
Bulletin

SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE

pages 193-223

Tome 145
Fascicule 2

2017

COMPLEXES OF GROUPS AND
GEOMETRIC SMALL CANCELATION

OVER GRAPHS OF GROUPS

Alexandre Martin



Le Bulletin de la Société Mathématique de France est un périodique
trimestriel de la Société Mathématique de France.

Fascicule 2, tome 145, juin 2017

Comité de rédaction

Christine BACHOC
Emmanuel BREUILLARD

Yann BUGEAUD
Jean-François DAT
Charles FAVRE
Marc HERZLICH

Raphaël KRIKORIAN

Laurent MANIVEL
Julien MARCHÉ
Kieran O’GRADY
Emmanuel RUSS

Christophe SABOT
Wilhelm SCHLAG

Pascal HUBERT (Dir.)

Diffusion

Maison de la SMF - Case 916 - Luminy - 13288 Marseille Cedex 9 - France
christian.smf@cirm-math.fr

Hindustan Book Agency AMS
O-131, The Shopping Mall P.O. Box 6248
Arjun Marg, DLF Phase 1 Providence RI 02940
Gurgaon 122002, Haryana USA

Inde www.ams.org

Tarifs

Vente au numéro : 43 e ($ 64)
Abonnement électronique : 135 e ($ 202),

avec supplément papier : Europe 179 e, hors Europe 197 e ($ 296)
Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat : Nathalie Christiaën
Bulletin de la Société Mathématique de France

Société Mathématique de France
Institut Henri Poincaré, 11, rue Pierre et Marie Curie

75231 Paris Cedex 05, France
Tél : (33) 01 44 27 67 99 • Fax : (33) 01 40 46 90 96

bullsmf@ihp.fr • smf.emath.fr

© Société Mathématique de France 2017

Tous droits réservés (article L 122–4 du Code de la propriété intellectuelle). Toute représen-
tation ou reproduction intégrale ou partielle faite sans le consentement de l’éditeur est il-
licite. Cette représentation ou reproduction par quelque procédé que ce soit constituerait une
contrefaçon sanctionnée par les articles L 335–2 et suivants du CPI.

ISSN 0037-9484 (print) 2102-622X (electronic)

Directeur de la publication : Stéphane SEURET

smf.emath.fr


Bull. Soc. Math. France
145 (2), 2017, p. 193-223

COMPLEXES OF GROUPS AND GEOMETRIC SMALL
CANCELATION OVER GRAPHS OF GROUPS

by Alexandre Martin

Abstract. — We explain and generalize a construction due to Gromov to realize
geometric small cancelation groups over graphs of groups as fundamental groups of
non-positively curved 2-dimensional complexes of groups. We then give conditions so
that the hyperbolicity and some finiteness properties of the small cancelation quotient
can be deduced from analogous properties for the local groups of the initial graph of
groups.

Résumé (Complexes de groupes et petite simplification géométrique sur les graphes de
groupes). — Nous généralisons une construction de Gromov afin de réaliser certains
groupes à petite simplification géométrique sur un graphe de groupes comme groupes
fondamentaux de complexes de groupes de dimension 2 à courbure négative ou nulle.
Nous donnons ensuite des conditions pour que l’hyperbolicité et certaines propriétés de
finitude de tels groupes se déduisent des propriétés analogues pour les groupes locaux
du graphe de groupes initial.
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194 A. MARTIN

1. Introduction and statement of results

Small cancelation theory deals with the following problem: given a group G
and a family (Hi)i∈I of subgroups, find conditions under which one understands
the quotient G/� Hi � (where � Hi � denotes the normal closure of the
subgroup generated by the Hi).

In classical small cancelation theory, G is a finitely generated free group
and each Hi is an infinite cyclic subgroup generated by a cyclically reduced
element. Small cancelation conditions essentially ask that the length of a com-
mon subword of two relators be short relatively to the length of the relators.
Such conditions come in various flavors and the overall theory has been gener-
alized to many settings, such as small cancelation over graphs of groups [16] or
small cancelation over a hyperbolic group [21, 10, 6]. In [13], Gromov gave a
geometric version of small cancelation, using the language of rotation families
(see Definition 4.1). In this case, the group G acts isometrically on a hyperbolic
metric space X and each subgroup Hi stabilizes a given subspace Yi. Small
cancelation conditions in this context ask that the overlap between two such
subspaces be small with respect to the injectivity radii of the Hi. This point
of view was used for instance in [8, 11, 9].

Small cancelation theory offers powerful tools to study various classes of
groups, and provide many examples of groups with exotic properties [13].

Some small cancelation conditions have strong geometric consequences. In
[12], Gromov proved that groups satisfying the so-called geometric small can-
celation condition C ′′(1/6) (see Definition 4.2) act properly and cocompactly
on a CAT(0) space. The first goal of this article is to detail this construction
and to extend it to the case of small cancelation over a graph of groups; in the
case of classical small cancelation, this construction was explained by Vinet
(unpublished). More precisely, we prove the following:

Theorem 1.1. — Let G(Γ) be a graph of groups over a finite simplicial graph
Γ, with fundamental group G and Bass–Serre tree T . Let (Aξ, Hξ)ξ∈Ξ be a
rotation family such that the following condition holds:

(∗) For every ξ ∈ Ξ, Hξ is an infinite cyclic subgroup generated by a hy-
perbolic element with axis Aξ. Moreover, the global stabilizer of Aξ is
virtually cyclic, and every element of the global stabilizer of Aξ fixes
pointwise the endpoints of Aξ.

If (Aξ, Hξ)ξ∈Ξ satisfies the geometric small cancelation condition C ′′(1/6), then
the quotient G/�Hξ� is the fundamental group of a non-positively curved 2-
dimensional complex of groups, the local groups of which are either finite or
subgroups of the local groups of G(Γ).
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COMPLEXES OF GROUPS AND GEOMETRIC SMALL CANCELATION 195

In [12], Gromov even constructed actions of C ′′(1/6) small cancelation groups
on CAT(κ) spaces for some κ < 0. While it would be possible to adapt the pre-
vious constructions to obtain such actions, we restrict to actions on (piecewise
Euclidean) CAT(0) complexes for two reasons. First, the actions considered
here are non-proper, so a negatively-curved assumption on the space would not
translate immediately to a property of the quotient group (note however that
we will consider the hyperbolicity of such a quotient in Section 7). More impor-
tantly, having an action on a piecewise-Euclidean complex (or more generally
on a Mκ-complex in the sense of Bridson [4]) will be used in Section 7 to study
the geometry of the quotient group.

Let us give a few details about the construction. The family of axes Aξ is
used to construct the so-called coned-off space T̂ (see Definition 5.2) and the
quotient space �Hξ�\T̂ comes with an action of G/�Hξ �. Since two axes

Aξ, Aξ′ may share more than one edge, the space � Hξ�\T̂ does not have a
CAT(0) geometry in general. Generalising an idea of Gromov [12], we want
to construct a CAT(0) complex with a cocompact action of G/�Hξ � by

identifying certain portions of� Hξ�\T̂ . Understanding the resulting action,
and in particular the various stabilizers, turns out to be a non-trivial problem.
To avoid this issue, we use a different approach, using the theory of complexes
of group. We start by considering the complex of groups one would expect
from the action of G/� Hξ � on the space obtained from �Hξ�\T̂ after
performing Gromov’s construction. This complex of groups decomposes as
a tree of complexes of groups (see Section 3 for the definition), where the
various pieces are much easier to handle. In particular, our approach allows
us to consider only the action of G on T̂ , instead of dealing with the action
of G/�Hξ � on � Hξ�\T̂ . Using standard results on complexes of groups,
we prove that this complex of groups is indeed non-positively curved and has
G/� Hξ � as fundamental group.

Note that our approach can be used to provide geometric proofs of several
facts which are well known for classical small cancelation theory. For instance,
it is well known that for classical small cancelation theory over amalgamated
products or HNN extensions, the quotient map G → G/�Hξ� embeds each
local group ofG [16, Theorems V.11.2 and V.11.6]. In this article, and under the
assumptions of Theorem 1.1, this is a direct consequence of the developability
of the associated complex of groups (see Corollary 5.17).

In Theorem 1.1, we make the assumption (∗) that every element in the
(global) stabilizer of an axis of the form Aξ fixes its endpoints. This condition
is required to adapt the construction of Gromov to this more general setting.
Note that it is automatically satisfied for classical small cancelation theory,
that is, for the action of the free group Fn on the 2n-valent tree. Note that
condition (∗) is equivalent to requiring that:
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196 A. MARTIN

• the pointwise stabilizer of each axis Aξ is finite,
• no element of G reflects an axis Aξ across a vertex.

This is for instance satisfied for a torsion-free group G acting on a simplicial
tree with a uniform upper bound on the distance between two points which are
fixed by an infinite subgroup of G.

In a nutshell, the previous theorem asserts that some small cancelation quo-
tients act in a well controlled way on a CAT(0) space. With such an action at
hand, a natural problem is to determine which properties of the group can be
deduced from analogous properties of the stabilizers of simplices. In [17, 18],
the author studied such combination problems in the case of cocompact actions
on CAT(0) simplicial complexes. In particular, the following acylindrical gen-
eralization of the Bestvina–Feighn combination theorem for hyperbolic groups
[3] was proved:

Theorem 1.2 (M. [17, 18]). — Let G(Y) be a non-positively curved complex
of groups over a finite piecewise-Euclidean complex Y , with fundamental group
G and universal cover X. Assume that:
• The universal cover X is hyperbolic (for the associated piecewise-Eu-
clidean structure),

• The local groups are hyperbolic and all the local maps are quasiconvex
embeddings,

• There exists a uniform upper bound on the distance between two points
which are fixed by an infinite subgroup of G.

Then G is hyperbolic and the local groups embed in G as quasiconvex subgroups.

We use this result to prove the following combination theorem for hyperbolic
groups:

Theorem 1.3. — There exists a universal constant 0 < λuniv ≤ 1
6 such that the

following holds. Let G(Γ) be a graph of groups over a finite simplicial graph Γ,
with fundamental group G and Bass–Serre tree T . Let (Aξ, Hξ)ξ∈Ξ a rotation
family satisfying condition (∗). Suppose in addition that the following holds:
• The local groups of G(Γ) are hyperbolic and all the local maps are qua-
siconvex embeddings,

• The action of G on T is acylindrical,
• There are only finitely many elements in Ξ modulo the action of G.

If (Aξ, Hξ)ξ∈Ξ satisfies the geometric small cancelation condition C ′′(λuniv),
then the quotient group G/�Hξ� is hyperbolic and the projection G→ G/�Hξ�
embeds each local group of G(Γ) as a quasiconvex subgroup.

While small cancelation theory over a hyperbolic group studies quotients of
hyperbolic groups by means of their action on their (hyperbolic) Cayley graphs,
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the previous theorem provides small cancelation tools to study quotients of
hyperbolic groups that split by means of their actions on their associated Bass–
Serre trees.

In Theorem 1.3 as in the Corollaries 1.3 and 1.4 below, the group G itself
is hyperbolic as a consequence of the Bestvina–Feighn combination theorem
[3]. The fact that the quotient map G → G/�Hξ� embeds each local group
of G(Γ) follows from [16]. However, the control of the geometry of the quotient
G/�Hξ� and the geometric properties of the map G → G/�Hξ� are new.
Note that the geometry of the quotient complexes and quotient groups under
the action of a rotation family has been considered for instance in [8, 9]. This
article however is to the author’s knowledge one of the first that proves the
hyperbolicity of a small cancelation quotient in the case of non-proper actions.

In particular, Theorem 1.3 has the following corollaries. Recall that, given
a group G, a family of subgroups (Hi)i∈I is said to be malnormal in G if the
following holds:
• for every i 6= j in I and every g, h ∈ G, gHig

−1 ∩ hHjh
−1 is trivial,

• for every i ∈ I and every g ∈ G−Hi, gHig
−1 ∩Hi is trivial.

Corollary 1.4. — Let G = G1 ∗M G2 be an amalgamated product such that
G1 and G2 are hyperbolic groups without 2-torsion, and M embeds in both G1

and G2 as a malnormal quasiconvex subgroup. Let (Aξ, Hξ)ξ∈Ξ be a rotation
family as in Theorem 1.3 and satisfying the small cancelation C ′′(λuniv). Then
the quotient group G/�Hξ� is hyperbolic and the projection G→ G/�Hξ�
embeds G1 and G2 as quasiconvex subgroups.

Corollary 1.5. — Let G = G1∗ϕ be an HNN extension associated to an
isomorphism ϕ : H1 → H2 between subgroups H1, H2 of G1, such that G1 is a
hyperbolic group without 2-torsion, H1 and H2 are quasiconvex in G1 and the
family (H1, H2) is malnormal in G1. Let (Aξ, Hξ)ξ∈Ξ be a rotation family as in
Theorem 1.3 and satisfying the small cancelation C ′′(λuniv). Then the quotient
group G/�Hξ� is hyperbolic and the projection G → G/�Hξ� embeds G1

as a quasiconvex subgroup.

By adapting the previous construction, we obtain similar combination results
for finiteness properties. In order to do that, we use the following combination
result, which generalizes a construction due to Haefliger [15].

Theorem 1.6 (M. [18]). — Let G(Y) be a developable complex of groups over
a finite simplicial complex Y , with fundamental group G and universal cover
X. Suppose that:
• for every finite subgroup H of G, the fixed-point set XH is contractible,
• every local group admits a cocompact model of classifying space for proper
actions.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



198 A. MARTIN

Then there exists a cocompact model of classifying space for proper actions
for G.

In particular, we use this to prove the following:

Theorem 1.7. — Let G(Γ) be a graph of groups over a finite simplicial graph
Γ, with fundamental group G and Bass–Serre tree T . Let (Aξ, Hξ)ξ∈Ξ a rotation
family that satisfies condition (∗) of Theorem 1.1, as well as the geometric small
cancelation condition C ′′(1/6). If all the local groups of G(Γ) admit cocompact
models of classifying spaces for proper actions, then so does G/�Hξ�.

Here is an outline of the article. Section 2 contains some background and
notations on complexes of groups. Section 3 contains gluing constructions for
complexes of groups which are reminiscent of the theory of orbispaces intro-
duced by Haefliger [14]. Section 4 gives a short presentation of geometric small
cancelation theory over a graph of groups, using the language of rotation fam-
ilies. Given a small cancelation group G/�Hξ� over a graph of groups as in
Theorem 1.1, we construct in Section 5 a non-positively curved 2-dimensional
complex of groups that admit G/�Hξ� as its fundamental group, by general-
izing a construction of Gromov. Section 6 deals with finiteness properties and
explains the construction of a cocompact model of classifying space for proper
actions for G/�Hξ�. We study the action resulting from our construction in
Section 7 and prove the hyperbolicity of the quotient group. Finally, Section 8
is a technical section proving that Gromov’s construction does indeed produce
a CAT(0) space.

Acknowledgements. — I would like to thank Thomas Delzant for proposing
this problem to me and for many useful discussions during this work. I also
thank the anonymous referee for useful comments and corrections.

2. Background on complexes of groups

2.1. First definitions. — Graphs of groups are algebraic objects that were in-
troduced by Serre [23] to encode group actions on simplicial trees. If one wants
to generalize that theory to higher dimensional complexes, one needs the the-
ory of complexes of groups developed by Gersten-Stallings [24], Corson [7] and
Haefliger [14]. Haefliger defined a notion of complexes of groups over more
general objects called small categories without loops (abbreviated scwol), a
combinatorial generalization of polyhedral complexes. Although in this article
we will only deal with actions on simplicial complexes, we use the terminology
of scwols to be coherent with the existing literature on complexes of groups.
For a deeper treatment of the material covered in this paragraph and for the
general theory of complexes of groups over scwols, we refer the reader to [5].
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Definition 2.1 (small category without loop). — A small category without
loop (briefly a scwol) is a set Y which is the disjoint union of a set V (Y) called
the vertex set of Y, and a set E(Y) called the edge set of Y, together with maps

i : E(Y)→ V (Y) and t : E(Y)→ V (Y).

For an edge a ∈ E(Y), i(a) is called the initial vertex of a and t(a) the terminal
vertex of a.

Let E(2)(Y) be the set of pairs (a, b) ∈ E(Y) such that i(a) = t(b). A third
map

E(2)(Y)→ E(Y)

is given that associates to such a pair (a, b) an edge ab called their composition
(and a and b are said to be composable). These maps are required to satisfy
the following conditions:
• For every (a, b) ∈ E(2)(Y), we have i(ab) = i(b) and t(ab) = t(a);
• For every a, b, c ∈ E(Y) such that i(a) = t(b) and i(b) = t(c), we have

(ab)c = a(bc) (and the composition is simply denoted abc).
• For every a ∈ E(Y), we have t(a) 6= i(a).

Definition 2.2 (simplicial scwol associated to a simplicial complex). — If Y is
a simplicial complex, a scwol Y is naturally associated to Y in the following
way:
• V (Y) is the set S(Y ) of simplices of Y ,
• E(Y) is the set of pairs (σ, σ′) ∈ V (Y)2 such that σ ⊂ σ′.
• For a pair a = (σ, σ′) ∈ E(Y), we set i(a) = σ′ and t(a) = σ.
• For composable edges a = (σ, σ′) and b = (σ′, σ′′), we set ab = (σ, σ′′).

We call Y the simplicial scwol associated to Y .

In what follows, we will often omit the distinction between a simplex σ of Y
and the associated vertex of Y.

Definition 2.3 (Complex of groups [5]). — Let Y be a scwol. A complex of
groups G(Y) = (Gσ, ψa, ga,b) over Y is given by the following data:
• for each vertex σ of Y, a group Gσ called the local group at σ,
• for each edge a of Y, an injective homomorphism ψa : Gi(a) → Gt(a),
• for each pair of composable edges (a, b) of Y, a twisting element ga,b ∈
Gt(a), with the following compatibility conditions:
1. for every pair (a, b) of composable edges of Y, we have

Ad(ga,b)ψab = ψaψb,

where Ad(ga,b) is the conjugation by ga,b in Gt(a);
2. if (a, b) and (b, c) are pairs of composable edges of Y, then the

following cocycle condition holds:

ψa(gb,c)ga,bc = ga,bgab,c.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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If Y is a simplicial complex, a complex of groups over Y is a complex of groups
over the associated simplicial scwol Y.

Definition 2.4 (Morphism of complex of groups). — Let Y, Y ′ be simplicial
complexes, Y (resp. Y ′) the associated simplicial scwols, f : Y → Y ′ a non-
degenerate simplicial map (that is, the restriction of f to any simplex is a
homeomorphism onto its image), and G(Y) (resp. G(Y ′)) a complex of groups
over Y (resp. Y ′). A morphism F = (Fσ, F (a)) : G(Y)→ G(Y ′) over f consists
of the following:
• for each vertex σ of Y, a homomorphism Fσ : Gσ → Gf(σ),
• for each edge a of Y, an element F (a) ∈ Gt(f(a)) such that

1. for every edge a of Y, we have

Ad(F (a))ψf(a)Fi(a) = Ft(a)ψa,

2. for every pair (a, b) of composable edges of Y, we have

Ft(a)(ga,b)F (ab) = F (a)ψf(a)(F (b))gf(a),f(b).

If all the Fσ are isomorphisms, F is called a local isomorphism. If in addition
f is a simplicial isomorphism, F is called an isomorphism.

Definition 2.5 (Morphism from a complex of groups to a group). — A mor-
phism from G(Y) to a group G consists of a homomorphism Fσ : Gσ → G for
every σ ∈ V (Y) and an element F (a) ∈ G for each a ∈ E(Y) such that:
• for every a ∈ E(Y), we have Ft(a)ψa = Ad(F (a))Fi(a),
• for every pair (a, b) of composable edges of Y, we have Ft(a)(ga,b)F (ab) =
F (a)F (b).

2.2. Developability and non-positively curved complexes of groups. —

Definition 2.6 (Complex of groups associated to an action without inversion
of a group on a simplicial complex [5]). — Let G be a group acting without
inversion by simplicial isomorphisms on a simplicial complex X, let Y be the
quotient space and p : X → Y the natural projection. Up to a barycentric
subdivision, we can assume that p restricts to an embedding on every simplex,
yielding a simplicial structure on Y . Let Y be the simplicial scwol associated
to Y .

For each vertex σ of Y, choose a simplex σ̃ of X such that p(σ̃) = σ. As G
acts without inversion on X, the restriction of p to any simplex of X is a
homeomorphism onto its image. Thus, to every simplex σ′ of Y contained in σ,
there is a unique τ of X and contained in σ̃, such that p(τ) = σ′. To the edge
a = (σ′, σ) of Y we then choose an element ha ∈ G such that ha.τ = σ̃′. A
complex of groups G(Y) = (Gσ, ψa, ga,b) over Y associated to the action of G
on X is given by the following:
• for each vertex σ of Y, let Gσ be the pointwise stabilizer of σ̃,
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• for every edge a of Y, the homomorphism ψa : Gi(a) → Gt(a) is defined
by

ψa(g) = hagh
−1
a ,

• for every pair (a, b) of composable edges of Y, define
ga,b = hahbh

−1
ab .

Moreover, there is an associated morphism F = (Fσ, F (a)) from G(Y) to G,
where Fσ : Gσ → G is the natural inclusion and F (a) = ha.

Definition 2.7 (Developable complex of groups). — A complex of groups
over a simplicial complex Y is developable if it is isomorphic to the complex of
groups associated to an action without inversion on a simplicial complex.

Unlike in Bass–Serre theory, not every complex of groups is developable.
Checking whether or not a complex of groups is developable is a non trivial
problem in general. We have the following characterisation of developability:

Theorem 2.8 (Theorem III.C.2.13, Corollary III.C.2.15, Theorem III.C.3.13
and Corollary III.C.3.15 of [5]). — Let G(Y) = (Gσ, ψa, ga,b) be a complex of
groups over a simplicial complex Y .
• G(Y) is developable if and only if there exists a group G and a morphism
F : G(Y)→ G that is injective on the local groups.

• To each such morphism F : G(Y) → G that is injective on the local
groups, one can associate an action of G on a simplicial complex, called
the development associated to F , such that the induced complex of groups
is isomorphic to G(Y).

• If G(Y) is developable, then there exists a group G and a morphism
F : G(Y) → G which is injective on the local groups and such that
the associated development is connected and simply-connected. Such a
group, which is unique up to isomorphism, is called the fundamental
group of G(Y). The development associated to such a morphism, which
is unique up to equivariant isomorphism, is called the universal cover
of G(Y).

There exists an explicit description of the fundamental group of a complex
of groups which generalizes the usual definition of the fundamental group of a
space in terms of loops. This construction being rather technical, we omit it
and refer to [5, Definition III.C.3.5] for details. We will just use the following
functoriality property:

Proposition 2.1. — Let G(Y) be a developable complex of groups over a sim-
plicial complex Y and v be a vertex of Y . Then there exists a group π1(G(Y), v)
together with a morphism FG(Y),v : G(Y) → π1(G(Y), v) which is injective on
the local groups, such that the associated development is connected and simply
connected (i.e., π1(G(Y), v) is a fundamental group of G(Y)).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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Moreover, if G(Y), G(Y ′) are developable complexes of groups over simplicial
complexes Y, Y ′, F : G(Y)→ G(Y ′) is a morphism of complexes of groups over
a simplicial map f : Y → Y ′ and v is a vertex of Y , then there is a morphism
F∗ : π1(G(Y), v) → π1(G(Y ′), f(v)) such that for every simplex σ of Y , the
following diagram commutes:

π1(G(Y), v)
F∗ // π1(G(Y ′), f(v))

Gσ

(FG(Y),v)σ

OO

Fσ

// Gf(σ).

(FG(Y′),f(v))f(σ)

OO

We now recall a geometric condition that ensures the developability of a
given complex of groups. From now on, we assume that Y is endowed with a
piecewise-Euclidean structure.

Definition 2.9 (Local complex of groups). — Let v be a vertex of Y . We
denote by G(Yv) the complex of groups over the star St(v) of v induced by G(Y)
in the obvious way.

We have the following result:

Proposition 2.2 (Proposition III.C. 4.11 of [5]). — For every vertex v of Y ,
the local complex of groups G(Yv) is developable and its fundamental group is
isomorphic to Gv. Denote by Xv its universal cover, called the local devel-
opment at v. Then the piecewise-Euclidean structure on the star St(v) yields
a piecewise-Euclidean structure with finitely many isometry types of simplices
on Xv such that the Gv-equivariant projection Xv → St(v) restricts to an isom-
etry on every simplex.

Definition 2.10 (non-positively curved complex of groups). — We say that
G(Y) is non-positively curved if each local development Xv with the simplicial
metric coming from the piecewise-Euclidean structure of Y is a CAT(0) space.

Theorem 2.11 (Theorem III.C.4.17 of [5]). — A non-positively curved complex
of groups is developable.

3. Trees of complexes of groups

This section presents the main algebraic construction of this article. Given
a simplicial complex Y , subcomplexes (Yi) whose interiors cover Y and such
that the nerve of the associated open cover is a tree, and a family of complexes
of groups G(Yi) over Yi, we explain how one can glue them together to obtain
a complex of groups G(Y) over Y . This procedure can be thought as making
“trees of complexes of groups”. In order to lighten notations, we will only detail
the case of a cover consisting of two subcomplexes with a connected intersection
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in this section. The tree structure of the nerve ensures that the general case
can be treated in a similar way, by performing all the gluings at the same time.

3.1. Immersions of complexes of groups

Definition 3.1 (Immersion of complexes of groups.) — Let G(Y1) and G(Y2)
be two complexes of groups over two simplicial complexes Y1 and Y2 and F :
G(Y1)→ G(Y2) a morphism of complexes of groups over a simplicial morphism
f : Y1 → Y2. We say that F is an immersion if f is a simplicial immersion and
all the local maps Fσ are injective.

Note that if in addition both complexes of groups are assumed to be de-
velopable, then the simplicial immersion f lifts to an equivariant simplicial
immersion between their universal coverings.

For i = 1, 2, let Xi, Yi be simplicial complexes, Gi a group acting without
inversion on Xi by simplicial isomorphisms, pi : Xi → Yi a simplicial map
factoring through Xi/Gi and inducing a simplicial isomorphism Xi/Gi ' Yi.
Suppose we are given a simplicial immersion f : Y1 → Y2, a homomorphism
α : G1 → G2 and an equivariant simplicial immersion f : X1 → X2 over f such
that for every simplex σ of X1, the induced map α : Stab(σ) → Stab(f̄(σ)) is
a monomorphism. Recall that from the action of Gi on Xi, it is possible to
define a complex of groups over Yi that encodes it. We now explain how to
define such complexes of groups G(Y1) and G(Y2) over Y1 and Y2, such that
there is an immersion G(Y1)→ G(Y2).

Recall that to define a complex of groups over Y1 induced by the action of G1

on X1, we had to associate to every vertex σ of Y1 a simplex σ of X1, and to
every edge a of Y1 an element ha of G1 (see Definition 2.6). Assume we have
made such choices to define G(Y1). We now make such choices for Y2.

• Let σ′ be a vertex of Y2, which we identify with the associated simplex
of Y2. If σ′ = f(σ) for a simplex σ of Y1, we choose σ′ = f(σ). Otherwise,
we pick an arbitrary lift of σ′.

• Let a′ be an edge of Y2. If a′ = f(a) for an edge a of Y1, we choose
ha′ = α(ha). Otherwise, we choose an arbitrary element ha′ that satisfies
the conditions described in Definition 2.6.

This yields a complex of groups G(Y2) over Y2. We now define a morphism of
complex of groups F = (Fσ, F (a)) : G(Y1)→ G(Y2) over f as follows:

• The maps Fσ : Gσ → Gf(σ) are the monomorphisms α : Stab(σ) →
Stab(f(σ)),

• The elements F (a) are all trivial.

It is straightforward to check that this indeed yields an immersion F = (Fσ, F (a)) :
G(Y1)→ G(Y2) over f .
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Definition 3.2. — We call the immersion F = (Fσ, F (a)) : G(Y1) → G(Y2)

over f an immersion associated to (Y1
f→ Y2, X1

f̄→ X2, G1
α→ G2).

3.2. Amalgamation of non-positively curved complexes of groups. — In what
follows, Y is a finite simplicial complex, Y1, Y2 are subcomplexes of Y whose
interiors cover Y , and Y0 = Y1∩Y2. We assume that Y0 is connected. We further
assume that, for i = 0, 1, 2, we are given a simplicial complex Xi, a Gi a group
acting without inversion on Xi, pi : Xi → Yi a simplicial map factoring through
Xi/Gi and inducing a simplicial isomorphism Xi/Gi ' Yi. We assume that,
for i = 1, 2, we are given a homomorphism αi : G0 → Gi and an equivariant
simplicial immersion f̄i : X0 → Xi over the inclusion fi : Y0 ↪→ Yi such that
for every simplex σ of X0, the induced map αi : Stab(σ) → Stab(f̄i(σ)) is an
isomorphism.

Y0

Y1 Y2

X0

X1
X2

G0
G1 G2

p0

p1 p2

f1 f2

α1 α2

f̄1 f̄2

Figure 3.1. A diagram of maps.

By the results of the previous paragraph, we can choose complexes of groups
G(Yi) over Yi associated to these actions in such a way that there are immer-

sions G(Y0)
Fi→ G(Yi) associated to (Y0

fi→ Yi, X0
f̄i→ Xi, G0

αi→ Gi). Note that
the local maps (Fi)σ are isomorphisms.

We now use these immersions to amalgamate G(Y1) and G(Y2) along G(Y0).
So as to emphasize which complex of groups is under consideration, we will
indicate it as a superscript (see below). We define a complex of groups G(Y)
over Y as follows:
• If σ is a vertex of Y0, we set GYσ = GY0

σ .
If σ is a vertex of Yi \ Y0, we set GYσ = GYiσ .
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• If a is an edge of Y0, we set ψYa = ψY0
a .

If a is an edge of Yi \ Y0, we set ψYa = ψYia .
If a is an edge of Yi such that i(a) is a vertex of Yi \ Y0 and t(a) is a

vertex of Y0, we set ψYa =
(
(Fi)t(a)

)−1 ◦ ψYia .
• If (a, b) is a pair of composable edges of Y0, we set gYa,b = gY0

a,b.
If (a, b) is a pair of composable edges of Yi \ Y0, we set gYa,b = gYia,b.
If (a, b) is a pair of composable edges of Y such that b is not an edge

of Y0 but t(a) is a vertex of Y0, we set gYa,b =
(
(Fi)t(a)

)−1
(gYia,b).

It is straightforward to check all the compatibility conditions of a complex of
groups.

Definition 3.3 (Amalgamation of complexes of groups). — We denote by
G(Y1) ∪

G(Y0)
G(Y2) the previous complex of groups.

Theorem 3.4 (Seifert-van Kampen Theorem for complexes of groups, Theo-
rem III.C.3.11.(5) of [5]). — With the same notations as above, the fundamental
group of G(Y1) ∪

G(Y0)
G(Y2) is isomorphic to the pushout G1 ∗

G0

G2.

Moreover, let F : G(Y1) → G(Y) the inclusion of complex of groups over
the inclusion Y1 → Y . For every vertex v of Y1, the associated morphism
F∗ : π1(G(Y1), v)→ π1(G(Y), v) is conjugated to the projection G1 → G1 ∗

G0

G2.

We now assume in addition that Y comes equipped with a piecewise-Eu-
clidean structure. This endows X0, X1, X2 with a piecewise-Euclidean simpli-
cial structure that turns the maps fi : X0 → Xi into local isometries. Let v be
a vertex of Y . Since the interiors of Y1 and Y2 cover Y , the star of v is fully
contained in one of these subcomplexes. We thus obtain from Theorem 2.11
the following developability theorem:

Theorem 3.5. — Under the same assumptions as above, if X1 and X2 are
CAT(0) for their induced piecewise-Euclidean structure, then G(Y1) ∪

G(Y0)
G(Y2)

is non-positively curved, hence developable.

As stated at the beginning of this section, this theorem generalizes directly
to the case of a finite complex Y covered by the interiors of a finite family of
subcomplexes (Yi) such that the nerve of the associate open cover is a tree. We
give the following particular case, which will be used in the article.

Let Y be a finite simplicial complex endowed with a piecewise-Euclidean
structure, let Y0, Y1, . . . , Yn be a family of connected subcomplexes of Y whose
interiors cover Y , and for i = 1, . . . , n, let Y ′i = Y0 ∩ Yi. We assume that each
Y ′i is non empty and connected. We further assume that for 1 ≤ i 6= j ≤ n, we
have Yi ∩ Yj = ∅.
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For each Yi (resp. Y ′i ), we are given a simplicial complex Xi (resp. X ′i), a
group Gi (resp. G′i) acting without inversion on Xi (resp. X ′i), pi : Xi → Yi
(resp. p′i : X ′i → Y ′i ) a simplicial map factoring through Xi/Gi) (resp. X ′i/G′i)
and inducing a simplicial isomorphism Xi/Gi ' Yi (resp. X ′i/G′i ' Y ′i ). This
yields a piecewise-Euclidean structure on each Xi. We assume that, for i =
1, . . . , n, we are given homomorphisms αi : G′i → G0 and βi : G′i → Gi, an
αi-equivariant simplicial immersion fi : X ′i → X0 over the inclusion Y ′i ↪→ Y0

and a βi-equivariant simplicial immersion gi : X ′i → Xi over the inclusion
Y ′i ↪→ Yi. We finally assume that for every simplex σ of X ′i, the induced maps
αi : Stab(σ)→ Stab(f̄i(σ)) and βi : Stab(σ)→ Stab(ḡi(σ)) are isomorphisms.

As before, we can construct induced complexes of groups G(Yi) over Yi and
G(Y ′i) over Y ′i , along with immersions G(Y ′i) → G(Y0) and G(Y ′i) → G(Yi).
These complexes of groups can in turn be amalgamated to obtain a complex
of groups G(Y) over Y . We get the following:

Theorem 3.6. — If each simplicial complex Xi, i = 0, . . . , n, is CAT(0) for
its induced piecewise-Euclidean structure, then G(Y) is non-positively curved,
hence developable.

4. Rotation families, actions on trees and geometric small cancelation theory

We now present the theory of small cancelation over a graph of groups, using
the notion of rotation families introduced by Gromov [13].

Definition 4.1 (rotation family). — LetX be a metric space andG be a group
acting isometrically on X. A rotation family consists of a pairwise distinct
collection (Aξ, Hξ)ξ∈Ξ where:
• each Hξ is a subgroup of G stabilizing the subspace Aξ ⊂ X (i.e.,
HξAξ = Aξ),

• there is an action of G on Ξ which is compatible with the action of G
on X, i.e., for every ξ ∈ Ξ, we have Agξ = gAξ and Hgξ = gHξg

−1.

In what follows, we will deal only with actions on trees. For the related
notions in the general case, we refer to [8, 11, 9].

Definition 4.2 (Geometric small cancelation condition for actions on trees).
— Let T be a simplicial tree, G a group acting isometrically on T , and
(Aξ, Hξ)ξ∈Ξ a rotation family such that each Hξ is an infinite cyclic subgroup
generated by a hyperbolic element gξ with axis Aξ ⊂ T . We define the following
constants:

lmax = max
ξ 6=ξ′

diam(Aξ ∩Aξ′),

Rmin = min
ξ∈Ξ

l(gξ),
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where l(gξ) denotes the translation length of gξ acting on T .
We say that the rotation family (Aξ, Hξ)ξ∈Ξ satisfies the geometric small

cancelation condition C ′′(α) if

lmax < αRmin.

In what follows, we will be particularly interested in the C ′′(α) condition
for α ≤ 1

6 .

Remark 4.3 (Classical small cancelation). — This geometric framework covers
the classical C ′′(1/6) small cancelation theory. Let Fn be the free group on n
generators, acting freely cocompactly on the associated 2n-valent tree Tn. To
every element g of Fn corresponds an isometry of Tn. Let R = (gi)i∈I be a set
of cyclically reduced words of Fn. We assume that R is symmetrised, that is,
inverses and cyclic conjugates of elements of R belong to R. Each gi defines
an axis Ai ⊂ Tn and a non-trivial infinite subgroup 〈gi〉 ⊂ Fn. The family of
translates gAi, g ∈ Fn and subgroups g〈gi〉g−1 defines a rotation family, and
one sees that the geometric small cancelation condition C ′′(1/6) is equivalent
to requiring that the length of any common prefix to two elements of R is
strictly less than a sixth of the length of the shortest element of R.

Remark 4.4 (C ′(1/6) versus C ′′(1/6)). — Another small cancelation condi-
tion which is more commonly used in geometric group theory is the C ′(1/6)-con-
dition which, restated in this geometric framework of actions on trees, requires
that for ξ 6= ξ′, the diameter of the intersection Aξ ∩ Aξ′ is strictly less than
1
6 · min(l(gξ), l(gξ′)). In the case of classical small cancelation, the uniform
condition C ′′(1/6) is much stronger than condition C ′(1/6). Indeed, a sym-
metrised set satisfying the C ′′(1/6) condition is necessarily finite. In contrast,
infinitely-presented C ′(1/6) small cancelation groups form a very rich class of
groups [1, 2]. In this article, the uniform bound in the C ′′(1/6) condition will
be crucial for certain geometric constructions (see Sections 5 and 8).

5. A non-positively curved complex of groups arising
from geometric small cancelation theory

From now on, we consider a graph of groups G(Γ) over a finite graph Γ,
with fundamental group G and associated Bass–Serre tree T , together with a
rotation family (Aξ, Hξ)ξ∈Ξ satisfying the assumptions of Theorem 1.1. Recall
in particular that this implies that lmax <

1
6Rmin.

Definition 5.1 (cones). — For every ξ ∈ Ξ, let Cξ be the cone with apex Oξ
over the axis Aξ, with a simplicial structure coming from that of Aξ and in
which every triangle is modeled after a flat isosceles triangle τ whose basis has
length 1 and whose other edges have length r =

(
2 sin( π

Rmin
)
)−1, the angle at

the apex Oξ being 2π
Rmin

.
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Definition 5.2 (coned-off space). — Let T̂ be the 2-dimensional simplicial
complex obtained from the disjoint union of T and the various cones Cξ by
identifying the base of each Cξ with the axis Aξ ⊂ T in the obvious way. This
complex is endowed with a structure of piecewise-Euclidean complex. The
action of G on T naturally extends to an isometric action on T̂ .

Remark 5.3. — In [12], Gromov uses a different metric on the coned-off space.
In this article, we use a piecewise-Euclidean metric in order to use the com-
bination theorems of [17] for groups acting on CAT(0) piecewise-Euclidean
complexes (or more generally on Mκ-complexes in the sense of Bridson [4]).

Coordinates. — We introduce some coordinates on T̂ as follows. For an ele-
ment u ∈ Cξ ⊂ T̂ , we write u = [ξ, x, t], where x is the intersection point of the
ray [Oξ, u) with T , and t = d(u,Oξ).

Since axes Aξ can share more than one edge, the coned-off space T̂ is not
CAT(0) in general. In what follows, we generalize a trick due to Gromov [12] to
turn this space into a CAT(0) space. This will be done by performing certain
identifications described below, which rely on the following definition.

Definition 5.4 (Critical angle θc). — We define the critical angle

θc =
π

2
− π lmax

Rmin
.

Note that the C ′′(1/6) condition immediately implies the following:

Lemma 5.5. — We have θc > π
3 .

Identification of slices. — Let ξ 6= ξ′ be two elements of Ξ such that the
intersection Iξ,ξ′ ⊂ T := Aξ ∩ Aξ′ is non-empty. By the C ′′(1/6) condition,
Iξ,ξ′ is a segment [x1, x2] of T ⊂ T̂ of length at most lmax. In particular,
the subset C(Iξ,ξ′) of Cξ consisting of the cone over Iξ,ξ′ isometrically embeds
in the plane. Given point x, y, z of C(Iξ,ξ′), we can thus speak of the angle
∠z(x, y) between x and y seen from z,.

Definition 5.6 (slice). — Let ξ and ξ′ be two distinct elements of Ξ such that
the associated axes have a nonempty intersection Iξ,ξ′ ⊂ T . We define the slice
Cξ,ξ′ ⊂ Cξ as the set of points u = [ξ, x, t] of Cξ such that x ∈ Iξ,ξ′ and both
angles ∠x1

(Oξ, u) and ∠x2
(Oξ, u) are at least θc.

Remark 5.7. — Note in the previous definition that θc corresponds to the
angle ∠x1(Oξ, x2) when the segment [x1, x2] has exactly lmax edges.

We have the following result:

Lemma 5.8. — A point [ξ, x, t] of a cone contained in a slice satisfies the
inequality t ≥ r sin(θc) >

√
3

2 r.
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Proof. — Recall that θc > π
3 by Lemma 5.5. The result is then an elementary

application of triangle geometry. �

Following an idea of Gromov [12], we now glue slices Cξ,ξ′ ⊂ Cξ and Cξ′,ξ ⊂
Cξ′ together by identifying points u = [ξ, x, t] ∈ Cξ,ξ′ and u′ = [ξ′, x′, t′] ∈ Cξ′,ξ
if x = x′ ∈ I, t = t′.

θc θc

Cξ

Cξ′

I

Figure 5.1. A slice identification.

Definition 5.9 (modified coned-off space). — Let T̂slices be the space obtained
from T̂ by making such identifications for every distinct ξ, ξ′ ∈ Ξ such that the
associated axes Aξ, Aξ′ have a nontrivial intersection. We call it the modified
coned-off space.

Let also Yslices be the quotient complex G\T̂slices. This space can be seen
as the graph G\T with a collection of polygons attached and partially glued
together along slices, a polygon corresponding to the image of a cone of T̂ .

Note that, by definition of the identifications of slices, the quotient map
T̂ → T̂slices restricts to an injection on each cone Cξ. Moreover, we have the
following:

Lemma 5.10. — For every ξ, ξ′ ∈ Ξ, the intersection of the images of Cξ and
C ′ξ in T̂slices is exactly the image of the slice Cξ,ξ′ in T̂slices.

Proof. — It is enough to show the following: Let ξ1, . . . , ξn be a sequence of
elements of Ξ, x a point of T and t ≥ 0 such that, for each 1 ≤ i < n, we have
[x, t, ξi] ∈ Cξi,ξi+1

(or equivalently [x, t, ξi+1] ∈ Cξi+1,ξi). Then we also have
[x, t, ξ1] ∈ Cξ1,ξn (or equivalently [x, t, ξn] ∈ Cξn,ξ1).

Note that for every 1 ≤ i ≤ n there exist exactly two points ai, bi in Aξi ⊂ T
such that the angle between Oξi and [x, t, ξi] seen from ai and bi is exactly
the critical angle θc. Let Ii be the sub-interval of the axis Aξi between ai and
bi. Note that Ii does not depend on 1 ≤ i ≤ n by definition of the metric
on T̂ , so we write I for this common sub-interval of T . Now the condition
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[x, t, ξi] ∈ Cξi,ξi+1
(or equivalently [x, t, ξi+1] ∈ Cξi+1,ξi) is equivalent to having

I ⊂ Aξi ∩ Aξi+1
. It follows from the assumption that we have I ⊂ Aξi ∩ Aξi+1

for every 1 ≤ i < n, and in particular I ⊂ Aξ1 ∩ Aξn , which is equivalent to
having [x, t, ξ1] ∈ Cξ1,ξn (or equivalently [x, t, ξn] ∈ Cξn,ξ1). �

We now turn to the construction of a non-positively curved complex of
groups with G/�Hξ� as fundamental group. This complex of groups will be
defined using the amalgamation procedure described in Section 3. We start by
defining various subcomplexes.

Definition 5.11 (polygonal neighborhoods, ribbons). — Let Nξ (resp. N ′ξ) be
the polygonal neighborhood of the apex Oξ ∈ Cξ in T̂ obtained by taking the
image of Cξ under the homothety of center Oξ and ratio 1

2 (resp. 1
4 ).

We also define the ribbon Rξ as the subcomplex obtained fromNξ by deleting
the interior of N ′ξ.

Up to making simplicial subdivisions, we can assume that the various com-
plexes Nξ, N ′ξ and Rξ are subcomplexes of T̂ . By Lemma 5.8 we can identify
them with their images in T̂slices.

Definition 5.12 (truncated cone-off spaces). — We define the subcomplex
T̆ ⊂ T̂ (resp. T̆slices ⊂ T̂slices) as the subcomplex obtained from T̂ (resp. T̂slices)
by deleting the interiors of all the polygonal neighborhoods N ′ξ. This subcom-
plex comes equipped with an action of G by simplicial isometries. We also
denote by Y̆ (resp. Y̆slices) the associated quotient space.

A first group action. — We consider the action of G on T̆slices.
Let ξ ∈ Ξ and gξ be a generator of Hξ. Since gξ acts hyperbolically on T ,

we can write gξ = h
nξ
ξ where nξ ≥ 1 and hξ ∈ G is not a proper power of an

element of G. Note that hξ also acts hyperbolically on T with axis Aξ. Let
Sξ be the global stabilizer of Aξ, that is, the set of elements g ∈ G such that
gAξ = Aξ. Note that Sξ acts on Cξ by simplicial isometries. Note that there is
an isometric embedding Rξ ↪→ T̆slices which is equivariant with respect to the
inclusion αξ : Sξ → G.

A second group action. — We consider the action of Sξ on the ribbon Rξ.
Since every element of Sξ stabilizes Aξ by definition, it follows from the

rotation family assumption that Hξ = 〈gξ〉 is normal in Sξ. Let Kξ be the
quotient of the polygonal neighborhood Nξ under the action of 〈gξ〉. This is a
regular polygon with l(gξ) = nξ · l(hξ) edges. Moreover, there is an action by
isometries of the finite group Sξ/〈gξ〉 on Kξ.

A third group action. — We consider the action of Sξ/〈gξ〉 on Kξ.
Let βξ : Sξ → Sξ/〈gξ〉 be the canonical projection. Then there is a βξ-equi-

variant local isometry Rξ → Kξ.
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T̆slices

Kξ

Rξ

. . . . . .

G

Sξ

Sξ/〈gξ〉

Figure 5.2. The three group actions to be amalgamated.

Note that the αξ-equivariant embedding Rξ ↪→ T̆slices yields an isometric
embedding Sξ\Rξ ↪→ G\Y̆slices. Moreover, the βξ-equivariant local isome-
try Rξ → Kξ yields an isometric embedding Sξ\Rξ ↪→

(
Sξ/〈gξ〉

)\Kξ. The
complex obtained from the disjoint union of Y̆slices and the various complexes(
Sξ/〈gξ〉

)\Kξ, for a set of representatives of G\Ξ, by identifying the embed-

ded copies Sξ\Rξ ↪→ G\Y̆slices and Sξ\Rξ ↪→
(
Sξ/〈gξ〉

)\Kξ is naturally
isometric to the quotient complex Yslices; we will thus think of these quotients
as subcomplexes of Yslices.

Definition 5.13. — Using the results of Section 3, we can thus amalgamate
these three actions to get a complex of groups G(Yslices) over Yslices.

The following result will be proved in Section 8 by studying links of points
of T̂slices.

Proposition 5.1. — The simplicial complex T̂slices is CAT(0).

We have the following:

Lemma 5.14. — The simplicial complex Kξ is CAT(0).

Proof. — The link of the center of Kξ is a loop of length l(gξ) 2π
Rmin

≥ 2π, so
the result follows from a criterion due to Gromov [5, Theorem II.5.5]. �

Theorem 5.15. — The complex of groups G(Yslices) is non-positively curved,
hence developable, and its fundamental group is isomorphic to G/�Hξ�.

Remark 5.16. — In the case of the free group on k generators acting on
its associated 2k-valent tree in the natural way, Theorem 5.15 implies that
classical small cancelation groups satisfying the C ′′(1/6)-condition are CAT(0),
as shown by Gromov [12]. From a different point of view, Wise [25] proved
that many classical small cancelation groups act properly and cocompactly on
CAT(0) cube complexes, using techniques that go back to work of Sageev [22].
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Proof of Theorem 5.15. — Since T̂slices andKξ are CAT(0) by Proposition 5.1
and Lemma 5.14, the complex of groups G(Yslices) is non-positively curved,
hence developable by Theorem 3.6. To compute the fundamental group of
G(Yslices) we can assume that G\Ξ is reduced to a single element, the general
case following in the same way. Choose an element ξ ∈ Ξ and a generator
gξ = hnξ of Hξ (with the same notations as before). It follows from the Van
Kampen Theorem 3.4 that the fundamental group of G(Yslices) is isomorphic to
the amalgamated product G ∗Sξ Sξ/〈gξ〉, where the morphism αξ : Sξ ↪→ G is
the inclusion and the morphism βξ : Sξ → Sξ/〈gξ〉 is the canonical projection.
Thus this group is isomorphic to G/〈gξ〉, and the result follows. �

This theorem implies the following corollary, which is well-known for classical
small cancelation over free products with amalgamation or HNN extensions (see
[16, Theorems V.11.2 and V.11.6]):

Corollary 5.17. — The quotient map G → G/�Hξ� embeds each local
group of G.

Proof. — Let G(Y̆slices) be the complex of groups over Y̆slices associated to the
action of G on T̆slices. By construction, this complex of groups is the restriction
of G(Yslices) to the subcomplex Y̆slices, that is, there exists a morphism of
complexes of groups F = (Fσ, F (a)) : G(Y̆slices)→ G(Yslices) over the inclusion
Y̆slices ↪→ Yslices such that each local map Fσ : Gσ → Gσ is the identity and
all the elements F (a) are trivial. For a chosen basepoint v0 ∈ Y̆slices, the
morphism F induces a map F∗ : π1(G(Y̆slices), v0)→ π1(G(Yslices), v0) which is
conjugated to G → G/�Hξ� by Theorem 3.4. As G(Yslices) is developable,
the maps (FG(Yslices),v0)σ : Gσ → G/�Hξ� are injective and factor as Gσ ↪→
G� G/�Hξ� by Theorem 2.8, hence the result. �

We now study the local groups of the complex of groups G(Yslices). We first
need the following definition.

Definition 5.18. — Let u be a point of T̆slices and choose an element [ξ, x, t] ∈
T̆ that projects to u. Suppose that there exists an element ξ′ 6= ξ such that u
belongs to the slice Cξ,ξ′ . Then there exist exactly two points a, b in Aξ ⊂ T
such that the angle between Oξ and u seen from a and b is exactly the critical
angle θc. Let Iu be the minimal subcomplex of the axis Aξ containing the
geodesic between a and b.

Lemma 5.19. — Let u be a point of T̆slices. If u belongs to some slice Cξ,ξ′ ⊂
T̆slices for some ξ 6= ξ′ in Ξ, the stabilizer of u is exactly the global stabilizer
of Iu. Otherwise, the stabilizer of u is finite.

Proof. — Let u be a point of T̆slices and [ξ, x, t] ∈ T̆ be a point projecting to u.
Let g be an element of G fixing u. The element g sends [ξ, x, t] to [gξ, gx, t].
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Since g fixes u ∈ T̆slices, these two points have to be identified, which implies
that gx = x.

If gξ = ξ, then g stabilizes the axis Aξ. By condition (∗), g fixes pointwise
Aξ, and the stabilizer of u is finite by condition (∗).

If gξ 6= ξ, then [ξ, x, t] is contained in the slice Cξ,gξ. In particular, the
segment Iu is contained in Aξ ∩ gAξ and g globally stabilizes Iu. Reciprocally,
an element stabilizing Iu fixes u since G acts on T̆slices by isometries. �

Lemma 5.20. — The local groups of G(Yslices) are either finite or subgroups of
the local groups of G(Γ).

Proof. — Since G(Yslices) is an amalgam by Definition 5.13, it is enough to
look at stabilizers for the action of G on T̆slices and for the action of Sξ/〈gξ〉
on Kξ. For the latter action, its is enough to recall that the group Sξ/〈gξ〉 itself
is finite.

Since G acts on T without inversion, it acts without inversion on T̆slices.
Thus, it is enough to look at stabilizers of points of T̆slices under the action
of G. Let u be a point of T̆slices. If u does not belong to some slice, then the
stabilizer of u is finite by Lemma 5.19. Otherwise, the stabilizer of u is the
global stabilizer of Iu by Lemma 5.19. Since G acts on T without inversion,
an element of the global stabilizer of Iu either fixes pointwise Iu or flips it and
fixes the central vertex of Iu. In each case, it follows that the stabilizer of u is
contained in the stabilizer of some vertex of T . �

6. Construction of cocompact models of classifying spaces for proper actions

Gluing slices together was used to prove that the complex of groupsG(Yslices)
is non-positively curved. We now modify the construction so as to get a com-
plex of groups that can be used to study the finiteness properties of the small
cancelation quotient. In particular, we obtain the following:

Theorem 6.1. — Let G(Γ) be a graph of groups over a finite simplicial graph
Γ, with fundamental group G and Bass–Serre tree T . Let (Aξ, Hξ)ξ∈Ξ a rotation
family that satisfies condition (∗) of Theorem 1.1, as well as the geometric small
cancelation condition C ′′(1/6). If all the local groups of G(Γ) admit cocompact
models of classifying spaces for proper actions, then so does G/�Hξ�.

Definition 6.2. — Let Xslices be the universal covering of G(Yslices) and Γ̃
the preimage of Γ under the projection Xslices → Yslices.

An apex of Xslices is a point in the preimage of the apex of
(
Sξ/〈gξ〉

)\Kξ

under the map Xslices → Yslices. Polygonal neighborhoods of apices of Xslices

are obtained by considering the connected components of the preimage of
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Yslices − Y̆slices (green region in Figure 6.1). We now collapse radially simul-
taneously the complement of these neighborhoods (gray region in Figure 6.1).

θc

Figure 6.1. Radial collapsing.

Definition 6.3. — Let X be the space obtained after such collapses and
pcoll : Xslices → X the associated collapsing map. The space X inherits from
Xslices a canonical simplicial structure (see Figure 6.1). Identifying slices in X
yields a slice identification map pslices : X → Xslices. The action of G/�Hξ�
on Xslices yields an action on X which makes pslices equivariant, and we denote
by Y the quotient space.

The space X space is topologically the graph Γ̃ with a bunch of polygons
glued to it. Note that Y is obtained from Yslices by applying the same collapsing
procedure. It is the graph Γ with a collection of polygons attached to it. As
this can be done without loss of generality, we will consider for the remaining of
this section that this collection is reduced to a single polygon, so as to lighten
notations.

Lemma 6.4. — Let H be a non-trivial finite subgroup of G/�Hξ�. Then the
fixed-point set XH is non-empty and contractible.

Proof. — Note that the complex X is a (connected and simply connected)
C ′(1/6) complex in the sense of McCammond–Wise [19, Definition 3.4]. We
start by claiming that a connected and simply connected C ′(1/6) complex is
contractible. This a direct generalization of a result of Ol’shanskĭı [20, Theo-
rem 13.3], namely that the universal cover of the presentation complex associ-
ated to a torsion-free C ′(1/6) small cancelation group (in the classical sense),
which is an instance of a C ′(1/6) complex, is contractible. The proof is the
following: Since such a complex is 2-dimensional and simply connected, it
is enough to prove that its second homotopy group vanishes. This in turn
was proved by Ol’shanskĭı by carefully studying so-called spherical diagrams,
which are essentially combinatorial maps from the 2-dimensional sphere (with
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an appropriate polygonal structure) to the universal cover of the presentation
complex. Such an argument carries in a straightforward way to the case of an
arbitrary C ′(1/6) small cancelation complex.

In particular, the result of the Lemma holds for H being the trivial subgroup
of G/�Hξ�. To prove the result for an arbitrary finite subgroup H, it is
enough to prove that the fixed-point set XH is a non-empty connected and
simply connected C ′(1/6) complex.

Let H be a non-trivial finite subgroup of G/�Hξ�. Since Xslices is CAT(0),
the fixed-point set XH

slices is non-empty and convex by [5, Corollary II.2.8]. The
collapsing map pcoll : Xslices → X being equivariant, the fixed-point set XH is
non-empty and connected.

To prove that XH is simply connected, choose an embedded loop L in XH .
Since X is simply connected, we can choose a reduced disk diagram associated
to L, that is, a contractible planar polygonal complex D homeomorphic to the
2-disk, together with a combinatorial map D → X mapping homeomorphically
the boundary of D to L, such that no two distinct polygons of D sharing
an edge are mapped to the same polygon of X (for the background on disk
diagrams, we refer to [19]). By the classification of reduced disk diagrams
[19, Theorem 9.4], there exists a polygon P of D such that at least half of
the boundary of ϕ(P ) is contained in L. As L is pointwise fixed by H by
assumption, the C ′(1/6) condition implies that ϕ(P ) itself is pointwise fixed
by H. Reasoning by induction on the number of polygons in such a planar
complex, it follows that ϕ(D) ⊂ XH , and thus XH is simply connected.

To conclude, it remains to notice that XH is a (non-empty connected and
simply connected) C ′(1/6) complex, as a subcomplex of the C ′(1/6) complexX.

�

Proof of Theorem 6.1. — This follows from the previous lemma together with
Theorem 1.6. �

7. Hyperbolicity of the small cancelation quotient

In this section we prove the following:

Theorem 7.1. — There exists a universal constant 0 < λuniv ≤ 1
6 such that

the following holds. Let G(Γ) be a graph of groups over a finite simplicial graph,
with fundamental group G and Bass–Serre tree T . Let (Aξ, Hξ)ξ∈Ξ a rotation
family satisfying condition (∗). Suppose in addition that:
• The local groups of G(Γ) are hyperbolic and all the local maps are qua-
siconvex embeddings,

• There is a uniform upper bound on the distance between two vertices
which are fixed by an infinite subgroup of G,

• There are only finitely many elements in Ξ modulo the action of G.
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If (Aξ, Hξ)ξ∈Ξ satisfies the geometric small cancelation condition C ′′(λuniv),
then the quotient group G/�Hξ� is hyperbolic and the projection G→ G/�Hξ�
embeds each local group of G(Γ) as a quasiconvex subgroup.

We assume that T̂slices is given a simplicial structure such that G acts on it
by simplicial isomorphisms.

Lemma 7.2. — The pointwise stabilizer of every simplex of T̂slices is hyperbolic.
Moreover, for every inclusion of simplices σ ⊂ σ′, the inclusion Gσ′ ↪→ Gσ is
a quasiconvex embedding.

Before proving the lemma, we recall the following elementary result:

Lemma 7.3 (Corollary 9.2 of [17]). — Let I ′ ⊂ I be intervals contained in T .
Then

⋂
v∈I Gv is hyperbolic and quasiconvex in

⋂
v∈I′ Gv.

Proof of Lemma 7.2. — Since G acts on T̂slices without inversion, we consider
point stabilizers. Let u be a point of T̂slices. If u does not belong to some
slice, then its stabilizer is finite by Lemma 5.19 and there is nothing to prove.
Otherwise, consider the interval Iu ⊂ T defined in 5.18. Let v1, . . . , vn be the
vertices of Iu. The stabilizer of u is the global stabilizer of Iu by Lemma 5.19,
so it contains

⋂
1≤i≤nGvi as an index ≤ 2 subgroup. The result now follows

from Lemma 7.3. �

Definition 7.4 (truncated universal cover). — As in Definition 5.12, it is
possible to write the complex of groups G(Y) as a tree of complexes of groups,
with one piece corresponding to a complex of groups G(Y̆) over the subcomplex
Y̆ obtained from Y by removing small polygonal neighborhoods of the centers
of polygons of Y , and such that G(Y̆) is isomorphic to the complex of groups
obtained from the action of G on T̆ . We define the truncated universal cover
X̆ as the preimage of Y̆ under the quotient map X → Y .

Lemma 7.5. — The truncated universal cover X̆ is G/�Hξ�-equivariantly

isomorphic to the quotient of the truncated coned-off space �Hξ�\T̆ .

Proof. — We have a morphismG(Y̆)→ G whose associated development is T̆ .
The morphism G(Y) → G/�Hξ�, whose development is the universal cover
X, restricts to a morphism G(Y̆)→ G/�Hξ� whose associated development
is X̆. As the kernel of the projection map G → G/�Hξ� is exactly �Hξ�,
the result follows from [5, Theorem III.C.2.18]. �

We now recall some properties of actions of rotation families. We first in-
troduce the following definition, so as to lighten notations:
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Definition 7.6 (Weak acylindricity). — We say that the action of a group on a
polyhedral complex is weakly acylindrical if there exists a uniform upper bound
on the distance between two points which are fixed by an infinite subgroup .

Notice that in the case of groups with a uniform bound on the cardinal of
their finite subgroups acting on simplicial trees, weak acylindricity is equiva-
lent to the notion of acylindricity used in Dahmani–Guirardel–Osin [9, Defini-
tion 2.15].

Lemma 7.7. — There exists a universal constant 0 < λuniv ≤ 1
6 such that

the following holds. Suppose that the rotation family (Aξ, Hξ)ξ∈Ξ satisfies the
geometric C ′′(λuniv) small cancelation condition. Then:

• the complex � Hξ �\T̂ is hyperbolic;
• if the action of G on T is weakly acylindrical, then so is the action
of G/� Hξ � on � Hξ �\T̂ .

Proof. — By choosing λ sufficiently small, the rotation family (Aξ, Hξ)ξ∈Ξ

satisfying the geometric C ′′(λ) small cancelation condition can be made arbi-
trarily separated in the sense of [9, Definition 5.1.(b)]. Thus, the first part of the
lemma is a direct consequence of [9, Proposition 5.28]. By hypothesis on G(Γ),
it follows from Theorem 1.2 that G is hyperbolic. Since hyperbolic groups have
only finitely many conjugacy classes of finite subgroups, the second part of the
lemma thus follows from [9, Proposition 5.40] and [9, Proposition 5.33]. �

Proof of Theorem 7.1. — The collapsing map pcoll : Xslices → X and the
slice-identification map pslices : X → Xslices are equivariant quasi-isometries
and are quasi-inverses of one another. Thus, it follows from Lemmas 7.5 and
7.7 that the action of G/� Hξ � on Xslices is weakly acylindrical and the
complex Xslices is hyperbolic. This space is also CAT(0) by Theorem 5.15.
Finally, stabilizers of simplices of Xslices are hyperbolic and inclusions of such
stabilizers are quasiconvex embeddings by Lemma 7.2. The result thus follows
from Theorem 1.2. �

8. The geometry of T̂slices

We now prove Proposition 5.1. Note that T̆slices being homotopy equivalent
to the Bass–Serre tree T , it is contractible, hence we only have to prove that it
is locally CAT(0) [5, Theorem II.4.1]. Since T̆slices is a 2-dimensional complex,
it is enough to prove that injective loops in links of points of T̆slices have length
at least 2π [5, Theorem II.5.5]. As this condition is preserved by taking sub-
complexes, it is thus enough to prove that the modified coned-off space T̂slices

itself is CAT(0). In the case of classical small cancelation theory, this result
was proved by Vinet (unpublished).
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There are three types of points in T̂slices: apices of cones of T̂slices, points in
the Bass-Serre tree T and points in the interior of a cone.

Apex of a cone. — Each apex of a cone of T̂slices has a link simplicially iso-
morphic to a bi-infinite line, hence the result.

Point in the interior of a cone. — Let u be a point that is in the interior of
a cone but is not an apex. A neighborhood of u in T̂slices is obtained from
neighborhoods of u in the various cones containing it by gluing them together
in an appropriate way. First notice that if does not belong to any slice Cξ,ξ′ ,
then a sufficiently small neighborhood of u is isometric to a small neighborhood
of the unique point of T̂ projecting to u. As cones of T̂ are CAT(0), the result
follows.

Suppose now that u belongs to some slice Cξ,ξ′ . Let Ξu be the set of ξ
such that Cξ contains u and let ξ ∈ Ξu. A polygonal neighborhood of u =
[ξ, x, t] in Cξ ∈ Ξ is obtained as follows. Using the construction described in
Definition 5.18, we choose a point p of T ∩ Cξ that sees the apex Oξ and u
with an unoriented angle θc. The geodesic line between p and u, along with
it symmetric with respect to the radius [Oξ, u) define two lines meeting at u,
which we use to define four small segments aξ, bξ, cξ, dξ issuing from u, with an
unoriented angle θ(t) and π−θ(t) with the ray [Oξ, u), as depicted in Figure 8.1
(note that we have θ(t) ≥ θc ≥ π

3 ).

aξ bξ

cξdξ 2θ(t)

π − 2θ(t)

θ(t)

Cξ

aξ bξ

cξ
dξ

u

π − 2θ(t)

2θ(t)
θc

p

Figure 8.1. The link lk(u,Cξ).

We now explain how these graphs are glued together under the identifications
defining T̂slices. Let ξ, ξ′ ∈ Ξu and let us look at u inside Cξ. If u belongs to
the interior of the slice Cξ,ξ′ , then the two graphs are identified in the obvious
way. If u belongs to the boundary of Cξ,ξ′ , then we are in the configuration of
Figure 8.1 and the two graphs are glued as follows:
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∪

Figure 8.2. Some link identifications.

Thus, the link of u in T̂slices is a graph without loop or double edge, and
which has four types of vertices: a vertex a corresponding to edges aξ after
identification, a vertex b corresponding to edges bξ after identification, vertices
c1, c2, . . . corresponding to edges cξ, which are of valence at least 2, and vertices
d1, d2, . . . corresponding to edges dξ, which are of valence at least 2. Moreover,
the following holds:
• There is exactly one edge between a and b (of length 2θ(t)).
• There is exactly one edge between a and each di (of length π − 2θ(t))

and exactly one edge between b and each ci (of length π − 2θ(t)).
• The graph is bipartite with respect to the decomposition of the set of

vertices into the sets {a} ∪ {c1, c2, . . .} and {b} ∪ {d1, d2 . . .}.
• Edges of the form [ci, dj ] are of length 2θ(t).

a b

c1

c2

c3

c4

d1

d2

Figure 8.3. The link lk(u, T̂slices).

Lemma 8.1. — An injective loop in the link lk(u, T̂slices) has length at least 2π.

Proof. — As the link is a bipartite graph, an injective loop contains an even
number of edges. Since the graph has no double edge, the loop is made of at
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least four edges. Now since the subgraph with all but one of the edges of the
form [a, b] or [ci, dj ] removed is a tree, the loop must contains two edges of the
form [a, b] or [ci, dj ]. As these edges have length 2θ(t) ≥ 2π

3 by Lemma 5.5 and
the remaining ones have length π − 2θ(t) ≤ π

3 , such a loop has length at least
2.2θ(t) + 2(π − 2θ(t)) = 2π. �

Points in the Bass–Serre tree. — Let v be a point in the Bass–Serre tree T . If
v is not a vertex of T , then a neighborhood of v in T̂slices is given by choosing
a small neighborhood of v in any cone containing it, hence such points have
CAT(0) neighborhoods. Now let v be a vertex of T . Let Ξv be the set of ξ
such that Cξ contains v and let ξ ∈ Ξv. A polygonal neighborhood of v in Cξ is
obtained as follows. Let aξ, a′ξ be the two edges of T issuing from v that are
contained in Cξ. Let cξ be the radius [Oξ, v]. Let bξ (resp. b′ξ) be the segment
of Cξ issuing from v that makes an unoriented angle θc with the radius cξ. We
use these segments to define an arbitrarily small polygonal neighborhood of u
as indicated in the following picture:

aξ

bξ

cξ

b′ξ

a′ξ

v
aξ

bξ

cξ

b′ξ

a′ξ

θc θc

Figure 8.4. The link lk(v, Cξ).

We now look at how the links lk(v, Cξ) and lk(v, Cξ′) are glued together.
Let ξ, ξ′ ∈ Ξv and let us look at v inside the cone Cξ. If v belongs to the
interior of the slice Cξ,ξ′ , then the two links are identified in the obvious way.
If v belongs to the boundary of Cξ,ξ′ , then the two links are glued along a
common edge as follows:

∪

Figure 8.5. Some link identifications.
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Thus, the link lk(v, T̂slices) is a graph with no double edge or loop and which
has three types of vertices:
• Vertices a1, a2, . . . (type A) corresponding to edges of T . These vertices

are of valence 1.
• Vertices b1, b2, . . . (type B) corresponding to segments bξ, b′ξ, ξ ∈ Ξv.

These vertices are of valence at least 2.
• Vertices c1, c2, . . . (type C) corresponding to edges cξ, ξ ∈ Ξv. These

vertices are of valence 2.
Furthermore, lk(v, T̂slices) is a tripartite graph with respect to the partition of
the set of its vertices into the aforementioned three types A, B and C.

Type A

Type B

Type C

Figure 8.6. A portion of the link lk(v, T̂slices).

Lemma 8.2. — An injective loop in the link lk(v, T̂slices) has length at least 2π.

Proof. — Let γ be an injective loop in lk(v, T̂slices). Since type A vertices
have valence 1, γ only meets type B and type C vertices. Moreover, γ is a
bipartite graph for the induced coloring, hence it has an even number of edges.
As there is no double edge, γ has at least four edges.

We prove by contradiction that it cannot contain exactly four edges. Indeed,
γ would then contain two type C vertices corresponding to edges cξ, cξ′ (ξ, ξ′ ∈
Ξv) and the remaining two vertices would thus correspond to the associated
edges bξ, b′ξ, bξ′ , b

′
ξ′ after identification. Consequently, γ would be contained in

the image of lk(v, Cξ) ∪ lk(v, Cξ′) after identification, but the above discussion
shows that this image does not contain an injective cycle (see Figure 8.5).

Thus, γ contains at least six edges, all of whose being between a type B
vertex and a type C vertex. As the length of such an edge is θc > π

3 by
Lemma 5.5, the length of γ is at least 6θc > 2π. �

Corollary 8.3. — The modified coned-off space T̂slices is CAT(0).
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