), we may associate with it with an element
of Ψr(Rnx) by v 7→ (ψX

−1)∗(gA(gψ∗Xv)), extending as identically 0 outside
of U ′X . We then use the standard Weyl full symbol map on this operator.

This quantization and corresponding symbol map have the following proper-
ties. First, given A ∈ Ψr(X), σr(A)|U has as a representative σ(A)|U . Second,
ψ∗◦σ◦q is the identity on Sr0(U), at least after extending the image of this map
to be identically 0 outside of U . Third, if we choose a density on X which agrees
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with the standard density on Rnx when pulled back by ψ−1
X , then if a ∈ Sr0(U)

is real-valued, q(a) is self-adjoint. Fourth,

WF′(A) ∩ U ⊆ ψ−1(esssup(σ(A)))

for any A ∈ Ψr(X). Fifth, given A ∈ Ψr(X) and B ∈ Ψr′(X), then we have
the following asymptotic expansion, valid only inside φ(U):

σ(A ◦B)(x, ξ) ∼
∞∑
j=0

1

j!
{σ(A), σ(B)}j(x, ξ)

where {a, b}j(x, ξ) := ( i2 )j(Dξ ·Dy −Dx ·Dη)ja(x, ξ)b(y, η)|y=x,η=ξ.
In what follows, we leave out pullbacks by ψ and ψ−1 so as to avoid cluttered

formulas. Let b = b0, e = e0, g1 = g1,0, g2,s = g2,0 as defined in Section 4.2 (so
all supported within U), with an additional condition on χ̃ : R → R. In some
small neighborhood of T , we would like χ̃(t) = exp(− 1

T−t ) for t < T , and
χ̃(t) = 0 for t ≥ T . The details do not matter so much; it simply achieves what
we really need:

– χ̃′(t) = r(t)χ̃(t) on t < T for some rational function r which is smooth
for t < T .

– s(t)χ̃(t) is smooth for any rational function s which is smooth on t < T .

We then let B = q(b), E = q(e), G1 = q(g1), and the strategy will be to
include lower-order terms for G2 to cancel error terms. We proceed to choose
real-valued g2,s−j ∈ L∞([0, 1], Ss−j0 (U)) (g2,s has already been chosen and is
τ -independent—hence if g2,s is elliptic at q, q ∈ EllL∞([0,1])(G2,τ )) and then
create real-valued g2 ∈ L∞([0, 1], Ss0(U)) with asymptotic expansion

(5.1) g2 ∼
∞∑
j=0

g2,s−j

so that if G2,τ = q(g2), then Fτ ∈ L∞([0, 1]τ ,Ψ
−∞(X)). Note that if each

g2,s−j is real-valued, then g2 can be chosen to be real valued. Thus B,E,G1,

and G2,τ are self-adjoint.
Let

A :=
1

2i
(B2(P − iQτ )− (P ∗ + iQτ )B2) +G2

1 +BQτB − E(5.2)

=
1

2i
(B2P − P ∗B2) +

1

2
[[B,Qτ ], B] +G2

1 − E.

We would thus like to choose g2,s−j so that A + G2
2,τ ∈ L∞([0, 1]τ ,Ψ

−∞(X)).
We have the following asymptotic expansion:

(5.3) σ(A) ∼
∞∑
j=0

a2s−j , a2s−j ∈ S2s−j(Rnx × Rnξ )
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where

a2s−j =
∑

k+l=j+1

1

k!l!

(
({{b, b}l, σ(P )}k − {σ(P ∗), {b, b}l}k)

2i

+
{{b, σ(Qτ )}l − {σ(Qτ ), b}l, b}k

2

− {b, {b, σ(Qτ )}l − {σ(Qτ ), b}l}k
2

)
(5.4)

+
∑
j

{g1, g1}j
j!

+ δ0je

up to order −∞-–we leave out all terms where a derivative is applied to ρ̂.
Note that our earlier construction ensured that a2s = −g2

2,s, up to order −∞.
The specifics of this are not so important, except that each a2s−1−j is a sum of
functions of the form rχ2

0χ
2
1gρ̂

2, where g is smooth and r is a rational function
with poles at C|β|2 + |α|2 = T and η2

0 = T (i.e., the boundary of supp(χ0χ1)).
Denote this property by (*).

We define g2,s−j recursively for j > 0:

g2,s−j =− a2s−j

2g2,s
−

∑
0<k+l≤j,k>0,l>0

{g2,s−k, g2,s−l}j−k−l
2g2,s(j − k − l)!

(5.5)

−
∑

0<k<j

{g2,s, g2,s−k}j−k + {g2,s−k, g2,s}j−k
2g2,s(j − k)!

(up to order −∞-–we again leave out all terms where a derivative is applied
to ρ̂) where g2,s 6= 0 and identically 0 when g2,s = 0. Note that this recursive
definition makes sense: the definition for g2,s−j depends only on g2,s−l for l < j.
Further, these are smooth: since a2s−j has property (*), and g2,s is χ0χ1ρ̂

times a non-vanishing function, we may recursively check the numerator in the
definition of g2,s−j always has property (*), using the properties of χ̃.

Lastly, note that A + G2
2 ∈ L∞([0, 1]τ ,Ψ

−∞(X)): we have asymptotic ex-
pansion

σ(G2
2) =

∑
k+l≤j

{g2,s−k, g2,s−l}j−k−l
(j − k − l)!

= 2g2,sg2,s−j +
∑

k+l≤j,k>0,l>0

{g2,s−k, g2,s−l}j−k−l
(j − k − l)!

(5.6)

+
∑

0<k<j

{g2,s, g2,s−k}j−k + {g2,s−k, g2,s}j−k
(j − k)!

,

tome 143 – 2015 – no 4



PROPAGATION AROUND A LAGRANGIAN SUBMANIFOLD OF RADIAL POINTS 717

and each g2,s−j is chosen so that 2g2,sg2,s−j cancels out all other terms of order
2s− j in the asymptotic expansion for A+G2

2.
To ensure that Jτ ∈ L∞([0, 1],Ψ−∞(X)), we will construct Hτ in a similar

way. That is, we will let Hτ = qL(hτ ), where

(5.7) hτ ∼
∞∑
j=0

hs−m+1−j , hs−m+1−j ∈ L∞([0, 1], Ss−m+1−j
0 (U)),

defined recursively. For any such choice of h, we have

σ(B2 −G2H) ∼
∞∑
j=0

(
−hs−m+1−jg2,s +

{b, b}j
j!

−
∑

k+l≤j,l>0

{hs−m+1−k, g2,s−l}j−k−l
(j − k − l)!

(5.8)

−
∑
k<j

{hs−m+1−k, g2,s}j−k
(j − k)!

)
.

This gives us the formula for the recursive definition of hs−m+1−j :

hs−m+1−j =
{b, b}j
j!g2,s

−
∑

k+l≤j,l>0

{hs−m+1−k, g2,s−l}j−k−l
(j − k − l)!g2,s

(5.9)

−
∑
k<j

{hs−m+1−k, g2,s}j−k
(j − k)!g2,s

(up to order −∞-–we again leave out all terms where a derivative is applied
to ρ̂) when g2,s 6= 0, and 0 otherwise. As before, we may inductively conclude
that the numerators in the formula for hs−m+1−j all have property (*), so
this definition makes sense. Further, hs−m+1−j is defined so that hs−m+1−jg2,s

cancels out all other terms of order 2s−m+ 1− j in the asymptotic expansion
for B2 −G2H. This completes the proof.

6. Iterative Regularity

Here we state and prove analogs/generalizations of the above in the context
of Lagrangian regularity. This largely applies the discussion of [5, Section 6],
as corrected in [6, Appendix A]. We provide full details here instead of simply
quoting the results, in part to translate from the scattering setting, and in party
to slightly modify the assumptions.

We begin by defining this sense of regularity. Given O ⊂ S∗X, let

Ψr(O) = {A ∈ Ψr(X) | WF′(A) ⊂ O}.
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Definition 6.1 ([5, Definition 6.1]). — A test module in an open set O ⊂
S∗X is a linear subspace M ⊂ Ψ1(O) which (contains and) is a module
over Ψ0(O), which is closed under commutators and which is finitely generated
in the sense that there exist finitely many Ai ∈ Ψ1(X), 0 ≤ i ≤ N,A0 = Id,
such that each A ∈ M can be written as

A =

N∑
i=0

QiAi, Qi ∈ Ψ0(O).

Remark. — The generators Ai need not be in M. As Id is a generator, M0 =

Ψ0(O) ⊂ M ⊆ M2 . . .

Definition 6.2 ([5, Definition 6.2]). — Let M be a test module in an open
set O ⊂ S∗X. For u ∈ C−∞(X) we say that u ∈ I(s)(O, M) if Mku ⊂ Hs(X)

for all k. We say that u ∈ I(s),k(O,M) if Mku ⊂ Hs.

Recall that u ∈ D′(X) is a Lagrangian distribution associated to Lagrangian
submanifold Λ if there exists s such that for any k and any A1, . . . , Ak ∈ Ψ1(X)

with σ1(Aj)|Λ = 0,
A1 . . . Aku ∈ Hs.

Specifically, to find u ∈ Ip(X,Λ), we must let s = −p− n
4 [12, Definition 25.1.1],

where n is the dimension of X.
We microlocalize this. Given O ⊂ S∗X, P ∈ Ψm(X) with homogeneous

principal symbol p, and a conic Lagrangian submanifold Λ ⊂ Σ(P ) such that
Hp is radial and non-vanishing on Λ, we let

MΛ(O) = {A ∈ Ψ1(O) | σ1(A) | Λ = 0}.

We verify that this is, in fact, a test module. That MΛ is closed under
commutators follows from the fact that Λ is coisotropic, as if a and b are symbols
which vanish on a given coisotropic submanifold, then {a, b} also vanishes on
this coisotropic submanifold. For the finite generation, we can assume that
O ⊂ U0, with U0 = κ(U) as in Lemma 2.1, as we can microlocalize around
such neighborhoods, then patch together with a partition of unity. Let χ ∈
C∞(S∗X) be identically 1 in O and 0 outside of κ(U), and let ρ̂ : U → R
be the cutoff as in the proof of Lemma 3.2 (so ρ̂ vanishes in a neighborhood
of the 0-section of T ∗X, and is identically 1 for sufficiently large ζ). We then
let Ai = q(χρ̂αiζ), 0 < i < n, A0 = Id, and An = q(χρ̂ζ1−m)P , then MΛ is
generated by Ai, 0 ≤ i ≤ n. This is a principal symbol statement that follows
from the fact that η0, αi, i = 1, . . . , n− 1 are defining functions for Λ ∩ U .

We then have the following result. As above, we take U as in Lemma 2.1.

tome 143 – 2015 – no 4



PROPAGATION AROUND A LAGRANGIAN SUBMANIFOLD OF RADIAL POINTS 719

Theorem 6.3. — Given P ∈ Ψm(X) with a real-valued homogeneous princi-
pal symbol p such that Hp is radial (and non-vanishing) on a conic Lagrangian
submanifold Λ ⊂ Σ(P ), then given q ∈ κ(Λ) and s0, s1 as in Theorem 1.5,

– for s < s0, if there is an open neighborhood O′ of q such that Pu ∈
I(s−m+1),k(O′, MΛ(O′)) and Γq ∩WFs+k(u) ∩ O′ = ∅, then there exists
an open neighborhood O ⊂ O′ of q such that u ∈ I(s),k(O, MΛ(O));

– for s > s1, if there is an open neighborhood O′ of q such that Pu ∈
I(s−m+1),k(O′, MΛ(O′)) and u ∈ I(s1),k(O′, MΛ(O′)), then there exists
an open neighborhood O ⊂ O′ of q such that u ∈ I(s),k(O, MΛ(O));

– for s ≥ s1 + 1, if there is an open neighborhood O′ of q such that Pu ∈
I(s−m+1),k(O′, MΛ(O′)) and WFs1(u) ∩ O′ = ∅, there exists an open
neighborhood O ⊂ O′ of q such that u ∈ I(s),k(O, MΛ(O)).

Remark. — We expect that the following strengthening of part of Theo-
rem 6.3 is true.

Given P , Λ, s1, and p as in Theorem 6.3, for s > s1, if there is an open
neighborhood O′ of q such that Pu ∈ I(s−m+1),k(O′, MΛ(O′)) and WFs1(u) ∩
O′ = ∅, then there exists an open neighborhood O ⊂ O′ of q such that u ∈
I(s),k(O, MΛ(O)).

The methods used here appear not to be able to deal with this statement—
the difficulty comes in the second regularization below ((6.4)–(6.6)) and in
making sense of terms such as ‖G2,tAu‖ for even t > 0. This is perhaps a defect
in our methods; as the definitions are, we can only make sense of Mk

Λ for k a
nonnegative integer. If we could inductively improve the orders of regularity
with smaller intervals, the arguments might go more smoothly. It may be,
however, that with a more clever regularization, this machinery could handle
such a statement.

Indeed, this is particularly easy to see in the Fourier transform side of Mel-
rose’s setting [13] when the operator is classical and λ0 is constant along the
Lagrangian, as one should be able to construct explicit solutions v to Pv = f ,
with v having the desired Lagrangian regularity. If this were done, we could
compare v to u using Theorem 1.5, and obtain this stronger result.

Proof of Theorem 6.3. — In what follows, we can assume that O′ ⊂ U0 with
U0 = κ(U) as in Lemma 2.1. In order to prove the above statement, it suffices
to show that GγAγu ∈ L2(X), where γ ∈ Zn−1

≥0 , |γ| ≤ k, Gγ is elliptic on O,
and

Aγ =

n−1∏
i=1

Aγii .

Note that we do not need to include products involving An, as they are already
covered by the assumption on Pu. The order A1, . . . , An−1 is irrelevant, as
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products with different orders commute modulo lower order powers of the test
module (see [5, Lemma 6.3] for further details).

To prove the theorem, we use a positive commutator argument. As we show
below, positivity follows from the following property our module enjoys (see
[5, Eq. 6.15] for a more general condition under which such a statement might
hold):

(6.1)
1

2i
[Ai, P ] =

n∑
j=0

CijAj ,

for i = 1 . . . n − 1, with Cij ∈ Ψm−1(X) for j = 0 . . . n, σm−1(Cij)|Λ = 0

for 0 < j < n. This is again a principal symbol statement which follows from
Lemma 2.1. From this it follows that, for γ ∈ Zn−1

≥0 ,

1

2i
[Aγ , P ] = Rγ +

∑
δ∈Zn−1

≥0
, |δ|=|γ|

CγδAδ,

where Cγδ ∈ Ψm−1(X) with σm−1(Cγδ)|Λ = 0, and

(6.2) Rγ =
∑
|δ|<|γ|

DγδAδ + EγδAδP,

where Dγδ ∈ Ψm−1(X) and Eγδ ∈ Ψ0(X).
We start with the s < s0 case. We work by induction on k-–the base case

is Theorem 1.5. Assuming u ∈ I(s),k−1(O′′, MΛ(O′′)) for some neighborhood
O′′ ⊆ O′ of q, we take Bt = q(bt) as in the proof of Lemma 3.2, with WF′(B) ⊂
O′′. Below, we will shrink the microsupport, but for now, let us simply look
at what operator relations we have, given sufficiently small microsupport. We
have

1

2i

∑
γ∈Zn−1

≥0
,|γ|=k

A∗γB
2
tAγP − P ∗A∗γB2

tAγ

=
∑

γ∈Zn−1
≥0

,|γ|=k

A∗γ
([B2

t , P ] + (P − P ∗)B2
t )

2i
Aγ +A∗γB

2 [Aγ , P ]

2i
+

[A∗γ , P
∗]

2i
B2
tAγ

=
∑

γ∈Zn−1
≥0

,|γ|=k

A∗γ
([B2

t , P ] + (P − P ∗)B2
t )

2i
Aγ +R∗γB

2
tAγ +A∗γB

2
tRγ

+
∑

δ∈Zn−1
≥0

,|δ|=k

A∗γB
2
tCγδAδ +A∗δC

∗
γδB

2
tAγ

= A∗
(

[B2
t , P ] + (P − P ∗)B2

t

2i
+B2

tC + C∗B2
t

)
A+R∗B2

tA+A∗B2
tR
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where in the last line, we let A = (Aγ) and R = (Rγ) be column vectors,
running over all γ ∈ Z≥0 with |γ| = k, and C = (Cγδ) a matrix of operators
(or rather an operator on sections of a trivial bundle over X).

Using the symbols as in the proof of Lemma 3.2, we have, up to order 2s−1,

σ2s(
[B2
t , P ] + (P − P ∗)B2

t

2i
+B2

tC + C∗B2
t )γδ = sgn(λ)(g2

1,t + g2
2,t)δγδ + etδγδ

+ b2tσm−1(Cγδ + C∗δγ)

(the notation might be a little confusing—δγδ is the Kronecker delta with
indices γ and δ) where g2,0 is elliptic of order s in a neighborhood of q.
As σm−1(Cγδ + C∗δγ)|Λ = 0, sgn(λ)g2

2,t + b2tσm−1(Cγδ + C∗δγ) is elliptic and
sgn(λ)-definite in a neighborhood of q. Thus, if we choose the support of b to
be sufficiently small, we have

A∗
(

[B2
t , P ] + (P − P ∗)B2

t

2i
+B2

tC + C∗B2
t

)
A(6.3)

= A∗(sgn(λ)(G∗1,tG1,t +G∗2,tG2,t) + Et + Ft)A

where G2, Et, and Ft are matrices of operators, with G2,0 elliptic in a neigh-
borhood of q, WF′L∞[0,1](Et)∩κ(Λ) = ∅, and Ft uniformly (in t) of order −∞.
This last point is done to avoid using the two-step induction needed in the cor-
rection [6, Appendix A]. The same argument as in (5.1)-(5.6) works here, as the
A factors, τ dependence in the previous setting, t dependence here, and that
these are matrices of operators, are irrelevant for the construction. Further, we
can choose matrices of operators Ht and Jt, uniformly (in t) of orders s−m+1

and −∞, respectively, so that

B2
t = HtG2,t + Jt

as on the level of principal symbols, Bt and G2,t have the same cosphere cutoff
functions. That Jt can be made uniformly of order −∞ uses the same argument
as (5.7)-(5.9).

We proceed with the positive commutator argument in the standard way.
For t > 0,

1

2i
(〈B2

tAu,APu〉 − 〈APu,B2
tAu〉) = sgn(λ)(‖G1,tAu‖2 + ‖G2,tAu‖2)

+ 〈Au,EtAu〉+ 〈Au, FtAu〉
+ 〈Ru,B2

tAu〉+ 〈B2
tAu,Ru〉.

As mentioned above, we assume that u ∈ I(s),k−1(O′′, MΛ(O′′)), and we
take WF′L∞[0,1](Bt) ⊂ O′′ and WF′(Ai) ⊂ O′′ for each i. We can then bound
‖Gj,tAu‖ as t → 0, using essentially the same considerations as in previous
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commutator arguments, with slight modifications. We bound the 〈Ru,B2
tAu〉

and 〈B2
tAu,Ru〉 terms with a familiar method. For t > 0,

|〈Ru,B2
tAu〉| = |〈HtRu,G2,tAu〉+ 〈JtRu,Au〉|

≤ 2‖HtRu‖2 +
1

2
‖G2,tAu‖2 + |〈JtRu,Au〉|.

The G2,tAu term can be absorbed into the other such term we are trying to
bound, the HtRu term can be bounded using the inductive hypothesis and the
form (6.2) of each entry of the vector of operators R, and the last term has Jt
uniformly of order −∞.

We handle the s0 + 1 > s > s0 and s ≥ s0 + 1 cases together. We again
inductively assume that u ∈ I(s),k−1(O′′, MΛ(O′′)), and have

1

2i
(A∗B2

tAP − P ∗A∗B2
tA) = A∗(−sgn(λ)(G∗1,tG1,t +G∗2,tG2,t) + Et + Ft)A

+R∗B2
tA+A∗B2

tR

where now we let Bt = q(bt) with bt as in the proof of Lemma 3.3. G2,t, Et,

and Ft are matrices of operators, with G2,0 elliptic of order s and G2,t of order
s1 for t > 0. WF′L∞[0,1](Et) ∩Σ(P ) = ∅, and Ft is uniformly of order −∞ (we
again need to use the technique of the proof of the source case of Theorem 1.6,
but again this carries over with little change, so we provide no further details
here). As before, we also arrange that

B2
t = HtG2,t + Jt

with Ht and Jt uniformly of orders s −m + 1 and −∞, respectively. We take
all operators constructed (including each Ai) to have microsupport contained
in O′′.

To proceed with the positive commutator estimate, we introduce a second
regularizer as in the proof of Lemma 3.4 (and for similar reasons—as it stands,
we have not yet made sense of terms such as 〈u, P ∗A∗B2

tAu〉). Let (Aτ ) ∈
L∞([0, 1]τ ,Ψ

0(X) be such that Aτ ∈ Ψ−∞(X) for τ > 0, and Aτ → Id as τ → 0

in Ψδ(X) for δ > 0. For t, τ > 0, we can then make sense of
1

2i
(〈Aτu,A∗B2

tAPu〉 − 〈Aτu, P ∗A∗B2
tAu〉) =

− sgn(λ)(〈Aτu,A∗G∗1,tG1,tA〉+ 〈Aτu,A∗G∗2,tG2,tAu〉)(6.4)

〈Aτu, (A∗EtA+A∗FtA+R∗B2
tA+A∗B2

tR)u〉.

We can then manipulate each term and send τ → 0. For instance, for t, τ > 0,

〈Aτu, P ∗A∗B2
tAu〉 = 〈A[P,Aτ ]u,B2

tAu〉+ 〈AAτPu,B2
tAu〉.(6.5)

A[P,Aτ ] is uniformly a vector of operators in Ψm−1(X) MΛ(O′′)k. We then
have A[P,Aτ ]u a vector of distributions in Hs−m(X), uniformly in τ . For the
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s1 + 1 > s > s1 case, by assumption we have Au a vector of distributions
in Hs1(X), and for s ≥ s1+1, we have Au a vector of distributions in Hs−1(X),
as A is a vector of operators in Ψ1(X) MΛ(O′′). In either situation, we can, as
in the proof of Lemma 3.4, take τ → 0, and in the limit we get 〈APu,B2

tAu〉.
All other terms follow similarly, and we have

1

2i
(〈B2

tAu,APu〉 − 〈APu,B2
tAu〉) = −sgn(λ)(‖G1,tAu‖2 + ‖G2,tAu‖2)

+ 〈Au,EtAu〉+ 〈Au, FtAu〉(6.6)

+ 〈Ru,B2
tAu〉+ 〈B2

tAu,Ru〉.

We then take t→ 0 as before, completing the proof.

We briefly note how this implies Theorem 1.7.

Proof of Theorem 1.7. — As implied by our definition, v ∈ D′(X) is microlo-
cally in I(s)(X,Λ) if and only if v ∈ I(s),k(O, MΛ(O)) for all k. Note that, for
sufficiently small O′, we can choose any O whose closure is contained in O′.
This allows us to apply Theorem 6.3 for all k.

We also have an analogue of Theorem 1.6 in this iterative regularity setting.
In order to have a transparent statement, we impose a technical condition: that
Qτ has homogeneous principal symbol qτ of the form

(6.7) qτ = τν.

By assumption, ν is homogeneous and elliptic around the point of interest q.

Theorem 6.4. — Given P,Q,Λ, q, s0, and s1 as in the statement of The-
orem 1.6 along with the additional assumption (6.7), and u = (uτ ) ∈
L∞([0, 1]τ , D

′(X)),

– if κ(Λ) is a sumbanifold of sinks forWp|S∗X , then for s < s0, the existence
of an open neighborhood O′ such that

(P − iQ)u ∈ L∞([0, 1]τ , I
(s−m+1),k(O′, MΛ(O′))

and

Γq ∩WFs+k(u) ∩O′ = ∅

implies that for some open neighborhood O ⊂ O′ of q,

u ∈ L∞([0, 1]τ , I
(s),k(O, MΛ(O)).
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– if κ(Λ) is a submanifold of sources for Wp|S∗X , then for s > s1, the
existence of an open neighborhood O′ such that

(P − iQ)u ∈ L∞([0, 1]τ , I
(s−m+1),k(O′, MΛ(O′))

implies that for some open neighborhood O ⊂ O′ of q,

u ∈ L∞([0, 1]τ , I
(s),k(O, MΛ(O)).

Proof. — To prove this, we adapt the Ai to work well with Qτ . We would like,
for 0 < i < n,

(6.8) [Ai, Q] ∈ L∞([0, 1]τ ,Ψ
m−1) MΛ

for the positive commutator argument below. We do this by altering the coor-
dinates chosen in Lemma 2.1, and then using the above definition of Ai with
the new coordinates. We begin as before, choosing canonical coordinates x, ξ
such that locally, Λ is N∗{xn = 0}, with ξn > 0, and κ−1(q){x = 0, ξi =

0, i < n}. For convenience, we let xn = z, y = (y1, . . . , yn) = (x1 . . . xn−1), and
ξ′ = (ξ1 . . . ξn−1). By (6.7) and the positive-semidefiniteness of Qτ , we have

ν = ξmn γ(z, y,
ξ′

ξn
)m

locally, with γ > 0. Note that if we set

y = ỹ

z = z̃γ(0, y, 0)

ξn =
ξ̃n

γ(0, y, 0)

ξi = ξ̃i − ξ̃nz
∂yiγ(0, y, 0)

γ2

then z̃, ỹ, ξ̃ are canonical coordinates, and locally, Λ = N∗{z̃ = 0} and κ−1(q) =

{z̃ = 0, ỹ = 0, ξ̃ = 0, i < n}. Further,

ν = ξn(1 + f)

with f ∈ I Λ,U , where I Λ,U is as defined immediately before the statement of
Lemma 2.1, and U is an open set on wich these coordinates are defined. We
can thus proceed with further choices of coordinates as in Lemma 2.1, and we
get (6.8). Further, if we write, for 0 < i < n,

[Ai, Qτ ] =

n∑
j=0

Cij,τAj ,

we have that

(6.9) σm−1(Cij,τ )
τ→0→ 0 in Sm(X)/Sm−1(X).
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The proof then follows as a modification of the above. We use a positive
commutator estimate using “commutator”

(6.10)
1

2i
(A∗B2A(P − iQτ )− (P ∗ + iQτ )A∗B2A).

(6.9) allows, for sufficiently small τ , all terms involving Qτ , other than the
positive-semidefinite A∗BQτBA, to be absorbed into the G2 matrix of opera-
tors as in (6.3), and so we have that (6.10) is equal to

−A∗(G∗1G1 +G∗2G2)A−A∗BQτBA+A∗EA+A∗FA+R∗B2A+A∗B2R

where F is uniformly of order −∞. As in the proof of Theorem 1.6, Qτ regu-
larizes for us, so B need have no regularization. WF′(E) is, in the sink case,
where we assume regularity, and in the source case, off the characteristic set.
The proof proceeds by induction as above.
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