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TYPE THEORY AND COEFFICIENT SYSTEMS
ON THE BUILDING

BY PAUL BRouUssoUS & PETER SCHNEIDER

ABSTRACT. — Let F be a non-archimedean local field and G be the group GL(N, F)
for some integer N > 2. Let m be a smooth complex representation of G lying in the
Bernstein block B(w) of some simple type in the sense of Bushnell and Kutzko [10].
Refining the approach of the second author and U. Stuhler in [18], we canonically
attach to m a subset X, of the Bruhat-Tits building X of G, as well as a G-equivariant
coefficient system C[r] on Xr. Roughly speaking the coefficient system is obtained
by taking isotypic components of m according to some representations constructed
from the Bushnell and Kutzko type of m. We conjecture that when m has central
character, the augmented chain complex associate to C[r] is a projective resolution
of 7 in the category B(m). Moreover we reduce this conjecture to a technical lemma of
representation theoretic nature. We prove this lemma when 7 is an irreducible discrete
series of G. Following closely [19], we then attach to any irreducible discrete series
7 of G an explicit pseudo-coefficient fr and obtain a Lefschetz type formula for the
value of the Harish-Chandra character of 7 at a regular elliptic element. In contrast
to that of [19], this formula allows explicit character value computations.
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98 P. BROUSSOUS & P. SCHNEIDER

REsUME (Théorie des types et systéme de coefficients sur l’immeuble). — Soient
F un corps local non archimédien et G le groupe GL(N, F'), pour un entier N >
2. Soit 7 une représentation lisse complexe de G appartenant au bloc de Bernstein
B(m) d’'un type simple au sens de Bushnell et Kutzko [10]. En affinant ’approche que
proposent le second auteur et U. Stuhler dans [18], nous attachons canoniquement &
7 un sous-ensemble X de "immeuble de Bruhat-Tits X de G, ainsi qu’un systéme de
coefficients G-équivariant C[r] sur X. Grossiérement parlant, le systéme de coefficients
est construit en prenant des composantes isotypiques de 7 selon des représentations
construites & partir du type de Bushnell et Kutzko de 7. Nous conjecturons que lorsque
7 posséde un caractére central, le complexe de chaines augmenté associé a C[r] est une
résolution de 7 dans la catégorie B(w). De plus nous réduisons cette conjecture & un
lemme technique en théorie des représentations. Nous démontrons ce lemme lorsque 7
est une représentation irréductible de la série discréte de G. Ensuite, suivant de prés
[19], nous attachons & toute représentation irréductible 7 de la série discréte de G un
pseudo-coefficient explicite fr et obtenons une formule de type Lefschetz pour la valeur
du caractére de Harish-Chandra de 7 en un élément elliptique régulier. Contrairement
a celle obtenue dans [19], notre formule permet des calculs explicites.

Introduction

Let F' be a non-archimedean local field, and for some integer N > 2, let G
denote the locally compact group GL(N, F) and X its Bruhat-Tits building.
The aim of this work is to refine the construction of [18] (also see [19]) to at-
tach to certain representations of G new equivariant coefficient systems on the
Bruhat-Tits building. These representations belong to the Bernstein blocks of
the category of smooth complex representations of G corresponding to sim-
ple types in the sense of Bushnell and Kutzko [10]. Let (m,V) be a smooth
complex representation of G. In [18] an equivariant coefficient system C[x] is
constructed by attaching to each simplex ¢ of X the space of vectors fixed
by a certain congruence subgroup of level e of the parahoric subgroup of G
fixing 0. Here the integer e is such that V is generated as a G-module by its
vectors fixed by the principal congruence subgroup of level e of some maximal
compact subgroup of G. In [18] it is proved that the augmented chain com-
plex Co(X,C[r]) — V of X with coefficients in C[r] is exact. If one moreover
assumes that (7,)V) admits a central character x, then Co(X,C[n]) — V is a
projective resolution of (m,V) in the category of smooth representations of G
with central character x. In [3], the first author gave another proof of this fact
for Iwahori-spherical representations. In [19], the second author and U. Stuhler
draw some important consequences concerning the harmonic analysis on G as
well as the homological algebra of the category of smooth representations of G.
Among other things they prove that these projective resolutions give rise to
pseudo-coefficients for discrete series representations (generalizing the pseudo-
coefficient constructed by Kottwitz in [15] for the Steinberg representation) as
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well as a Lefschetz type character formula for the Harish-Chandra character of
any smoooth representation. Note that if the construction of [18] is restricted
to the group G, [19] gives a generalization to any connected reductive F-group
G and most of its results are valid without restriction on G (but sometimes F'
is assumed to have characteritic 0, and G(F) to have compact center).

If the construction and results of [18], [19] have important theoretic conse-
quences, they do not allow explicit calculations. Indeed in general the coeffi-
cient system C(m) cannot be explicitely computed (except may be in the level 0
case, but this is nowhere written). Indeed the only explicit way to be given an
irreducible smooth representation of G is to specify its Bushnell and Kutzko
type. This is why it is natural to seek for a refinement of [18] based on Bushnell
and Kutzko theory.

In this paper, for technical reasons, we restrict to representations belonging
to Bernstein blocks of G attached to simple types. These Bernstein blocks are
exactly those containing discrete series representations. We fix a simple type
(J,A) and denote by R (1) (G) the category of smooth representations of G' that
are generated by their A-isotypic component. We fix a smooth representation
(m,V) of G lying in R )(G). To the datum (J, A), in a non canonical way, one
may associate a field extension F/F of degree dividing N whose multiplicative
group E* is embedded in G. The centralizer Gg of E* in G is isomorphic
to GL(N/[E : F], E). Using a result of the first author and B. Lemaire [5], we
may view the Bruhat-Tits building Xg of Gg as being embedded in X in a
G g-equivariant way. We show that hidden in the properties of Heisenberg rep-
resentations constructed in [10]§ (5.1) and in the mobility of simple characters
established in loc. cit. §(3.6), there is a geometric structure allowing to attach
to m a G g-equivariant coefficient system Cg[n] on the first barycentric subdivi-
sion sd(Xg) of Xg. More precisely, in a non canonical way, we attach to (J,\)
a collection of pairs (J'(o,7),n(0,7))scr, where o and 7 run over the simplices
of Xg satisfying o C 7. Here J!(o,7) is some compact open subgroup of G
and n(o,7) a Heisenberg representation of J!(o,7) as considered in loc. cit.
(5.1.14) (but Bushnell and Kutzko do not use this language nor this notation).
Moreover the collection (J(o,7),n(c,7))scr is G g-equivariant. Exploiting the
compatibility relations among the various 7(c, 7) proved in loc. cit. §(5.1), and
by taking isotypic components of V according to the Heisenberg representations
n(o,T), we construct our equivariant coefficient system Cg[n].

We then show that the subset X[E] of X obtained by taking the union of
the g.Xg, where g runs over G, has the structure of a G-simplicial complex
containing Xg as a subcomplex. We naturally attach to Cg[n] a G-equivariant
coefficient system C[r] on the first barycentric subdivision of X[E] and show
that it actually derives from a coefficient complex on X [E], still denoted by C[n].
We prove that the simplicial complex X[E| and the coefficient system C[r]
are actually independent of any choice made in their construction: these are
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100 P. BROUSSOUS & P. SCHNEIDER

objects canonically attached to m. Moreover the support X, of C[r] may be
explicitely determined. In [10]S5, the Hecke algebra of (J, \) is described using
a non canonical unramified field extension L/E. It gives rise to a general linear
group Gy C Gg C G, to a Bruhat-Tits building X; € Xg C X and to a
simplicial complex
X[L] = | g.X1 c X[E].
geqG

Then the support of C[n] is X, = X[L].

We then consider the augmented chain complex of X, with coefficients
in C[n]:

(%) Co(Xx,Clm]) — V.

We show that this complex lies in the category R ;) (G). We cannot in general
prove its exactness that we consider as a conjecture. However we propose a
strategy to tackle this exactness that generalizes the approach that the first
author uses in [3]. Indeed if (7, V) has level 0 then X[L] = X and the coefficient
system C[r] coincides with that constructed in [18]. In [3], for Iwahori-spherical
representations (they have level 0), one proves the exactness of () using type
theory and an argument of geometric nature.

Let us explain how this generalized approach works. Let H(G) be the Hecke
algebra of locally constant complex functions with compact support on G. It
is equipped with the convolution product x coming from a fixed Haar measure
on G. Let ey be the idempotent of H(G) attached to A so that for any smooth
complex representation W of G, ey x W = W? is the Misotypic component
of W. One basic fact of type theory is that the functor

RA(G) — ex x H(G) * ex — Mod, W — WA

induces an equivalence of categories. It follows that in order to prove the
exactness of (%), we are reduced to proving the exactness of the chain complex
(x*) in ey.H(G).ex-Mod obtained from (*) by applying the functor W —s W?:

(%) Co(Xy,Clm])* — V.

In fact we shall not work with the type A, but with an equivalent type
) defining the same Bernstein block. To make things simpler we ignore this
difficulty in the introduction. Then generalizing [3] we prove that modulo a
conjectural technical hypothesis (Conjecture (X.4.1)), as a complex of C-vector
spaces, (#*) is canonically isomorphic to the augmented chain complex of a
certain apartment Aj; of X with constant coefficients in V*. Of course Ar
being a finite dimensional euclidean space, it is a contractible topological space,
and its augmented chain complex with constant coefficients in any abelian
group is exact.

We prove Conjecture (X.4.1), whence the exactness of (x), when the repre-
sentation 7 belongs to the discrete series of G. Indeed in that case we are able
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to entirely compute the coefficient system C[x]| by using some technical lemmas
proved by the second author and Zink in [20]. We actually prove that there ex-
ists a G-equivariant collection of pairs (G, A, ) such that the coefficient system
is given by C[r], = VAo (isotypic component), where o runs over the simplices
of X, G, denotes the stabilizer of o in G, and A, is an irreducible smooth
representation of G,. Moreover for any simplex o of X[L], the restriction of A,
to the maximal compact subgroup of G, only depends on (J,\) but not on 7.
Closely following [19], we attach to the coefficient system C[m] an
Euler-Poincaré function ffp, on G and prove that it is a pseudo-coefficient
of 7. This pseudo-ceofficient should be very close to that constructed in [4] by
the first author using an entirely different approach (but also based on Bushnell
and Kutzko type theory), however the comparison has to be done. In contrast
with that of [4], the pseudo coefficient ffp is given by a formula adapted to
explicit computations. In particular by computing certain orbital integrals, we
derive a Lefschetz type character formula for the value of the Harish-Chandra
character ©, of 7 at a regular elliptic element v of G. This formula takes the
form:

(%% %) Ox(v) = Tr (v, EP H.(X7,C[]))

where EP H,.(X),C[r]) denotes the homology Euler-Poincaré module of the
restriction of C[r] to the fixed point set X7 of v in X,. We cannot expect to
make formula (* %) entirely explicit. Indeed if v is an element of G there is no
known easy description of the fixed point set X7. Nevertheless when the elliptic
regular element v is minimal over F in the sense of Bushnell and Kutzko, then
X7 is either empty or reduced to a point. In that case the Lefschetz formula
for ©,(y) takes a striking simple form and allows explicit computations. In
particular, in that case we recover the two character formulas obtained in [4].
However our approach gives a much more general result.

The paper is organized as follows. In Section I we establish some crucial
properties of the embedding Xy — X, where E/F is a field extension such
that E£* embeds in G. In Sections II and III we review the main properties of
simple characters and of their endo-classes. The construction of the G g-equi-
variant coefficient system Cg[r] on X is given in Section IV and its extension
to C[x] to a G-equivariant coefficient system is done in Sections V and VI. The
canonicity of the coefficient complex C[r] is studied in Sections VII and VIII. To
state this result the right language is that of endo-classes (Propositions (VII.2)
and (VIIL.1.2)). The support of C[n] is described in Proposition (VIII.2.6).
In Section IX we prove that the chain complex attached to C[r] actually lies
in the Bernstein block of 7 (Proposition (IX.2))). In Section X we reduce
the acyclicity of the augmented chain complex attached to C[x] to a technical
lemma (Conjecture (X.4.1)). For an irreducible discrete series representation,
the conjecture is proved in Section XI (Theorem (XI.2.7)). The last Section XII
is devoted to applications. We first construct an explicit pseudo-coefficient for
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102 P. BROUSSOUS & P. SCHNEIDER

any irreducible discrete series representations (Theorem (XII.2.3)) and then
derive an explicit character formula for the Harish-Chandra character of such a
representation (Theorem (XII.3.2)). For elliptic minimal elements the formula
simplifies a lot (Proposition (XII.4.4)) and give a new proof of formulas already
obtained in [4].

We shall assume that the reader is familiar with the formalism of [10]. Indeed
this work may be somehow viewed as a geometric reformulation of Bushnell and
Kutzko’s construction of the discrete series of G.

We want to thank Shaun Stevens for his help. Proposition (XI.1.2) and its
proof are due to him as well as the proof of Lemma (X.4.4).

This work has a long story. Both authors started to collaborate as the first
one was in post-doctoral stay in Muenster in 2000/2001. Results from Sections I
to IX where obtained already in 2004.

I. Field extensions and centralizers

I.1. Vector spaces and orders. — If K is a non-archimedean local field we shall
denote by ok its ring of integers and by px the maximal ideal of 0x. Once for
all we fix such a field F.

Let E/F be a finite field extension and V' a finite dimensional E-vector space.
Then V is naturally an F-vector space. We write A = EndrV, G = AutgV,
B = EndgV and Gg = AutgV. We have a natural inclusion of F-algebras
B C A and the group Gg is naturally a subgroup of G. As an F-algebra E
embeds canonically in A and its centralizer is B. Similarly, the left action of E
on V allows us to see E* as a subgroup of Gj its centralizer is Gg.

Let Her(A) (resp. Her(B)) denote the set of hereditary og-orders in A (resp.
hereditary og-orders in B). These sets are posets (for inclusion) and G and
G g respectively act on them by conjugation. We have a natural map jorder:
Her(B) — Her(A), defined as follows. If B is in Her(B), it is the stabilizer
in B of an og-lattice chain £ in V'; this lattice chain may be seen as an o g-lattice
chain in V' and jorder(B) is the attached order in A. We shall use the notation
Jorder(B) = A(B). The map jorder is Gp-equivariant and, by [10, 1.2.1], its
image consists of those orders in Her(A) that are stabilized by E*.

I.2. Buildings. — We keep the notation as in (I.1). Let X (resp. Xg) denote
the semisimple affine building of G (resp. Gg). The following fact will be
crucial for our construction.

I.2.1. THEOREM ([5] Theorem 1.1). — There ezists a unique affine and
G g-equivariant map
It induces a bijection Xp — XE",
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We are going to give a more precise version of this theorem. Recall that the
building X is triangulated in a canonical way: it is the geometric realization
of a G-simplicial complex that we still denote by X. Let F'(X) be the set of
simplices of X. It is a poset for inclusion and is equipped with an action of G
via poset isomorphisms. It is a standard result (compare [7] Cor. 2.15) that
we have an anti-isomorphism of posets, compatible with the G-actions:

Her(A)°P? — F(X)

where F'(2) is the unique simplex stabilized by the normalizer of 2 in G. Sim-
ilarly, we have an anti-isomorphism of posets, compatible with the G g-actions:

Her(B)°** — F(XEg)
B — F(B)

where the notation is obvious. We write jsimp for the morphism of G'g-posets
F(Xg) — F(X) obtained from jorder through the two previous isomorphisms.

Let sd(X) (resp. sd(XEg)) be the first barycentric subdivision of X (resp.
of Xg). This is the flag complex attached to the poset F'(X) (resp. F(XEg)).
Since jsimp is increasing, it induces a G g-equivariant simplicial map sd(Xg) —
sd(X).

1.2.2. PROPOSITION. — The map jsimp: Sd(Xg) — sd(X) induces jg on the
geometric realizations.

Proof. — Let us denote by jsq the map Xp — X induced by jsimp on the
geometric realizations (constructed with standard affine simplices). By con-
struction jsq is affine and Gpg-equivariant. By unicity in Theorem (I.2.1), it
must coincide with jg.

In the sequel we shall use the language of hereditary orders instead of sim-
plices. In particular a ¢g-simplex o in sd(X) is a strictly decreasing sequence of
orders 0 = (p D A1 D --- D AYy). The map jg = jsimp is then given by

JE(Bo D B1 D - DBy) = (A(Bo) DA(B1) D --- D A(B,)).

We shall also see sd(Xg) as being embedded in sd(X): jg is now an inclusion.

The map jr enjoys another property that is not proved in [5]. Recall that
Xpg and X have invariant metrics which are unique up to a > 0 factor. Since
G (resp. Gg) acts transitively on the apartments of X (resp. of Xg) fixing a
metric on X (resp. on Xg) amounts to fixing it on one of its apartments. [

1.2.3. PROPOSITION. — There exist normalizations of metrics on Xg and X
such that the map jg is an isometry.

Proof. — By invariance it suffices to prove that the restriction of jg to some
apartment Ag of Xp is an isometry. By [5, 5.1], je(Ag) is contained in an
apartment A of Xg. Set n = Dimg (V') and consider R™ and R"/[E-F] equipped
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104 P. BROUSSOUS & P. SCHNEIDER

with their standard euclidean structures. Then by the proof of Lemma (4.1) of
[5], one may choose the apartment A and metrics on Xg and X such that:

— A identifies to the orthogonal of (1,1,...,1) in R”

— Ag identifies to the orthogonal of (1,1,..,1) in R*/[F:F]

— the map jg is given by the restriction of the following linear map:

J: RYIEF] L Re (T1, .y Ty mF)) & (Tif€ 4 hg)imt,.. ) [B:F), j=1,...,[B:F]

where e is the ramification index of E/F and the p; are some real constants.
It is clear that up to a scalar J is an isometry. Our result follows. g

I.3. Some properties of the embedding sd(Xg) — sd(X). We keep the no-
tation as in (I.1) and (I.2). We need first some more notation and facts on
orders. If 2 is a hereditary op-order in A, then its multiplicative group is a
compact open subgroup of G that we denote by U (2l) (this is indeed a parahoric
subgroup of G). Let ‘P be the Jacobson radical of 2. Then the quotient /3
is a semisimple F-algebra, where F is the residue field of F. In particular the
multiplicative group (2/93)* is the group of F-points of a product of general
linear groups defined over F. The subgroup U(2A) = 1 + P of 1-units is a
normal subgroup of U(2) and the quotient canonically identifies with (/P)*.

For 8B a hereditary order in B, the symbol N (B) denotes the normalizer
of B in G, while if 2 is a hereditary order in A, N'(2) denotes the normalizer
of 2 in G.

1.3.1. LEMMA. — For any hereditary order B in B, we have
N(A(B)) = N(B)U(A(B)).

Proof. — Let (Ly)rez be an og-lattice chain in V' defining %B. Let vy () :
A — Z be the the valuation map given by
va(a) = miffa € P\P" T, m e Z

where P is the radical of A(B). Write vy for the similar map B — Z defined
by the powers of the radical of 8. From [10]§ 1, we have

(I.3.2). — ('UQ[)|B = vy and N (A(B)) N Gg = N (B).
Let tZ, t > 0, be the image of the group homomorphism
vy : N (2A(B)) — Z.

Then N (A(B)) = 22U (A(B)) for any z in N (A(B)) with A-valuation ¢t. A
similar statement holds for A(B). Now from [8] one knows that ¢ is the smallest
positive period of the map k +— dimpLy/Li11. So t is also the smallest positive
period of k — dimp, Ly /Lj+1, where Fg is the residue class field of E. Together
with (1.3.2) this implies that we can actually choose z in N'(28) and the result
follows. ]
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TYPE THEORY AND COEFFICIENT SYSTEMS ON THE BUILDING 105

[.3.3. LEMMA. — Let o = (B D --- D B7) and 7 = (By D --- D BY) be
two q-simplices in sd(Xg). Assume that o = g7 for some g € G. Then there
ezists gg in Gg such that o0 = gg7. In particular any g as above can be written
g = grg- with gg € Gg and g, € Stabg(7).

Proof. — First we need to recall the classification of conjugacy classes of
hereditary orders in A (cf. [8] or [17]). Let 2 be such an order and let (Lg)xez be
a lattice chain in V defining 2. To A we attach the sequence of integers d(); =
dimpLy/Lg+1, & € Z. Then two hereditary orders 2y, s are conjugate if
and only if the sequences d(2(;) and d(2s) coincide up to a translation of the
indexing. We use the notation dg for the sequences attached to hereditary
orders in B. If B8 is such an order, attached to an og-lattice chain (Lg)gez
in V, we have:

d(A(B))k = [Fg : Flde(B)x, k € Z.
We deduce:

(1.3.4). — Let By and By be hereditary orders in B. Then they are Gg-con-
Jugate if and only if the orders A(B1) and A(Bs) are G-conjugate. In other
words Lemma (1.8.8) holds when ¢ = 0.

Now let us turn to the general case. By using (I.3.4), we may replace 7 by a
conjugate under Gg so that B7 = B} =: B,. By assumption there exists a g €
G such that A(B7) = A(BT)9 for i = 0,...,q. In particular A(B,) = A(B,)?,
and, thanks to (1.3.1), we may, by replacing 7 by a G g-conjugate, assume that

o =g1,B7 =B, =B, and g € U(A(B,)).

But then g € U(2(B;)) for any i = 0,...,q which means that g fixes 7, i.e.,
that o = 7.

It is not possible to characterize the image of sd(Xg) using numerical invari-
ants attached to simplices. But we are going to give a criterion for a simplex
of sd(X) to belong to:

X(E) = | gsd(XEg).
geG

Here sd(Xg) is of course seen as being embedded in sd(X).

Let (Li)kez be an op-lattice chain in V' and 2 be the attached order in A.
Write e = e(2) for the period of 2. The sequence of positive integers defined
by d(2)x = dimpLy /Ly is e-periodic and we have the partition:

n=dimV = d@®)o + - + d(A)e_1.

We denote by p(2A) the least positive period of (d(2A);)rez. We can rephrase
[11] Prop. (1.2) as follows.
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106 P. BROUSSOUS & P. SCHNEIDER

1.3.5. PROPOSITION. — Let e(E/F) and f(E/F) respectively denote the ram-
ification index and the inertial degree of the field extension E/F. The order 2
has a conjugate normalized by E* if and only if the following assertions hold:

i) f(E/F) divides d(A)x for all k € Z;

ii) e(E/F) divides e(A)/p(2A).

In other words the vertices of sd(X) which are in X(E) are exactly those
vertices which correspond to hereditary orders A satisfying conditions (1) and
(ii).

We remark that the simplicial complex X (E) is not simply connected in
general. For instance take G = GL(4, F) and E/F quadratic unramified. Then
sd(Xg) is the building of Gg = GL(2, F) which is 1-dimensional. Using the
criterion of (I1.3.5), we get that any vertex of X belongs to X (E). On the other
hand the barycenter of an edge in X attached to a 2-periodical op-lattice chain
(Lk)kez in V lies in X (E) if and only if dimp(Lx/Lks1) = 2 for all k. Any
given chamber of X therefore has exactly two opposite edges o¢ and o7 that
lie in X (E). If we consider all chambers in an apartment of X which contain
oo then the corresponding edges opposite to o¢ form a cycle in X(E).

I1. Simple characters and their endo-classes

Here we recall some basic facts about simple characters. References are to
be found in [10] and [9]. We continue to use the notation of (I).

II.1. Simple pairs and their realizations. — Recall that a simple pair [0, (]
(19, 1.5]) is a finite field extension E/F, equipped with a generator 8 (i.e.,
E = F(f)) and satisfying the following conditions:

(SP1) B & op,
(SP2) ko (8, A(E)) < 0 (cf. [10]§1).

For each finite dimensional F-vector space V, and for each B € Her(B), we
have a simple stratum [A(B), ns,0, 8] in A, called a realization of [0, 5] ([9] p.
133). Here ngg is the valuation of § € A with respect to 2(*B).

Attached to [A(B),ns,0,0] (so to [0,5], V and B), we have the following
data:

— Two open compact subgroups of G: U*(B) C H'(B) C J*(B) C UL (A(B));
they are both normalized by N (B).

— A finite set of simple characters C(B) = C(A(B),0,8) of H'(B); each
character in C(B) having a G-intertwining given by J1(B)GgJ!(B).

— Moreover, for each 6 € C(®8), there exists (up to isomorphism) a unique
irreducible representation n(6) of J*(%B) such that 7()x1 () contains 6. The
intertwining of n(6) is again J(B)GgrJ'(B) and the representation Indgl((@ﬂ
is a multiple of 7(6).
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In addition we need the degenerate simple characters ([10] p. 184). To have
a uniform notation we in this case set £ := F and B := A; for any B €
Her(B) = Her(A) we let H'(B) := J1(B) := U'(B) and let C(B) denote the
one element set consisting of the trivial representation 11 sy of H L(8).

If we need to keep track of the FE-vector space V' we some times write
HY(V,8), JY(V,B),C(V,*B) instead of H'(B), J}(B),C(B), respectively.

I1.2. Potential simple characters. — (Cf. [9] §8.)

Let [0, 5] be a simple pair and V;, Vo be two finite dimensional E-vector
spaces. Write B; = EndgV;, A; = EndrV;, i = 1,2. For ¢ = 1,2, fix a
hereditary order 8, € Her(B;). Recall ([10, 3.6]) that we have a canonical
bijection (called a transfer map):

T81,8,,08 * C(‘/ia%l) h— C(%,%Q)

These transfer maps satisfy the properties:

— -1 —
T81,82,8 = T, 8,,8 781,83,8 = T81,8,,8 © T8,,83,8-

Write R[0, 8] = UC(V,B), where C(V,B) runs over the sets of simple charac-
ters attached to all possible realizations of [0, 5]. We say that 61, 62 € R[0, 5],
attached to (V;,B;), i = 1,2 are equivalent if 8, = T, @, g61. This is indeed
an equivalence relation and the equivalence classes are called potential simple
characters (or ps-characters) supported by [0, 3].

In addition we let all possible degenerate simple characters form a single
class which will be called the degenerate ps-character.

Remarks. — (i) To be given a ps-characters amounts to fixing some 6 €
C(V,B) in some realization.

(ii) A ps-character © may be seen as a function of the pairs (V,B): to (V,B)
we attach the simple character § € © that lies in C(V,B8). We shall also say
that ©(V,B) is a realization of © associated to (V,B).

I1.3. Endo-classes of ps-characters. — (cf. [9] §8)

Let O;, for i = 1,2, be two ps-characters. Then each O; is either supported
by a simple pair [0, 5;] (with E; := F(f;)) or is degenerate (with E := F).
We say that two realizations O1(V1,%1) and O5(Vs,B5) are simultaneous if
[Ey : F] = [Ey: F] and if the F-vector spaces V7 and V3 are the same.

11.3.1. DEFINITION ([9, 8.6]). — Two ps-characters ©1 and O are called
endo-equivalent, denoted ©1 ~ O, if there exist simultaneous realizations
01(V1,%B1) and O2(Va,Bs) that intertwine in AutpV, where V.=V, = Vs.
We shall summarize this condition by saying that ©1 and Oy intertwine in
some simultaneous realization.

The following proposition shows that ~ is indeed an equivalence relation.
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I1.3.2. PrOPOSITION (cf. [10, 3.6] and [9] p. 154-157). — (i) If © is a ps-
character then any pair of simultaneous realizations of © intertwine.

(ii) If ©1 and ©y are ps-characters, they intertwine in some simultaneous
realization if and only if they intertwine in any simultaneous realization.

A class for ~ is called an endo-class of ps-characters.
We shall need the following two facts.

11.3.3. PROPOSITION ([9, 8.11]). — Let ® be an endo-class of non-degenerate
ps-characters and © € © supported by [0, 3]. Then the following integers only
depend on ©: k.(8,UA(E)), ve(B), e(E/F) (ramification index) and f(E/F)

(inertial degree).

11.3.4. PROPOSITION ([10, 3.5.11]). — Let © be an endo-class of ps-characters
and ©1, O € O. Let 8; = ©1(V1,B1) and 63 = O3(V5,B2) be simultaneous
realizations. Assume that A(B1) = A(By) =: A. Then there exists x € U ()
such that 0, = 67.

II1. Ps-characters and pairs of orders

IIL.1. Extensions to mixed groups. — We fix a simple pair [0, 3], a ps-character
© supported by [0, 5], as well as a finite dimensional E-vector space V. We
keep the notation as in (I) and (II).

The E-vector space V being fixed, the ps-character © gives rise to a function
still denoted by ©: it maps an order B € Her(B) to the simple character
O(B) = O(V,B) of C(B). For each B € Her(B), let n(B) = n(V,B) be
the Heisenberg representation of J!(8) which contains ©(%8) when restricted
to H(*B).

For each pair of hereditary orders 8; C B, in Her(B), we have U(B1) C
U(Bz) and U (B,) C U'(B;). Since U(B;) C U(Bz) and U(B;) normalizes
J1(B,), one may form the group

JH(B1,B,) := U (B,)J (By).

III.1.1. ProPOSITION ([10, 5.1.14-16], (5.1.18), (5.1.19)). — There exists a
unique family of irreducible representations {(J1(B1,B2),
n(B1,B2))}w,cm, (determined up to isomorphism) which extends {n(B)}s
in the following sense:

(1) n(B,B) = n(B) for any B in Her(B);

(i) n(B1,B2)1(m,) = 1(B2) for all By C By in Her(B);

(iii) the following induced representations are irreducible and equivalent:

UL (2A(B1)) ~ T U (A(B1))
Ind ;1 g,y '1(B1) 2 Ind 1 (o5 5 )1(B1, Ba).

Moreover we have:
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(iv) The compatibility condition: n(B1,B3)|1(s,,3,) = 1(B2,B3), for any
triple B1 C Bo C Bs in Her(B);
(v) the intertwining formula:

Ze(n(B1,B2)) = J' (B2)GrJ' (B2).
Note that the representation
N(A(B)) = n(V,A(B)) :=Ind7, (3 'n(B)
is irreducible for all 8. Its intertwining is given by
Ie(n(A(B)) = U (U(B))GU" (A(B)).

IT1.1.2. PROPOSITION. — For all g in Gg and B; C B, we have
[J1(B1,B2)]9 = JL(BY,B5) and the representations n(B1,B2)? and n(BY,BY)
are isomorphic.

First we need the following result. Let V’ denote the F-vector space V
equipped with a possibly different E-vector space structure. We then find an
element z € G such that B’ :== EndgV’ satisfies B’ = B® := zBz~! and hence
Her(B') = {%8” : b € Her(B)}.

I11.1.3. LEMMA. — a) For any B € Her(B) we have:
i) HY(V',98%) = HY(V,B)® and J*(V',B%) = JL(V,B)".
ii) If 6 € C(V,B), then 6% € C(V',B%).
b) For g € Gg and B € Her(B) we have O(8)9 = O(BY).

Proof. — The point a) follows immediately from the inductive definition of
simple characters and groups (cf. [10] §3).

We need to recall the characterization of the transfer maps 7y, 3, s for a
pair of orders B;, i = 1,2, in Her(B) ([10, 3.6]): If §; € C(B;), i = 1,2, then
0 = T, .2, 801 if and only if 1 € Gg intertwine 6; and 6s.

Consider the two characters ©(B9) and ©(B)Y of H(%BY). Since g inter-
twines ©(B), we must have @(%)lng(%)mHl(%g) = O(B)|m1(B)nH1 (Bs)- SO
©(B)9 € C(BY) coincides with 75 1+ g(O(B)), that is with ©(B9) by defini-
tion of ©. O

Turning to the proof of Proposition (III.1.2) the G g-equivariance of the fam-
ily {(J*(B1,B2),1n(B1,B2))}s,cs, follows now from that of {O(B) }weHer(B)
by a unicity argument.

I11.2. Extensions to 1-units of orders. — We now quote some properties of the
representations 7(2A(2B)). In the following we abbreviate A(B,) = 2. for any
subscript “x”. Let B C B5 be hereditary orders in B.

We first note that

JY(B1,B2) C U (B,)U(A) CUHAy).
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So we can consider the irreducible representation

(A, ™Az) == IndUl(%l)Ul(%)n(%l,%z)

J1(B1,B2)

II1.2.1. PROPOSITION. — a) The representation n(™A1,As) satisfies
(1) n(A1, A2) 101 (21,) = n(A2);
. Ul (2%,
11) IndUlgBl))Ul(ng)n(Qll’gb) >~ T](Qh)
b) Moreover for any triple of hereditary orders 81 C By C B3, we have

n(RA1, Az ) 1 (8,) U1 (215) = N(Aa, As).

Proof. — Assertion a) (ii) is a consequence of Proposition (III.1.1)(iii). We
must prove b). By Mackey’s restriction formula and since the double quotient

U'(B2)U' (A3)\U" (B1)U" (As)/U" (B1)J ' (Bs)

is reduced to one element, we get that the restriction in b) is

UH(B2)U* (As) _ UH(B2)U* (As)
IndUl(%j)Jl(%z)mUl(%g)Ul(Qqu,)n(%l’ B3) = Indumiwu%iw(%l» B3).
Now the result follows from Proposition (III.1.1)(iv). O

IT1.3. The degenerate case. — The constructions of (III.1) and (II1.2) trivially
extend to the case where O is the degenerate ps-character. Indeed, in that case,
we set E = F and for all pairs of orders B; C B in Her(B), we set:

— JH(B1,B2) = U(B1)U(By) = U (A)U (™) = UH(A);

= n(B1,B2) = (A1, A2) = Lyi(ay,)-

IV. The coefficient system on sd (X g)

As in the previous section, we fix a ps-character ©. It is either degenerate
(E := F) or supported by a simple pair [0, 8] (E := F(8)). We also fix a finite
dimensional E-vector space V.

Let V be a smooth complex representation of G = AutgV. In a first step, we
are going to construct a G g-equivariant coefficient system C,(V) = C,(©,V,V)
on sd(Xg). We shall first construct this coefficient system on the stars of the
vertices of X and then extend it to any simplex.

We call a simplex 0 = (Bg D --- D B,) semistandard if it belongs to the
star of some vertex in Xg, that is if 8, is a maximal order.

IV.1. DEFINITION. — i) For any semistandard simplex o = (Bo D --- D By)
of sd(Xg), we set

V(o) = Y1(BaBo),
the n(B 4, Bo)-isotypic component of V.
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ii) For an arbitrary simplex o of sd(Xg), we set

V(o) = > V(7).

T semistandard, TO0

IV.2. PROPOSITION. — 1) The previous definition is consistent.
ii) For any pair of simplices 0,7 of sd(Xg) witho C 7, we have V(1) C V(o).

Proof. — We only need to prove the second assertion in the case of semi-
standard simplices o,7. Suppose therefore that o = (By D --- D B,) is
semistandard. The stars of two distinct vertices being disjoint, the simplex T
must then have the form 7 = (By D --- D B,) containing (By D --- D By)
as a subflag. By (IIL.1.1)(iv), we have n(B,,Bo)|J* (B, Bo) = n(B,, Bo). So
Y1(Br,Bo) C YP1(Ba,Bo) and the result follows. O

By taking inclusions as transition maps, the family C,(V) = (V(0))s, o
running over the simplices of sd(Xg), is then a coefficient system of C-vector
spaces over sd(Xg).

I1V.3. PROPOSITION. — For the obvious action of Gg on the V(o), o sim-
plex of sd(Xg), Co(V) is naturally endowed with a structure of G g-equivariant
coefficient system.

Proof. — We must prove that gV(o) = V(go), for all g € Gg and o simplex
of sd(XEg). Also we may clearly reduce to the case where ¢ and 7 are semi-
standard.

Let 0 = (Bo D -+ D B,) be semistandard and g be in Gg. Then go =
(B§ D --- D BY) and

gV(O') = gVﬁ(quﬁBo)and V(go.) — Vn(%g,%g).

By (III.1.2), this last vector space is V"(®a:%0)’  Now our result follows from
the following observation. Let (K, p) be a smooth irreducible representation of
a compact open subgroup K of G and let g € G. Then gV? = V*’, where p? is
the representation of K9 = gKg~! given by p9(k) = p(g~'kg). |

V. The coeflicient system on sd(X)

We keep the notations from the previous sections. As in §1 we see sd(Xg)
as a subcomplex of sd(X). We are now going to construct a coefficient system
C(V)=C(©0,V,V) on sd(X).

For any subscript “+”, we shall write 2, for 2A(%B,). In particular, if (B¢ D
--» D B,) is a flag of orders in Her(B) then (B D --- D B,), (A(Bo) D -+ D
A(B,)) and (Ao D --- D YA,) denote the same object, i.e., a simplex of sd(Xg)
seen as a simplex of sd(X).

We shall need the two following lemmas.
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V.1. LEMMA. — Let (p,W) be a smooth irreducible representation of some
compact open subgroup K C G and let VP denote the p-isotypic component
of V. Then V* is invariant under any subgroup of Ng(K) which intertwines p.

Proof. — Letwv € V* and g € G be an element normalizing K and intertwining
p- By definition, there exist ¢ in Hom,(W,V) and w € W such that v = ¢(w).
Since gKg~! = K and p? ~ p, and since p is irreducible, there must exist
an intertwining operator ¢ € Autc(W) such that p9(k) = ¢! o p(k) o ¢, for
all k € K. Tt easily follows that gpy~' belongs to Hom,(W,V). So gv =
[9pv (¢ (w)) and gv € V*, as required. O

V.2. LEMMA. — Let H C K be compact open subgroups of G. Let nyg be

an irreducible smooth representation of H and assume that ng = IndgnH is
irreducible as well. Then V"% = KVY"H,

Proof. — Let ® € Hom(nk,V). We may see ng as an H-submodule of nx so

that
Nk = EB knm.

keK/H

So
k)= Y, k®(nm),

keK/H
with ®(ng) contained in V" since ® is H-equivariant. This gives the in-
clusion V"% C KV"H Conversely, since the smooth representations of H are
semisimple, V7 decomposes into a direct sum

Ve =Py,

iel
each V; being isomorphic to nyg as an H-module. Now each K.V; C V is
isomorphic to nx as a K-module and the opposite inclusion follows. ([l
V.3. DEFINITION. — For o a semistandard simplex in sd(Xg), we set
Vo = Z gV(o) CV.
gEStabg (o)
V.4. LEMMA. — Let 0 = (Bg D --- D By,) be a semistandard simplex

of sd(Xg). Then
Stabg (o) = EXU(2,).

Proof. — The group E*U (2,) certainly normalizes (B D --- D B,) = (Ao D
.-+ D 2,) and lies in Stabg(o). Conversely if g € Stabg(o), then g normalizes
the principal order 2y and must lie in its stabilizer which by (1.3.1) is equal
to EXU (o). Write g = Ah, with A € E* and h € U(2p). Since Aisin N (2,) =
N(B,)U(2,), so is h. Now h must be in the maximal compact subgroup
of N(B,)U(2,), that is U(2,), and the lemma follows. O
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V.5. PROPOSITION. — Let 0 = (B D --- D By) be a semistandard simplex
of sd(Xg). Then:

V, = > V(o) = 3 gV1(%a)
gEU (Aq)/U(B4)J* (Bo) gEU (Ag) /UM (AUq)
Proof. — The subgroup U(%B,)J!(%B) normalizes J*(B,,Bo) = U'(B,)J*(Bo).
Moreover it intertwines (8,4, Bo) by (III.1.1)(v). As a consequence of (V.1),
(V.4), and the definition of V(o) we therefore obtain the first equality in

Vo = > V(o) = > V(o).
EXU(2q)/U(Bq)J* (Bo) U(Aq)/U(Bq)J (Bo)

The second one is immediate from the fact that E* stabilizes V(o). Now,
using (III.1.1)(iii), we may apply (V.2) with H = J*(B,,B0), K = U*(,),
ni = 1(Bq, Bo), Nk = n(U4) to get the second equality in the proposition. [
V.6. PROPOSITION. — Let o and 7 be semistandard simplices of sd(Xg) with
o Cr1. Then V; CV,.

Proof. — Write 0 = (Bg D --- D By) and 7 = (By D --- D B,.), with By
maximal. By (IV.2)(ii), we have V(1) C V(o). Moreover U(,) C U(2,). Our

inclusion follows now from the first equality in (V.5). O

V.7. PROPOSITION. — Let o and 7 be semistandard simplices of sd(Xg), and
assume that T = go for some g € G. Then gV, = V.

Proof. —  Write 0 = (Bf D -+ D B7) and 7 = (B D --- D B7). Using
(1.3.3), we can decompose g as ggd,, Jg € GE, g» € Stabg(o). By construction
we have g,V, = V,. So gV, = ggV,. We get:
Vo= >, 98995 98V (0).
€U (A(B))
By (IV.3), we have ggV (o) = V(7), and it follows that
gV, = > hV(m).
heU (A(Bg))78
Now the result follows from the Gg-equivariance of the map B — U(A(B))
and from the definition of V. O

V.8. DEFINITION. — A simplex of sd(X) is called E-semistandard if it is
conjugate to a semistandard simplex of sd(Xg). We define a vector space V,,
for each simplex o of sd(X), as follows:

i) If o = g7, for T semistandard in sd(Xg) and g € G , then V, = gV,;

ii) If o is an arbitrary simplex of sd(X), then

V, = > 128

7 FE—semistandard,7 Do
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V.9. PROPOSITION. — i) The previous definition is consistent.

ii) For any pair of simplices o C 7 of sd(X), we have V, C V,. In particu-
lar, by taking inclusions as transition maps, the collection C(V) := (V,)s is @
coefficient system of C-vector spaces on sd(X).

iii) For the obvious action of G, the coefficient system C(V) is equivariant.

Proof. — i) By (V.7) the definition of V, in (V.8)(i) does not depend on the
choice of g.

To prove that the Definition (V.8)(ii) is consistent, we must prove that if o
and 7 are E-semistandard simplices of sd(X) satisfying 7 O o, then V, C V.
Write o = go,, T = h7,, with g,h € G and g, = (Bo D --- D By), 7o = (€ D
-++ D €,) semistandard in sd(Xg). By definition V, = gV,, and V, = hV,,.

The hypothesis 7 O ¢ implies B; = g_thj(i) for some j(0) =0 < ... <
j(g) <r. By (V.6) and (V.7), we have

V, = hV‘ro = hV(QoDn-DCT) c hV(Qj(O)D---DCj(q)) = hh_lgvao = gVO'o =V,.

ii) We can obviously reduce to the case where o and 7 are FE-semistandard,
and the inclusion has just been proved in i).

ili) We must simply prove that gV, = V,,, for any simplex o of sd(X) and
g € G. We may reduce to the case where o is F-semistandard where the result
follows trivially from the definition of C(V). O

By construction the coefficient system C(V) is supported on

X(B) = | gsd(Xp)
geG
viewed naturally as a simplicial subcomplex of sd(X). But C(V) has the fol-
lowing additional constancy property.

V.10. PROPOSITION. — Let the vertez o, = (B) in sd(Xg) be the barycenter
of a simplex & of Xg; then V, =V, for any simplex o in sd(Xg) such that
o, CoCo.

Proof. — Put A :=A(B) and

V, = Z gV,
geU(A)/ U (A)

If o is semistandard then V, =V, by (V.5). Consider therefore the case that
o= (Bog D - DBy with B, = B is not semistandard, and let 7 be any
E-semistandard simplex in sd(X) such that 7 O 0. We have to show that
V., CV,. Write 7 = g7, with g € G and 7, = (€9 D -+ D €,) semistandard
in sd(Xg). By (1.3.3) we may assume that 79 2 g~'c = 0. We then have
B; = €, forsome 0 < j(0) < ... < j(g) <r. Since 79 is semistandard whereas
o is not the order €; is maximal but By is not. This means that 0 < j(0). It
follows that 7 := (€y D By D --- D B,) is a semistandard simplex in sd(Xg)
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such that 7o O 7, D 0. Hence 7 = g79 D g11 2 go = o. Since 7 D g7; both
are E-semistandard we know from the proof of (V.9)(i) that V. C V,;,,. On
the other hand, by (I.3.1) we may write g = hg’ with h € N (8) C Gg and
g’ € U(2A). We obtain that gr; = h7y in fact is semistandard in sd(Xg). Using
(V.5) we conclude that V; C Vg, = Vir, = V. O

This result is best expressed in the following way. The simplicial structure
of X (before subdivision) can be described in terms of the simplicial struc-
ture of X as follows: The interiors 6° of simplices o of Xg are precisely the
(nonempty) subsets of the form 7° N Xg for some simplex 7 of X.

Suppose now that 7,0, are simplices of Xg such that

g(a1)° N (d2)° £ 0 for some g € G.

Write (;)° = (7;)° N Xg with simplices 7; of X. Then ¢(71)° N (72)° # 0 and
hence g7 = 7> since the G-action on X is simplicial. In particular, g maps the
barycenter of 71 into the barycenter of 2. Since both barycenters lie in X g we
conclude from (I.3.3) that there also is an element gr € Gg which maps the
first barycenter into the second one. It follows that ggo; = 02 and gg7T, = To.
Hence gg;' fixes 7> and, by (I1.3.1) applied to its barycenter, can be written
ggg1 = hgh with hg € Gg fixing 2 and h € G fixing 7> pointwise. We obtain

9(61)° = 995" (52)° = hh(52)° = hg(52)° = (52)°.

From this fact one deduces in a straightforward way that X (E) carries a sim-
plicial structure where the simplices are the subsets of the form go for ¢ a
simplex of Xg and g € G. We write X[E] for X (FE) equipped with this sim-
plicial structure. Similarly as for Xg the interiors of simplices of X[E] are the
nonempty intersections 7° N X[E] for 7 running over the simplices of X. The
barycentric subdivision of X[E] is X (E).

The Proposition (V.10) (together with G-equivariance) says that C(V) in an
obvious way derives from an equivariant coefficient system C[V] = C[0,V,V] :=
(V[o])s on X[E] given by

Viel = Y. hgy"®
gEU () /U ()

for any simplex o of X[E] where ¢ is the image under some h € G of a simplex
of Xg with barycenter (%) and where 2 := 2(*B).

VI. The degenerate case

We recall that in the degenerate case we have E = F, B = A, H () =
JHRA) = UL(A), and O(A) = n(A) = 1. The coefficient system C(V) = (V,),
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on X associated with a smooth complex representation )V of G is given by the
fixed vectors

V, =V for g = F().
This is precisely one of the coefficient systems considered in [18] (namely the
one corresponding to “level” n = 1). From loc. cit. we therefore have the
following result.

VI.1. THEOREM. — The oriented chain complex of C(V) is an exact resolution
in the category of all smooth complexr G-representations of the subrepresenta-
tion of V generated (as a G-representation) by YU (o) for some vertex F(2p).
Moreover, if the center of G acts on V through a character x then this resolu-
tion is a projective resolution in the category of smooth G-representations with
central character x.

VII. Dependence on the endo-class

We fix a finite dimensional F-vector space V. Let ©;, for i = 1,2, be two
ps-characters with simultaneous realizations in A = AutgV. So for each i we
are in one of the following cases:

1) The ps-character ©; is supported by a simple pair [0,3;] and V is an
E;-vector space, where E; = F(0;), and as such will be denoted by V;. Following
previous notations we have the centralizer B; of E; in A, the centralizer G,
of EX in G = A*, the affine building X, of Gg,, and X[E;] = U 9XE,

geG
equipped with the simplicial structure defined in (V).
2) The degenerate case.

VII.1. LEMMA. — If ©; and O2 are endo-equivalent then X[E1] = X[E2] as
sets and simplicial complezes.

Proof. — It suffices to prove that the barycentric subdivisions X (E;) and
X (E>) coincide as simplicial subcomplexes of sd(X). Being the fixed points
sets of groups acting simplicially on sd(X) they are full subcomplexes. Hence
they coincide if they have the same vertices. For ¢ = 1,2, a vertex () of sd(X)
lies in X (E;) if and only if the order A € Her(A) satisfies the numerical crite-
rion of (I.3.5). But by (I1.3.3), since ©; and O, are endo-equivalent, we have
f(E1/F) = f(E2/F), e(E1/F) = e(Ey/F) and the numerical criteria for X (E)
and X (E;) are the same. O

VII.2. PROPOSITION. — Let V be a smooth representation of G. If ©1 and
©2 are endo-equivalent, then the two coefficient systems C[0;, V;, V] coincide.

Proof. — 1If ©; and O, are endo-equivalent, then they are both supported by
simple pairs or are both degenerate. In this latter case the coefficient systems
in question coincide for trivial reasons. So we may assume in the following that
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©,, for i = 1,2, is supported by a simple stratum [0, 5;] and use the notations of
case 1). Recall that the ps-character ©; gives rise to the simple character valued
function 6, := ©;(V;,.) on Her(B;). We write n;(V;,.) for the representations
corresponding to 6; which were introduced in (III.1).

We now fix a simplex o of X[E;] = X[FEs] and write ¢ = h;o; with h; € G
and o; a simplex of Xg,. Let (B;), for B; € Her(B;), be the barycenter of o;
and put A; := A(B;) € Her(A). We have to show that the identity

M 3 g =m( 3T gy
9eU (A1)/U () geU (A2)/ U (A2)

holds true. Since Ql;“ and 9[;2 both correspond to the barycenter of o they are
equal. Hence setting h := h] 1hy the above identity can equivalently be written

as
Z gv"'ll(vl;ml) — Z ghvnz(vzﬁlz)'
geU (A1) /U (A1) geU (A1) /U (A1)

It therefore suffices to find an = € U(2;) such that
n1(Vi, 21)" = o (Va, As)™.
For this in turn it certainly is sufficient to show that
©1(B1)" = 02(B2)".
Let V2h be the F-vector space Vo, = V' with the new FEs-vector space structure

given by Es < Endp, Vo ™" EndpV. By (IIL1.3)(a) we have ©5(Va, Bs)" €
C(V,B"%). Hence there is a unique ps-character ©% supported by [0, 32] such
that ©8(V, BhE) = O,(Va,By)". Obviously O2(Va,B2) and 5 (Vi BL) are
simultaneous realizations which intertwine in G. Therefore ©, and ©% and
hence ©; and ©} are endo-equivalent. Since A(BE) = AL = A; = A(B;) we
may apply (I1.3.4) to ©; and ©} and obtain an 2 € U(2;) such that

01(V1,B1)" = O3 (VY BY) = 02(Va, B)". O

VIIL On the support of C(©, V, V)

We fix a simple type (J, A) in the sense of [10, 5.5.10]. Recall that this means
one of the following two possibilities.

(a) There are given a simple pair [0, 5], an E-vector space V where F :=
F(B), and a principal order B, in Her(B) where B := EndgV. The represen-
tation \ of the group J := J(B,) := J1(B,) - U(B,) is of the form k ® p, where
K is a [(-extension to J of a simple character 6, € C(V,B,) (cf. [10, 5.2.1])
and p is the inflation of an irreducible cuspidal representation of J/J(B,) of
the following kind. Recall that J/J'(%B,) identifies with GL,,/.(Fg)*¢, where
n ;= dimgV, e is the period of the og-lattice chain corresponding to 8B,, and
Fg denotes the residue class field of E. Then the condition on p is that, as
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a representation of GL,/.(Fg)*¢, it is of the form pZ¢, where p, is an irre-
ducible cuspidal representation of GL,,/.(Fg). We let ©, denote the unique
ps-character supported by [0, 8] such that ©,(V,B,) = 6,.

(b) We are in the degenerate case. There is given an F-vector space V and
a principal order 2, in A := EndrpV. The representation A of the group
J = J&,) = U(,) is the inflation of an irreducible cuspidal represen-
tation of U(2A,)/U(A,) of the following kind. We have U(2,)/U'(™,) =
GL,/c(Fr)*®, where n := dimpV and e is the period of the op-lattice chain
corresponding to 2,. Then A & p®¢ for some irreducible cuspidal representa-
tion p, of GL,,/.(Fr). In order to have a notation consistent with the case a),
we set B = F, B:= A, B, := A, k1= 15, 0, := 1j19,), p:= A, and we
let ©, denote the corresponding degenerate ps-character.

Let R(G) denote the category of smooth complex representations of G :=
AutpV. Recall that the full subcategory R x)(G) whose objects are the rep-
resentations generated by their A-isotypic component is stable under the forma-
tion of subquotients. It coincides with a Bernstein component of R(G) attached
to a single point in the Bernstein spectrum of G (cf. [10] and [12, 9.3]).

Throughout this section we fix a nonzero representation V in R x)(G).

Remark. — The coefficient systems C,(0,,V,V) and C(©,,V, V) are nonzero.

Proof. — Choose a maximal order %8 in Her(B) containing B, so that o :=
(B D B,) is a semistandard simplex of sd(Xg). It is a consequence of
(ITL.1.1) (i) that V(o) and V(%) generate the same U (2(B,))-invariant sub-
space of V. But the latter contains the isotypic component V* which is nonzero
by assumption. ([l

VIIIL.1. Endo-classes. — Let ©’ be an arbitrary ps-character which can be real-
ized in an E’-vector space V' which as an F-vector space coincides with V. We
assume that ©’ is either degenerate or supported by a simple pair [0, 3']; in par-
ticular B/ = F or E' = F({'). Let B’ := Endg/ (V') and let n(...) =n(V’,...)
denote the various representations attached to ©' and V' as introduced in
(II1.1).

VIII.1.1. LEMMA. — Assume that there exists €& € Her(B') such that V
contains the simple character ©'(V',&y). Then there exist a € € Her(B'), a
B’ -extension k' of the Heisenberg representation n(€) attached to ©'(V', &), and
an irreducible cuspidal representation p' of the F g/ -reductive group U(€) /U (€)
such that V contains the representation k' ® p' of J(€).

Proof. — (This fact actually is a consequence of the proof of [10, 8.1.5],
p. 268/269. We shall nevertheless give the argument, for the context of loc.
cit. is slightly different.)

TOME 145 — 2017 — N° 1



TYPE THEORY AND COEFFICIENT SYSTEMS ON THE BUILDING 119

Take € minimal among the orders of Her(B’) such that V contains ©'(V’, €).
Then V must contain the Heisenberg representation 7(€) associated to ©'(V’, €)
and a fortiori an irreducible representation A’ of J(€) such that )\1 J1(¢) contains
n(€). By [10, 5.2.2] such a representation )\ is of the form X = ' ® p/, where
k' is a 8’-extension of 7(€) and p’ is (the inflation of) an irreducible represen-
tation of J(€)/J'(€) = U(€)/U(C). It remains to prove that the minimality
condition on € implies that p’ is cuspidal. Assume therefore that p’ is not
cuspidal. Then there exists a proper parabolic subgroup P of U(€)/U(€),
with unipotent radical U, such that pr contains the trivial character. There
is a uniquely determined hereditary order €; C € such that P (resp. U) is the
image of U(€;) (resp. U'(€;)) in the quotient U(€)/U*(&). Since PP is proper,
the containment €; C € is strict. Let 1(€;) be the Heisenberg representation
associated to ©'(V’,€;). We show that V contains n(€; ), hence also ©'(V’, &;),
which contradicts the minimality assumption on €.

The representation V contains

(K ® P’)\Ul(cl)Jl(G) = ”iUl(cl)Jl(G) ® piUl(Cl)Jl(C)

which contains

Kl (enai(e) ® Lot @) (@) = o (e, (e)
Hence our claim follows from [10, 8.1.6] which says that the representations
of U1 (2((€;)) induced by n(€;) and /-;T U1(e,) 1 (e) are irreducible and equivalent
to each other. O

VIII.1.2. PROPOSITION. — If the coefficient system C(©',V' V) is nonzero
then the ps-characters ©' and ©, are endo-equivalent and C[@', V', V] = C[O,,V, V).

Proof. — The second part of the assertion is a consequence of the first part
by (VIL.2). If C(©',V’,V) is nonzero then there is a vertex (&) of sd(Xg)
such that V"(*(®) £ (. Let v be a nonzero vector in this isotypic component,
let Vy be the G-subrepresentation of V generated by v, and let V1 C V), be
the largest G-subrepresentation which does not contain v. Then Vy/V; is an
irreducible G-representation in the category R(;)(G). By construction we
have (Vo/V1)" () =£ 0 and hence C(©',V',Vy/V1) # 0. In order to show
that ©’ and ©, are endo-equivalent, we may therefore assume in the following
without loss of generality that V is irreducible. By definition if C(0',V’,V) is
nonzero then C,(0’, V', V) is nonzero, too. In particular there exists a semi-
standard simplex (€y D --- D €,) of sd(Xg) such that V7(€a:%) £ 0. Since
(€4, €0) 171 () = 1(€0), we have V(%) £ 0. On the other hand the condition
that V lies in R(,»)(G) implies that Y1) £ 0. Since V is irreducible it follows
that the representations (J'(8,),7n(6,)) and (J'(€g),n(€o)) intertwine in G.
Moreover 1(6,)m1(,) (resp. 7(€o)|m1(e,)) is a multiple of 6, = ©,(V,B,)
(resp. of ©'(V',&)); so these simple characters must intertwine as well. Hence,
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for the endo-equivalence of ©, and ©’, it remains to establish the equality
[E:F|=[E:F]

Applying (VIIL.1.1) we have that V contains a pair (J(€),x’ ® p), where
¢ € Her(B’), k' is a (’-extension of the Heisenberg representation 7(€) attached
to ©'(V’,€), and p’ is an irreducible cuspidal representation of U(€)/U(€).
Write

U(e)/u(e) ~ HGLml(IFE/) ,

=1
where ¢ := e(€/og/) and the m; are integers > 1. Then p’ writes pj ®
- ® p.,, where, for i = 1,...,€/, p} is an irreducible cuspidal representa-

tion of GLy,, (Fg/). The pair (J(€),x’ ® p’) is either a simple type or a split
type in the sense of [10, 8.1], according to whether the p} are equivalent to each
other or are not. When it is a split type it has level (0,0) ([10, 8.1.2]) or level
(—vae)(8")/e(A(€)/or),0) ([10, 8.1.4]), according to whether ©' is degenerate
or not.

Assume first that (J(€),x’ ® p’) is a simple type. Since V is irreducible,
it then is a type for the same Bernstein component R ;) (G) of R(G). By
[10, 7.3.17] the pairs (J,A) and (J(€), s’ ® p’) must be conjugate in G, and in
particular e = e(B,/og) = e(€/og) = €' (cf. the proof of loc.cit.). Setting
n :=dimgV and n/ := dimg'V it follows that

GLyyo(Fp)*¢ 2 J/J(Bo) = J(€)/JH€) 2 GLy /o (Fpr)*¢ = GLyyr /o (Fpr)*°

and hence that n = n’, i.e., that [E : F] = [E' : F].

Assume now that (J(€),x’ ® p’) is a split type. In this case we need to
consider the cuspidal support of the irreducible representation V. From the
point of view of the simple type (J, A) in V we know from [10, 7.3.12] that the
cuspidal support of V is of the form (M, u) where pp = 1 ® ... ® pe is a super-
cuspidal representation of the Levi subgroup M = Auty(W)*¢ corresponding
to a decomposition V =W @...@W (e factors) of the E-vector space V. More-
over each supercuspidal representation u; contains “the maximal type” (J )\)
attached to (J,\) ([10, 7.2.18](iii)). We do not repeat the definition of (.J, X)
but only recall that its underlying simple pair still is [0, 3].

On the other hand, from the point of view of the split type (J(€), ' ®p’) in V
we deduce from [10, 8.3.3] and (6.2.2) that the cuspidal support of ¥V must be
of the form (M’, i') where p' = ul ®...®u., is a supercuspidal representation

of the Levi subgroup M’ = Hl 1 Aut F( ;) corresponding to a decomposition
V=W &...® W, of the E-vector space V. Moreover each supercuspidal
representation u; contains a simple type (J;, \;) with underlying simple pair
[0,8]. By unicity of the cuspidal support, the pairs (M,u) and (M’, ') are
conjugate in G. So after conjugation, we may reduce to the case where, e.g., the
representation p; & p) contains two simple types with underlying simple pairs
[0, 8] and [0, 3], respectively, and we may conclude as in the first case. O
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Let Coeff¢(sd(X)) denote the category of G-equivariant coefficient systems
on the simplicial complex sd(X). The Proposition (VIII.1.1) together with the
above remark imply that, given a simple type (J, A), the functor

C(J7)\) : R(J,)\) (G) i Coeffg(sd(X))
V+— C(0,,V,V)
is independent of any additional choices. In order to be able later on to show

that this functor in fact is a fully faithful embedding we first have to analyze
the support of these coefficient systems.

VIII.2. The support of C[@,,V,V]. — As in (IV) and (V) we write
Co(©0,V,V) = (V(0))s and C[O,,V,V] = (V[o]),. To start with we fix a
simplex 09 = (Bmax D -+ D Bmin) of maximal dimension in sd(Xg) such that
Bmin € Bo C Bax. Recall ([10, 5.2.2-5]) that the [S-extension x gives rise
to a compatible family of -extensions x(28) where (8) runs over the vertices
of og. These k(B) are characterized as follows:

(a) The induced representations

U(B)U (A(B U(B)U (A(B
IndJ((%)) (U ))n(%) and IndUE%;Jl((%fnaBm(%max)

are isomorphic (and irreducible);

(b) k(B,) = k.

Set G = U(Bmax)/U'(Bmax) =~ GL,(Fg). Following [20]§5, we define
the G-module V(Bmax) := Hom j1 (s )(K(Bmax), V), using the obvious action
of J(Bmax) and the canonical identification

J(%max)/t]l(%max) =~ U(%max)/Ul(%max)~

Recall (loc. cit.) that for B € B C Boax the image of U(B)J (Bmax)
in J(Bmax)/J (Bmax) is a parabolic subgroup P of G whose unipotent radical
Uy is the image of U!(B)J! (B max) and whose Levi quotient L canonically
identifies with U(B)/U*(B).

VIII.2.1. PROPOSITION. — For any Bnin C B C Bhax we have linear iso-
morphisms

V(%maX)U% = HomJl(%,%max)(n(%y Bmax), V) = HomJl(%)(n(%)v V),

where V(Bmax)'® denotes the Jacquet module with respect to the parabolic
subgroup Py

Proof. — According to the proof of Lemma 2 in [20]§5, we have:
V(B max)"® ~ Hom j1(,,.....) (K(Bmax), V) =~ Hom j1 () (5(B), V).
So we must simply prove the isomorphisms:

H(%max)|J1(%’%max) ~ 7’](%, %max), K:(%)'Jl(%) ~ n(%)
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The second one is clear by definition of a [-extension. Write

Nmax = K(Bmax) |1 (B,B max)-

Using Mackey’s restriction formula, the restrictions to U ((%B)) of the isomor-

phic representations Indg((g)wl(m(%))n(%) and Indggg;(jll((;lifjgﬁ(%max) are

UL (A(B Utas
IndJ1((;B§ ))/’7(%) = IndJl((%,(%r)n)ax)nmax.

Moreover by definition of a S-extension a4z | J1(B ) = 7(Bmax)- So by defini-
tion of 7(B, Bax) (cf. (II1.1.1) and [10, 5.1.16]), we have Pmax =~ 7(B, Bmax),
as required. O

We shall also need the following fact from.

VIII.2.2. PROPOSITION ([20]§5 Prop. 3). — Any irreducible constituent of
the G-module V(B max) has cuspidal support (Lss,, p).

As a corollary of the last two propositions we obtain the following result.

VIII.2.3. PROPOSITION. — Let 0 = (Bax O -+ D By) be a semistandard
simplex contained in og. Then V(o) = V1 (BaPBmax) L 0 if and only if Los,
contains a Levi subgroup conjugate in G to Loy, . In other words, if the invariant
of the conjugacy class of g, is the unordered partition (ny,...,ns) of n, we
have V(o) # 0 if and only if n/e divides n; for anyi=1,...,s.

As in (I.3.3) we introduce, for any 8 € Her(B), the integers
dE(%)k = dimFELk/Lk+1

where (Ly)rez is an og-lattice chain in V' corresponding to 9. The condition
of the proposition can be read off the sequence [dg(B4)k]rez and, of course,
only depends on the Gg-conjugacy class of B,.

VIII.2.4. COROLLARY. — Leto = (Bg D --- D By) be any simplezx of sd(Xg).
Then V(o) # 0 if and only if n/e divides dg(By)x for any k € Z.

Proof. — By definition V(o) # 0 if and only if their exists a semistandard
simplex 7 containing ¢ such that V(1) # 0. So V(o) # 0 if and only if their
exists B € Her(B) such that B C B, and (n/e)|dg(B); for any k € Z. But
this implies that (n/e)|dr(Bq)x for any k € Z, since any og-lattice occurring
in a lattice chain defining B, occurs in any lattice chain defining 5. ]

VIII.2.5. COROLLARY. — Let o be a simplex of X[E]; write o as the image
under some h € G of a simplex of Xg with barycenter (B), B € Her(B). Then
V(o] # 0 if and only if (n/e)|dg(B)x for any k € Z.
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Proof. — By G-equivariance, we may assume that h = 1. We have
Vol= > g™,
geEU (W) /U (A)

where 2 = A(*B). So if B,ax is any maximal order in Her(B) containing B,
by (V.5), we have
Vol = > gV((Bmax D B))
geU ()
and the result follows easily. (]

We are now going to describe the support of C[0,,V,V] in terms of an
auxiliary building. Thanks to (1.3.5), we find an unramified extension L of E
contained in B, such that [L : F] = n/e, and such that L™ normalizes B,.
Write C' := End,V ~ M(e, L) for the centralizer of L in B. From (I.2.1),
we have a canonical Gp-equivariant embedding j; of the semisimple affine
building X, of G, into Xg. Since L/FE is unramified, this embedding is actually
simplicial; indeed in that case if € € Her(C) is maximal (i.e., corresponds to
a vertex in X)) then the corresponding order B(€) € Her(B) is maximal as
well. We see X, as a simplicial subcomplex of Xg and sd(X) as a simplicial
subcomplex of Xg. So as in (V), we may consider the simplicial complex X[L];
this is a G-invariant simplicial subcomplex of X [E].

VIII.2.6. PROPOSITION. — For any simplex o of X[E|, we have V[o] # 0 if
and only if o lies in X[L].

Proof. — By G-equivariance we may assume that o actually lies in sd(Xg).
We then must prove that V[o] # 0 if and only if 0 € Gg(X). By the cri-
terion of (I1.3.5) (applied to “E/F”"=“L/E”), this latter condition is equiva-
lent to f(L/E)|dg(B); for any k € Z, where 9B is the barycenter of o. But
f(L/E) =n/e. So we are done using (VIII.2.5). O

We therefore may and will view the functor C; ) introduced at the end of
(VIIL.1) as a functor
Can : R (G) — Coeffg(XIL]).

IX. The chain complex attached to C(s,x) (V)

As in the previous section we fix a simple type (J,A) in G = AutpV where
A = Kk ® p, with ps-character ©, having a realization in V, and a smooth
complex representation V in R, A)(G). We also keep most of the other no-
tations introduced in (VIII). We consider the G-equivariant coefficient system
C :=C[O,,V,V] = (V[o]), that we see as a coeflicient system on the G-invariant
simplicial subcomplex X[L] of X[E]. This complex has dimension

d:=dim X[L] =dimpV/[L: F]—1=e—1
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where e is the divisor of dimgV fixed in (VIII). We denote by X[L], the set
of ¢g-simplices of X[L] for ¢ = 0,...,d. The following considerations are copied
from [18].

An ordered g-simplex in X[L] is a sequence (0y, ..., 0,) of vertices such that
{00,...,04} is a g-simplex. Two such ordered simplices are called equivalent if
they differ by an even permutation of the vertices; the corresponding equiva-
lence classes are called oriented g-simplices and are denoted by (oy, . ..,04). We
let X[L],) be the set of oriented g-simplices of X[L]. The space C;"(X[L],C)
of oriented g-chains of X[L] with coefficients in C is the C-vector space of all
maps

w X [L](q) —V
such that:

— w has finite support,

- UJ(<0'0, LR Uq)) € V[{O'(), s 7Uq}]7

~w({0u0),--+10u(q))) = sgn(t) -w({0oo,...,04)) for any permutation ..

The group G acts smoothly on C¢*(X[L],C) via

(gw) ({00, - --,04)) == g(w({g™ 0, .., 97 ay)))-
With respect to the G-equivariant boundary maps
9 : O (X[L],C) — CF"(XIL],C)
W [(00,...,04) — > w((0,00,.-.,09))]
{0,00,...00}€X[L]g+1

we then have the augmented chain complex in R(G):

(IX.1) cor(X[L],¢) -2 - 2 oor(x[L),C) - v
where ¢(w) = Z w(o) e V.

o€X[L]0)

IX.2. PROPOSITION. — For all ¢ = 0,...,d, the G-module Cy"(X[L],C) lies
in Ry (G). In particular the complex (IX.1) is a chain complex in the cate-
gory R (G).

To prepare for the proof we let o¢, for any € € Her(C'), denote the simplex
of X with barycenter (€). Moreover let <o¢> be a fixed oriented simplex
with underlying simplex o¢ and let <o¢> denote that oriented simplex with
the same underlying simplex o¢ but with the reversed orientation (for vertices
we have <o¢> = <o¢>). The order B, defining J = J(B,) corresponds
to a minimal order €.;, of C. We write Bin := B, = B(Cnin) and put
Amin = A(Bmin). We fix a maximal order €, of C containing €, and
put Bax = B(Crax) and Anax = A(Bmax). We have Apnin C Unax and
Bmin C Bmax and since L/FE is unramified, B, is a maximal order of B.
Note that B i, in general is not a minimal hereditary order of B.
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Any simplex in X[L] lies in the G-orbit of a simplex o¢ with €, C € C
Cmax. Hence

Co"(X[L],C) = > C(0e,C)
CminCECCCmax,dimoe=q

where
Cy (0e,C) :={w € C"(X[L],C) : w has support in G<oe>U G<oe>}

and we are reduced to showing that the G-subrepresentations C¢*(o¢,C), for
Chin C € C €ax, are generated by their A-isotypic components. In the follow-
ing we fix such an order €,;, C € C €, and put B := B(C) and A := A(B).
We may embed V([o¢] in a U()-equivariant way into C*(o¢,C) by

V[oe] — C;(0¢,C)

VI Wy,

where

+v  if .= <og>,

wy()i=¢ —v ifg>0and .=<oec>,
0 otherwise.

In the following we view this embedding as an inclusion. Clearly V[o¢] generates
C'(0¢,C) as a G-representation. According to (V.10) and (V.5), we have

Vioe] = V(B max2B) = Z gvn(%’%ma:c).
geU(A)/U(B)J (Bmax)
and hence
(IX.3) Co (0¢,C) = Z gV(B:Bumax)
gEG/U(B)J* (Bmax)

Having fixed a compatible family of S-extensions «(.) as in (VIIL.2) we in partic-
ular have x(Bmax) as a representation of J(Bmax) = J* (Bmax) - U(Bmax). We
then may form the representation Amax = £(Bmax) ® p of U(Bmin)J (Bmax)-
Both factors in this tensor product are irreducible, the second factor by as-
sumption and the first factor since it restricts to the irreducible representation
N(Bmax) o0 J(Bax). Therefore, by the argument in the proof of [10, 5.3.2],
the representation Ap.x is irreducible.

IX.4. LEMMA. — i) A smooth G-representation lies in R ) (G) if and only
if it is generated by its Amax-isotypic component.

ii) If V lies in R(s)(G), we have V1 Bmin:Bmax) = PAmax
Proof. — 1) According to the proof of [10, 5.5.13] we have the isomorphism

U(Bmin)U' Amin) N U(Bmin)U* (Amin)
Ind;; U (B ) T (B )Amax ~Ind; T(Bo) A
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So by Frobenius reciprocity, the U(Bmin)U" (Jmin)-submodules in a smooth
G-representation W generated by W>max and W?, respectively, coincide.
ii) According to the proof of (VIII.2.1) we have

H(%max)ul(%mm,%max) =~ n(%min, %max)-

Hence Aoz [J1(B i, Bemax) 1S 7(Bmin, Bmax)-isotypic which shows that VAmsx C
VY1(Bmin,Bmax)  Bug it also implies that P1(Bmin,Bmax) {g the image of

H(%max) &® HOInJ1 (%m;n,%max)(ﬁ(%max)a V)

under the canonical map into V. For the reverse inclusion P1(BminBmax) C
VAmax it therefore suffices to prove that Homji(m, . %,..)(K(Bmax), V) as a
U(Bmin) /U (Bmin)-module is p-isotypic. But by the first formula in the proof
of (VIIL.2.1) this latter module is the Jacquet module V(B yay)®min (nota-
tion of (VII)) of the U(Bmax)/U" (Bmax)-module Hom ji (s ) (5(Bmax), V).
From (VIII.2.2) we know that the latter representation has cuspidal support
(L. ,p). Since our p is of the form p ~ p®¢ it follows that the Jacquet
module V(B pay )Y Zmin indeed is p-isotypic. O

In order to prove that the G-representation in (IX.3) is generated by its
A-isotypic component, it suffices to prove that it is generated by its Ay ax-iSo-
typic component. Since the right hand version of this representation visibly is
generated by V7(%:Bmax) and since V1 (Bmin,Bmax) C YT Bmax) by (I11.1.1) (iv),
we are finally reduced to establishing the following fact.

IX.5. LEMMA. — V"B:Bmax) g5 g U(B)J(Bmax)-module, is generated by
V"’I(%miuy%max)‘

Proof. — We first of all note that V"(®Bmax) by (I11.1.1)(v) and (V.1), in-
deed is U(B)J* (Bmax)-invariant. In the proof of (IX.4)(ii) we have seen that
PN BminBmax) i the image of
K(Bmax) @ Hom j1(ss, . ... ) (K(Bmax), V)
under the canonical map into V. Analogously V(% Bmax) is the image of
F"(%max) ® HomJl(%7§anax)(H(%max)a V)v
and this in fact in a U(B)J! (Bmax)-equivariant way since U (B)J! (B pax) nor-
malizes J'(B, Bmax). We therefore are reduced to proving that
Hom j1.(58 .11, o) (F(Bmax), V)
generates
Hom 1 (,8,,.0,) (F(Bmax), V)

as a U(B)J! (Bmax)-module. But in that proof we also have seen (with the
notations of (VIII)) that the former is the Jacquet module V(B yay ) ®min and
the latter is the Jacquet module V(Bnax)’® of the G-module V(Bax) =
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Hom j1(s3,...)(K(Bmax), V). Hence we are further reduced to showing that the
module V(B .y )2 for the Levi group Ly is generated by its Jacquet mod-
ule V(Bmax)"®min. For this it suffices that all irreducible constituents of the
Lgs-module V(B ,.¢)U® have cuspidal support on Les,,,.. Because of the spe-
cial form of the group Lg_, this follows from the fact (cf. (VIIL.2.2)) that
any irreducible constituent of the G-module V(B.x) has cuspidal support
on Ly O

min *

This finishes the proof of Proposition (IX.2).

X. Acyclicity of the chain complex: a strategy

In this section we consider the augmented complex (IX.1). We reduce its
exactness to a technical hypothesis (Conjecture (X.4.1)) that we cannot prove.
In the next section we shall prove this hypothesis for irreducible discrete series
representation.

X.1. Some lemmas on A, 5, -isotypic components. — As in §IX we fix a simple
type (J,A) in G and a smooth complex representation V in R )(G). We keep
the same notation. We abbreviate Jyax = U(Bmin)J (Bmax) and write A for
the representation space of Ay ay.

We fix a Haar measure p on G and let H(G) denote the (convolution) Hecke
algebra of locally constant functions with compact support on G. For ¢ € H(G)
and g € G, we also define 9 € H(G) by 9¢(z) = ¢(g~*x). We also recall the
Schur orthogonality formula: if (p, W) is an irreducible representation of a
compact subgroup K of G, with contragredient representation (g, W), then

- dim(p)
(p(a yw, ) {p(w)v, D)k =
/K n(K)
where (—, =) : W x W — C denotes the canonical pairing.
The irreducible representation Ap.x gives rise to an idempotent e, of H(G)
defined as follows: it has support Jy.x and is given by

emax(j) = :u‘(Jmax)_1dim()\max)Tr(>\max(j_1))

for j € Jmax (cf. [10] §4.2) Note that em,x may be considered as an idempotent
of the Hecke algebra H(Jmax) := {f € H(G); Support(f) C Jmax}. If ({,U) is
a smooth representation of G (resp. of Jyax) then (¢,U) extends to a represen-
tation of H(G) (resp. H(Jmax)) on U, and we then have ((emax) x U = U max
(the Amax-isotypic component of U).

For z € G, we denote by A the representation of J%

(w, v){v, ), v,w €W, 0, €W,

= TJpaxx ! in

max max
the space A given by A% (zjz™1) = Anax(4), § € Jmax-
X.1.1. PROPOSITION. — i) Any non-zero function f in the scalar Hecke alge-

bra emax * H(G) * emax has support in the G-intertwining Ig(Amax) 0f Amax-
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ii) Let x be an element of G such that * & Ig(Amax) and let (m,V) be a
smooth representation of G. Then the linear map p, : YV max —s PAmax | given
by pz(v) = T(emax) © T(z) © T(€max)-v 1s zero.

Remark. — These facts are certainly well known but we could not find a ref-
erence.

Proof. — 1) Let H(G, Amax) be the Hecke algebra of A\pax-spherical functions
on G ([10, 4.1]). Recall that if (Amax, A) denotes the contragredient represen-
tation of (Amax, ), then H(G, Amax) is the convolution algebra of compactly
supported functions ® : G — Endc(A) satisfying :

@(]19]2) = )\rr:ax(jl) © (I)(g) © )‘n;ax(jQ)mji € Jmax;g €q.

From [10, 4.1.1], any non-zero ® € H(G, Amax) has support in Ig(Amax)-
Moreover by [10], Proposition (4.2.4), we have an algebra isomorphism

Y : H(G, Anax) ®c Endc(A) — emax * H(G) * emax-
Identifying Endc(A) with A ®c A, Y is given by
Y(®®ww)(g9) = dim(Apax) Tr(w @ B(g)w)
for g€ G, we Aw e A, & € H(G, Amax). In particular we have:
Support(T(CP QW ® 111)) C Support(®),w € A, € A, ® € H(G, Amax)-

It follows that any non-zero element of eyax * H(G) * €max has support in Ig(Amax)
as required.

ii) Recall that, for ¢ € H(G) and g € G, we write 99 € H(G) for the function
9p(x) = p(g~'x). Then straightforward computations show that m(emayx) ©
m(x) o T(emax) = T(Emax * “€max) and that emax * “€max € €max * H(G) * €max-
Moreover epmax * “emax clearly has support in JyaxZJmax, whence is zero since
z & Ig(Amax)- S0 Pz = T(€max * “€max) 1S the zero map. O

The following result and its proof are due to Shaun Stevens.

X.1.2. PROPOSITION. — Let x be a fized element of Ig(Amax)-
1) There exist m > 1, U1, ..., Um, V1,---,Um € Jmaxs; V1s---5Tm € C, such
that

m
Z Vi €max * wiwvi €max
i=1
is an invertible element of emax * H(G) * emax-
i) There exist m > 1, u1,...,Um, V1, Um € Jmax, V1,---,Ym € C, such
that, for (m,V) any smooth representation of G
m
Z vi T(€emax) © T(u;zV;) © T(emax)
i=1

induces a C-linear isomorphism V). — V2

max max -’
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Proof. — To make the notation lighter, we shall set K = Jyax, p = Amax,
€ = €max-
Since

m m
Z vim(e) o m(uxv;) om(e) =7 (Z vie x “i”ie)
i=1 i=1

assertion ii) is a consequence of i).

Via Y7 1: exH(G)xe — H(G, p) ®c Endc(A), an element ¢ € exH(G) xe
corresponds to the element of H(G, p) ®c Endc(A) given as follows (see the
proof of [10] Proposition 4.2.4), pages 149-150). Fix a basis {w1,...,w,} of A
and let {wy, ..., Wy} be the corresponding dual basis of A, so that (w;, W;) = 0y
(Kronecker’s delta symbol). For each pair of indices (4, j) and for g € G, define

an operator ®;;(g) € Endc(A) by the formula:

1) w (g = /K /K (kgl) p(L)ws, ) (w, (k)i kel

for all w € A, % € A. Then the function g +— ®;;(g) lies in H(G, p), and we
have
_ dim(p) —
TY(p) = N 3y @ w; @y O
(30) M(K)2 (%) ® ’UJ] ® w;

1,j=1

Assume now that ¢ € exH(G) x e has support in Kz K. Then from formula
(1), the ®;; have support in KzK. We need the following result.

X.1.3. LEMMA. — i) The C-vector space
{® € H(G, Aax); Support(®) C JmaxTJImax }

has dimension 1.
ii) Any non-zero ® in H(G, Amax) with support JymaxTJImax s invertible.

Proof. — By [10, 5.5], the G-intertwining sets of A and Apax are JGrJ and
JmaxG L Jmax respectively, where L/E is the unramified extension introduced
in § VIIT and Gy, the centralizer of L in G. Moreover by [10, 5.5.13], there
is a canonical algebra isomorphism H(G,\) — H(G, Amax) which preserves
supports in the following sense: if y € G and ¢ € H(G,)\) has support
JydJ, then its image ¢’ € H(G, Amax) has support JyaxyJmax- Moreover con-
sider the Iwahori subgroup of G, given by Iy, = U(€in) = U(Bmin) NG and
let Ho = H(GL, IL) be the corresponding affine Hecke algebra of type A formed
of (locally constant) bi-I-invariant compactly supported functions on Gp. By
Theorem 5.6.6) of [10], the algebras H(G, A) and H, are isomorphic in a sup-
port preserving way: there is (a non-canonical) isomorphism of C-algebras W:
Ho — H(G, \) such that for all y € G, and for all ¢ € Hy with support Iyly,
U(y) has support JyJ. As a consequence, there exists an algebra isomorphism
U’: Hog — H(G, Amax) enjoying the same support preservation property. O
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Now assertions i) and ii) of our lemma hold for the corresponding assertions
hold true for the standard affine Hecke algebra Hy. Indeed if y € G, we have:

i) {¢ € Ho;Support(y) C Irylp} is the line spanned by the characteristic
function of I yly,

ii) it is a standard fact that any ¢ € Ho with support I yly, is invertible.

Let us fix a non-zero element &, in H(G, p) with support KzK. Then

dim(p)
p(K)?

q’o ® ( Z YijWj ® ’lbl)

ij=1

Y ex%e) =

where «;; is defined by ®;; = v;;®o, 3,5 € {1,...,n}. For the same reason, for
all u,v € K, there exists a vector {(u,v) € A® A such that

dim(p)

Y (ex“e) = ()2

—— P ® ((u,v).

X.1.4. LEMMA. — For all u,v € K, we have
¢(u,v) = [p(uw) ® pv™1)]C(1, 1)

Take this last lemma for granted. Since the representation p ® p of K x K
in A ® A is irreducible, it is generated by the non-zero vector ((1,1). We
m

may find m > 1, u;,v; € K, v, € C, 4 =1,...,m, such that nyig(ui,vi) is
i=1

an arbitrary element of A ® A ~ Endc(A). In particular we may choose this

element invertible in End¢(A). It follows that

T ! (Z my;e x “i%%e)

i=1

is invertible. This finishes the proof of Proposition (X.1.2)(ii).

Proof of Lemma (X.1.4). — The proof is somewhat technical but straightfor-
ward. It is inspired from the calculation of [10], pages 232-233.

Write @ € H(G, p) for the functions attached to ¢ = e x “*’e via formula
(1). For g € G, we have

olg) = /K ep<y>ep<<uxv>-1y-1g>dy

d1m
Z / Dwy, wy).(p(g~  yuzv)w,, we)dy.

b,c=1
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So for w € A and w € A, we have

p(K)?
dim(p)?2

Z/ Yw, ) (p(17 g™ k™ tyuzv)w,, we) (p(1)w;, o) (w, j(

(w, 850)

k1), )dkdldy.

b,e=1
Integrating with respect to [ and using the Schur orthogonality relation, we

obtain:

= Z/m “Hws, @) (p(g ™ kT yuav)ws, D) (w, pk ;) dkdy.

We now make the change of variable (k')~! = k~!yu and this last expression

becomes:
Z /K oy, @) (plg™ (K)o, ) (w, p((K) ™ty )y dy

=> /K oy Jwo, o) {p(g™" (k)" @) p(v)wi, @) p(y) p(ukJw, ;) dk' dy.

Using again the Schur orthogonality relation, we obtain:

(w, 22 (g Z / (1,3 (Y, o) g™ () ), )k

- /K ok yw, 5=y (g™ k) p(v)ws, wYd.

Let (Vi;) (resp. (Ui;)) be the matrix of p(v) (resp. p(u~!)) in the basis {w;}

(resp. in the basis {w;}). We have

(w, @35 (g Z VmUﬂa/ (p(y)w, wp)(p(g 'y~ ' T)wa, w)dk
af=1
= Z VaiUgj (w, ®Lpt).
a,B=1
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In other words, we have proved that

Y = Z VaiUgi®Lls = | > VailUpijVas | @o.

a,f=1 a,B=1
Hence we obtain:
dim(p) U
T—l(e*(umv)e) — %@0 ® Z Z VaiUgjYapw; @ W;

WK) i,j=1a,0=1
dlm -

= q)o ® Z Yaps ZUIB]U]] ® <Z Vaﬂj}i>

a,B=1 j=1 i=1

dim(p) -1

=—=P,® Yapp(u)(wg) @ p(v w
PR ; appl(u) () © o) (10a)

=00 g 6 oy @ po )] [ 32 s 9
p(K)?

a,B=1
as required. (We have used that the matrix of p(u) with respect to the basis

{w;} is the transpose of the matrix of p(u~!) with respect to the dual basis
{w;}.) This finishes the proof of Lemma (X.1.4). O

X.2. Orientation of X[L]. — In order to work with a simpler version of the
chain complex of § IX, we are going to show that, as a simplicial complex, X[L]
has a G°-invariant labelling, where

G° = {g € G;Det(g) € 0}}

Recall [1] that a labelling of a d-dimensional simplicial complex Y is a sim-
plicial map 1: Y — Ay, from Y to the standard d-dimensional simplex, such
that dim(l(c)) = dim(o) for any simplex o of Y.

Fix a chamber C of X. It is classical that the action of G° on X has the
following property: any simplex o of X has a unique G°-conjugate that lies in
(the closure of) C. In particular the stabilizer of C' in G° fixes C pointwise.
Even though X[L] is not a building in general, its maximal simplices have the
same dimension and we call them chambers.

We now fix the chamber C so that C'N Xy # 0. It is false in general that G°
acts transitively on the chambers of X[L]. For instance, if L/F' is a maximal
unramified extension of F in A, then X[L] is 0-dimensional and consists of the
vertices of X. But the action of G° on the vertices of X is not transitive.

Let us notice that CNX[L] is a sub-simplicial complex of X[L]. Indeed, pass-
ing to the first barycentric subdivisions, we first have that sd(C) Nsd(X[L]) =
sd(C) N X(L) is a sub-simplicial complex of X (L). To get our assertion, it
suffices to prove that if sd(C') N X (L) contains a vertex z, corresponding to
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the isobarycenter of a simplex o of X[L], then ¢ C C N X[L]. The interior
0° of ¢ is of the form 3° N X[L], where ¥ is some simplex of X. We have
zs € 0° C ¥° and z, € CNX[L] C C. In particular 3°NC # @ and this forces
the containment ¥ C C. Therefore o C C as required.

X.2.1. LEMMA. — The simplicial subcomplex C N X[L] of X[L] is a disjoint
union of f(L/F) chambers of X[L].

Proof. — First we prove that any vertex of CNX|[L] is contained in a chamber
of X[L] which is itself contained in C. Let s be such a vertex. There exist a
field extension L'/F C A and an order 2 C A such that:

—e(L'/F)=e(L/F) and f(L'/F) = f(L/F),

— the order 2 lies in Her(A)L™,

— s is the vertex of X attached to the maximal order A N End. (V).

Let (Ng)gez be a chain in V corresponding to . It must have o/-period 1,
whence it has op-period e(L’/F'). Assume that C corresponds to a lattice chain
(Lk)kez in V of op-period N. There exists an integer k, such that:

Ny = Li,+kN/e(L/F). k € L.
Since f(L/F) divides N/e(L/F'), we have the containments:

{Lk‘o+k‘N/e(E/F);k S Z} - {Lko+kf(L/F) ,k S Z} - {Lk,k S Z}

By the numerical criterion of (I.3.5), the set of lattices {Ly, trr/r) ;K € Z}
corresponds to a chamber C, of X[L] and the previous containments mean
that s € Cp, C C.

Let Cr, be a chamber of X[L]. There exist a field extension L'/F C A and
an order 2 C A such that:

~e(I'/F) = e(L/F) and f(L'/F) = f(L/F),

— the order 2 lies in Her(A)X”,

— Cy, is the chamber of X attached to the order 2N Endy (V).

Let (Mg)kez be a chain in V corresponding to 2 and 9B. It has op/-period
N/[L : F)]. So it has op-period e(L/F).N/[L : F] = N/f(L/F). Moreover, for
all k € Z, we have:

dim]FF(Mk/Mk+1) = f(L/F)dimFL,(Mk/Mk+1) = f(L/F)]. = f(L/F)

Assume now that Cp, lies in the chamber C of X. According to the previous
discussion, there exists a coset I' of f(L/F)Z/NZ in Z/NZ, such that:

{My;keZ}={L;;l € Z and l mod NZ €T}

Conversely, using Proposition (I1.3.5), we have that for any such coset T', the
lattice chain whose lattice set is given by {L;;! € Z and | mod NZ € I'} cor-
responds to a chamber of X[L] contained in C. Indeed if Fr is the simplex
of X corresponding to the lattice set {L;;! € Z and ! mod NZ € I'}, then the
corresponding (closed) chamber of X[L] is Fr N X[L]. When T runs over the
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f(L/F) cosets of f(L/F)Z/NZ in Z/NZ, the corresponding (closed) chambers
are disjoint, as required. O

Since the simplicial complex X [L]NC is a disjoint union of (closed) chambers,
it is trivially labelable. Let us fix a labelling 1o : X[L]NC — Ag, where
Ac is the standard simplex of dimension dimX|[L] = N/[L : F] — 1. For any
simplex o of X[L], we define a simplex 1(c) of A¢ by (o) = l¢(o¢), where o¢
is the unique simplex of X[L] N C which is a conjugate of ¢ under the action
of G°.

X.2.2. LEMMA. — The map 1 : X[L] — Ac¢ is a labelling. It is invariant
under the action of G°.

Proof. — Obvious from the properties of the action of G° on X. O

From now on, we fix the G°-invariant labelling 1 of X[L] (by fixing 1¢). It
gives rise to a G°-invariant orientation of the simplicial complex X [L] as well as
G°-invariant incidence numbers [0 : 7] for any pair of simplices 7 C o of X[L]
with 7 of codimension 1 in o.

X.3. Another chain complex. — We fix a smooth complex representation (r, V)
in R(;,»)G and consider the coefficient system C = (V[o]), = C(,»)(V) of § VIIL

Forg=0,...,N/[L: F]—1, let X[L], denote the set of g-simplices of X[L].
The space Cy(X[L],C) of (unoriented) g-chains of X [L] with coefficient in C is
the C-vector space of all maps w : X[L], — V such that w has finite support
and w(o) € V[o], for all 0 € X[L],. The group G acts smoothly on C,(X[L],C)
via (gw)(o) := g(w(g~'c)). The orientation of X[L] gives rise to boundary

maps:
8 : Cpur(X[L),€) = Cy(XL1,C)
w o Z [o: T]w(T)]

T€X([L]q,7Co

We obtain an augmented chain complex of G°-modules:

(X.3.1) Cnyjipir-1(X[L],€) =5 -+ =5 Co(X[L],C) —> v
where €(w) = >, ¢ x(p), w(0) EV.
(X.3.2) LEMMA. — As augmented chain complezes of G°-modules, the com-

plezes (IX.1) and (X.3.1. are canonically isomorphic.

Proof. — By standard arguments. (|
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X.4. Jmax-orbits of simplices. — Fix g € {0,..., N[L: F]—1}. For any subset
¥ of X[L],, we denote by Cy(%,C) the subspace of Cy(X[L],C) formed of those
g-chains with support in X.

Let ©, be the set of orbits of Jyax in X[L],. As a Jyax-module, Cy(X[L],C)
decomposes as

Cq(X[L]aC) = H Cq(E,C).
eq,

Fix ¥ € Qg. There exist € € Her(C) satisfying €nin C € C Cpax and z € G
such that ¥ = Jyaxx.0¢.We have the disjoint union:

Y= U {jzoc},
jeJmax/Jmame(Ql)z
where 2 = A(28) and B = B(C¢), from which we deduce the following isomor-
phisms of J,.x-modules:
Cy(,C) = I Cy(jzoe,C) = I j2Cq(0¢,C)-
JE€EImax/ JmaxNU (A)® JE€E€EImax/ JmaxNU (A)®

We have a natural Jyax-homomorphism Sy, : Cy(X,C) — V, given by

Ss(w) = Z w(o).

geEX
In other words:
Sx( @ jaw;) = Z jawj(oe), w; € Vioe].
F€Jmax/ JmaxNU (A)* FE€ Imax/ JmaxNU (A)*

We set K5, = KerSy. We have the following exact sequences of Jp.x-modules
and C-vector spaces respectively:

0 — Ky — Cy(%2,C) Z]$V{7¢
J€JImax
0 — Kamo —s Of(%,C) mex — Z jzVoe]) —)
JE€Imax
Moreover, by Lemmas (IX.4) and (IX.5), we have
V[UQ] — Z gvn(%miny%max) — Z gv)\max'
QEU(m)/Jmax QEU(Q’[)/Jmax

Therefore we have

Z jzV[oe] = Z Z jrgVimex C V.

J€JImax J€JImax geU ()
By Proposition (X.1.1), for all j € Jnax, g € U(2A), we have

VAmax if g € Ig(Amax)
0 otherwise.

€max * {jxgv)‘max} - {
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We deduce that

(> javioe) ™™ =

J€Jmax

YAmax if g € URA),j € Jmax s-t. jzg € Ig(Amax)
0 otherwise.

Since the G-intertwining of Apax 18 JmaxG L Jmax, this may be rewritten:

max VAmax i ¢ € JnaxGrU (2
( Z jzt:V[fm])A Z{ ne LU

. 0 otherwise.
J€JImax

X.4.1. CONJECTURE. — For any ¥ € Q,, we have Ky = 0.

(X.4.2) COROLLARY. — Assume that Conjecture (X.4.1) holds.

i) If XN Xy # 0, then Sy induces an isomorphism of C-vector spaces:
Cy(B,C) max — PAmax,

i) If SN Xg =0, then Cy(X,C) max = 0.

Indeed we have Jyaxzoe N Xp # ( if and only if there exist ¢ € Her(C)
and j € Jmax such that jroe = o¢. By Lemma (I.3.1) and (1.3.3), this is
equivalent to the existence of z € G and g € U() such that jz = zg, as
required.

From now on we fix an apartment 4y of X containing the chamber o¢_,, .

X.4.3. LEMMA. — Let ¥ € Q. Assume that XN Xy #0. Then XN AL # 0
and the intersection ¥ N Ay, is reduced to a single simplex. Moreover ¥ N X,
is a single U(Cpin)-orbit.

If XN XL # 0, then ¥ = Jpax.or for some o, € (X),. Since Jy, contains
the Iwahori subgroup U(€uyin) (of Autz(V)) and that (Ar)s is a system of
representatives of the U(&€yin)-orbits in (X1 ),, we have ¥ N A # 0. At this
stage we need the following technical result.

X.4.4. LEMMA. — Let o, T be simplices of Xy. Then if they are conjugate
under the action of U(™Amin), they are conjugate under the action of U(€pip).-

Lemma (X.4.3) follows from the previous lemma by observing that Jyax is
contained in U(€pin)U (Amax) C U (Rmin)-

Proof of Lemma (X.4.4). — This proof is due to Shaun stevens. Let Cy be
the chamber of X, fixed by U(€yin). Fix an apartment Ay, of X, containing
Cp and o. Let z, the barycenter of o. Then there exists a point zo € C§ such
that the geodesic segment [zg, z,) C AL does not intersect any simplex of X,
of codimension greater than or equal to 2. Indeed consider the subsets of Aj, of
the form C*® = Cvx{z,, F}\{z,}, where F is a simplex of codimension greater
than or equal to 2 in A7 and where Cvx denotes a convex hull. The set of
such subsets is countable. Moreover these subsets have empty interiors and
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by Baire’s theorem their union has empty interior. It follows that this union
cannot contain C§ as required.

Let T be the set of chambers D in A4y, such that DN[zg, z,) = D°N[zo, ) #
(). Then it is easy to see that there exists an indexation I' = {D;;i =0,...,r}
of the elements of I' such that (D;);=,. ., is a gallery satisfying: Dy = Cy
and D, contains x,, whence contains ¢. We can be more precise: for i =
0,...,7—1, D;y; is the unique chamber adjacent to D; and intersecting [y, ],
where [zo,y] = [0, 2] N (Uj=o,...;D;). Moreover, for : = 0,...,r — 1, let H;
be the wall separating D; and D;;1. It defines two roots H Zi (half-spaces with
boundary H;), such that H; contains zo and H, j‘ contains x. Then the gallery

3 T
(Dj)i=o,...,r is constructed in such a way that U D; C H; and U D; C Hj'
j=0 j=it1

Let g € U(Cpin) be such that go = 7. Then g fixes Cy pointwise. Recall
that by (I.2.3), there exist normalizations of metrics on X and X such that
the embedding X, C X is isometric. It follows that the set g[zo,z,] is the
geodesic segment in X, linking g.zg = 29 and g.x, € X. Recall that X, is
a simplicial subcomplex of sd(X). For ¢ = 0,...,r, gD; is a simplex of sd(X)
whose interior intersects Xy . So this simplex belongs to X . It follows that
(9D;)i=o0,....r is a gallery in X, satisfying gD = Cj and gD, D 7.

We are going to prove by induction on ¢ € {0,...,r} that there exists g; € G,
such that ¢:D; = gD;, ¢ = 0,...,t. We will then have g; € U(Cpin) and
g;lgDT = D,.. Since g{lg € U(Cmin) is a compact element of G, it must fix
D, pointwise. It will follow that g, lgo = o, that is g0 = 7, as required.

The result is obvious when ¢t = 0. Assume ¢ € {0,..,7 — 1} and that the
result is proved for ¢t. Replacing 7 by g, 17, g by 9 g, we may assume that
gD; = D;,i=0,...,t. The chamber D;;; does not belong to H, and has a
codimension 1 face contained in H;. The chamber gD, ,; has a codimension 1
face contained in H; and does not belong to H; , otherwise this would contradict
the fact that g[zo,z,] is a geodesic segment. Let ¢ be the codimension 1
simplex Hy N Dyy; = Hy N gDy41. Then the pointwise fixator of H, in G,
acts transitively on the set of chambers containing ¢ and not contained in H;
(an easy exercise left to the reader). It follows that there exists g;11 fixing H,

pointwise such that g;y1D¢y1 = gD¢+1, as required. |
X.5. Comparison of chain complexes. — As in the previous section, we fix an
apartment Aj, containing o¢,_, . As a subcomplex of X, the topological space

Ay is equipped with its canonical triangulation. We denote by V*»*< the con-
stant coefficient system on Az, such that for any simplex o, Y= [g] = PAmax,
It gives rise to the chain complex C, (AL,ZA"‘“), with an augmentation map:
C. (AL,E)‘"“") <L, YAmax This complex is exact since the topological space
Ay, is contractible (more precisely it is homeomorphic to a finite dimensional
affine space). We shall denote by 91, the boundary maps of that complex.
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Denote by Cy(X[L],C)*max — YAmax the augmented chain complex obtain
by applying the functor of A\, .c-isotypic components to the augmented complex
(X.3.1) (or equivalently to the augmented complex of (IX.1)). It lies in the
category of left emax * H(G) * emax-modules. Since the functor

R0 (G) — emax * H(G) * émax — Mod
W — W)\max

is an equivalence of categories, we have, using Proposition (IX.2), that the
complex is exact if and only if Cy(X[L],C) max —= VAmax is exact.

X.5.1. PROPOSITION. — Assume that the representation (mw,V) satisfies Con-
jecture (X.4.1). The augmented chains complexes Cy(X[L],C) max — PAmax
and C’.(AL,ZA““‘") —55 Vmax gre then naturally isomorphic as complezes
of C-vector spaces.

Remark. — There is maybe a more precise result to prove. Indeed there should
be a natural action of the scalar Hecke algebra on C,(Ap, V=) — PAmax
such that the complexes are isomorphic as complexes of eyax*H(G) *emax-mod-
ules.

As a corollary, we have:

X.5.2. THEOREM. — Let (J, \) be a simple type of G. Let (m,V) be a smooth
complex representation in Ry (G) satisfying Conjecture (X.4.1). Then the
augmented chain complex

Co(X[L],Ciapy(V)) — V

is a resolution of V in the category R;x(G). In particular, as a G-module,
the space V is given by the homology module Ho(X[L],C(jx)(V)).

Proof of Proposition (X.5.1). — We are going to construct a natural isomor-
€

phism of complexes from Co(X|[L],C) mex — VAmax to Cy(Agp, V=)
VAmax This is a collection of isomorphisms: [(¢4)4>0, %], where

¥q € Home (CQ(X[L]7 C))\max’ Cq (AL,EAmaX)) RS Hom(C(VAmaxv V)‘max)a

and where the obvious square diagrams are commutative. We first take ¥ to
be the identity map of Y max. To define ¢,, we note that

Cq(X[L]aC) = H C’q(E,C)

seQ,

and that, by Corollary (X.4.2)(ii), we have:

Co(X[L],C)Mmex = | I NG
2E€Qq,ENX L #0
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For any simplex o of Ay, we let ¥, denote the Jyax-orbit of simplices through
o, so that:

Co(X[LL,e) == = T Cy(Es,C) e
o€(AL)g
We now define ¢, : Cy(X[L],C) > — Cy(AL, V™) by
Pq(w)(0) = Sx, (W] Xo),0 € (AL)q
By Corollary (X.4.2)(i), the map ¢, is clearly an isomorphism of C-vector
spaces. O
X.5.3. LEMMA. — Under the assumptions of Theorem (X.5.2), for ¢ = 1,
., N/[L : F] — 1, the following diagram is commutative:

Cy(X[L],C) > — 2o Oy 1 (X[L],C) Amax

oL
Cq(Al”XAmax) Cq_l(A[”X)\max)_

Fix w € Cy(X[L],C)*mx. We have
peW)(B) = Y w(r),B € (AL)qg,

TEXR

and

(E1) dupg@)@ = Y { D B:aw(n),ac ()}

BE(AL)q,BDax TEXp
On the other hand we have

dwio)= Y. [0:0lw(d),0c X[L],

0€X[L]q,, 000

and

(E2) ©q—1(0w)( Z { Z [0:0lw(8),e € (AL)g-1 }.

oc€Xy 0EX[L]q,0D0

Fix o € (AL)q—1. The set © of § € X[L], containing some o € X, in general
strictly contains the set of 7 in X[L], such that there exists 5 € (AL)q, 8 D «
and 7 € ¥3. However the first set © is stable under Jnax and splits into two
disjoint subsets:

— the subset ©1 of those § whose Jy,ac-orbits intersect Ay ;

— the complementary subset O,.

Let § € ©1 and o € X, such that § D 0. We have 6 € X3 for some simplex 3
of Ap. The simplex [ contains a Jyac-conjugate of o lying in Ar. By unicity
in Lemma (X.4.3), that simplex must be «. In other words 6 lies in ¥ for
some [ € (Apr), containing « and there is a unique o € 3, such that 6 D o: if
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0 =30, j € Jmax, then o = ja. Since the action of Jy .« preserves the incidence
numbers, we must have [0 : 0] = [8 : a].
From the previous discussion, we deduce:

pa—1(0w)(@) = A (pgW))(@) + > { D [0:0lw(®)}.
c€YX, 0€63, 6D0

Note that if 6 is a simplex of X[L], there is at most one ¢ € X, such that
0 D 0. Indeed two such simplices contained in # must be equal since they have
the same label. In other words in the sum o depends in a Jyax-equivariant way
from o; we shall write o = (). Let Q,(02) be the set of Jyax-orbits in Oa.
We may write:

4-1(0w)(@) = dr(py)(@) = D D [0:0(B)w(®)

$ENG(O2) 0D
= > ) w),

2ENG(O2) 0ex

where € is a sign depending only on X. For ¥ € Q,(02), the restriction map:
Cy(X[L],C) — C4(%,C)
W — W|E
is Jmax-equivariant and its restriction to C,(X[L],C)*m>> must have image
in Cy(X,C) ==, Since XN.AL = (), by applying Corollary (X.4.2)(ii), we obtain
that C,(%,C)*max = 0, whence Zw(e) =0, for all ¥ € Q4,(02). Finally we
0es

get pg—1(0w)(a) — Or(pq(w))(a) = 0 and the commutativity of the diagram.
Using a quite similar proof we have the following result.

X.5.4. LEMMA. — Under the assumptions of Theorem (X.5.2), the following
diagram is commutative:

C()(X [L], C))\“‘ax 6*> V)\max

o X

Co(Ap, P max) s Phmax,

This finishes the proof of Proposition (X.5.1) and Theorem (X.5.2).

XI. Acyclicity in the case of a discrete series representation

The aim of this section is to prove Conjecture (X.4.1) when the representa-
tion is irreducible and lies in the discrete series of G. More precisely we shall
assume that our representation (m,V) is an unramified twist of a (irreducible
unitary) discrete series representation of G containing our fixed simple type
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J,A). In that case the chain complex attached to C( ;) (V) may be entirely
(J,2)
computed.

XI.1. Determination of the chain complex. — We keep the notation as in Sec-
tion IX. Let € be a hereditary order of the L-algebra C satisfying €,;, C € C
Cinax, and let o¢ be the corresponding simplex in X, C X[L]. We want to
understand the U (2)-module structure of

Vioe] = Z g V"B Bmax)
geU(A)/U(B)J* (Bmax)

Let W an irreductible constituent of the U (28)J*(Bmax)-module V(T Bmax),
By Frobenius reciprocity YW embeds in a representation of the form sy ® T,
where 7 is an irreducible representation of U(%B)/U"(B) seen as a representa-
tion of U (B)J! (Bmax) trivial on U (B)J (Bmax). The following result implies
that W actually has the form Kpax ® 7.

XI.1.1. LEMMA. — If 7 is an irreducible representation of U(B)/U'(B), then
the U(B)J (B max)-module Kuyax @ T is irreducible.

Proof. — By Schur Lemma, it suffices to prove that Endy () j1(%,,.,) fmax ® T
is one-dimensional. For this we closely follow the proof of [10] Prop. (5.3.2)(ii),
page 176. Write X for the representation space of ky.x and Y for the rep-
resentation space of 7. Let ¢ € Endy(m)si(m,..)Kmax @ 7 that we write
¢ = >;5; ®Tj, where S; € Endc X, T; € EndcY, and where the T} are
linearly independent. For h € J*(Bynax) we have
(Kmax ® T)(h) 0 ¢ = p 0 (Kmax ® T)(h).
Since J(Bmax) C Ker (£), we obtain
D (kmax(h) © 85 = S © humax () ® Tj = 0.
J

Since the T are linearly ind., we obtain that S; € End ji(s,,. ) 7(Bmax) for
all j. But since 7(Bmax) is irreducible, we have that End j1 (s, ) 7(Bmax) and
Endy (1) 71 (8,1..) Fmax are equal and one-dimensional. So we may as well take

Jj=1,s0that ¢ = S®T, where S € Endy () s1(%8,..,.) Fmax and T' € Endc Y.
Now any h € U(B)J! (Bnax) must satisfy

(Sohimax(h))®(To&(h)) = (Kmax(h) 0 S)@(T0&(h)) = (kmax(h)0S)®(£(S)oT).

But this implies that T' € Endy () 7 and our result follows from the irreducibil-
ity of 7 and Schur Lemma. O
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First consider the case € = €, so that we have U(B)J! (Bnax) = J(Bmax)
and n(%max;%max) = n(%max) = (K’maX)Ul(‘Bmax)‘ Since V is admissible,
Y1(Bmax) is finite dimensional and, as a J (B max)-module, decomposes as a
finite sum of irreducibles submodules. By Lemma (XI.1.1), these irreducible
representations have the form k.« ® 7, where 7 is an irreducible representa-
tion of J(Bmax)/J (Bmax) = U(Bmax)/U' (Bmax). Moreover by [20] (see the
discussion preceeding Lemma 2, page 176), for such a 7, we have:

(1) Hom y(,,,,..) (Kmax ® 7, V) = Homy (,,,.) /U (Brmax) (T3 V(Bmax))-
Recall that V(B yax) is the U(Bmax)/U (B max)-module Hom j1(g,,.,.) (Kmax, V).
By considering L, = U(B0)/U*(Bo) as a Levi subgroup of G = U(Bnax)/

U (B max), we may form the generalized Steinberg representation St(Bmax, p)
with cuspidal support (Lg,, p). It may be defined in several ways. In particular

it is the unique generic sub-G-module of the representation of G parabolically
induced from (Lg,, p). We then have the following crucial result.

XI.1.2. LEMMA (]|20], Proposition 6, page 179). — As a G-module, V(B max)
is isomorphic to St(Bmax, p)-

It follows from (1) and the previous lemma that the space
Hom j(s,...) (Kmax ® 7,V) is zero except when 7 =~ St(Bnax,p) where it is
1-dimensional. We have proved the following result.

XI.1.3. LEMMA. — We have an isomorphism of J(Bmax)-modules:

P Bmax,Bmax) = P(Bmax) ~ g St(Bumax, p)-

Similarly, as a U(98)J (B max)-module, V(B:Bmax) is a finite sum of irre-
ducible submodules of the form k. ® 7, where 7 is an irreducible representa-
tion of U(B)/U*(B). For such a 7 we have:

Homy (28)71 (% ) (Fmax ® T, V) =Homy(m) 71 (8 sy (THOME L (33 71 (38 00y (R V)
= HomU(%)Jl (Bmax) (7—7 V(sBmaux)U1 (%)J" (%maX))
= HOmU(%)Jl (Bmax) (T, V(%max)m% )

where V(B max)V? is the Jacquet module of V(B .y ) With respect to the unipo-

tent radical Uss of the parabolic subgroup Py of G given by U(B)J (Buax)/

J (B max). Hence we have:

HOMY ()71 (B o) (Fmax @ 7, V) = HOmy () 718 00 (T, V(Bmax) ™)
= Homp,, (7, V(Bmax)"®)
= Homy,, (7, St(Bmax, p) ).
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Denote by St(B, p) the generalized Steinberg representation of Leg with cus-
pidal support (Ls,, p). It is classical that

St(Bmax; ) = St(B, p)

as Ly-modules. Indeed St(*B, p) may be characterized as the unique irreducible
sub-Lg-module of Ind%: ALy P Which is generic. Moreover by transitivity of
0

the Jacquet functor, we have St(B,p)U20"2 = p  Hence the representa-
tion St(%B, p), which has cuspidal support (Legs,, p), is an irreducible L-module.
Moreover, by [13], Proposition 14.32, page 131, St(38,p) = St(Bmax, p)"® is
generic since St(Bmax, p) is. Our claim follows.

It follows that

0 ifr % St(B, p)

Dim Homy (9).1(8 ax) (Fmax ® 7,V) = {1 ifT ~ St(%B, p)

As a consequence we have an isomorphism of U(B)J! (2B ,ax)-modules:

P18 Bmax) g @ St(B, p).

XI.1.4. PROPOSITION. — (i) The U(2)-intertwing of kmax @ St(B, p) is equal
to U(B)J" (Bmax)-
(ii) The representation of U(2L) given by

U
)\(Q[) = IndUE%))Jl(%mx) Kmax ® St(%a p)

1s irreducible.
(iii) We have

V[os] = V) ~ A1),

where the isomorphism is an isomorphism of U(2)-modules.

Proof. — The restriction of fmax ® St(B, p) to U (B)J! (Bmax) is a multiple
of n(B, Bmax), so by Proposition (II1.1.1)(v), we have

I (Kmax ® St(B, p)) C J' (Bmax) B*J" (Bmax)-
In particular we have
IU(Q[)(”max ® St(B, p)) = U(%)Jl (Bmax),

and point (i) follows. Point (ii) is a consequence of Mackey irreducibility crite-
rion and point (iii) of Lemma (V.2)). O
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XI.2. Proof of Conjecture (X.4.1) for irreducible discrete series representations.
— Let € be as before and z be an element of G. Write ¢ = Dimo¢. Let X be
the Jpax-orbit Jyhaxxroe. We must prove that Ké\ma" =0.

Recall that we have the exact sequence of J.-modules

0 — Ko™ — Cy(B, ) mex — Yhmax s,
if £ € JnaxGrU(RA), and
0 — Kam —s (%, C) = — 0,

if © & JmaxGrLU ().

Since (m,V) is a discrete series representation, Ayax occurs in V with mul-
tiplicity 1, so that VM max ~ )\ .. (see e.g., the discussion in [20] following the
proof of Lemma 4, page 178). So we are reduced to proving the following result.

XI.2.1. PROPOSITION. — We have

1 if 2 € JmaxGLU ()

Dlm I’IOHIJmax ()\maxa Cq(27 C)) S ;
0 otherwise.

The rest of this section will be devoted to the proof of this proposition.
Recall that

Cy(2,0) = 11 j2C4(0¢,C) = Indy”
F€Tmax/JmaxNU (A)=

T U@y zCy(0¢,C).

Using Proposition (XI.1.4), we obtain:

zCy(o¢,C) = xInd (%)Jl(% ) fomax © St(%B, p)

U
= IndUE%))IJl(%max)’” Kmax ® St(% p)

Mackey’s restriction formula gives
U)®
(I ()2 71 ()= Fmax @ SUBL )7 5 s anye

_ JmaxNU (A)”
= @I A U ()= AU ()4 1 (B )ue Famax @ SE(B, )
uelU

JmaxNU (A ur
@ In dJmaxﬁU(%)ule(%max)w max ® St(B, p)
uelU

where U is the double coset set
U = Jmax NUQ)"\U ()" /U (B)* T (B max)”-
By Frobenius reciprocity we have:

HOHIJmaX ()\maX7 Cq(Z, C))

= P Homy,, (v (m)ws 71 (Boma) e (Amaxs K @ S6(B, )").
uelU
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By definition of the cuspidal support of a representation of U(B)/U(B), we
have that Kmax ® St(B, p) embeds in

IndU(%)Jl(%max)

4 AU(B)T (Ba)
U(%B0) L (Bonay) max @ p = Ind A

as a U(B)J ! (Bmax)-module. It follows that Hom s, (Amax, Cq(E,C)) embeds
in the C-vector space
B)U T (B) \us
@ I—IOInJmaXF\U(%)“ﬂ”Jl(%max)“'T (Amaxalndgrégx) 7 )‘max)'
uelU

Using Mackey’s restriction formula again, we obtain:

U(%)u:ch(%)uz wr
(IndJ#]g;x )\max)) |Jmame(SB)uw J1 (s:Bmax)uac

— JmaxﬂU(b)ule(%max)uz vur

= €D I} Oy ()t (e rze Ao
vEV,

— JmaxﬂU(%)uwjl(%max)uz vux

= @ IndJmaanf#;i )‘max’
vEV,

where

Vu = Jinax ) U(%)umjl(%max)uz\U(%)umJl (%max)ux/Juz

max*

Hence it follows by Frobenius reciprocity that Hom_,_ (Amax, Cq(2,C)) em-

max
beds in

vuUT
P P Hom,,.Asznz Amax, Aoss).

uelU veV,

as a C-vector space. As a consequence, if Hom s, (Amax, Cq(%,C)) is non-zero,

there exist u € U, v € V,, such that vux intertwines Jax, that is
VUL € JmaxG L Imax-
For such u and v, we have u € zU(A)z~! and
v € urU(B)J' (Bmax)r *u"
so that
vur € uzlU(B)JH (Bmax) C 2U MU (B)J' (Brmax) = 2U ().

Hence we have zU () N JnaxGrJmax # 0, that is £ € JnaxGrU(A). As a
consequence Proposition (XI.2.1) holds when = & Jy,axGrU ().

Now let us assume that © € Jpn.xGrURA). Writing x = jrru, j € Jmax,
zp € Gr and u € U(2A), we have that

XY= Jmaxxo'Q = JmaxxLo'Q
so that we may as well assume that z € Gf,.
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XI1.2.2. LEMMA. — For all x € G, we have

Homy,,.. (Amax; Cq(E,C)) = HomeaxnU(%)le(%max)z (Amax, Fmax®@St(B, p*)
= Homy ()71 (B 1)U (B)* T (Brnar)® (Fmax @ P, Kiax ® St(B, p)*).

Proof. — Assume that for some u € zU (A)z~1, we have

uxr

HOmeaXmU(sB)uzjl(%max)uz ()‘maxv Rmax ® St(%, p)ux) # 0.
Then by the preceeding discussion, there exists u € uzU (B)J (Bmax) (uz) !

such that

vuz € urlU(B)J (B max) N JmaxG L Imax-
This implies that

uzU(B) I (Brax)T ' N JimaxGrJLny # 0
that is 4 € JmaxGLU(B)®J (Bmax)®- So without changing the double class u
of u in U, we may as well assume that u € Jy.xGr. Let us write u = jgr,,
J € Jmax, 91 € Gr. Since u € zU(A)x~!, we have

u(zog) = xoe = j(grxoe).
So xog and grxoe are simplices of X, conjugated under the action of Jy.x C
U(2min). By Lemma (X.4.4), there exists ¢ € U(€yin) such that zoe = igrzoe.
Hence ig;, € U(A)* N G, = U(€)® and as a consequence g1, € U(€pin)U(€)*.
It follows that u € JmaxU (€min)U(€)* = JnaxU(€)*, and u € (Jmax N U (A)*).
U(€). But this implies that the image @ of u in
U = Jmax NUR)"\U () /U (B)* T (B max)”

is 1. Lemma (X1.2.2) follows. O

We next prove:

X1.2.3. LEMMA. — For all x € G, we have

Dim Homy () 71 (8,000 (8)2 71 (B ) (Fmax ® P, Kiaxe ® SH(B, p)”)
= Dim Homy(sg,)nu (8)= (0, St(B, p)*).
Proof. — It is inspired from that of [10, 5.3.2], page 176. Abreviate py =

St(p,B). Write Y (resp. Xo, X) for the space of kpax (resp. p, ps). Let ¢ €
Home (Y ® Xo,Y ® X) = Endc(Y) ® Home(Xo, X) and write

o= 88T
el
where S; € Endc (Y), T; € Home (Xo, X), and where the T; are linearly inde-
pendent. Then ¢ intertwine Kyax ® p and sj,,, ® pg; if and only if

max

Y (S0 fimax() @ (Ty 0 p(u)) = Y (Khax (1) 0 S5) ® (0§ (u) o Tr)

S i€l
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for all u € U(Bo)J (Bmax) N U(B)®J (Bmax)®. In particular if ¢ intertwines
these representations, for u € J'(Bmax) N J (Bmax)?, we must have

D (850 Kmax () = Ky (w) 0 S) © Ty = 0.

iel
Since the T; are linearly independent, we obtain
Si € Hom j1(,,,,)n 1 (Buuwe)® (Fmaxs Fimax) = HOM 1 (38 )" (B )® (Tmaxs Timas)-
By [10, 5.1.8] and (5.2.7), the spaces

Hom ;(s5,,,.)n 7 (Bma)* (Fmaxs Kmax)
and

HomJl(%max)nJl(%max)I (nmaX7nr€1ax)
are equal and 1-dimensional. It follows that any ¢ in

Homy, . v (8)es1(8)r (Amax; Fimax ® PB)
writes ¢ = S ® T, where S € Homjs,  )n/(Bue)®s (Fmax, Fimax) and
T € Homg (Xo,X). Writing that such a S ® T' does intertwine the repre-
sentations, we easily obtain that
T € Homy (s,)nu ()= (0; pB)-

It follows that we have a canonical isomorphism of C-vector spaces:

Homj, . ~u(m)es1(3)e (Amaxs Fmax @ P5)
= Hom j(8,,,,)nJ (Brmax)® (Kmaxs Fmax) @ Homy (s )nu(m)= (0, P )
with
Dim Hom j(s3,... )n7(Bumar)® (Kmaxs Kimax) = 1
and the lemma follows.

To obtain Proposition (XI.2.1), we are now reduced to proving the following
result. ]

X1.2.3. LEMMA. — For all x € G, we have
Dim¢ Homy (s0)nv ()= (0, St(B,p)*) < 1.
Fix a level 0 discrete series representation (mg,Vy) of Gg belonging to the
Bernstein component of Gg defined by the type (U(%Bg),p). Applying the
1
results of Section (XI.1) to (7, Vo), we have that p ~ V((]J (%0) 4 U (B)-mod-

1 x
ules and St(B, p)* ~ V([)J ®)" as U(2B)*-modules. Hence the statement of the
lemma rewrites:
Let 81 be a hereditary order lying in the image of the canonical map

Her(C) — Her(B). Then

DlmCHomU(%o)nU(%l)(V %O)V %1)) <1.
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We may write this in the language of simplicial complexes. For o a simplex
of Xg, write U, for the parahoric subgroup of G fixing o and U} for its
pro-unipotent radical. Write o9 = o,. Then our lemma is equivalent to:

XI1.2.4. LEMMA. — For all simplex 7 lying in the image of the canonical
simplicial map X1 — Xg, we have
. Usy U2
Dimc Homy, nv, (Vo 7, V") < 1.
Fix an apartment Ay, of X, containing o¢ and 7 (we see X;, — Xg as an
inclusion). According to [3] Lemma 4, there exists a unique chamber o of A,
such that we have the containments

Elog, 7] Do DT

where Elo, 7] is the enclos of c U7 in the sense of [6] Definition 2.4.1. Moreover
by [3] Lemma 5, we have that the simplex o lies between oy and 7 in the sense
of [18] §2. This means that there exists points z,, in |0¢|°, z, in |o|°, and
z, in |7]° such that z, belongs to the geometric segment [z4,,2,]. Since the
embedding X; — Xg is simplicial and affine, we have that, as a simplex
of Xg, o lies between op and 7. We may then apply Proposition 2.5 of [18]:

XI.2.5. LEMMA. — The image of Ul = UL NU, in U, /U} is contained in the
image of Uy NU; in U, /UL

Next fix an L-basis (vi,...,v.) of V corresponding to the apartment Ay,.
Moreover fix a basis ({1, ...,(,) of the og-module o,. Set

Vi =Lv;, = Vectg(Gvi; j=1,...,7m),i=1,... ¢,

and write M for the Levi subgroup of Gg corresponding to the decomposition
V=Vvie---a¢V..

XI1.2.6. LEMMA. — Let 6 be a simplex of A, (seen as a simplex of Xg).

(i) The intersection Ug N M does not depends on 6. We denote it by M°. It
s given by

II GL(r,or)
1=1,..,e

where the ith copy of GL(r,0g) is the mazimal compact subgroup of Autg (V;)
which is standard in the basis ((;v;); of Vi.

(ii) Assume moreover that 0 is a chamber of Ar. Then we have the Iwahori
decomposition

Ug = (U@ﬂM)Ual.

Proof. — This is an easy exercice in lattice chain theory and we only sketch
the proofs.
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The simplex 6 corresponds to a certain op-lattice chain N' = (Ng)gez in V.
The fact that € lies in Ap exactly means that the chain £ is split by the
decomposition V = @ V;, i.e., for k in Z we have:

Ny=@Ni,Ni =NenViyi=1,... e

Let g € Upg N M that we write g = @ ¢;, g; € Endg V;, i = 1,...,e. Then
we get ;N = Ni, k€ Z,i=1,...,e, that is gjorv; = opv;, i = 1,...,e, and
point (i) follows easily.

Assume moreover that 6 is a chamber in Ay. Since the identity of (ii) is
invariant under the action of the affine Weyl group of this apartment (since it
stabilizes M), we may as well assume that 6 is the standard chamber attached
to the lattice chain A defined by N, = @ N;. as above and, for k =0,...,e—1,
Ni =opv;,ifi €{0,...,e—1—k}, N =prv;,i € {e—1—k+1,...,e—1}. Then
by a straightforward computation, we obtain that an element g € Endg V', with
a block matrix ¢ = (guv)u,v=1,....c in the decomposition V.= @V;, lies in Uy
if and only if we have gy, € GL(r,0g), u =1,...,€, guy € M(r,0g), if v > u,
and gy, € peM(r,0E), if u > v. It is then classical that such a matrix has an
Iwahori decomposition as described by the identity of (11)

We have M° C U,, N U, and, as a M°-module, Vo Z is isomorphic to the
irreducible representation p®¢. So in order to Jprove Lemma (XI1.2.3), it suffices,

by Schur Lemma, to show that Im ¢ = <p(V0 °) is independent of the choice of

a0 UL
a non-zero intertwining operator ¢ in Homy, nu, Vo7, Vy 7).
1

Let ¢ such a non-zero intertwining operator. Then W := w(Vé] %) is a sub-
MP-module of Vé] : equivalent to p®¢. The groups U, ;0 NU, and U} act trivially
on W. Moreover by Lemma (XL.2.5), Uy C (U}, NU;)U}. 1t follows that U,
acts trivially on W and that the action of U,/U}! on that space is the action
inflated from the representation p®¢ of U, /U}; write p, for the corresponding
representation.

As a Uz-module, VOU - is equivalent to the generalized Steinberg represen-
tation with cuspidal support (M, p®¢), where My is the image of M in the
quotient U,/UL. Tt is well known that this Steinberg representation occurs
with multiplicity 1 in the parabolically induced representation Indg; oo It

1
follows by Frobenius reciprocity that p, occurs in Vé] 7 with multiplicity 1.

It follows that W is the unique sub-U,-module of Vé] - isomorphic to p, and
Lemma (XI.2.4) is proved. O

We have unconditionnaly proved the following result.
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XI1.2.7. THEOREM. — Assume that (mw,V) is an unramified twist of an ir-
reducible unitary discrete series representation lying in the Bernstein block
Ry Then the augmented chain complex (IX.1) is exact.

XII. Explicit pseudo-coefficients for discrete series representations

Let (m,V) be an irreducible (unitary) discrete series representation of G. In
this section, following [19]§ (II.4), we show that Theorem (XI.2.7) leads to an
explicit pseudo-coefficient ¢, for m. We then show how to derive an explicit
formula for the value of the Harish-Chandra character of 7 at an elliptic regular
element.

XII.1. The coefficient system C(w). — Recall that, with the notation of § XI,
the coefficient system C = C() canonically attached to 7 is given on a part
of X1, by V[oe] = VA ~ \(A), where

— 0 = o¢ is any simplex of X, satisfying €, C € C Cax,
-A= 2[(Q:)v
~A®@) = Ind’® St(%8

() = Indy; (o5 y1 (38, fimax ® St(B, p).

Since the coefficient system C is G-equivariant, for any order 2 as above,
the representation A(2) extends to a representation of () = Ng(o) that we
still denote by A(2(). In the sequel we shall also write

Ng(o) = K, and A(RA) = X,.

By equivariance, we may define an irreducible smooth representation A,
of K, for any simplex ¢ of X[L], and by equivariance of C we have V[o] =
ZLEND

XI1.2. Euler-Poincaré functions. — Let y be the central character of 7w. All
representations that we consider will lie in the category S, (G) of those smooth
representations admitting a central character equal to x. If V',V € &, (G)
with V' of finite length and V" admissible, we define the Euler-Poincaré char-
acteristic:
EP (V' V") =) (-1)?dimExt} ) (V',V").
q20

We denote by Z the center of G and fix a Haar measure pg/z on G/Z. We
denote by H, (G) the convolution Hecke algebra of locally constant functions
f : G — C satisfying

- fzf)=x""(2)f(9), 2 € Z, g €G,
— f has compact support modulo Z.
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Representations in S, (G) are naturally left H, (G)-modules. The character
of an admissible representation (7/,V’) in S, (G) is the functional

Tryr : Hy(G) — C, ¢ — tr (7'(¥)),

where /(1)) is the endomorphism of V' attached to #’; it is formally given by
the integral
(W)= [ P(g)n'(9) duc,z (9)-
G/Z

We set d = dim X[L]. For ¢ = 0,...,d, we fix a set F, of representatives
of G-orbits in the set X[L], of g-simplices in X[L]. If ¢ = o¢ is a simplex
of X[L], we denote by ¢, : K, — {£1} the abelian character defined as
follows. If g € K,, €,(g) if the sign of the permutation of the vertex set of o
induced by the action of g. Moreover for such a simplex o, we denote by 7 the
character of the representation (K,,\,). For all simplices of X[L] we extend
the class functions €, and 7 by zero to functions on G. Following Kottwitz [15]
and Schneider and Stuhler [19], we define the Euler-Poincaré function attached
to (m, V) by the formula:

d
fop = Z Z (D)% pez(Ko/2Z) 77 €.

q=00€F,
Remark. — The Euler-Poincaré function f¥p does depend on the choices of
representative sets F4, ¢ =0,...,d.
XII.2.1. PROPOSITION. — For all admissible representations (7', V') in S, (G),
we have

Tryr (fip) = EPs, () (V, V).
Proof. — We have the decomposition.

CI(X(g), (V) = D C&(Go,cV)),
o€F,

where C¢"(G.0,C(V)) denotes the G-space of oriented chains with support
in G{(0,01),(0,02)}, 01 and oy denoting the two possible orientations of o.
Since

CI(X(e),C(V) —V
is a projective resolution of V in §(G),, Lefschetz formula gives:

d
EPs(c), V,V) =Y (-1)? > dimHomg (C(G.0,C(V)), V).

q=0 g€F,
By definition of compact induction we have:

Co(G.0,C(V)) = ¢ — Indg_ C(a,C(V)),
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where C2"(o,C(V)) denotes the K,-space of chains with support in {(o,01),
(0,02)}. Moreoer, again by definition, we have the isomorphism of X ,-modules:

C(0,C(V)) = Ao ® €5
Using Frobenius reciprocity for compact induction, we obtain
Homg (C2*(o,C(V)), V') = Homy, (N ® €5, V).

Moreover dim Homy_, (A, ®€,,V’) is nothing other than the multiplicity of A\, ®
€, in the isotypic component (V')*e®¢:

1
. N : NAoQ€x
dim Homg,_ (As ® €5, V') = T dim (V') .
Hence we have obtained
EP § > Ao®eo
S(G) .V dlm)\ m (V)

q=00€F,
We need to compare this with Try/ (f¥p). For this we have to compute
try (7Y .€,), for all ¢ and o € F,. Recall that for such ¢ and o,
_ 1
pa/z(Ke)

is an idempotent of H(G),, and that E, seen as an endomorphism of V' is the
projection of the A\, ® e,-isotypic component (1’)*®¢. Hence we have that
Try (E,) = dim (V')**®¢> and the proposition follows. O

?;}eg.dim (Mo€o)

We shall need the following result.
XII1.2.2. THEOREM. — Let V' be an irreducible tempered representation in
Sy (G). Then:
1 iV =V,

0 otherwise.

EPs )(V,V') = {

Proof. — Tt is shown in [21] Prop. 9.3 and subsequent remark (based upon a
result of R. Meyer in [16]) that

EXt}ZX(G) (V, V/) = Extg;emp(G) (V, VI),
where S;emp(G) denotes the category of all tempered smooth representations

with central character x. But by a variant of [21] Prop. 2.3 the representation
V is a projective object in S;*™P(G). O

Recall that a function f € H(G), is a pseudo-coeflicient of (m, V') if for any
irreducible tempered representation in S, (G), we have

1 iV =V,

0 otherwise.

Tl“v'(f)z{
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As a consequence of (XII.2.1) and (XII.2.2) we have:

X11.2.3. THEOREM. — The Euler-Poincaré function f¥p is a pseudo-coefficient
of (m, V).

In [4], the first author obtained pseudo-coefficients for discrete series repre-
sentations of G using a quite different approach (but also based on Bushnell
and Kutzko type theory). Our pseudo-coefficients are likely to be very close to
those of [4], but the comparison has yet to be done.

XII.3. An explicit character formula. — If ¢ € H(G), and h € G is a regular
elliptic element, the orbital integral

\Y%

¥ (h) = ¥(9™ " hg)ducyz(9)
G/z
is known to converge (see e.g., [19], page 140 in the case of a reductive group
with compact center, the non-compact case being similar).

Let ©, denote the Harish-Chandra character of (w,V). This is a locally
constant function on the set G™® of regular semisimple elements of G. The fol-
lowing result relates values of ©, with the orbital integral of a pseudo-coefficient
of 7.

XII.3.1. THEOREM (Kazhdan-Badulescu). — Let fo be a pseudo-coefficient
of (m,V). Then for all regular elliptic element h of G, we have

0.(h) =fo (h71).

Remark. — This theorem is due to Kazhdan ([14], Prop. 3, page 28) for a
reductive group with compact center when F' has characteristic 0. It is due to
Badulescu ([2] Théoréme (4.3)(ii), page 64) for our group G without restriction
on F.

Let h € G be a regular elliptic element. To obtain a formula for ©,(h) it
suffices to compute (fgp)Y (h~!) explicitely. For this we closely follow the proof
of Lemma (I111.4.10) of [19] where a similar computation is done.

If |X| denotes the geometric realization of the building of G, it is known
that |X|" is compact (see e.g., [19], page 141). Hence so is |X[L]|" the set
of h-fixed points in the geometric realization of X [L] since the subset X[L] C X
is closed. Let us sketch the proof of this latter fact. Let z, = gn.c, be
a converging sequence of points in X[L] with limit = where, for all n, g, is
in G and ¢, lies in some fixed (closed) chambre Cf, of X. Then (c,) has a
convergent subsequence and replacing (z,) by a subsequence we may assume
that ¢, converges to some ¢ € C,. Let d be a G-invariant metric on G. We have
d(z,gn.cn) = d(g,*.,c,) — 0. Hence d(c,,G.z) — 0 and d(c,G.z) = 0.
But it is an easy exercice in Bruhat-Tits theory (left to the reader) that the
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G-orbit of any point of X is closed in X. Hence ¢ € G.z, that is z € G.c C X[L]
as required.

It follows that their exists a finite number of simplices o in X[L] such that
h.oc = o. For such a o, the intersection o N|X[L]|" is non-empty. The collection
of o(h) where o runs over the simplices of X[L] globally fixed by h endows the
compact topological set |X[L]|* with a simplicial structure. As noticed by
Kottwitz ([15], page 635), it is an easy exercise to check that for all o in X[L]
fixed by h we have

€y (h) — (_1)dim o—dimo(h) )

XII.3.2. THEOREM. — For all regular elliptic element h of G, we have

dim | X[L]|"

Ox(h)y= > > (11T (hAs),

=0 o(h)e|X[L]|
where | X [L)|" denotes the set of q-simplices in | X[L]|".

Proof. — We have to prove that

) () =) > (~1)7(h).

4=00(h)e|X[L]|}

Let ¢ € H(G), be any function with support in &5, for some g-dimensional
simplex ¢ of X[L], such that ¢ is a class function. Let (G.c)" be the set
of simplices in the G-orbit of o that are fixed by h. Finally let G}, denote the
centralizer of h in G. Following [19], page 141, we write

U9~ hg)dpcyz(9) = Z V(g™ hg) e z(GrgKe/Z)
9ECI\G /K9~ ThgeKy

> g hg)ucz(Ke/Z).[Gh s Gr N Kol
go€GR\(G.o)h

=pe/z(Ka/Z). > ¥(g 'hg).

goe(G.o)h

G/Z

We then apply this to each component of our Euler-Poincaré function fp:

d
()Y (R) =D > (1% > (7Y.e)(g  hg)
q=00€F, go€(G.h)"
d

=22 > (Dl

g=00€F, goe(G.o)h
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d
=Y. Y (DR (h)

q=0 O'E(X[L]q)h
dim | X[L]|"

D D SRS LR

9=0  o(h)e|X[L]|"

and we are done. O

XI1.4. The character of discrete series representations at minimal elements. —
In this section we prove that the character formula of Theorem (XII.3.2) takes
a striking simple form under a simple assumption on the regular elliptic ele-
ment h.

Let v € G satisfying: the algebra K := F[y] C A is a field (we shall assume
later that the extension K/F is separable, but we do not need this hypothesis
for the moment). Let vx denote the normalized valuation of K. Following [10,
1.4.14], one says that v is minimal over F if it satifies:

(i) ged(vk (v), e(K/F)) = 1,
(ii) w;vk(w)’ye(K/F) + px generates the extension of residue fields Fg /F.

Here wr is some uniformizer of F' that we fix once for all.
From [10], Exercice (1.5.6), page 44, we have the following result.

XII.4.1. LEMMA. — Assume that v € G is minimal over F and let A be a
hereditary order of A. Then v normalizes 2 if, and only if, K™ normalizes 2.

Our next result is a more precise version of this lemma.

XII.4.2. PROPOSITION. — Assume that v € G is minimal over F'.

(i) We have X7 = XE* (fized points set in the geometric realizations).
In particular X7 coincides with the canonical image of Xk in X (c¢f. Theo-
rem (1.2.1)).

(ii) In particular, if K/F is a mazimal subfield extension of A, then X7
reduces to a single point x.,, isobarycenter of the simplex corresponding to the
unique hereditary order 2, normalized by K* (it has op-period e(K/F).

Proof. — We use the lattice model of the geometric realization of X given in
[5] §I. Let us describe this model. Let L(V') denote the set of op-lattices in V.
Let Latt, (V) denote the set of functions A : R — L(V) satisfying:

— A is non-increasing, that is A(r) C A(s), if r > s,

— A is periodical, that is A(r +1) =ppA(r), r € R,

— A is left-continuous for the discrete topology on L(V): for all r € R, there
exists € > 0, such that A is constant on the segment [r — €, 7]. |
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We let G acts on Latt, (V) by
(g-A)(r) =g.A(r),g € G,r € R.

We define the set Latt,, (V) of lattice functions in V as the quotient
Latt) (V)] ~ for the equivalence relation defined by A; ~ As, if there ex-
ists s € R such that A1(r) = A2(r + s), for all » € R. Then Latt,, (V) is a
G-set in an obvious way.

The point of [5] §1 is that, as a G-set, the geometric realization of X is
naturally isomorphic to Latt, . (V).

Let A be a lattice function, with representative A € Latt},F (V). Assume that
v.A = A. We must prove that A is fixed by K*. Consider the lattice chain
L = {A(r);r € R}, and let A(L) and o, be the associate hereditary order
and simplex respectively. Then by [5] Proposition 3.1, A lies in the interior
of the simplex o,. It follows that o, is stabilized by 7 and therefore that
2A(L) is normalized by «. Applying Lemma (XI1.4.1), we obtain that (L) is
normalized by K*. In particular it follows that £ is a chain of og-lattices
in V, and that for all 7 € R, A(r) is fixed by 0. Hence A is fixed by o). By
condition (i) in the definition of a minimal element, there exist integers r, s
such that wg := why® is a uniformizer of K, and it follows that A is fixed
by wgk. Hence it is fixed by K* = (wk )0y, as required.

With the notation as above, we fix an unramified twist of an irreducible
discrete series representation (7, V) of G with type (J, ). Its coefficient system
C() has support X[L]. We also fix an elliptic regular element v € G assumed
to be minimal over F. In other words, « is minimal over F' and the field
extension K/F is separable and maximal. In particuler the fixed point set
X7 is reduced to a single point x, isobarycenter of simplex o, attached to a
principal hereditary order 2, with op-period e(K/F).

XII1.4.3. LEMMA. — With the notation as above, we have that x, € X[L] if,
and only if, f(L/F)|f(K/F) and e(L/F)|e(K/F).

Proof. — Using the numerical criterion (1.3.5), we have that z., € X[L] (that
is 2, has a G-conjugate normalized by L*) if, and only if, with the notation
of §I, we have:

i) f(L/F)|d(2,)g, for all k € Z,

i) e(L/F)le(Ay/or)/p(Ay)-

But 2, being principal with period e(2,/or) = e(K/F'), we easily see that
(d(2)r is constant with value f(K/F) and that p(2,) = 1. The lemma
follows. 0

As a straightforward consequence of the previous lemma and Theorem
(XII.3.2), we obtain the following simple formula for the value of the Harish-
Chandra character at a minimal element.
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XII.4.4. PROPOSITION. — The Harish-Chandra character of the discrete se-

ries representation (m,V) satisfies:

if f(L/F)|f(K/F) and e(L/F)le(K/F),

0 otherwise.

0. (1) = {mw%)

In some particular cases, the same formula was obtained by the first author

in [3] using a different approach.

Index of notation

In this index the notations are listed as they appear in the article.

F, E, K, L,..., non-archimedean locally
compact fields, § (I.1), § (VIIL.2).

E/F, finite extension of non-archimedean
locally compact fields, §1.

f(E/F), e(E/F), inertial degree and
ramification index of a finite extension
E/F, §(13).

0k, Pk ring of integers and valuation
ideal of a locally compact field K, §1.

V, finite dimensional E-vector space, §I.

A =EndrV, §1, §1.

B =EndgV, §L

G = AutrV, §1

Gg = AutgV, §1.

A, B, €,. .., hereditary orders, §1.

A(B) hereditary order in A attached
to B C B, §1.

X Bruhat-Tits building of G, §1I.

XEg Bruhat-Tits building of Gg, §1.

sd(X), sd(XEg) first barycentric subdivi-
sions, §I.

P Jacobson radical of a hereditary order
A, §(L.3).

U(2l) unit group (parahoric subgroup) of
a hereditary order 2, § (1.3).

U () 1-unit subgroup of U (), § (L.3).

N (), N(B), normalizers of hereditary
orders, § (1.3).

F, Fg residue fields of F' and E respec-
tively, § (1.3).

X (E) G-subsimplicial complex of sd(X)
attached to E/F, §(L.3).

e(2A) period of a hereditary order, § (1.3).

[0, 8], simple pair, § (II.1).

H'(8), J'(B), groups attached to a sim-
ple pair, § (IL.1).

C(®B) = C(2(%),0,8), set of simple
characters attached to a simple pair,
§ (IL.1).

0, simple character, § (II.1).

1(0) Heisenberg representation, § (I.1).

H'(V,8), J'(V,8B), V(V,B), § (IL1).

Toly 25,3, transfert map, § (IL.2).

© potential simple character
character), § (IL.2).

O(V,B), ©(B), a realization of a ps-
character ©, §§(IL.2), (IL.3).

©, endo-class of ps-characters, § (I1.3).
n(B) = n(V,B), Heisenberg represen-
tation, § (II.1).

J'(81,B2), mixed group, § (I11.1)

n(B1,B2), Heisenberg representation
of J'(B1,B>), § (IIL.1).

T, intertwining in G of a representation,

(ps-

§ (IIL1).

n(A(B)), Heisenberg representation
of 2 = 2A(b), § (IIL.1).

n(A1,2A2), Heisenberg representation

of U (B:1)U* (Uz), § (ITL.2).

V, smooth complex representation of G,
§IV.

Co(V) = Co(0,V,V), coefficient systems
on sd(XEg) attached to V, §IV.

V(o), Definition (IV.1).
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C(V) = C(0,V,V), coeflicient system
on sd(X) attached to V, § V.

X[E), § V.

ClV] = C(C[|e,V,V], coeflicient system

on X[E] attached to V, § V.

V[o], § V.

(J, ), simple type in G, § VIIL.

K, (-extension, § VIII.

R(G), category of smooth complex repre-
sentations of G, § VIII.

Coeff¢(sd(X)), category of G-equivari-
ant coefficient system on sd(X),
§ (VIIL1).

Ciuny 8 (VIIL.1).

Brnin, Brnax, § (VIIL2).

k(B), k-extension, § (VIIL.2).

V(Bmax), § (VIIL2).

Nmasx, § (VIIL2).

X[L]q, X[L](q), sets of g-simplices (resp.
oriented g-simplices) of X[L], §IX.
C2*(X|[L],C), space of oriented g-chains
of X[L] with coefficients in C, §IX.

Amax, §IX.

w, Haar measure on G, § (X.1).

H(G), convolution Hecke algebra, § (X.1).

emax, Idempotent of H(G) attached
0 Amax, § (X.1).

H(G, Amax), Hecke algebra of Amax-spher-
ical functions.

G°, subgroup of G formed of elements
whose determinant is a unit, § (X.2).

Cq(%,C), subspace of g-chains with sup-
port in X, §(X.4).

Sy, Kx, §(X.4).

Ar, apartment of X, §(X.4).

Yrmax constant coefficient system on Ay,
§ (X.5).

St(Bmax, p), generalized Steinberg repre-
sentation, § (XL.1).

A1), § (XI.1).

Ko, Ao, § (XIL1).

X, central character, § (XIL.2).

Sx(G), category of smooth representa-
tions of G with central character ¥,
§ (XII.2).

EP(V',V"), Euler-Poincaré characteris-
tic, § (XI1.2).

Z, center of G, § (XIL.2).

H(G), Hecke algebra with central char-
acter, § (XIL.2).

Fq, set of representatives of G-orbits
of X[L]q, § (XIL.2).

f&p, Euler-Poincaré function, § (XII.2).

1\//1, orbital integral of 1, § (XII.3).

©,, Harish-Chandra character of m,
§ (XIL.3).

Latt,,, (V), Latto, (V), sets of op-lattice
functions in V, § (IL.4).
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