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JET SCHEMES OF NORMAL TORIC SURFACES

BY HUSSEIN MOURTADA

ABsTrRACT. — For m € N;m > 1, we determine the irreducible components of the
m — th jet scheme of a normal toric surface S. We give formulas for the number of
these components and their dimensions. This permits to determine the log canonical
threshold of a toric surface embedded in an affine space. When m varies, these compo-
nents give rise to projective systems, to which we associate a weighted oriented graph.
We prove that, among toric surfaces, the data of this graph is equivalent to the data
of the analytical type of S. Besides, we classify these irreducible components by an
integer invariant that we call index of speciality. We prove that for m large enough,
the set of components with index of speciality 1, is in 1 — 1 with the set of exceptional
divisors that appear on the minimal resolution of S.

REsuME (Espaces de jets des surfaces toriques normales). — Pour m € N, m > 1,
nous déterminons les composantes irréductibles des espaces de m-jets d’une surface
torique normales S. Nous donnons des formules pour le nombre de ces composantes et
pour leurs dimensions. Ceci permet de déterminer le seuil log-canonique de la surface
S plongée dans un espace affine. Quand m varie, ces composantes donnent lieu a
des systémes projectifs, auxquels nous associons un graphe orienté et pondéré. Nous
démontrons que, parmi les surfaces toriques, la donnée de ce graphe est équivalente a la
donnée du type analytique de S. De plus, nous classifions ces composantes irréductibles
via un invariant qu’on appelle indice de spécialité. Nous démontrons que pour m
assez large, I’ensemble des composantes avec un indice de spécialité égal a 1, est en
correspondance bijective avec ’ensemble des diviseurs exceptionnels qui apparaissent
sur la résolution minimale des singularités de S.
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238 H. MOURTADA

1. Introduction

Nash has introduced the arc space of a variety X in order to investigate the
intrinsic data of the various resolutions of singularities of X. The analogy with
p-adic numbers has led Kontsevich [13], Denef and Loeser [3] to invent motivic
integration and to introduce several rational series that generalize analogous
series in the p-adic context [4]. The geometric counterpart of the theory of mo-
tivic integration has been used by Ein, Mustata and others to obtain formulas
controlling discrepancies in terms of invariant of jet schemes—these are finite
dimensional approximations of the arc space—[21, 6, 7, 8]. Roughly speaking,
while we can extract informations about abstract resolutions of singularities
from the arc space and vice versa, we can extract informations about embed-
ded resolutions of singularities from the jet schemes and vice versa. This partly
explains why the arc space of a toric variety—which has been intensively stud-
ied [12, 14, 1, 10, 11]—is well understood. Indeed, we know an equivariant
abstract resolution of a toric variety, what permits to understand the action of
the arc space of the torus on its arc space [10], but an equivariant embedded
resolution is less accessible.

The structure of jet schemes of singular algebraic varieties is complicated;
despite that they were the subject of numerous article in the last decade, few
is known about their geometry for specific class of singularities, except for
the following classes: monomial ideals [9], determinantal varieties [5], plane
branches [17], quasi-ordinary singularities [2].

In this article, we study the jet schemes of a normal toric surface singu-
larity. We determine their irreducible components and we give formulas for
their number and dimensions. We give here a brief description of the re-
sults. The data of a toric surface singularity S is equivalent to the data of
a cone ¢ C N = Z? generated by (1,0) and (p,q) for two coprime numbers
0 < p<gq.Let g/p=lca,...,ce—1] be the Hirzebruch-Jung continued fraction
expansion (see Section 2.2); the embedding dimension of S is equal to e; the
equations defining the embedding of S in A® = SpecK[z1,...,z.] are described
in Section 2. Let m € N,m > 1 and let S9, be the space of m-jets cen-
tered at the singularity of S (see Section 2.1 for preliminaries on jet schemes).
Fori=2,...,e-1,s€{l,...,[F]|}(i.e,m>2s—1>1)andl € {s,..., L], },
where

L; = min{(¢; — 1)s, (m + 1) — s},
we define

fon i= Cont*(2;)m N Cont! (Zi41)m,
where for p € N, and f € K[zy,...,z.],

ContP(f)m = {7 € S | ordy (1) = p}.

TOME 145 — 2017 — N° 2
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We define Cffn = Dfrln to be the Zariski closure of fon We find in Theo-
rem 4.15 the following.

THEOREM. — Let m € N, m > 1. The irreducible components of SO, are
L7 .
C'es_f,’;; and theCZ;;, i=2,...,e—1,se{l,....[g]}andl € {s,..., L], —

1}}.

The formulas that we obtain for the codimensions of the irreducible compo-
nents of SO, (see Proposition 4.11) enable us, by applying Mustata’s formula
[21], to determine the log canonical threshold of the pair S C A® (e is the
embedding dimension). For e = 3, the log canonical threshold is 1. For e > 4,
we find in Corollary 4.27 that

let(S, A°) = <.
2

Moreover, making use of the truncation morphisms between the jet schemes,
we associate with the irreducible components of S2, a graph which is weighted
by the codimensions of the irreducible components and the embedding dimen-
sion of some of these components. We prove in Corollary 4.25 that the data of
this graph is equivalent to the analytical type of the surface. Note that motivic
invariants of a toric surface singularity do not determine its analytical type
[16, 22].

Finally, we classify the irreducible components by a natural invariant that
we call index of speciality; this is the order of contact of the generic point of the
component with the maximal ideal defining the singular point of S. We prove
that for m large enough, the number of irreducible components of S9, is in 1-1
correspondence with the divisors appearing on the minimal abstract resolution
of singularities of S. This is to compare with the bijectivness of the Nash map
for toric varieties [11]. This is also related to a jet schemes approach to a
conjecture of Teissier on toric resolution of singularities [26]. This approach is
explained in [19] (see also [15]).

The proof of the main theorem uses heavily the description of the defining
equations of the embedding S C A° ([24, 25]), and some syzygies of these
equations that we describe and that are ad hoc to the problem. It also uses
known results on the arc space of a toric variety [14, 11],[10] and it is by
induction on m and on the embedding dimension e. In particular it uses a kind
of approximation of the toric surface S by toric surfaces with smaller embedding
dimensions.

Some of the results of this paper were announced in [18].

The structure of the paper is as follows: in section two we present a reminder
on jet schemes and on toric surfaces. In section three we study the jet schemes
of the A, singularities. The last section is devoted to the toric surfaces of
embedding dimension bigger or equal to four.
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2. Jet schemes and toric surfaces

2.1. Jetschemes. — Let K be field. Let X be a K-scheme of finite type over K.
For m € N, the functor F), : K-Schemes — Sets which to an affine scheme
defined by a K-algebra A associates

F,.(Spec(A)) = Homg (SpecA[t]/(t™11), X)

is representable by a K-scheme X, [27]. We call X,,, the m-th jet scheme of X
and we have that F,, is isomorphic to its functor of points. In particular the
K-points of X, are in bijection with the K[t]/(t™*1)-points of X.

For m,p € N,m > p, the truncation homomorphism A[t]/(t™!) — A[t]/(tPH1)
induces a canonical projection 7y, , : X,, — X,. These morphisms are affine
and for p < m < ¢ they clearly verify m, , o mgm = mgp. This yields an
inverse system whose limit X, is a scheme called the arc space of X. Note
that Xy = X. We denote the canonical projections X,, — X, by 7, and
Xoo — Xm by U,y See [7] for more about jet schemes.

EXAMPLE 1. — Let X = Spec M be an affine K-scheme. For a K-al-

gebra A, an A-point of X, is a K-algebra homomorphism

Kol m+1
(Firees fr) Aft] /(™).

This homomorphism is completely determined by the image of z;,i =1,...,n
z; — o(z;) = xgo) + xgl)t 4+ xgm)tm
and it should verify that o(f;) = fi(¢(z1),...,¢(x,)) € ¢™F), I=1,...,r

Therefore if we set

fi(d(z1), ..., Z (J) oz ¢ mod (#™T)
where ) = (fvi”, 2, then we have that
K[z© .. x(m)]
Xm = Spec I
AT

TOME 145 — 2017 — N° 2
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EXAMPLE 2. — From the above example, we see that the m-th jet scheme of
the affine space A™ is isomorphic to AtV and that the projection Tm,m—1
A% — AT . is the map that forgets the last n coordinates.

REMARK 2.1. — This a notational remark; in the sequel we will denote the
m — th jet scheme of the affine space A™ by AT .

REMARK 2.2. — Note that in general, if X is a nonsingular variety of di-
mension n, then all the projections Tp m—1 : Xy — Xpm—1 are locally trivial
fibrations with fiber A™. In particular X, is of dimension n(m + 1) (]7]).

2.2. Toric surfaces. — Let S be a singular affine normal toric surface defined
over the field K. There exist two coprime integers p and ¢ such that S is defined
by the cone 0 C N = Z? generated by (1,0) and (p,q) and 0 < p < g, i.e.,
S = SpecK[z¥, u € 0¥ N M| where ¢V is the dual cone of o and M is the dual
lattice of N ([23]). We have the Hirzebruch-Jung continued fraction expansion
in terms of ¢c; > 2:

q 1

R

p s —

1
Ce—1

which we denote by [ca,...,c._1]- Let 8V be the convex hull of (¢¥ N M)\ 0
and let 96V be its boundary polygon. Let ui,us,...,u, be the points of M
lying in this order on 90V, with u; = (0,1) and up, = (¢, —p). Then from [23],
proposition 1.21 we have that h = e is the embedding dimension of S and the u;
form a minimal system of generators of the semigroup ¢V NM. Fori=1,...,e,
we will denote by z; the regular function on S defined by z**. Riemenschneider
has exhibited the generators of the ideal defining S in A® = SpecK]z1, ..., Z.].
They can be given in a quasi-determinantal format [24, 25]:

T T2 ... Te—2 LTe—1
52 ... 26_‘11_2
) I3 ... Te—1 Te
where the generalized minors of a quasi-determinant
fi faooo fr—a fr
h172 “e hk—l,k
9 g2 ... Gk-1 9k
j—1
are fzgj - gZ(HzL:Z hn,n+1)fj~
They can be written as follows:

= T — T @it T2 i 2 G
Eij = zizj — win1ti 7y xl, Tj—2 Tj1 Tji-1

where 1 <i<j—1<e—1.
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242 H. MOURTADA

Let b; € N, b; > 2, be such that ¢/(¢ — p) = [b1,...,b.]. Let lp = (1,0),...,
ls+1 = (p,q) in this order be the elements of N lying on the compact edges of
the boundary 96 of the convex hull 6 of (¢ N N) \ 0.

PROPOSITION 2.3. — We have that r = s and is equal to the number of ir-
reducible components of the exceptional curve for the minimal resolution of
singularities of S. Moreover we have that

cot - t+cem1—2(e—2)+1=s.
See Lemma 1.22 and Corollary 1.23 in [23] for a proof.

3. Jet schemes of toric surfaces of embedding dimension e = 3

Let S be the variety defined in A3 by the equation f(z,y,2) = zy—2"*! = 0.
S has an A,, singularity at the origin 0 and is nonsingular elsewhere. Note that
an affine toric suface of embedding dimension 3 has this type of singularities
(see Section 2.1). If we set

m m m i=m
300,300,320 = 5% O o 1, 1
i=0 i=0 i=0 =0

then S, is defined in A3+ = A3 by the ideal I,,, = (F©O, FM . Fm),

By Remark 2.2, the morphism .} (S\0) — S\0 is a trivial fibration, there-
fore we have that 7' (S\0) is an irreducible component of S,, of codimension
m + 1 in A3. On the other hand, we will prove in the coming lines that the
codimension of S, := 7,1(0) in A3, is m + 2, which means that S,, is irre-
ducible for every m € N : indeed, since I,, is generated by m + 1 equations,
any irreducible component of S, could have codimension at most m+ 1. (Note
that the irreducibility of S,, follows from [20] because S is locally a complete
intersection with a rational singularity, but we give here a direct proof in this
simple case.)

We claim that for m < n, we have SgL = ZSI, where Z C A2 is the hy-
persurface defined by zy = 0. Indeed, a m-jet v, = (z = Y10 zWti,y =
Syt 2 =3 20¢) € (A%),, centered at the origin (i.e.,z(® = y© =
2(0) is in SO if and only if zy — 2! = 0 mod t™*!, but since zp = 0 and
m < n, we have that ord; 2"t! > n 4+ 1 > m + 1, therefore this is equivalent
to ord; xy > m + 1 and therefore to vy € ng-

But clearly for m < n, the irreducible commponents of ZJ, = S9, are the
subvarities defined by the ideals

I,fn = (.Z'(O), tee 7m(l_1)ay(0)7 v 7y(m_l),z(0)),l = 1,.. ., m.

Notice that the codimension of C!, := V(I.)) in A3, is equal to m + 2 for [ =
1,...,m. We deduce that for m < n,S,, is irreducible of codimension m + 1.
On the other hand, for m > n 4 1 we have that C},, = m.}, (V(I})) is defined
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where J! is the ideal obtained

in (A3),, by the ideal I!, = (I}, J! m—(n+1)

n’ m—(n+1))

from the ideal defining X,,_(,41) in Af’n by changing variables. Indeed

—(n+1)
if we set
0, 30 0830 0
i=l i=n—l+1 i=1
m—I m—(n—1+1) m—1
_ f(tl(z w(l+i)ti), tn—l+1( Z y(n—l—‘,—l-‘,—i)ti)7 t( Z Z(1+1)t1))
i=0 i=0 i=0
m—1 m—(n—1+1) m—1
— tn+1f(z Z'(Z-H)ti, Z y(n—l+1+i)ti7 Z z(i+1)ti)
i=0 i=0 i=0
i=m—(n+1) 4
(00) = Y G
i=0
then qu%(nﬂ) is generated by Ggl),i =0,...,m— (n+1), and by comparing

(¢) with (00), we get that
Gl(i) = F(i)(x(l), gD ) oy (el () z(H'i)).
We deduce that for [ =1,...,n,
Codim(m,,", (V(I})), A3,) = n + 2 + Codim(S,— (nr1), A, (ni1y)-
This implies by a simple induction that for [ =1,...,n,
Codimr,,, (V(I})) = m + 2.
Therefore Codim(SS,,A3) = m + 2, so S, is irreducible. It follows that

Tty (V(IL)) which is isomorphic to Sy,—(nt1) X A2 is irreducible and we
conclude:

THEOREM 3.1. — Let m € N,n > 1, and let SO, be the scheme of m-jets
centered in the singular locus of an A, singularity. Then we have the following:

1. SO is a locally complete intersection scheme.

2. For m < n,S% has m irreducible components, C' ,l =1,...,m each of
codimension m + 2. For m > n + 1, it has n irreducible components,
Cl.,l=1,...,n, each of codimension m + 2.

3. The global jet scheme Sy, is irreducible.

4. For2 <m < mn, andl € {1,...,m — 1} we have that wm,m_l(Cfn) -
Cl 1 Tmm-1(CL) € C-1 and T 1 (CT) € C™1. Form >n+1

we have that Ty m—1(CL) C CL _1, forl € {1,...,n}. These are all the
inclusions induced by Ty, 1 for m > 2.

We obtain a graph I' by representing every irreducible components of S9,,
m > 1, by a vertex v;,, and by joining the vertices v;, ;1 and v, if the

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



244 H. MOURTADA

morhphism 7,41, induces a morphism between the corresponding irreducible
components. From the Theorem 3.1, part 4, we deduce that the graph I' for
the singularity A, is the following :

N

4. Jet schemes of toric surfaces of embedding dimension e > 4

We keep the notations introduced in Section 2 and we begin by introducing
some more notations. Let f € K[z1,...,z.] ; for m,p € N such that p < m, we
set:

Cont? (f)m(resp.Cont”?(f)m) := {y € Spm | ord,(f) = p(resp. > p)},

Cont”(f) = {v € Ss | ord,(f) = p},
where ord, (f) is the t-order of f o~.
For a,b € N, b # 0, we denote by [ ] the round-up of §. Fori=2,...,e—1,
sef{l,...,[g]}(ie,m>2s—1>1)and € {s,...,L7,,}, where

L; = min{(c; — 1)s, (m + 1) — s},

we set
Dfi1 := Cont® () N Cont (41 )m,
and L
c; ’Tln = Df,’fn.
If Ris aring, I C R an ideal and f € R, we denote by V(I) the subvariety
of Spec R defined by I and by D(f) the open set D(f) := Spec Rj.
We will prove that the irreducible components of S, := m,.1(0) are among

the closed sets Ci Tln (see the theorem in the introduction). The irreducibility
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of the C ', is proved in Proposition 4.7, where we also compute their codimen-
sions. In Propos1t10n 4.13 we prove that they cover S9. In Lemma 4.12, we
prove that there are redundancies between the C > l . The fact that there are no
inclusions among them but those of lemma 4.12, 1s proved in Theorem 4.15.
We begin by giving an overview of the strategy of the proof of theorem 4.15.
The first remark is that S?, which is the Zariski tangent space of S at 0, is
isomorphic to an affine space (Lemma 4.3), more precisely we have:

Kz O a0 s xgo)]
S9 = Spec < 71 o L D . (%)
O

A key idea is to stratify it as follows
S0 = (S9N DEM))U.. .U NDEM) U N (@Y, 2.

First we study =, (S? N D(x; (a ))), fori=2,...,e—1and m > 2. By us-
ing syzygies between "the equations deﬁning S (Lemma 4.5), we construct in
Proposition 4.11 a trivial fibration from ", ((S? N D(x; @ )) to a constructible
subset of the jet schemes of an A, singularlty This latter constructible sub-
set is introduced and studied in Lemma 4.10, what permits to us to deter-
mine the irreducible components of the Zariski closure 7% ((SY N D(x (1))
for ¢ = 2,...,e — 1, namely the Cllyln The constructibles Wm,l((S? N D(mgl))
for i = 1, e are irreducible (Proposition 4.11) and included in the Zariski closure
of 71';’11((35J N D(xgl)),i =1,e — 1, (Proposition 4.11, part (2)).

It remains to study 7T;L711 (S?ﬂ(xgl), cee :c((gl)), for m > 2. For m = 2, we prove
that 772_7}(5? N (xgl), e ,mgl)) is included in the Zariski closure of 7T2_,}((S? N
D(mgl)), for i = 2,...,e — 1 (Proposition 4.13). The proof of the latter state-
ment in the case where the embedding dimension e = 4 is based on dimen-
sion arguments, then we use induction on e. For this purpose, we approxi-
mate S by toric surfaces which are of less embedding dimensions. For m =

51089 N (z 1), . (1))(Whlch is equal to 023 by Lemma 4.3) is an irre-
duc1b1e component of S9, and is an affine space that we stratify in a similar
way to (%) (see the case m = 2n + 1 in Proposition 4.13). We then as above
consider the inverse image by m,, 3, m > 4 of each strata. The inverse im-
ages by m,, 3 of the open stratas will be understood again by comparison with
some subsets of the jet schemes of A., singularities and they will give rise to
a new generation of irreducible components, namely the Cz 751 Then we study
the inverse image by m4 3 and 75 3 of the closed strata. This phenomena is
understood by an induction on m, (more precisely on n) which permits us to
cover SO by irreducible subsets. In Theorem 4.15 we prove that there are no
inclusions between these subsets.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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From 4.1 till 4.12, we are preparing the proof of Theorem 4.15. Our first aim
is to prove the irreducibility of the CSZ ’s and to compute their codimension
in A? , this is the subject of Proposmon 4.7. We begin by some preparatory
lemmas.

ProprosITION 4.1. — 1. Fori =2,...,e—1 and l,s € N such that 1 <
5 <1< (¢; —1)s, we have that Cont®(x;) N Cont’ (z;41) # 0.
2. For s e N, s> 1, Cont®(z1) N Cont®(z3) # 0.

Proof. — (1)-We will prove that there exists an arc h on S, whose generic
point lies in the torus, and such that A € Cont®(z;) N Cont!(x;,,). Note that
with an arc h on S, we can naturally associate a vector v, = (a,b) € c NN and
that for any v € 0 N N there exists an arc h such that v = v,; moreover, for
any u € M No", we have that h € Cont"“(z"), where we denote by vj,.u the
scalar product of v and u, and by z* the regular function defined by u on S
([16], Proposition 3.3). Let u;,i = 1,..., e, be the system of minimal generators
of 0¥ N M, defined in 2.2 such that z% = z;. Therefore to prove that there
exists an arc h as above, it is sufficient to prove that there exists (a,b) € c NN
such that (a,b).u; = s and (a,b).u;41 = I. Since u; and u;y; determine a
Z-basis of M, there exists a unique (a,b) € N such that (a,b).u; = s and
(a,b).ui+1 = l. Let’s prove that (a,b) lies in the interior of o, i.e., that for j =
1,...,¢e, (a,b).u; > 0. Since u;—1 = ¢;u;—ui41, we have that (a,b).u;—1 = ¢;5—1
which is greater than or equal to s because by hypothesis we have s < [ <
s(c; —1). Similarly we have that (a,b).u;+2 = ¢;+1l — s which is greater than or
equal to l. Since ¢; > 2, for i = 1,..., e, by descending (respectively ascending)
induction we find that (a,b).uj_1 > (a,b).u;, for j = 2,...,i (respectively
(a,b).uj—1 < (a,b).uj, for j =i+2,...,e) and the proposition follows.

(2)-We have that u; = (0,1),u2 = (1,0). We need to prove that the unic
vector v = (a,b) € N such that (a,b).(0,1) = b = s and (a,b).(1,0) = a = s,
also belongs to o; in fact it is is clear that (s, s) belongs to the interior of o.

We also need to prove that for j = 3,...,e, we have that (s,s).u; > s ; since
u; € 0¥ and (1,1) lies in the interior of o, we have that (1,1).u; > 0, moreover
uj € M and (1,1) € N, so (1,1).u; € Z and (1,1).u; > 1. O

The following lemma prepares Lemma 4.3.

LEMMA 4.2. — Leti = 2,...,e—1, m € N, s € {1,...,[%]} and | €
{s,..., L} . }. For~ € D}

1,m’?

we have
1. the inequality ordyx; > 5,5 =1,...,€

2. If moreover m # L3 ., then for j =1,...,i —1 we have ord,z; > s.

Proof. — Let v € Df; This implies that ord,E;_1;4+1 > m + 1. From
the expression of E;_; ;1 and the hypothesis | € {s,...,L;,,}, we get that
ord,z;—1 > s. We also have ord, E;_»; > m+1; using the fact that ord,z;—; >
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s we get ord,x;_o > s. Recursively, by using the conditions, ord,E;; >
m+1,j =4—3,i—4,...,1, we obtain ordyz; > 5,5 = ¢—3,i—4,...,1L
Similarly, by using the conditions ord, E; ; > m+ 1,7 =4+ 2,...,e we obtain

ord,z; > 5,7 =4+ 2,...,s and hence the first part of the lemma. The sec-
ond part follows in the same way using the conditions ord,F;; > m + 1,5 =
1,...,m—1. |

LEMMA 4.3. — Fori=2,...,e—1, s > 1, the ideal defining C7y, ; in A, _, is

7
Iy =P 1<j<e0<b<s).
Note that C}5,_, does not depend on i. For j = 1,e, we set

$,8 . 18,8 . _
Cias—1:=Cios 1, 1=2,...,e— 1.

Proof. —  Let us prove that D}y, | = V(Ii’fs_l)ﬂD(wgs)fol). Let v € A§,_,

such that ord,z; = ordyz;y; = s. Lemma 4.2 gives that ord,z; > s, j =
1,...e. We deduce
Df,éss—1 - V(Iis,éss—ﬁ n D($55)xz('-ss-)1)-
The opposite inclusion comes from the fact that a jet in
V(I5,0) N D zh) € As,

satisfies all the equations of S modulo #?°. Since V(I5s1) C As,_y is irre-
ducible, the lemma follows. O

LEMMA 44. — Fori = 2,...,e—1, m € N, s € {1,...,[%]} and | €
{s,..., L{ .}, we have that
Czs'rln cm) (Cz's,’zss—1)~

m,2s—1

Proof. — For v € DL it follows from Lemma 4.2 (part 1) that ordyz; > s,

i,m?

j=1,...,eand hence from Lemma 4.3 we deduce that fon C 7'(';:2571 (Cias1)-

The lemma follows since ", _;(C;5,_,) is closed. a

m K3

LEMMA 4.5. — 1. Fori=2,...,e—1, meN, se{l,...,[%]},

71';?25_1(6'5”255_1 N D(JJES))) ={veA ;ordyz;>s, j=1,...,¢e, ordyz; = s,
ordyE; 1,41 >2m+1, ordyE;; >m+1, for1<j<i-1
ord,E; j >m+1, fori<j—1<e—1}.
2. Fori=2,...,.e—1, meN, se{l,...,[g]} andl € {s,..., L]}, we
have
va’fn:{yeAfn; ordyE;j >m+1fori<j—1<e—1,
ord,Ej; >m+1for1 <j<i—1,
ordyE;_1,i+1 > m+1, ordyz; = s, ordyxit1 = l}.
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Proof. — (1) The inclusion “C” is an immediate consequence of Lemma 4.3.
To get the other inclusion, it is enough to check that for every v € A?, enjoying
the conditions listed above, we also have ord,E;, > m+1for1 <j<h—-1<
e—1.

If ¢ < j, the syzygy

ir1—2 -2

(4.1) 2B — v By, + x;ff ey a1 By =0
implies that ord, E;, > m+1, because ord,z; and ord,z,—1 > s and ordyx; =
s.

Similarly if h < 4, the syzygy

i1—2 -2

(42) l‘iEjh - :L'hE'ji + mj+1x§$r11 c.. xzh—ll Eh—l,i =0
implies that ord, E;, > m+1, because ord,x, and ord,z;4+1 > s and ordyx; =
s.

Assume now that 1 < j <i—1 and h =i + 1; the syzygy

ii1—2 i1—2

(43) mi+1Eji — xiEj,i+1 + xj+1$;:r11 ce xfill Ei—17i+1 =0
implies that ord,E; ;11 > m + 1.

Similarly if j =¢—1and i + 1 < h < e, the syzygy

ir1—2 -2

(4.4) i1 By — 2By p +aiyTx) ) en 1By qi01 =0
implies that ord, E;_q, > m + 1.

Finally ,if 1 <j<i—1and i+ 1< h <e, the syzygy

41 —2 -2

(45) l‘jEih — ZL’iEjh + ZL‘E_:ll cee ZL‘Zh_ll mh—lEj,i-i-l =0
implies that ord, F;, > m + 1, taking into account that we have shown above
that ord, E; ;11 > m + 1.

(2) First, since the ideal defining S in A° is generated by F;u, 1 < j <
h—1<e—1, we have that
Df,ln C Uf,il = {y € Aj; ord,E;;(resp. ord,E;;) >m+1fori<j—1<e—1

(resp. 1< j<i—1), ordyE;_1,41 > m+1, ordyz; = s, ord,z;41 =1}
For v € UZ;;, we have by the proof of 4.4 that for j =1,...,e, ord,z; > s. It
follows from the first part of this lemma that fon =Us O

i,m"’

REMARK 4.6. — Note that the syzygies (4.1),...,(4.5) are syzygies in the ring
of polynomials and not in the ring of reqular functions on S. This is essential
for the conclusion in the above lemma.

PROPOSITION 4.7. — For i = 2,...,e—1, m € N, s € {1,...,[%]} and

leds,..., Lim}, C’Zs”fn 1s irreducible, and its codimension in AY, is equal to
se+ (m—(2s—1))(e—2).
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Proof. — The irreducibility of C; fn follows from the fact that fon is iso-
morphic to the product of a two dimensional torus by an affine space. In-
deed, set z; oy = ZO<u<m gu)t” 1 < j < e. Assume that ord,z; = s

and ord,z;11 = [; then by Lemma 4.5, part (2), v € fon if and only if
ord,E; 1,41 >m+1,ord,E;; >m+1fori+1<j<eandord,Ej; >m+1
for 1 < j < i—1. Recall also that we have that ord,(z;) > sfori=1,...,e

We begin by examining the condition ord,E;_1 ;41 > m + 1.

If m +1 < ¢;s, we have that ord,E;_1 ;41 > m + 1, if and only if a:l 1 =
for 0 < v < m —[; this is due to the fact that we have the ord,z;" = ¢;s and
ord,x;y1 = L.

Ifm+1>h+1>c¢s then

h h—1

(*) Ez( )1@4-1 = 5 1 )95531 H

where H is a polynomial in a:(-s),... (h_cis+s) 5217 . Eilclsﬂ) and
Eclf l),...,a:l(.ﬁ;l_l) (where we have put xf )1 = 0 for 0 S v < cs—1;
this follows from the case m + 1 < cls). In particular, for h = ¢;s, we
have that EZ(C’ls)erl = gleeh 1(21 — 2! After dividing by xzﬂ # 0 we ob-
tain that E(C’ls)H_1 = 0 gives that xi”f l) (S) /5'7521 Exchanging :c(m D
by this fraction in Ez(c’f :{)1 and dividing by xl +1 # 0, we obtain from (x)
that El(cls ;'i)l 0 is equivalent to :cgcf " equals a polynomial function

in :c(s), (a+1) 1/ z+17 521, Efll) Keeping doing this with EZ( 1)1+1 for ¢;s <

h' < h and by replacing in El( )1 .i11(see (x)) the variables :Cicf b, Ecls B

Eh 1l D by their expressions as polynomial functions in x( ) ,th 1= C’S+s),
1/1‘521, 521, . ,xE_}:ll ¢51) that are obtained form Ei—l,i-s-p h' =c¢;s,...,h—
1, is an induction on h that permits to express thIl) as a polynomial function in
the  variables scgs), . (h cists) 1/ 521, 521, e xELCLSH) Hence,
ordyEi_141 > m+ 1, if and only if xi_l =0for 0 < v < ¢s—1 and

(s ) (m—cis+s) o O (m—cis+l)
is a polynomial function of z; LT 1z, T(hry ey

forcigs—1I<v<m-—I.
Consider now the conditions ord, E;; > m+1fori+1 < j <e.For j =142,
notice that E; ;2 has the "same" shape of F;_; ;1. It follows from the study

of ordyE;_1 441 > m+1 that ord,E; ;40 > m+1 if and only if x(i)Q =0for0<

v < s and is a polynomial function of 1/50(5), ;c(s), O G 1(21, . ’ngl—l)

k2
for s < v < m — s. Now by using the expressions of the acg +)2’s in the equa-

tions that defines ord,E; ;43 > m + 1 (see the shape of the equation E; 43,
for which we can write similar equations as (x) where H will depend on the

!/ ! !/
.Z‘EV) s,:cl(-j_)l s,mgi)Q s and m§+)3 s), we obtain the expressions of the m§+)3 s as

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



250 H. MOURTADA

polynomials in the variables 1/1'(8),395 ),...,xgm_s) 521,...,x§r1_l); an in-

duction on j = i+ 2,4+ 3,...,e gives that ord,E;; > m + 1 for i +1 <
j < e if and only if a:;.'/) = 0 for 0 < v < s and is a polynomial function

of 1/;101(-3),:058),...,351(.7"_8) 521,... xffl Dfors<v<m-—s.

Similarly, ord,Ej;; > m+ 1, for 1 < j <4 —1 if and only if xg ¥) = 0 for 0 <
s)

. s m—s m—l1
v < s and is a polynomial function of 1/a:~ , T ( ) ..,:c( ) E 1 5 1 )
1

i )
for s < v < m—s. Taking in considerations that m(m s), . E are polyno—
mial functions in the variables :L‘E ), - (m cists) 1/x§21, wgz_l), e xgzrj_l)c’s”),
it follows that a closed point in fon determmes and is completely determined
by the following data:

2 21O e K,

xz(-s+1),..., (m)GK,
Aol e x
Eml—‘rl l) - (m) cK
ac;mﬂ_s),... (m)EK]—l ,i—2,142,... e

As a consequence, the dimension of Dz '\ hence of its closure C’ isd=
2m+s(e—4)+2. And the formula of the codimension is obtained by con51der1ng
(m+1)e —d. O

REMARK 4.8. — The final presentation of the proof of the Proposition 4.7 was
suggested by the referee.

Fori=2,...,e—2,let X* = SpecK[z;_1,2;, Tit+1]/(Tim1@it1 — 2'). For s €
{1,..., 21}, let
Vin ={y € X, ordy(z;) > s, j=i—1,i+1, ord,(z;) = s},

and for I € {s,..., L .}, let

Af”l = {y € X},,ord, (z;) = s, ord,(z;11) = I}.
The algebraic morphism

Klzi—1, 2, Tit1] Klz1,...,ze]

(Ti1mip1 —20) (B l<i<j—1<e—1)

induces a natural map p’ : S — X?; the associated map pi, : S, — X,
induces morphisms

Ttae1(Comeq N D(a¥)) — V?,, and Dt — A

1,28—

Now in view of Lemma 4.5 (see also the proof of Proposition 4.7), we have the
following proposition.
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PROPOSITION 4.9. — The maps

-1 , (s) "/ il
Trm,ZS—l(C;QSs—l n D(xz )) — ‘/:m and D;,S,m - Af,'m

are isomorphic to trivial fibrations of rank s(e — 3).

Proof. — For the second map, this is the geometric translation of Lemma 4.5
and Proposition 4.7. In particular, the rank of the fibration is determined by
the number of free variables

x(m+1—s) (m)

; o EK G =1, i = 2,042, e,

(see the last line of the proof of Proposition 4.7): fixing these variables gives a
point in the fibre above a fixed point in Affn The proof concerning the first
map is similar. 0

The following propositions are preparatory for the proof of Proposition 4.13,
which states that SO, is the union of the Cfrln
LEMMA 4.10. — Fori = 2,...,e—1, and s € {1,...,[ 3]}, the irreducible
components of V%, are the AL leds, ..., L}

i,m)

Proof. —  First, assume that m + 1 < ¢;s, so that L ,, = m+ 1 —s. We have
that
Vin={v€ A3 5 ordyz; >s,5=14—1,i+1,0ordyz; = s
and ord,z;_1 + ord,z;41 > m+ 1}
and for l € {s,...,m+1— s},

Affn ={yeA? ; ordyz; = s,ordyz;41 = l,ordyz;—1 >m+1—1} =

V(a:z(.(l)l, . ,wgr_nl_l)7 xgo)’ e ,azgs_l), xgg_)l, . ,a:l(.i_ll)) N D(azgs)xglﬁl).

Since s <1 < m+1—s, we have that Affn C V80 Uscicmais ALV

i,m?
Now for v € V°,,, we have that ord,z; = s,! := ord, ;41 > s and ord,z;_1 >

T,m?
m—+1—1.If | < m+1—s, we thus have that v € Af)’fn; ifl > m+1—s, we have that
bz > s b V(z© (s=1) _(0) (s=1) _(0) (m—s)
ordyxz;—1 > s, hence vy € V(z;y,...,z;,_, ", 2, ,..., %, s Tif1s s Tigy )

= A;’;l""'l_s, hence the claim.
Now assume that ¢;s < m + 1, so that L7, = (c; — 1)s. For I € {s,...,
(¢ —1)s} and v € Af,’fn, we thus have that ord,z; = s,ord,z;41 =1 > s, and

l
ord,z;—1 + ! = ¢;s, hence ord,x;—1 = ¢;s — [ > s, therefore Af:m C V7, and

5,0 /s
Usglg(cifl)s Ai,m - ‘/i,m' )
On the other hand V;°,, = (7

)— %
m,c;s—1

1 s
V CiS m,c;s—1

fy P XL —
(¢; — 1)s, we have that Affn =

( _1) where
X!, is the natural map. For s < | <
: 1 asi
(ﬂ-;n,cis—l) 1(A‘i9,cis—1)'

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



252 H. MOURTADA

Now we have just seen that V.. .1 = Us<i<(ci-1)s Af’iis_l and that AS!

1,Ci8— 1=

0 is—1-1) (0 1 (0 -1
V@, alemT D g0 g g0 g,
As a consequence (mh, . . 1)_1(Af,’éis_1) is isomorphic to the product of an
affine space by the space of (m — ¢;s)-jets of the surface

SpeckKlz;; ™, 2(", 521]/(95 e gy @ — )

and this latter is irreducible by section 3, hence coincides with Affn So V5, C
Us<i<ei—1)s AZ ., hence the claim. O
PROPOSITION 4.11. — Let m,s € N such that s € {1,...,[F]}.

(Cs5,_y N D(z())

1. Fori=2,. —1, the irred. components of 7w\
are the CSl le{s L3}

1,m?

2. For i = 1,e, we have that 7" 2s-1(Cins_1 N D(z; (e ))) is irreducible of
codzmenswn

m,2s—1

se+ (m—(2s—1))(e—2)
in AS,. Moreover we have that

s,LS

C i,m

2,m

Tte1(C5,_y N D(a$Y))

m,2s—1 [

and

m25 1( SQSs lmD(xe )) CSS

e—1,m"

Proof. — (1) By the Lemmas 4.4 and 4.5, we have that

)l )
D}, C 71'm 25-1(Cis_1 N D(xz(‘S)))
={ye€A} ;ordyz; >s, j=1,...,e, ordyz; = s, ordyE;_1,41 > m+1,

ord,Ej ;(resp.ord,E; ;) > m+1, for1 <j<i—1(resp.i<j—1<e—-1)}.
Now in view of Proposition 4.9, the maps

Tontae 1(Cayy N D(@(*)) — V&, and DI — AV

m,2s—1 2

are isomorphic to a trivial fibration of rank s(e — 3). By Lemma 4.10, the
irreducible components of Vf are the Affn, le{s,...,Li,,} Since V%, =
Tfm N D(xz(.s)), we thus have V;°,, = Ul(Affn N D(a:z(s))) so 7Tm 2 1(C8258 1N

D(= (S))) ~ |, Qs’l where Qs’l (ATJDD(QCZ(S))) x A*(¢=3) As a consequence

Qf fn is 1rreduc1ble and we have that D fon Moreover
Codlm(fon,Ae)—( 3)(m+1)+(m+s+1)—s(e—3):
(m+1)(e—2)—s(e—4) = Codlm(Cffn, A,

hence C7, — QSl and the claim follows since C 7 C for L#1.
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(2) Assume 7 = 1, the case i = e follows in the same way. We first check
that
7r';z,123—1( 5,728571 n D(l’gs)))
={yeAf, ord,(z;) >s, j=1,...,¢, ordy(z1) = s,
ord,E1j >m+1for 3 <j<e}

The inclusion “C” is clear. To get the opposite inclusion we have to prove that
the conditions just listed imply that ordE;, > m+1for2 <j<h—-1<e—1.
This is an immediate consequence of the syzygy

cjtr1—2 Ch_1—2
iElEjh —SleElh-l-.’l?j:_l ~-~xh_1 xh—lEl,j+1 =0.

s,8

Therefore, 7rr_n’12571( i 2s—1 D(:cgs))) is isomorphic to the product of K* by an
affine space of dimension (m —s)+ (m —s+1) + s(e —2) and its Zariski closure
is irreducible of codimension (m + 1)(e — 2) — s(e — 4) in AS,.

Now the equality

Tac1(Cl5a 1 N D)) = O3

m,2s—1 1,25— 2,m
follows from the fact that by Proposition 4.1 we have that Cont®(z1) N Cont®(z3) # 0,
hence 71';:28_1(08’5 N D(x(;))) N ﬂ;}28_1(0§’5 N D(xls))) #  ; since this

1,25— 1,28—
latter is irreducible, its generic point - coincides with the generic point of

one of the irreducible components of 7" (Cie 1 N D(zgs))). The condi-

m,2s—1 [
Liim
tion ordy F12 > m + 1 shows that this irreducible component is C;’m’ . The

other equality in the statement has a similar proof. (|
LEMMA 4.12. — Fori=2,...,e — 2, we have that

s — CS>L5+1,m
im — “i+lm .

Proof. — If m +1 < ¢;y15, by definition mj,; = m + 1 — s, and in view of

Lemma 4.3 and Lemma 4.4, we have that D}, C 7, 1 (Ci1Y 004 ﬂD(xEj_)l)).

Now by Prop. 4.11, the irreducible components of 7 (Ci 261D D(zfi)l))

m,2s—1
are the C’f_ﬁLm forl € {s,...,L{,, ,}. Since G}, = D;; is irreducible, and its
codimension in A¢ coincides with the codimension of any of the Cis_ﬁl’m, there
exists | such that C7) = fﬁl’m with s <l <m+1—s.So D}, and Df_ﬁl,m
are dense open subsets of C;, and there exists v € D;7 N Dfil’m. We thus
have ord,z; = ord,z;+1 = s, and ord,z;12 = . But E; ;40 = xixi+2—mfi+11 and
ord,E; ;12 > m+1. Since m+1 < ¢;115, this implies ord x40 =1 > m+1—s,
sol=m+1-s,ie, Ciy = C:f;;“”

Assume now that m + 1 > ¢;118; for any v € D], we have that ord,z; =
ordyz;+1 = s and ord,F; ;19 > m + 1, hence ord,2; 2 = (c;41 — 1)s = Liiym
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Litim a: . .
which implies that D;";, C D; 41 " Since both are irreducible and have the

. . . 8L 1,m
same dimension, we deduce by passing to the closure that C}?’ = C;, 7™, O

Let SO := 7 1(0), where O is the singular point of S. Note that m,' (S — {0})
is an irreducible component of Sy, of codimension (m + 1)(e — 2) in AS ; we
will see that the irreducible components of SO, have codimension less than or
equal to (m + 1)(e — 2), therefore they are irreducible components of Sy, .

ProrosITION 4.13. —

S0 = U o

i€{2,....,e—1},5€{1,...,[ 21} 1E(s,.... L . }
Proof. — We first look at the case m=2n+1, n > 0. We claim that
0 -1 , +1,n41
(0) 52n+1 = U 772n+1,23—1(0z‘s,2ss—1 n D(wz(‘S))) U Csznﬁ :
i€{1,...,e},s€{1,...,n}
The proof of the claim is by induction on n. By Lemma 4.3, we have that
SY = Cil”ll for any ¢ = 1,...,e, hence the case n = 0. Using the inductive
hypothesis for n — 1, and the fact that for s € {1,...,n — 1} we have that
Ton—1,2s—1 © M2n+1,2n—1 = T2p+1,2s—1, We obtain:
0 -1 0
Sont1 = 772n+1,2n—1(52n—1) =
—-1 s -1 )
U 7T2n+1,2s—1(018,23371 N D(wgs))) U 7r2n+1,2n—1(ci7?2271)'
i€{1,...,e},s€{l,...,n—1}

The claim follows from the stratification
Clny = Ujer, o (Clon N D)) U (CTgn_y NV (@™, -, 2l™)), and

i,2n— 1,2n—
from the fact that by Lemma 4.3, 73, 5, 1(Clan_1 N V™, alM)) =
Cn+1,n+1
i,2n+1

We conclude the proof of the proposition for m = 2n + 1 from Proposi-
tion 4.11 (1) and (2).

The case m = 2(n+ 1), n > 0 : by (¢) we just need to prove that for n > 0,
and i = 1,...,e we have that

—1 n+1l,n+1y n+1,l
7T2(n+1),2n+1(ci,2n+1 ) = U Ci,2(n+1)'

{i=2,...,e—1 ; l:n+1,...,Lz;(1n+l)}
First note that by Lemma 4.3 and 4.4, we have the inclusion
—1 n+1l,n+1 n+1,1
7TQ(”Jrl)@”Jrl(C’FQ"H )2 U Ci,2(n+1)' (¢)

. o 1
{i=2,....e—1; l_n+1,..‘,Lz2(n+1)}

The proof of the opposite inclusion is by induction on the embedding dimen-
sion e of S.
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First assume that e = 4; the equations defining S in A* are Ei3, F14, Eo4.

So the ideal defining CrFbntly in A4 is generated by

2(n+1) 2n+1( i,2n+1 2(n+1)

(azgo) (n) E(2n+2) E(2n+2) E(2"+2), j=1,...,4),

P

. . —1 n+1,n+1 . .
hence every irreducible component of To(n+1),2n +1(Cia,41 ) has codimension

in AQ( +1 less than or equal to 4(n+1) +3 = 4n + 7.
Now we have that

-1 n+1,n+1 -1 n+1,n+1 (n+1)
7r2(n+1),2n+1(01 i1 )= U 7r2(n+1),2n+1((cz ont1 N D(z; )
j=1,...,.4

Cn+1,n+1 OV( (n+1) ) x(n-{—l))))

U Ty i,2n+1 < Ty

2(n+1) 2n-+1 ((

n+1,n 1
U 7T2(n-&-l 2n+1((ci,;;L1+1+1 ﬂD(xg + ))))

— n+1,n+1 n+1 n+1
UW2(11+1),2n+1((Ci,2n+1 ﬂV(( )-~-,5L’4(1 ))))

Moreover by Proposition 4.11 part (2), indices 1 and 4 are superfluous. In
addition by Lemma 4.3 and Proposition 4.11. 1), we have that for j = 2,3,

—1 n+1,n+1 (n+1) _ n+1,1
Tomrn.2nt1(Cianir N D(@; 7)) = U Ciatnt1)
I=n+1,..,(2(n+1))7+"
+ln+1y _
Hence 7T2(n+1) 2n+1( Z%Jﬁ )
+1,1 +1,n+1 (n+1) (n+1)
U an2n+1 U 7y (n+1) 2n+1((czn2n+ri NV(z e @y )

I=n+1,...,(2(n+1))7; j=2,3
Finally we have that

— n+1 n+1
Totinani (Cranis NV ™, el
= {y € Sy(nt1), ordyz; >n+2, j=1,...,4}
:{’yeAé(nH), ordyz; >n+2, j=1,...,4}
0 n+1 .
V@®, e, 1)

is irreducible of codimension 4(n + 2) in A (nt1)- Since 4(n+2) > 4dn+7, it is

not an irreducible component of 7r2(n +1).2n +1(C:l2+nl.ﬁ+l) hence the claim.

We now assume the lemma to be true for toric surfaces S of embedding

dimension & with 4 < & < e — 1. We have that 75, ., 5. (Cr5. 1) =

— n+1,n+1 n n+1,n+1 n
7r2(1l+1)a2n+1(cl 2n+1 ﬂD(mfi +1))) U Ty (n+1) 2n+1(Cz 21 1) V(a:g +1))'
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By Prop. 4.11, part (2) CZ;:j:ﬁl n D(:L’én+1))) C Cj’_sl 2(nt1) 5O

(CZ;'nl_ﬂ"H N V(xgnﬂ))). The discussion

1
) 7T2(n+1),2n+1(

it remains to determine 71'2(; )20t 1
splits into two cases:
i) There exists h € {3,...,e} such that c5_1 >2and cp =+ = co_1 = 2.
1
CET Ve =

By Lemma 4.3, we have that 71'2(2_‘_1) am1 (

{7 € 8@nt1); ordyz; >n+1, 1<j<e—1, ordyze >n+2} =
{y e Algpy1y ordyzy >n+1, 1<j<e—1, ordyze > n+2,
ord,Ejp, >2n+3, 1<j<k—-1<e-1}
Now recall that E._3 . = Tc—2%c — .. If h < e, we have that c._; = 2, so
for v € A§ such that ordyz._2 > n+ 1,ordyz. > n+ 2 and ord, Fe_2 . >

2(n+1)
2n+3, we thus have that 2ord,z._1 > 2n+3 hence ord,z._; > n+2. Similarly,

if i > h, for v € Ag(nﬂ) such that ordyz;—1 > n + 1,ord,z;41 > n + 2 and
ord,E;_1 ;41 > 2n + 3, we get that ord,z; > n + 2. By descending induction
on 4, this shows that

e

_ n ,n n +1 n
Tty 2ns1 ClanT AV (@YY C V™D, o),

Note that this inclusion is verified by definition when A = e. Moreover, for v €
Ag(m_l) such that ord,z; > n+ 1(resp. n +2) for 1 < j < h(resp. h < j < e),
we have that ord, E;; > 2n + 3 if h < k < e, indeed we have that

ordyz;xr > n+1+n+2=2n+3, and

ordeHlx;fll_Q a1 e > 3(n+ 1) (vesp. n+1+n+2)

C'n-l-l,n-l-l N

for k = h(resp. k& > h). Therefore we have that W;(}z+1) an41(Cioni

{veAS 41y ordyz; > n+1,1<j<h-1lordyz; >n+2,h<j<e,
ord,Ejp > 2n+3,1<j<k—1<h—2}. (00)

If h > 5, this can be interpreted geometrically as follows: Let S be the
toric surface in A"~! = Spec[zy,...,x,_1] defined by the ideal generated
by (Ejk,1 < j<k—-—1<h—-2)and fori =2,...,h—2, m € N;s €
{L...,151hteds,...,L],,} let
fon = {y € Spn; ordyz; = s,ordyziy1 =1}

and C’f,ln = f)ffn, finally for m > p, let #p,p : Sm — S, be the canonical
projection. By Lemma 4.3 again, we have that

o “m—+1,n+1 h— . .

7r2(1l+1)72n+1(023'n_ﬁ y={v€ AQ(nIH), ordyz; >n+1,1<j<h-1,

ordyEjr, >2n+3,1<j<k—1<h—-2}
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1 (
2(n+1),2n+1

~— An+1,n+1 n+2 2(n+1 .
7r2(2+1)’2n+1(01’;n+1+ ) x SpecK[x; ), ceey xg ( )),3 =h,...,e,

Therefore we deduce that ot V(@) =

which by the inductive hypothesis is equal to
An+1, 2 2(n+1)) .
U C.’;(iil) xSpecK[asyH_ ). ,x§ () 5= p, .. el

K3
i=2,...,h—2; l:n+1,‘..,LZ;(1n+l)
Newt we claim that
n+1,1 (n+1) (n+1)
U Clominy C Vi ",z ™).
i=2,...,h—2; l=n+1,..4,LZ;'(1n+1)
n+1,1
Indeed, let v € Di,2(n+1)
- 1ntly . .
v E 7r2(}1+1)72n+1(02;njr"1+ ), le,ordyxz; >n+1forl1<j<e ordyz;=n+1

and ord,FE;. > 2n + 3. Since 4 < h — 2 and c¢p—1 > 2, this implies that

for some 7 and [ in the above union. We have that

Cit1—2 Ce—1—2
ord,yxiﬂa:”l e TTem1 2> 2n 43,

therefore ordyx;x. > 2n 4+ 3, thus ord,x. > n + 2, and since we have proved
that

— n+1,n+1 n+1
7T2(1L+1);2n+1(ci,;_n+1+ n V(x((in+1)) - V(xgz )7 o 7x£n+1))7
n+1,1 n+1,l n+1 n+1
we deduce that Ci,;_(n—i-l) = Di,;_(n-i-l) C V(a:;l N), Ll )).

Finally by Proposition 4.7, CZ;(i’il)(resp. C’:L;(L_ZH)) is irreducible of codi-
mension (n+1)e+e—2(resp. (n+1)(h—1)+h—3)in A7, (resp. Ag(nil)),
therefore

. n+1,1 . ~n+1,0 n+2 2(n+1 .

dim Ci,;(n-l-l) = dim Ci,:;("H) X SpecK[xg. ), e ,x; ( )),_] =h,...,€]
forany i’ € {2,...h—2},1' € {n+1,..., L?,';l(nﬂ)}, and we deduce from the first
inclusion (o) that CZ;(iil) coincides with C’l",;%nl;rl) X Spec]K[a:§n+2), e ,:1:5.2("“)),
j=h,...,e] forsome i € {2,...h—2},and I' € {n—f—L...,L?,El(nH)}.

But we have that ord,z; = n + 1, ord,(z;4+1) = [ for v the generic point
of ¢ therefore since 4 +1 < h — 1, we have that ordyz; = n 4+ 1 and

%,2(n+1)?
ord;x; 1 =l for 4 the generic point of CN’:}';%nl 1) Therefore 4 € CN':L;(L_I‘_I) and
we deduce that C’:fgbf 41 C C’f;iil) But since they are irreducible of the
same codimension they are equal, so we have that

n+1,1 _ An+ll (n+2) 2(n+1)) .
Ciomin) = Ciamin) X SpecK|z; sy T ,j=h,...,€.

We thus have that

1 +1,n+1 +1)\) _ +1,1

Tamrn),ans1(Cianit NV (@) = U Ciamsn

. Co— n1
1=2,...,h 2,l—n+1,4..,Li72(n+1)
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and the claim follows.(Note that we get that

n+1,l _ n+1,1
U Ci,2(n+1) - U Ci,2(n+1)
i=2,...,h—2,e—1,l=n+1; ...,L"}} i=2,...,e—1,l=n+1; ...,L

n+1
i,2(n+1) i,2(n+1))

as an immediate consequence of Lemma 4.3 and Lemma 4.12.)

If h = 4, let S be the toric surface in A3 = SpecK|[x1, T2, z3] defined by the
ideal (E4,3) and let C;(—;i—l) ={y € Sy(n+1); ordyz; > n+1, j =1,2,3}. The
equality (¢¢) reduces to

(ClF L NV (@)

An n 2(n .
= 02(—211) X SpecK[xg. +2),...,x§ ( H)),J =4,...,€.

-1
To(n+1),2n+1

n+1 2(n+1 .
(D gD

Since E13 = z123 — x5, if o > 2, ég(ﬂrl) C SpecK|z seer T
1,...,3] is defined by the ideal (z"™z{"™)) so C71 = = V(") u

2(n+1)
V(xénﬂ)) while it is irreducible if co = 2.

We check as above that
+1,1 (n+1) +1
U Cyant V™, gl
l=n+1,...,L;E(1n+1)
and that dim C; ;(17;11) coincides with the dimension of any irreducible com-

ponents of é’g{;il) X SpecK[x;nJrz), .. .,xg.z("ﬂ)),j =4,...,¢e]. Again in view

C’; ;(17;11) is an irreducible component of C';l(flil) X SpecK[xgnH), i

,i=4,... €]

If co = 2, then L;‘“;(lnﬂ) =n + 1 and we thus have

+1,n+1 DYy _ mtlntl
Cioni1 N V(e{th)) = C;L,z(nil)‘

of (¢), each

x§_2(n+1))

-1
7r2(n+1),2n+1(

If ¢; > 2, we have that Lg;(ln +n =n+ 2, and the same argument as above
shows that

Cg;(ln’r{)l = V(xgnH)) X SpecK[x;n”), e, :vg.z("ﬂ)),j =4,...,¢|

C’;;(IHI;)Q = V(x:(;”rl) X SpecK[m§n+2), .

We thus have

-1 +1,n41 n+1)yy _ +1,0
7T2(n+1),2n+1(0in,’2n+nl N V(ZL‘,S ))) - U 0;2(71-&-1)

L B

_ . nt1
l=n+1; "'7Li,2(n+l))

hence the claim.

Finally if h = 3, by (00) we have that Ty, 1) 5,4 (

n+1,n+1 n+1
Cli OV (@) =
2T 5 2] xSpecK[m§"+2), e x§2(n+1)),j =3,...,€.

SpecK[x§"+1), .
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Now we have that C’;;r(lnjj)l c V@Y, ..., 20", Indeed, for v € D?;nl_ﬁ“,
we have that ordyzo =n +1, 0rd7x3 =n+2,ord,z; >2n+1,j=4,...,eand
ord,Es; > 2n 43 for j =4,...,e. Since c3 = ... = cc—1 = 2, this implies that
ordyz; > n+2forj=4,...,e,50v € V(z ("H),..., ("H)) We conclude

+1,n+1 +1 +1,n+2

that 750,11y 0n41(Cionin N V(")) = Cy a1y because both sets are

irreducible and have the same dimension, and the claim follows in this case.
ii) If co =---=c._1 =2 then

crplntly — V(:cgo), e ,IE") i =1,.

i2n+1 , @ LM,

-1
7T2(n+1),2n+1(

$£n+1)x§n+l) En—;l) ("+1) A1<i<j—1<e-1).

The ideal generated by (z (n+1)x§n+1) xEnJ{I) ;"J{I) 1<i<j—1<e—-1),is
isomorphic to the ideal defining S in A°, hence it is prime and
W;(il +1),2n41(C, S 1) s irreducible. It follows from Proposition 4.11, part

(2) that

-1 n+1,n+1y _ n+1l,n+1
7T2(n+1),2n+1(0i,2n+1 ) = Ce—1,2(n+1)’

thus the proposition in this case. O

REMARK 4.14. — Note that the argument that we use in the Proposition 4.13
for e = 4 does not work in general. The argument works in the case e = 4
because the number of equations that define S C A° (this number is (efl)) 18
less or equal to e if and only if e < 4.

THEOREM 4.15. — Let m € N, m > 1. Modulo the identifications Csmi =

s Lz+1 m

Ciiqhi™, the irreducible components of Sy, = 7,'(0) are the Cf,ln, i =

2,..,e=1, s € {l,....[F]} and | € {s,...,L],,}}. The irreducible com-

ponents of Sy, are my,' (S\0) and the irreducible components of SP,.

Proof. — By Proposition 4.13, S, is covered by the C’s ! Consider C’S ! with
l# L;,,;sincel < L7 this implies that m > 2s—1 and ¢; # 2. For the generic
point v we know frorn Lemma, 4.2 (part 2) that for 1 < j <i—1,ord,x; > s.

This forbids that C;/ v CCim L oor Cim Loy v o fori’ € {2,...,i—1} because
by Proposition 4.7, they have the same cod1mens1on in AY, hence an inclusion
as above 1mphes that they shoud coincide, so ord,z; = s. On the other hand,

Cffn ¢ CsV if s < 8, because by Proposition 4.11, Cs’l has non-empty

i’,m>

intersection with D(:L'l(-s)), but Cf,:’f,; C V(xgs)). Finally, C;, fn ¢ C’f,:’rl,; because
by Proposition 4.7 the codimension of the first one, is less then or equal to the
codimension of the second one, and the first statement of the theorem follows.

The last statement of the theorem follows from the fact that

codim(CPL  A¢) < codim(mt(S\0), AS,).

1,m?
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Indeed : By Proposition 4.7, codim(Cls,ln,Ae ) =se+ (m— (2s —1))(e — 2).
By Remark 2.2, we have that codim (7' (S\0), A¢ ) =(m+1)(e — 2). and we
have that for s > 1,se + (m — (2s — 1))(e — 2) < (m + 1)(e — 2) if and only if
e > 4. O

DEFINITION 4.16. — Let m € N, m > 1, and let C be an irreducible com-
ponent of SO, and v be its generic point. By Theorem /.15, there exist s €
L[5 teds,...,Li,,} andi € {2,...,e — 1} such that C = Cf,il We
say that C has index of speciality s.

Note that s = ord., (M) := minyep{ord,(f)} where M is the maximal ideal
of the local ring Og and 7 the generic point of C.
Fori=2,...,e—1, and m € N, we set

Ng(m):=Lj, —s+1

For m € N, m > 1, we call N(m) the number of irreducible component of SY,.
Then counting the irreducible components in the Theorem 4.15 we find

COROLLARY 4.17. — If all the c; are equal to 2, then N(m) = [F]. Otherwise

let ¢;,,...,ci, be the elements in {ca,...,cc_2} different from 2, then we have
5]
N(m) = > (Ng (m)+ (N7 (m)—1)+---+ (N7 (m)—1)).
s=1
Moreover, fors € {1,...,[3]}, the number of irreducible components of So

of index of speciality s is equal to
Ng, (m) 4+ (NZ, (m) =1) + -+ (NZ, (m) - 1.

COROLLARY 4.18. — Let S be a toric surface. The number of irreducible com-
ponents of SO, and their dimensions determine the embedding dimension e of S
and the set {ct,t =2,...,e —2}.

Proof. — We have that dim(SY) = e, the embedding dimension of S. If e = 3,
then for m big enough, we have by Theorem 3.1 that N(m) = c¢ is constant,
and we deduce that S is an A, singularity. Suppose the e > 4.

For m > 1, let

(1
Nim)=>» (m+1-(2s—-1))+(e—3)(m+1—(25s—1)—1).
1

w3

We have that N(m) < Ny(m) and N(1) = N;(1) = 1. Let
my = min{m ; N(m) < Ny(m)} and a; = Ny(m;) — N(m,),
then there exists 41,...,%a, € {c2,...,Cc—1} such that ¢;; =---=¢;, =m.
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If a; = e — 2, then we have found all the ¢;. If not, then for j > 2, we
recursively define
; (%1
Nj(m) = 3" (N3, (m) + (N3, (m) = 1) 4 -+ (N2, (m) = 1)+ -+
s=1

(N (m)—1)+(€e—2—(a1+--+a;_1))m+1—-(2s-1)—1),

cla1+---+0tj71
m; = min{m ; N(m) < N;(m)} and a; = N;(m;) — N(m;).
Therefore there exists 4, 4...qa,_,+1s+ - > bar++a;_1+a; € 1€25+--,Ce—1} such
that
Ciaytotay_141 = " = Ciaygota,_yta; = M
If oy + -+ aj—1 + o = e — 2, then we have found all the c;, otherwise we
repeat the procedure at most e — 2 times. O

REMARK 4.19. — Corollary 4.18 is to compare with the result of Nicaise in
[22], where he proved that the motivic Igusa Poincaré series of a toric surface
is equivalent to the set {ct,t = 2,...,e— 2}, and that the order of the ¢; in the
continued fraction can not be extracted from this series. It is clear also from
the formulas given in Proposition 4.7 and Corollary 4.17, that the number of
irreducible components and their dimensions is not affected by the order of the
¢; in the continued fraction. Note that despite that these informations on the
jet schemes are closely related to the informations encoded in the motivic Iqusa
Poincaré series, they are not equivalent in general.

Below we show how we extract all the ¢; and their order or equivalently
the analytical type of S from their jet schemes. We first explain in the next
proposition how the components C ., behave under the truncation morphisms
Tm,m—1. Lhe proof follows from Sectlon 3 and Propositions 4.10,4.13.

PrOPOSITION 4.20. — Let m € Nym > 1. Let i € 2,...,e—1, and | €
{1,..., L}’m}. For 2 <m < ¢; — 1, we have the following inclusions
Tm,m— 1(0 ) c 0211; 11’

whenever | —1 € {1,... ’Li,m—l}'

7rmm 1(0 )CC

i,m—1’

whenever 1 € {1,..., L, _,}. For m > ¢;, we have

7Tmm 1(0 )CC

i,m—1?

forle{l,...,¢; —1}. And these are all the inclusions between components of
index of speciality 1 induced by Tp m—1,m > 1.

7732(0 )CC,Q, fori €{2,...,e—1},I' € {1,L} ,},
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This means that it is included in all the irreducible components of the level 2
jet scheme.

As in Section 3, we now attach to the structure of the jet schemes of S a
weighted graph that detects the invariants of the singularity S.

DEFINITION 4.21. — 1. The weighted graph of the jet schemes of S is the
leveled weighted graph T' obtained by

e representing every irreducible components of S, m > 1, by a verter
Vi m, where the sub-index m is the level of the vertex;

o joining the vertices vy, m+1 and vy m if the morphism Ty i1 m n-
duces a morphism between the corresponding irreducible compo-
nents;

e weighting each vertex by the dimension of the corresponding irre-
ducible component.

2. The index 1 weighted graph of the jet schemes of S is the subgraph T'!
of T whose vertices are those associated with the components of in-
dex of speciality equal to 1. It is obtained from I' by deleting the other
vertices (those corresponding to irreducible components of index of spe-
ciality different from 1) and edges with at least one of the extremities
not corresponding to an irreducible component of index of speciality 1.

We first will describe the subgraph I'l. The last inclusion in the Proposi-
tion 4.20 implies that we can detect the vertex associated with the component
C'z 32 We then can extract the graph I'! from I' by deleting all the vertices and
edges which are connected to the vertex associated with C’i ’32, and whose index
of speciality is not 1. Then, applying Proposition 4.20, we find that I'' can
be constructed from the cis as follows: for every i = 2,...,i — 1, let '} be
the graph whose vertices are in 1 - 1 correspondence with the irreducible com-
ponents Cil’;ib,m >1,and I € {1,.. .,L}’m}; the graph I'}! coincides with the
graph associated with an A., , singularity in Section 3. The identifications

1,L}

C; = Ciiy'ih™, induce identifications between infinite lines of '} and '},

ee the next example). Then I'! is the union of I'} modulo the identifications.
See th t le). Then I'! is th. i f I'} modulo the identificati

We then obtain :

COROLLARY 4.22. — Let S be a toric surface.

1. The weighted graph T' determines the embedding dimension e of S and
the set {ci,t =2,...,e — 2}.
2. The order of the c;’s which are different from 2.

Proof. — The first part follows from Corollary 4.18 knowing only the weight
of the vertex corresponding to SY, i.e., its dimension. It follows from the
discussion above (mainly from the last inclusion in the Proposition 4.20) that,
given T', we can extract I'' from it. The order of the ¢;’s which are different
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from 2 is then extracted from I'! thanks to the identifications described above
(see the figure in the next example for an illustration). ]

REMARK 4.23. — Notice that if ¢; = 2, then T} looks like a line and is not
possible to detect where it sits on T'! after the identifications.

EXAMPLE 3. — We consider the toric surface singularity defined by the cone
generated by the vectors (1,0) and (4,11). We have that 11/4 = [3,4]. Below
we show the subgraph T'* = T3 UTL of the graph T of this singularity. First
we show the graphs T3 and 3. To keep the figure the simplest possible, we do
not weight the graph here with the codimensions; but he weights are essential
to detect the invariants of S. And after the identifications we obtain I'! :

s 8
8
4 7
7
L
6 6 L
6
’
5 iz o 5 e e Cyy s o o o 3 o
4 _ 3
e a ar | a al, art et wl fe
e a3 : w3 oi :
2
S \/0;_1 2 o
! m cl! ! m 1
m
T} ry I
To recover ca,...,ce—1 with their order (mainly the order where the ¢;’s

which are equal to 2 appear), we will need to put more weights on the vertices
of T' associated with the irreducible components of S9; these are C’ill’?z, Ci12’}2,
Cilz’}z, ceey Cllh12 where i1, . .., i are like in Corollary 4.17. Back to the equations
of S, we find that C; % ~ Slioi1] x A“",Cij”lz ~ Slisistil x A€ for j=1,...,h

where ig = 1,441 = €, Slii-ii+1] is the toric surface defined by the 2 x 2 minors

of the matrix
i+l T ij41

in K[mg),,xfﬁl] and A° = K[x?),...,xgz)]. Note that for j = 0,...,h,
the embedding dimension of Sl%-%+1) is i; ; —i; + 1, in particular Sl é+1] i
isomorphic to A? if and only if ij4+1—1%; = 1. Hence, after weighting the vertices
corresponding to irreducible components of S by their embedding dimensions,
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we see how the c;s which are equal to 2 are distributed between the other ¢s.
Hence we define an other weighted graph as follows:

DEFINITION 4.24. — We denote by ET' the weighted graph which is obtained
from T by weighting the vertices of I' associated with the irreducible components
of SY by their embedding dimensions (note that by the definition of T, these
vertices are also weighted by their dimensions).

Hence we obtain:

COROLLARY 4.25. — Let S be a toric suface. The data of the weighted graph
ET of SY, is equivalent to the data of all the c; and of their order in the
continued fraction, or equivalently to the analytical type of S.

REMARK 4.26. — Note that if we reverse the order of the ci, the obtained toric
surface will be isomorphic to the original one.

Using a theorem of Mustata in [21], we obtain as a by-product the log
canonical threshold lct(S, A°) of the pair S C A®:

COROLLARY 4.27. — Let S be a toric surface of embedding dimension e. If
e =3 (i.e., S is an A, singularity) then lct(S, A®) = 1, otherwise
e
let(S,A®) = —
ct(5, ) = ¢

Proof. — By [21] we have that
Codim(S,,, A%)

m+1 '
The case e = 3 follows from Section 3, since in this case we have that S,, is
irreducible of codimension m + 1. Let us suppose that e > 4. If m is odd,
m = 2s — 1, s > 1 then the component C;, ; is of maximal dimension and
we have that

let(S, A®) = ming,en

. S,8
Codim(C55,_1,A5, 1) se e

2s T2 2
If m is even, m = 2n, n > 0 then the components CZ’;”, i=2,...,e—1 1=
n, L, are of maximal dimension, and since e > 4 we have that
Codim(C73,, Af,) _ne+e—2 _ e
2n + 1 - 2n+1 T2
and the lemma follows. O
COROLLARY 4.28. — For m > maz{c;, i = 2,...,e — 1}, the number of irre-

ducible components of SO, , with index of speciality s = 1, is equal to the number

of exceptional divisors that appear on the minimal resolution of S.

Proof. — This comes from the comparison of Corollary 4.17 with Proposi-
tion 2.3. O
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REMARK 4.29. — The Corollary 4.28 is to compare with the bijectivity of the
Nash map, due to Ishii and Kollar for this type of Singularities, [11]. Actu-
ally, the projective limits of the systems (Cj;)m gives rise to the irreducible
components of the space of arcs centered at the singular point of S.
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