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JET SCHEMES OF NORMAL TORIC SURFACES

by Hussein Mourtada

Abstract. — For m ∈ N, m ≥ 1, we determine the irreducible components of the
m − th jet scheme of a normal toric surface S. We give formulas for the number of
these components and their dimensions. This permits to determine the log canonical
threshold of a toric surface embedded in an affine space. When m varies, these compo-
nents give rise to projective systems, to which we associate a weighted oriented graph.
We prove that, among toric surfaces, the data of this graph is equivalent to the data
of the analytical type of S. Besides, we classify these irreducible components by an
integer invariant that we call index of speciality. We prove that for m large enough,
the set of components with index of speciality 1, is in 1− 1 with the set of exceptional
divisors that appear on the minimal resolution of S.

Résumé (Espaces de jets des surfaces toriques normales). — Pour m ∈ N, m ≥ 1,
nous déterminons les composantes irréductibles des espaces de m-jets d’une surface
torique normales S. Nous donnons des formules pour le nombre de ces composantes et
pour leurs dimensions. Ceci permet de déterminer le seuil log-canonique de la surface
S plongée dans un espace affine. Quand m varie, ces composantes donnent lieu à
des systèmes projectifs, auxquels nous associons un graphe orienté et pondéré. Nous
démontrons que, parmi les surfaces toriques, la donnée de ce graphe est équivalente à la
donnée du type analytique de S. De plus, nous classifions ces composantes irréductibles
via un invariant qu’on appelle indice de spécialité. Nous démontrons que pour m

assez large, l’ensemble des composantes avec un indice de spécialité égal à 1, est en
correspondance bijective avec l’ensemble des diviseurs exceptionnels qui apparaissent
sur la résolution minimale des singularités de S.
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1. Introduction

Nash has introduced the arc space of a variety X in order to investigate the
intrinsic data of the various resolutions of singularities of X. The analogy with
p-adic numbers has led Kontsevich [13], Denef and Loeser [3] to invent motivic
integration and to introduce several rational series that generalize analogous
series in the p-adic context [4]. The geometric counterpart of the theory of mo-
tivic integration has been used by Ein, Mustata and others to obtain formulas
controlling discrepancies in terms of invariant of jet schemes—these are finite
dimensional approximations of the arc space—[21, 6, 7, 8]. Roughly speaking,
while we can extract informations about abstract resolutions of singularities
from the arc space and vice versa, we can extract informations about embed-
ded resolutions of singularities from the jet schemes and vice versa. This partly
explains why the arc space of a toric variety—which has been intensively stud-
ied [12, 14, 1, 10, 11]—is well understood. Indeed, we know an equivariant
abstract resolution of a toric variety, what permits to understand the action of
the arc space of the torus on its arc space [10], but an equivariant embedded
resolution is less accessible.

The structure of jet schemes of singular algebraic varieties is complicated;
despite that they were the subject of numerous article in the last decade, few
is known about their geometry for specific class of singularities, except for
the following classes: monomial ideals [9], determinantal varieties [5], plane
branches [17], quasi-ordinary singularities [2].

In this article, we study the jet schemes of a normal toric surface singu-
larity. We determine their irreducible components and we give formulas for
their number and dimensions. We give here a brief description of the re-
sults. The data of a toric surface singularity S is equivalent to the data of
a cone σ ⊂ N = Z2 generated by (1, 0) and (p, q) for two coprime numbers
0 < p < q. Let q/p = [c2, . . . , ce−1] be the Hirzebruch-Jung continued fraction
expansion (see Section 2.2); the embedding dimension of S is equal to e; the
equations defining the embedding of S in Ae = SpecK[x1, . . . , xe] are described
in Section 2. Let m ∈ N,m ≥ 1 and let S0

m be the space of m-jets cen-
tered at the singularity of S (see Section 2.1 for preliminaries on jet schemes).
For i = 2, . . . , e−1, s ∈ {1, . . . , dm2 e}(i.e.,m ≥ 2s−1 ≥ 1) and l ∈ {s, . . . , Lsi,m},
where

Lsi,m := min{(ci − 1)s, (m+ 1)− s},

we define

Ds,l
i,m := Conts(xi)m ∩ Contl(xi+1)m,

where for p ∈ N, and f ∈ K[x1, . . . , xe],

Contp(f)m = {γ ∈ Sm | ordγ(f) = p}.

tome 145 – 2017 – no 2
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We define Cs,li,m := Ds,l
i,m to be the Zariski closure of Ds,l

i,m. We find in Theo-
rem 4.15 the following.

Theorem. — Let m ∈ N, m ≥ 1. The irreducible components of S0
m are

C
s,Lsi,m
e−1,m and the Cs,li,m, i = 2, . . . , e− 1, s ∈ {1, . . . , dm2 e} and l ∈ {s, . . . , L

s
i,m−

1}}.

The formulas that we obtain for the codimensions of the irreducible compo-
nents of S0

m (see Proposition 4.11) enable us, by applying Mustata’s formula
[21], to determine the log canonical threshold of the pair S ⊂ Ae (e is the
embedding dimension). For e = 3, the log canonical threshold is 1. For e ≥ 4,
we find in Corollary 4.27 that

lct(S,Ae) =
e

2
.

Moreover, making use of the truncation morphisms between the jet schemes,
we associate with the irreducible components of S0

m a graph which is weighted
by the codimensions of the irreducible components and the embedding dimen-
sion of some of these components. We prove in Corollary 4.25 that the data of
this graph is equivalent to the analytical type of the surface. Note that motivic
invariants of a toric surface singularity do not determine its analytical type
[16, 22].

Finally, we classify the irreducible components by a natural invariant that
we call index of speciality; this is the order of contact of the generic point of the
component with the maximal ideal defining the singular point of S. We prove
that for m large enough, the number of irreducible components of S0

m is in 1-1
correspondence with the divisors appearing on the minimal abstract resolution
of singularities of S. This is to compare with the bijectivness of the Nash map
for toric varieties [11]. This is also related to a jet schemes approach to a
conjecture of Teissier on toric resolution of singularities [26]. This approach is
explained in [19] (see also [15]).

The proof of the main theorem uses heavily the description of the defining
equations of the embedding S ⊂ Ae ([24, 25]), and some syzygies of these
equations that we describe and that are ad hoc to the problem. It also uses
known results on the arc space of a toric variety [14, 11],[10] and it is by
induction on m and on the embedding dimension e. In particular it uses a kind
of approximation of the toric surface S by toric surfaces with smaller embedding
dimensions.

Some of the results of this paper were announced in [18].
The structure of the paper is as follows: in section two we present a reminder

on jet schemes and on toric surfaces. In section three we study the jet schemes
of the An singularities. The last section is devoted to the toric surfaces of
embedding dimension bigger or equal to four.
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2. Jet schemes and toric surfaces

2.1. Jet schemes. — Let K be field. Let X be a K-scheme of finite type over K.
For m ∈ N, the functor Fm : K-Schemes −→ Sets which to an affine scheme
defined by a K-algebra A associates

Fm(Spec(A)) = HomK(SpecA[t]/(tm+1), X)

is representable by a K-scheme Xm [27]. We call Xm the m-th jet scheme of X
and we have that Fm is isomorphic to its functor of points. In particular the
K-points of Xm are in bijection with the K[t]/(tm+1)-points of X.

For m, p ∈ N,m > p, the truncation homomorphism A[t]/(tm+1) −→ A[t]/(tp+1)
induces a canonical projection πm,p : Xm −→ Xp. These morphisms are affine
and for p < m < q they clearly verify πm,p ◦ πq,m = πq,p. This yields an
inverse system whose limit X∞ is a scheme called the arc space of X. Note
that X0 = X. We denote the canonical projections Xm −→ X0 by πm and
X∞ −→ Xm by Ψm. See [7] for more about jet schemes.

Example 1. — Let X = Spec K[x1,...,xn]
(f1,...,fr)

be an affine K-scheme. For a K-al-
gebra A, an A-point of Xm is a K-algebra homomorphism

ϕ :
K[x1, . . . , xn]

(f1, . . . , fr)
−→ A[t]/(tm+1).

This homomorphism is completely determined by the image of xi, i = 1, . . . , n

xi 7−→ ϕ(xi) = x
(0)
i + x

(1)
i t+ · · ·+ x

(m)
i tm

and it should verify that ϕ(fl) = fl(φ(x1), . . . , φ(xn)) ∈ (tm+1), l = 1, . . . , r.
Therefore if we set

fl(φ(x1), . . . , φ(xn)) =

m∑
j=0

f
(j)
l (x(0), . . . , x(j)) tj mod (tm+1)

where x(j) = (x
(j)
1 , . . . , x

(j)
n ), then we have that

Xm = Spec
K[x(0), . . . , x(m)]

(f
(j)
l )j=0,...,m

l=1,...,r

tome 145 – 2017 – no 2
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Example 2. — From the above example, we see that the m-th jet scheme of
the affine space An is isomorphic to A(m+1)n and that the projection πm,m−1 :
Anm −→ Anm−1 is the map that forgets the last n coordinates.

Remark 2.1. — This a notational remark; in the sequel we will denote the
m− th jet scheme of the affine space An by Anm.

Remark 2.2. — Note that in general, if X is a nonsingular variety of di-
mension n, then all the projections πm,m−1 : Xm −→ Xm−1 are locally trivial
fibrations with fiber An. In particular Xm is of dimension n(m+ 1) ([7]).

2.2. Toric surfaces. — Let S be a singular affine normal toric surface defined
over the field K. There exist two coprime integers p and q such that S is defined
by the cone σ ⊂ N = Z2 generated by (1, 0) and (p, q) and 0 < p < q, i.e.,
S = SpecK[xu, u ∈ σ∨ ∩M ] where σ∨ is the dual cone of σ and M is the dual
lattice of N ([23]). We have the Hirzebruch-Jung continued fraction expansion
in terms of cj ≥ 2 :

q

p
= c2 −

1

c3 −
1

· · · −
1

ce−1

which we denote by [c2, . . . , ce−1]. Let θ∨ be the convex hull of (σ∨ ∩M) \ 0
and let ∂θ∨ be its boundary polygon. Let u1, u2, . . . , uh be the points of M
lying in this order on ∂θ∨, with u1 = (0, 1) and uh = (q,−p). Then from [23],
proposition 1.21 we have that h = e is the embedding dimension of S and the ui
form a minimal system of generators of the semigroup σ∨∩M. For i = 1, . . . , e,
we will denote by xi the regular function on S defined by xui . Riemenschneider
has exhibited the generators of the ideal defining S in Ae = SpecK[x1, . . . , xe].
They can be given in a quasi-determinantal format [24, 25]:x1 x2 . . . xe−2 xe−1

xc2−2
2 . . . x

ce−1−2
e−1

x2 x3 . . . xe−1 xe


where the generalized minors of a quasi-determinant f1 f2 . . . fk−1 fk

h1,2 . . . hk−1,k

g1 g2 . . . gk−1 gk


are figj − gi(

∏j−1
n=i hn,n+1)fj .

They can be written as follows:

Eij = xixj − xi+1x
ci+1−2
i+1 x

ci+2−2
i+2 · · ·xcj−2−2

j−2 x
cj−1−2
j−1 xj−1,

where 1 ≤ i < j − 1 ≤ e− 1.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



242 H. MOURTADA

Let bi ∈ N, bi ≥ 2, be such that q/(q − p) = [b1, . . . , br]. Let l0 = (1, 0), . . .,
ls+1 = (p, q) in this order be the elements of N lying on the compact edges of
the boundary ∂θ of the convex hull θ of (σ ∩N) \ 0.

Proposition 2.3. — We have that r = s and is equal to the number of ir-
reducible components of the exceptional curve for the minimal resolution of
singularities of S. Moreover we have that

c2 + · · ·+ ce−1 − 2(e− 2) + 1 = s.

See Lemma 1.22 and Corollary 1.23 in [23] for a proof.

3. Jet schemes of toric surfaces of embedding dimension e = 3

Let S be the variety defined in A3 by the equation f(x, y, z) = xy−zn+1 = 0.
S has an An singularity at the origin 0 and is nonsingular elsewhere. Note that
an affine toric suface of embedding dimension 3 has this type of singularities
(see Section 2.1). If we set

f(

m∑
i=0

x(i)ti,

m∑
i=0

y(i)ti,

m∑
i=0

z(i)ti) =

i=m∑
i=0

F (i)ti mod tm+1, (�)

then Sm is defined in A3(m+1) = A3
m by the ideal Im = (F (0), F (1), . . . , F (m)).

By Remark 2.2, the morphism π−1
m (S\0) −→ S\0 is a trivial fibration, there-

fore we have that π−1
m (S\0) is an irreducible component of Sm of codimension

m + 1 in A3
m. On the other hand, we will prove in the coming lines that the

codimension of S0
m := π−1

m (0) in A3
m is m + 2, which means that Sm is irre-

ducible for every m ∈ N : indeed, since Im is generated by m + 1 equations,
any irreducible component of Sm could have codimension at most m+1. (Note
that the irreducibility of Sm follows from [20] because S is locally a complete
intersection with a rational singularity, but we give here a direct proof in this
simple case.)

We claim that for m ≤ n, we have S0
m = Z0

m, where Z ⊂ A3 is the hy-
persurface defined by xy = 0. Indeed, a m-jet γm = (x =

∑m
i=0 x

(i)ti, y =∑m
i=0 y

(i)ti, z =
∑m
i=0 z

(i)ti) ∈ (A3)m centered at the origin (i.e., x(0) = y(0) =

z(0)) is in S0
m if and only if xy − zn+1 ≡ 0 mod tm+1, but since z0 = 0 and

m ≤ n, we have that ordt z
n+1 ≥ n + 1 ≥ m + 1, therefore this is equivalent

to ordt xy ≥ m+ 1 and therefore to γ ∈ Z0
m.

But clearly for m ≤ n, the irreducible commponents of Z0
m = S0

m are the
subvarities defined by the ideals

I lm = (x(0), . . . , x(l−1), y(0), . . . , y(m−l), z(0)), l = 1, . . . ,m.

Notice that the codimension of Clm := V (I lm) in A3
m is equal to m + 2 for l =

1, . . . ,m. We deduce that for m ≤ n, Sm is irreducible of codimension m + 1.
On the other hand, for m ≥ n + 1 we have that Clm = π−1

m,n(V (I ln)) is defined

tome 145 – 2017 – no 2
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in (A3)m by the ideal I lm = (I ln, J
l
m−(n+1)) where J

l
m−(n+1) is the ideal obtained

from the ideal defining Xm−(n+1) in A3
m−(n+1) by changing variables. Indeed

if we set

f(

m∑
i=l

x(i)ti,

m∑
i=n−l+1

y(i)ti,

m∑
i=1

z(i)ti)

= f(tl(

m−l∑
i=0

x(l+i)ti), tn−l+1(

m−(n−l+1)∑
i=0

y(n−l+1+i)ti), t(

m−1∑
i=0

z(i+1)ti))

= tn+1f(

m−l∑
i=0

x(l+i)ti,

m−(n−l+1)∑
i=0

y(n−l+1+i)ti,

m−1∑
i=0

z(i+1)ti)

= tn+1(

i=m−(n+1)∑
i=0

G
(i)
l ti)(��)

then J lm−(n+1) is generated by G(i)
l , i = 0, . . . ,m− (n + 1), and by comparing

(�) with (��), we get that

G
(i)
l = F (i)(x(l), . . . , x(l+i), y(n−l+1), . . . , y(n−l+1+i), z(1), . . . , z(1+i)).

We deduce that for l = 1, . . . , n,

Codim(π−1
m,n(V (I ln)),A3

m) = n+ 2 + Codim(Sm−(n+1),A3
m−(n+1)).

This implies by a simple induction that for l = 1, . . . , n,

Codimπ−1
m,n(V (I ln)) = m+ 2.

Therefore Codim(S0
m,A3

m) = m + 2, so Sm is irreducible. It follows that
π−1
m,n(V (I ln)) which is isomorphic to Sm−(n+1) × A2n+1 is irreducible and we

conclude:

Theorem 3.1. — Let m ∈ N, n ≥ 1, and let S0
m be the scheme of m-jets

centered in the singular locus of an An singularity. Then we have the following:
1. S0

m is a locally complete intersection scheme.
2. For m ≤ n, S0

m has m irreducible components, Clm, l = 1, . . . ,m each of
codimension m + 2. For m ≥ n + 1, it has n irreducible components,
Clm, l = 1, . . . , n, each of codimension m+ 2.

3. The global jet scheme Sm is irreducible.
4. For 2 ≤ m ≤ n, and l ∈ {1, . . . ,m − 1} we have that πm,m−1(Clm) ⊂
Clm−1, πm,m−1(Clm) ⊂ Cl−1

m−1 and πm,m−1(Cmm ) ⊂ Cm−1
m−1 . For m ≥ n+ 1

we have that πm,m−1(Clm) ⊂ Clm−1, for l ∈ {1, . . . , n}. These are all the
inclusions induced by πm,m−1 for m ≥ 2.

We obtain a graph Γ by representing every irreducible components of S0
m,

m ≥ 1, by a vertex vi,m and by joining the vertices vi1,m+1 and vi0,m if the

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



244 H. MOURTADA

morhphism πm+1,m induces a morphism between the corresponding irreducible
components. From the Theorem 3.1, part 4, we deduce that the graph Γ for
the singularity A4 is the following :

4. Jet schemes of toric surfaces of embedding dimension e ≥ 4

We keep the notations introduced in Section 2 and we begin by introducing
some more notations. Let f ∈ K[x1, . . . , xe] ; for m, p ∈ N such that p ≤ m, we
set:

Contp(f)m(resp.Cont>p(f)m) := {γ ∈ Sm | ordγ(f) = p(resp. > p)},
Contp(f) = {γ ∈ S∞ | ordγ(f) = p},

where ordγ(f) is the t-order of f ◦ γ.
For a, b ∈ N, b 6= 0, we denote by dab e the round-up of ab . For i = 2, . . . , e−1,

s ∈ {1, . . . , dm2 e}(i.e., m ≥ 2s− 1 ≥ 1) and l ∈ {s, . . . , Lsi,m}, where
Lsi,m := min{(ci − 1)s, (m+ 1)− s},

we set
Ds,l
i,m := Conts(xi)m ∩ Contl(xi+1)m,

and
Cs,li,m := Ds,l

i,m.

If R is a ring, I ⊆ R an ideal and f ∈ R, we denote by V (I) the subvariety
of Spec R defined by I and by D(f) the open set D(f) := Spec Rf .

We will prove that the irreducible components of S0
m := π−1

m (0) are among
the closed sets Cs,li,m (see the theorem in the introduction). The irreducibility
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of the Cs,li,m is proved in Proposition 4.7, where we also compute their codimen-
sions. In Proposition 4.13 we prove that they cover S0

m. In Lemma 4.12, we
prove that there are redundancies between the Cs,li,m. The fact that there are no
inclusions among them but those of lemma 4.12, is proved in Theorem 4.15.

We begin by giving an overview of the strategy of the proof of theorem 4.15.
The first remark is that S0

1 , which is the Zariski tangent space of S at 0, is
isomorphic to an affine space (Lemma 4.3), more precisely we have:

S0
1 = Spec

(
K[x

(0)
1 , . . . , x

(0)
e , x

(1)
1 , . . . , x

(0)
e ]

(x
(0)
1 , . . . , x

(0)
e )

)
. (?)

A key idea is to stratify it as follows

S0
1 = (S0

1 ∩D(x
(1)
1 )) ∪ . . . ∪ (S0

1 ∩D(x
(1)
1 )) ∪ (S0

1 ∩ (x
(1)
1 , . . . , x(1)

e ).

First we study π−1
m,1(S0

1 ∩ D(x
(1)
i )), for i = 2, . . . , e − 1 and m ≥ 2. By us-

ing syzygies between the equations defining S (Lemma 4.5), we construct in
Proposition 4.11 a trivial fibration from π−1

m,1((S0
1 ∩D(x

(1)
i ), to a constructible

subset of the jet schemes of an Aci singularity. This latter constructible sub-
set is introduced and studied in Lemma 4.10, what permits to us to deter-
mine the irreducible components of the Zariski closure π−1

m,1((S0
1 ∩ D(x

(1)
i ),

for i = 2, . . . , e − 1, namely the C1,l
i,m. The constructibles π−1

m,1((S0
1 ∩ D(x

(1)
i )

for i = 1, e are irreducible (Proposition 4.11) and included in the Zariski closure
of π−1

m,1((S0
1 ∩D(x

(1)
i ), i = 1, e− 1, (Proposition 4.11, part (2)).

It remains to study π−1
m,1(S0

1∩(x
(1)
1 , . . . , x

(1)
e ), form ≥ 2. Form = 2, we prove

that π−1
2,1(S0

1 ∩ (x
(1)
1 , . . . , x

(1)
e ) is included in the Zariski closure of π−1

2,1((S0
1 ∩

D(x
(1)
i ), for i = 2, ..., e − 1 (Proposition 4.13). The proof of the latter state-

ment in the case where the embedding dimension e = 4 is based on dimen-
sion arguments, then we use induction on e. For this purpose, we approxi-
mate S by toric surfaces which are of less embedding dimensions. For m =

3, π−1
3,1(S0

1 ∩ (x
(1)
1 , . . . , x

(1)
e )(which is equal to C2,2

2,3 by Lemma 4.3) is an irre-
ducible component of S0

3 , and is an affine space that we stratify in a similar
way to (?) (see the case m = 2n + 1 in Proposition 4.13). We then as above
consider the inverse image by πm,3,m ≥ 4 of each strata. The inverse im-
ages by πm,3 of the open stratas will be understood again by comparison with
some subsets of the jet schemes of Aci singularities and they will give rise to
a new generation of irreducible components, namely the C2,l

i,m. Then we study
the inverse image by π4,3 and π5,3 of the closed strata. This phenomena is
understood by an induction on m, (more precisely on n) which permits us to
cover S0

m by irreducible subsets. In Theorem 4.15 we prove that there are no
inclusions between these subsets.
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From 4.1 till 4.12, we are preparing the proof of Theorem 4.15. Our first aim
is to prove the irreducibility of the Cs,li,m’s and to compute their codimension
in Aem, this is the subject of Proposition 4.7. We begin by some preparatory
lemmas.

Proposition 4.1. — 1. For i = 2, . . . , e − 1 and l, s ∈ N such that 1 ≤
s ≤ l ≤ (ci − 1)s, we have that Conts(xi) ∩ Contl(xi+1) 6= ∅.

2. For s ∈ N, s ≥ 1, Conts(x1) ∩ Conts(x2) 6= ∅.

Proof. — (1)-We will prove that there exists an arc h on S, whose generic
point lies in the torus, and such that h ∈ Conts(xi) ∩ Contl(xi+1). Note that
with an arc h on S, we can naturally associate a vector vh = (a, b) ∈ σ∩N and
that for any v ∈ σ ∩ N there exists an arc h such that v = vh; moreover, for
any u ∈M ∩ σ∨, we have that h ∈ Contvh.u(xu), where we denote by vh.u the
scalar product of vh and u, and by xu the regular function defined by u on S
([16], Proposition 3.3). Let ui, i = 1, . . . , e, be the system of minimal generators
of σ∨ ∩M , defined in 2.2 such that xui = xi. Therefore to prove that there
exists an arc h as above, it is sufficient to prove that there exists (a, b) ∈ σ∩N
such that (a, b).ui = s and (a, b).ui+1 = l. Since ui and ui+1 determine a
Z-basis of M , there exists a unique (a, b) ∈ N such that (a, b).ui = s and
(a, b).ui+1 = l. Let’s prove that (a, b) lies in the interior of σ, i.e., that for j =
1, . . . , e, (a, b).uj > 0. Since ui−1 = ciui−ui+1, we have that (a, b).ui−1 = cis−l
which is greater than or equal to s because by hypothesis we have s ≤ l ≤
s(ci−1). Similarly we have that (a, b).ui+2 = ci+1l− s which is greater than or
equal to l. Since ci ≥ 2, for i = 1, . . . , e, by descending (respectively ascending)
induction we find that (a, b).uj−1 ≥ (a, b).uj , for j = 2, . . . , i (respectively
(a, b).uj−1 ≤ (a, b).uj , for j = i+ 2, . . . , e) and the proposition follows.

(2)-We have that u1 = (0, 1), u2 = (1, 0). We need to prove that the unic
vector v = (a, b) ∈ N such that (a, b).(0, 1) = b = s and (a, b).(1, 0) = a = s,
also belongs to σ; in fact it is is clear that (s, s) belongs to the interior of σ.
We also need to prove that for j = 3, . . . , e, we have that (s, s).uj ≥ s ; since
uj ∈ σ∨ and (1, 1) lies in the interior of σ, we have that (1, 1).uj > 0, moreover
uj ∈M and (1, 1) ∈ N , so (1, 1).uj ∈ Z and (1, 1).uj ≥ 1. �

The following lemma prepares Lemma 4.3.

Lemma 4.2. — Let i = 2, . . . , e − 1, m ∈ N, s ∈ {1, . . . , dm2 e} and l ∈
{s, . . . , Lsi,m}. For γ ∈ D

s,l
i,m, we have

1. the inequality ordγxj ≥ s, j = 1, . . . , e.
2. If moreover m 6= Lsi,m, then for j = 1, . . . , i− 1 we have ordγxj > s.

Proof. — Let γ ∈ Ds,l
i,m. This implies that ordγEi−1,i+1 ≥ m + 1. From

the expression of Ei−1,i+1 and the hypothesis l ∈ {s, . . . , Lsi,m}, we get that
ordγxi−1 ≥ s.We also have ordγEi−2,i ≥ m+1; using the fact that ordγxi−1 ≥
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s we get ordγxi−2 ≥ s. Recursively, by using the conditions, ordγEj,i ≥
m + 1, j = i − 3, i − 4, . . . , 1, we obtain ordγxj ≥ s, j = i − 3, i − 4, . . . , 1.
Similarly, by using the conditions ordγEi,j ≥ m+ 1, j = i+ 2, . . . , e we obtain
ordγxj ≥ s, j = i + 2, . . . , s and hence the first part of the lemma. The sec-
ond part follows in the same way using the conditions ordγEj,i ≥ m + 1, j =
1, . . . ,m− 1. �

Lemma 4.3. — For i = 2, . . . , e−1, s ≥ 1, the ideal defining Cs,si,2s−1 in Ae2s−1 is

Is,si,2s−1 = (x
(b)
j , 1 ≤ j ≤ e, 0 ≤ b < s).

Note that Cs,si,2s−1 does not depend on i. For j = 1, e, we set

Cs,sj,2s−1 := Cs,si,2s−1, i = 2, . . . , e− 1.

Proof. — Let us prove that Ds,s
i,2s−1 = V (Is,si,2s−1)∩D(x

(s)
i x

(s)
i+1). Let γ ∈ Ae2s−1

such that ordγxi = ordγxi+1 = s. Lemma 4.2 gives that ordγxj ≥ s, j =
1, . . . e. We deduce

Ds,s
i,2s−1 ⊂ V (Is,si,2s−1) ∩D(x

(s)
i x

(s)
i+1).

The opposite inclusion comes from the fact that a jet in

V (Is,si,2s−1) ∩D(x
(s)
i x

(s)
i+1) ⊂ Ae2s−1

satisfies all the equations of S modulo t2s. Since V (Is,si,2s−1) ⊂ Ae2s−1 is irre-
ducible, the lemma follows. �

Lemma 4.4. — For i = 2, . . . , e − 1, m ∈ N, s ∈ {1, . . . , dm2 e} and l ∈
{s, . . . , Lsi,m}, we have that

Cs,li,m ⊂ π
−1
m,2s−1(Cs,si,2s−1).

Proof. — For γ ∈ Ds,l
i,m, it follows from Lemma 4.2 (part 1) that ordγxj ≥ s,

j = 1, . . . , e and hence from Lemma 4.3 we deduce thatDs,l
i,m ⊂ π

−1
m,2s−1(Cs,si,2s−1).

The lemma follows since π−1
m,2s−1(Cs,si,2s−1) is closed. �

Lemma 4.5. — 1. For i = 2, . . . , e− 1, m ∈ N, s ∈ {1, . . . , dm2 e},

π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
i )) = {γ ∈ Aem ; ordγxj ≥ s, j = 1, . . . , e, ordγxi = s,

ordγEi−1,i+1 ≥ m+ 1, ordγEj,i ≥ m+ 1, for 1 ≤ j < i− 1

ordγEi,j ≥ m+ 1, for i < j − 1 ≤ e− 1}.
2. For i = 2, . . . , e− 1, m ∈ N, s ∈ {1, . . . , dm2 e} and l ∈ {s, . . . , L

s
i,m}, we

have

Ds,l
i,m = {γ ∈ Aem; ordγEij ≥ m+ 1 for i < j − 1 ≤ e− 1,

ordγEji ≥ m+ 1 for 1 ≤ j < i− 1,

ordγEi−1,i+1 ≥ m+ 1, ordγxi = s, ordγxi+1 = l}.
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Proof. — (1) The inclusion “⊂” is an immediate consequence of Lemma 4.3.
To get the other inclusion, it is enough to check that for every γ ∈ Aem enjoying
the conditions listed above, we also have ordγEjh ≥ m+ 1 for 1 ≤ j < h− 1 ≤
e− 1.

If i < j, the syzygy

(4.1) xiEjh − xjEih + x
cj+1−2
j+1 · · ·xch−1−2

h−1 xh−1Ei,j+1 = 0

implies that ordγEjh ≥ m+1, because ordγxj and ordγxh−1 ≥ s and ordγxi =
s.

Similarly if h < i, the syzygy

(4.2) xiEjh − xhEji + xj+1x
cj+1−2
j+1 · · ·xch−1−2

h−1 Eh−1,i = 0

implies that ordγEjh ≥ m+1, because ordγxh and ordγxj+1 ≥ s and ordγxi =
s.

Assume now that 1 ≤ j < i− 1 and h = i+ 1; the syzygy

(4.3) xi+1Eji − xiEj,i+1 + xj+1x
cj+1−2
j+1 · · ·xci−1−2

i−1 Ei−1,i+1 = 0

implies that ordγEj,i+1 ≥ m+ 1.
Similarly if j = i− 1 and i+ 1 < h ≤ e, the syzygy

(4.4) xi−1Eih − xiEi−1,h + x
ci+1−2
i+1 · · ·xch−1−2

h−1 xh−1Ei−1,i+1 = 0

implies that ordγEi−1,h ≥ m+ 1.
Finally , if 1 ≤ j < i− 1 and i+ 1 < h ≤ e, the syzygy

(4.5) xjEih − xiEjh + x
ci+1−2
i+1 · · ·xch−1−2

h−1 xh−1Ej,i+1 = 0

implies that ordγEj,h ≥ m+ 1, taking into account that we have shown above
that ordγEj,i+1 ≥ m+ 1.

(2) First, since the ideal defining S in Ae is generated by Ejh, 1 ≤ j <
h− 1 ≤ e− 1, we have that

Ds,l
i,m ⊂ U

s,l
i,m := {γ ∈ Aem; ordγEij(resp. ordγEji) ≥ m+ 1 for i < j−1 ≤ e−1

(resp. 1 ≤ j < i− 1), ordγEi−1,i+1 ≥ m+ 1, ordγxi = s, ordγxi+1 = l}.
For γ ∈ Us,li,m, we have by the proof of 4.4 that for j = 1, . . . , e, ordγxj ≥ s. It
follows from the first part of this lemma that Ds,l

i,m = Us,li,m. �

Remark 4.6. — Note that the syzygies (4.1), . . . , (4.5) are syzygies in the ring
of polynomials and not in the ring of regular functions on S. This is essential
for the conclusion in the above lemma.

Proposition 4.7. — For i = 2, . . . , e − 1, m ∈ N, s ∈ {1, . . . , dm2 e} and
l ∈ {s, . . . , Lsi,m}, C

s,l
i,m is irreducible, and its codimension in Aem is equal to

se+ (m− (2s− 1))(e− 2).
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Proof. — The irreducibility of Cs,li,m follows from the fact that Ds,l
i,m is iso-

morphic to the product of a two dimensional torus by an affine space. In-
deed, set xj ◦ γ =

∑
0≤ν≤m x

(ν)
j tν , 1 ≤ j ≤ e. Assume that ordγxi = s

and ordγxi+1 = l; then by Lemma 4.5, part (2), γ ∈ Ds,l
i,m if and only if

ordγEi−1,i+1 ≥ m+ 1, ordγEij ≥ m+ 1 for i+ 1 < j ≤ e and ordγEji ≥ m+ 1
for 1 ≤ j < i− 1. Recall also that we have that ordγ(xi) ≥ s for i = 1, . . . , e.

We begin by examining the condition ordγEi−1,i+1 ≥ m+ 1.
If m + 1 ≤ cis, we have that ordγEi−1,i+1 ≥ m + 1, if and only if x(ν)

i−1 = 0
for 0 ≤ ν ≤ m − l; this is due to the fact that we have the ordγx

ci
i = cis and

ordγxi+1 = l.
If m+ 1 > h+ 1 > cis then

(?) E
(h)
i−1,i+1 = x

(h−l)
i−1 x

(l)
i+1 −H

where H is a polynomial in x
(s)
i , . . . , x

(h−cis+s)
i , x

(l)
i+1, . . . , x

(h−cis+l)
i+1 and

x
(cis−l)
i−1 , . . . , x

(h−l−1)
i−1 (where we have put x(ν)

i−1 = 0 for 0 ≤ ν < cis − l;
this follows from the case m + 1 ≤ cis). In particular, for h = cis, we
have that E(cis)

i−1,i+1 = x
(cis−l)
i−1 x

(l)
i+1 − x

(s)
i

c

i . After dividing by x(l)
i+1 6= 0 we ob-

tain that E(cis)
i−1,i+1 = 0 gives that x(cis−l)

i−1 = x
(s)
i

c

i/x
(l)
i+1. Exchanging x

(cis−l)
i−1

by this fraction in E
(cis+1)
i−1,i+1 and dividing by x

(l)
i+1 6= 0, we obtain from (?)

that E(cis+1)
i−1,i+1 = 0 is equivalent to x

(cis−l+1)
i−1 equals a polynomial function

in x(s)
i , x

(s+1)
i , 1/x

(l)
i+1, x

(l)
i+1, x

(l+1)
i+1 . Keeping doing this with E(h′)

i−1,i+1 for cis ≤
h′ < h and by replacing in E(h)

i−1,i+1(see (?)) the variables x(cis−l)
i−1 , x

(cis−l+1)
i−1 , . . . ,

x
(h−l−1)
i−1 by their expressions as polynomial functions in x(s)

i , . . . , x
(h−1−cis+s)
i ,

1/x
(l)
i+1, x

(l)
i+1, . . . , x

(h−1−cis+l)
i+1 , that are obtained form E

(h′)
i−1,i+1, h

′ = cis, . . . , h−
1, is an induction on h that permits to express x(h−l)

i−1 as a polynomial function in
the variables x

(s)
i , . . . , x

(h−cis+s)
i , 1/x

(l)
i+1, x

(l)
i+1, . . . , x

(h−cis+l)
i+1 . Hence,

ordγEi−1,i+1 ≥ m + 1, if and only if x(ν)
i−1 = 0 for 0 ≤ ν < cis − l and

is a polynomial function of x(s)
i , . . . , x

(m−cis+s)
i , 1/x

(l)
i+1, x

(l)
(i+1), · · ·x

(m−cis+l)
(i+1)

for cis− l ≤ ν ≤ m− l.
Consider now the conditions ordγEij ≥ m+1 for i+1 < j ≤ e. For j = i+2,

notice that Ei,i+2 has the "same" shape of Ei−1,i+1. It follows from the study
of ordγEi−1,i+1 ≥ m+1 that ordγEi,i+2 ≥ m+1 if and only if x(ν)

i+2 = 0 for 0 ≤
ν < s and is a polynomial function of 1/x

(s)
i , x

(s)
i , . . . , x

(m−s)
i , x

(l)
i+1, . . . , x

(m−l)
i+1

for s ≤ ν ≤ m − s. Now by using the expressions of the x(ν)
i+2’s in the equa-

tions that defines ordγEi,i+3 ≥ m + 1 (see the shape of the equation Ei,i+3,
for which we can write similar equations as (?) where H will depend on the
x

(ν)
i

′
s, x

(ν)
i+1

′
s, x

(ν)
i+2

′
s and x

(ν)
i+3

′
s), we obtain the expressions of the x(ν)

i+3

′
s as

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



250 H. MOURTADA

polynomials in the variables 1/x
(s)
i , x

(s)
i , . . . , x

(m−s)
i , x

(l)
i+1, . . . , x

(m−l)
i+1 ; an in-

duction on j = i + 2, i + 3, . . . , e gives that ordγEij ≥ m + 1 for i + 1 <

j ≤ e if and only if x(ν)
j = 0 for 0 ≤ ν < s and is a polynomial function

of 1/x
(s)
i , x

(s)
i , . . . , x

(m−s)
i , x

(l)
i+1, . . . , x

(m−l)
i+1 for s ≤ ν ≤ m− s.

Similarly, ordγEji ≥ m+ 1, for 1 ≤ j < i− 1 if and only if x(ν)
j = 0 for 0 ≤

ν < s and is a polynomial function of 1/x
(s)
i , x

(s)
i , . . . , x

(m−s)
i , x

(s)
i−1, . . . , x

(m−l)
i−1

for s ≤ ν ≤ m−s. Taking in considerations that x(m−s)
i−1 , . . . , x

(m−l)
i−1 are polyno-

mial functions in the variables x(s)
i , . . . , x

(m−cis+s)
i , 1/x

(l)
i+1, x

(l)
(i+1), · · ·x

(m−cis+l)
(i+1) ,

it follows that a closed point in Ds,l
i,m determines and is completely determined

by the following data:

x
(s)
i , xi+1

(l) ∈ K∗,

x
(s+1)
i , . . . , x

(m)
i ∈ K,

x
(l+1)
i+1 , . . . , x

(m)
i+1 ∈ K

x
(m+1−l)
i−1 , . . . , x

(m)
i−1 ∈ K

x
(m+1−s)
j , . . . , x

(m)
j ∈ K, j = 1, . . . , i− 2, i+ 2, . . . , e.

As a consequence, the dimension of Ds,l
i,m, hence of its closure Cs,li,m is d =

2m+s(e−4)+2. And the formula of the codimension is obtained by considering
(m+ 1)e− d. �

Remark 4.8. — The final presentation of the proof of the Proposition 4.7 was
suggested by the referee.

For i = 2, . . . , e−2, let Xi = SpecK[xi−1, xi, xi+1]/(xi−1xi+1−xcii ). For s ∈
{1, . . . , dm2 e}, let

V si,m := {γ ∈ Xi
m, ordγ(xj) ≥ s, j = i− 1, i+ 1, ordγ(xi) = s},

and for l ∈ {s, . . . , Lsi,m}, let

∆s,l
i,m := {γ ∈ Xi

m, ordγ(xi) = s, ordγ(xi+1) = l}.
The algebraic morphism

K[xi−1, xi, xi+1]

(xi−1xi+1 − xcii )
−→ K[x1, . . . , xe]

(Eij , 1 ≤ i < j − 1 ≤ e− 1)

induces a natural map pi : S −→ Xi; the associated map pim : Sm −→ Xi
m

induces morphisms

π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
i )) −→ V si,m and Ds,l

i,m −→ ∆s,l
i,m

Now in view of Lemma 4.5 (see also the proof of Proposition 4.7), we have the
following proposition.
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Proposition 4.9. — The maps

π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
i )) −→ V si,m and Ds,l

i,m −→ ∆s,l
i,m

are isomorphic to trivial fibrations of rank s(e− 3).

Proof. — For the second map, this is the geometric translation of Lemma 4.5
and Proposition 4.7. In particular, the rank of the fibration is determined by
the number of free variables

x
(m+1−s)
j , . . . , x

(m)
j ∈ K, j = 1, . . . , i− 2, i+ 2, . . . , e,

(see the last line of the proof of Proposition 4.7): fixing these variables gives a
point in the fibre above a fixed point in ∆s,l

i,m. The proof concerning the first
map is similar. �

The following propositions are preparatory for the proof of Proposition 4.13,
which states that S0

m is the union of the Cs,li,m.

Lemma 4.10. — For i = 2, . . . , e − 1, and s ∈ {1, . . . , dm2 e}, the irreducible

components of V si,m are the ∆s,l
i,m, l ∈ {s, . . . , Lsi,m}.

Proof. — First, assume that m+ 1 ≤ cis, so that Lsi,m = m+ 1− s. We have
that

V si,m = {γ ∈ A3
m ; ordγxj ≥ s, j = i− 1, i+ 1, ordγxi = s

and ordγxi−1 + ordγxi+1 ≥ m+ 1}
and for l ∈ {s, . . . ,m+ 1− s},

∆s,l
i,m = {γ ∈ A3

m ; ordγxi = s, ordγxi+1 = l, ordγxi−1 ≥ m+ 1− l} =

V (x
(0)
i−1, . . . , x

(m−l)
i−1 , x

(0)
i , . . . , x

(s−1)
i , x

(0)
i+1, . . . , x

(l−1)
i+1 ) ∩D(x

(s)
i x

(l)
i+1).

Since s ≤ l ≤ m+1−s, we have that ∆s,l
i,m ⊂ V si,m, so

⋃
s≤l≤m+1−s ∆s,l

i,m ⊂ V si,m.
Now for γ ∈ V si,m, we have that ordγxi = s, l := ordγxi+1 ≥ s and ordγxi−1 ≥
m+1−l. If l ≤ m+1−s, we thus have that γ ∈ ∆s,l

i,m; if l > m+1−s, we have that
ordγxi−1 ≥ s, hence γ ∈ V (x

(0)
i−1, . . . , x

(s−1)
i−1 , x

(0)
i , . . . , x

(s−1)
i , x

(0)
i+1, . . . , x

(m−s)
i+1 )

= ∆s,m+1−s
i,m , hence the claim.

Now assume that cis < m + 1, so that Lsi,m = (ci − 1)s. For l ∈ {s, . . . ,
(ci − 1)s} and γ ∈ ∆s,l

i,m, we thus have that ordγxi = s, ordγxi+1 = l ≥ s, and
ordγxi−1 + l = cis, hence ordγxi−1 = cis − l ≥ s, therefore ∆s,l

i,m ⊂ V si,m and⋃
s≤l≤(ci−1)s ∆s,l

i,m ⊂ V si,m.
On the other hand V si,m = (πim,cis−1)−1(V si,cis−1) where πim,cis−1 : Xi

m −→
Xi
cis−1 is the natural map. For s ≤ l ≤ (ci − 1)s, we have that ∆s,l

i,m =

(πim,cis−1)−1(∆s,l
i,cis−1).
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Now we have just seen that V si,cis−1 =
⋃
s≤l≤(ci−1)s ∆s,l

i,cis−1 and that ∆s,l
i,cis−1 =

V (x
(0)
i−1, . . . , x

(cis−l−1)
i−1 , x

(0)
i , . . . , x

(s−1)
i , x

(0)
i+1, . . . , x

(l−1)
i+1 ).

As a consequence (πim,cis−1)−1(∆s,l
i,cis−1) is isomorphic to the product of an

affine space by the space of (m− cis)-jets of the surface

SpecK[x
(cis−l)
i−1 , x

(s)
i , x

(l)
i+1]/(xi−1

(cis−l)xi+1
(l) − x(s)

i

ci
),

and this latter is irreducible by section 3, hence coincides with ∆s,l
i,m. So V si,m ⊂⋃

s≤l≤(ci−1)s ∆s,l
i,m, hence the claim. �

Proposition 4.11. — Let m, s ∈ N such that s ∈ {1, . . . , dm2 e}.

1. For i = 2, . . . , e−1, the irred. components of π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
i ))

are the Cs,li,m, l ∈ {s, . . . , Lsi,m}.
2. For i = 1, e, we have that π−1

m,2s−1(Cs,si,2s−1 ∩ D(x
(s)
i )) is irreducible of

codimension
se+ (m− (2s− 1))(e− 2)

in Aem. Moreover we have that

π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
1 )) = C

s,Lsi,m
2,m

and
π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
e )) = Cs,se−1,m.

Proof. — (1) By the Lemmas 4.4 and 4.5, we have that

Ds,l
i,m ⊂ π

−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
i ))

= {γ ∈ Aem ; ordγxj ≥ s, j = 1, . . . , e, ordγxi = s, ordγEi−1,i+1 ≥ m+ 1,

ordγEj,i(resp.ordγEi,j) ≥ m+ 1, for 1 ≤ j < i− 1(resp. i < j− 1 ≤ e− 1)}.
Now in view of Proposition 4.9, the maps

π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
i )) −→ V si,m and Ds,l

i,m −→ ∆s,l
i,m

are isomorphic to a trivial fibration of rank s(e − 3). By Lemma 4.10, the
irreducible components of V si,m are the ∆s,l

i,m, l ∈ {s, . . . , Lsi,m}. Since V si,m =

V si,m ∩D(x
(s)
i ), we thus have V si,m =

⋃
l(∆

s,l
i,m ∩D(x

(s)
i )); so π−1

m,2s−1(Cs,si,2s−1 ∩
D(x

(s)
i )) '

⋃
l Ω

s,l
i,m where Ωs,li,m = (∆s,l

i,m∩D(x
(s)
i ))×As(e−3). As a consequence

Ωs,li,m is irreducible and we have that Ds,l
i,m ⊂ Ωs,li,m. Moreover

Codim(Ωs,li,m,A
e
m) = (e− 3)(m+ 1) + (m+ s+ 1)− s(e− 3) =

(m+ 1)(e− 2)− s(e− 4) = Codim(Cs,li,m,A
e
m),

hence Cs,li,m = Ωs,li,m and the claim follows since Cs,li,m 6= Cs,l
′

i,m for l 6= l′.
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(2) Assume i = 1, the case i = e follows in the same way. We first check
that

π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
1 ))

= {γ ∈ Aem, ordγ(xj) ≥ s, j = 1, . . . , e, ordγ(x1) = s,

ordγE1j ≥ m+ 1 for 3 ≤ j ≤ e}.
The inclusion “⊂” is clear. To get the opposite inclusion we have to prove that
the conditions just listed imply that ordγEjh ≥ m+1 for 2 ≤ j < h−1 ≤ e−1.
This is an immediate consequence of the syzygy

x1Ejh − xjE1h + x
cj+1−2
j+1 · · ·xch−1−2

h−1 xh−1E1,j+1 = 0.

Therefore, π−1
m,2s−1(Cs,si,2s−1∩D(x

(s)
1 )) is isomorphic to the product of K∗ by an

affine space of dimension (m−s)+(m−s+1)+s(e−2) and its Zariski closure
is irreducible of codimension (m+ 1)(e− 2)− s(e− 4) in Aem.

Now the equality

π−1
m,2s−1(Cs,si,2s−1 ∩D(x

(s)
1 )) = C

s,Lsi,m
2,m

follows from the fact that by Proposition 4.1 we have that Conts(x1) ∩ Conts(x2) 6= ∅,
hence π−1

m,2s−1(Cs,si,2s−1 ∩D(x
(s)
2 )) ∩ π−1

m,2s−1(Cs,si,2s−1 ∩D(x
(s)
1 )) 6= ∅ ; since this

latter is irreducible, its generic point γ coincides with the generic point of
one of the irreducible components of π−1

m,2s−1(Cs,si,2s−1 ∩D(x
(s)
2 )). The condi-

tion ordγE1,2 ≥ m + 1 shows that this irreducible component is C
s,Lsi,m
2,m . The

other equality in the statement has a similar proof. �

Lemma 4.12. — For i = 2, . . . , e− 2, we have that

Cs,si,m = C
s,Lsi+1,m

i+1,m .

Proof. — If m + 1 ≤ ci+1s, by definition ms
i+1 = m + 1 − s, and in view of

Lemma 4.3 and Lemma 4.4, we have that Ds,s
i,m ⊂ π

−1
m,2s−1(Cs,si+1,2s−1∩D(x

(s)
i+1)).

Now by Prop. 4.11, the irreducible components of π−1
m,2s−1(Cs,si+1,2s−1 ∩D(x

(s)
i+1))

are the Cs,li+1,m for l ∈ {s, . . . , Lsi+1,m}. Since C
s,s
i,m = Ds,s

i,m is irreducible, and its
codimension in Aem coincides with the codimension of any of the Cs,li+1,m, there
exists l such that Cs,si,m = Cs,li+1,m with s ≤ l ≤ m+ 1− s. So Ds,s

i,m and Ds,l
i+1,m

are dense open subsets of Cs,si,m and there exists γ ∈ Ds,s
i,m ∩ D

s,l
i+1,m. We thus

have ordγxi = ordγxi+1 = s, and ordγxi+2 = l. But Ei,i+2 = xixi+2−xci+1

i+1 and
ordγEi,i+2 ≥ m+1. Since m+1 ≤ ci+1s, this implies ordγxi+2 = l ≥ m+1−s,
so l = m+ 1− s, i.e., Cs,si,m = C

s,Lsi+1,m

i+1,m .

Assume now that m + 1 > ci+1s; for any γ ∈ Ds,s
i,m, we have that ordγxi =

ordγxi+1 = s and ordγEi,i+2 ≥ m+ 1, hence ordγxi+2 = (ci+1 − 1)s = Lsi+1,m
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which implies that Ds,s
i,m ⊂ D

s,Lsi+1,m

i+1,m . Since both are irreducible and have the

same dimension, we deduce by passing to the closure that Cs,si,m = C
s,Lsi+1,m

i+1,m . �

Let S0
m := π−1

m (O), where O is the singular point of S. Note that π−1
m (S − {0})

is an irreducible component of Sm of codimension (m + 1)(e − 2) in Aem; we
will see that the irreducible components of S0

m have codimension less than or
equal to (m+ 1)(e− 2), therefore they are irreducible components of Sm.

Proposition 4.13. —

S0
m =

⋃
i∈{2,...,e−1},s∈{1,...,dm2 e},l∈{s,...,L

s
i,m}

Cs,li,m.

Proof. — We first look at the case m=2n+1, n ≥ 0. We claim that

(�) S0
2n+1 =

⋃
i∈{1,...,e},s∈{1,...,n}

π−1
2n+1,2s−1(Cs,si,2s−1 ∩D(x

(s)
i )) ∪ Cn+1,n+1

i,2n+1 .

The proof of the claim is by induction on n. By Lemma 4.3, we have that
S0

1 = C1,1
i,1 for any i = 1, . . . , e, hence the case n = 0. Using the inductive

hypothesis for n − 1, and the fact that for s ∈ {1, . . . , n − 1} we have that
π2n−1,2s−1 ◦ π2n+1,2n−1 = π2n+1,2s−1, we obtain:

S0
2n+1 = π−1

2n+1,2n−1(S0
2n−1) =⋃

i∈{1,...,e},s∈{1,...,n−1}

π−1
2n+1,2s−1(Cs,si,2s−1 ∩D(x

(s)
i )) ∪ π−1

2n+1,2n−1(Cn,ni,2n−1).

The claim follows from the stratification
Cn,ni,2n−1 =

⋃
j=1,...,e(C

n,n
i,2n−1 ∩D(x

(n)
j )) ∪ (Cn,ni,2n−1 ∩ V (x

(n)
1 , · · · , x(n)

e )), and

from the fact that by Lemma 4.3, π−1
2n+1,2n−1(Cn,ni,2n−1 ∩ V (x

(n)
1 , · · · , x(n)

e )) =

Cn+1,n+1
i,2n+1 .
We conclude the proof of the proposition for m = 2n + 1 from Proposi-

tion 4.11 (1) and (2).
The case m = 2(n+ 1), n ≥ 0 : by (�) we just need to prove that for n ≥ 0,

and i = 1, . . . , e we have that

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ) =
⋃

{i=2,...,e−1 ; l=n+1,...,Ln+1
i,2(n+1)

}

Cn+1,l
i,2(n+1).

First note that by Lemma 4.3 and 4.4, we have the inclusion

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ) ⊃
⋃

{i=2,...,e−1 ; l=n+1,...,Ln+1
i,2(n+1)

}

Cn+1,l
i,2(n+1). (�)

The proof of the opposite inclusion is by induction on the embedding dimen-
sion e of S.
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First assume that e = 4; the equations defining S in A4 are E13, E14, E24.
So the ideal defining π−1

2(n+1),2n+1(Cn+1,n+1
i,2n+1 ) in A4

2(n+1) is generated by

(x
(0)
j , . . . , x

(n)
j , E

(2n+2)
13 , E

(2n+2)
14 , E

(2n+2)
24 ; j = 1, . . . , 4),

hence every irreducible component of π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ) has codimension
in A4

2(n+1) less than or equal to 4(n+ 1) + 3 = 4n+ 7.

Now we have that

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ) =
⋃

j=1,...,4

π−1
2(n+1),2n+1((Cn+1,n+1

i,2n+1 ∩D(x
(n+1)
j )))

∪ π−1
2(n+1),2n+1((Cn+1,n+1

i,2n+1 ∩ V (x
(n+1)
1 , . . . , x

(n+1)
4 )))

=
⋃

j=1,...,4

π−1
2(n+1),2n+1((Cn+1,n+1

i,2n+1 ∩D(x
(n+1)
j )))

∪ π−1
2(n+1),2n+1((Cn+1,n+1

i,2n+1 ∩ V (x
(n+1)
1 , . . . , x

(n+1)
4 ))).

Moreover by Proposition 4.11 part (2), indices 1 and 4 are superfluous. In
addition by Lemma 4.3 and Proposition 4.11. 1), we have that for j = 2, 3,

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩D(x
(n+1)
j )) =

⋃
l=n+1,...,(2(n+1))n+1

j

Cn+1,l
j,2(n+1).

Hence π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ) =⋃
l=n+1,...,(2(n+1))n+1

j ; j=2,3

Cn+1,l
j,2n+1 ∪ π−1

2(n+1),2n+1((Cn+1,n+1
i,2n+1 ∩ V (x

(n+1)
1 , . . . , x

(n+1)
4 ))).

Finally we have that

π−1
2(n+1),2n+1((Cn+1,n+1

i,2n+1 ∩ V (x
(n+1)
1 , . . . , x

(n+1)
4 )))

= {γ ∈ S2(n+1), ordγxj ≥ n+ 2, j = 1, . . . , 4}
= {γ ∈ A4

2(n+1), ordγxj ≥ n+ 2, j = 1, . . . , 4}

= V (x
(0)
j , . . . , x

(n+1)
j ; j = 1, . . . , 4)

is irreducible of codimension 4(n+ 2) in A4
2(n+1). Since 4(n+ 2) > 4n+ 7, it is

not an irreducible component of π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ), hence the claim.
We now assume the lemma to be true for toric surfaces S̃ of embedding

dimension ẽ with 4 ≤ ẽ ≤ e− 1. We have that π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ) =

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩D(x(n+1)
e )) ∪ π−1

2(n+1),2n+1(Cn+1,n+1
i,2n+1 ∩ V (x(n+1)

e ).
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By Prop. 4.11, part (2), π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩D(x
(n+1)
e )) ⊂ Cs,se−1,2(n+1), so

it remains to determine π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x
(n+1)
e )). The discussion

splits into two cases:
i) There exists h ∈ {3, . . . , e} such that ch−1 > 2 and ch = · · · = ce−1 = 2.

By Lemma 4.3, we have that π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x
(n+1)
e ) =

{γ ∈ S(2n+1); ordγxj ≥ n+ 1, 1 ≤ j ≤ e− 1, ordγxe ≥ n+ 2} =

{γ ∈ Ae(2n+1); ordγxj ≥ n+ 1, 1 ≤ j ≤ e− 1, ordγxe ≥ n+ 2,

ordγEjk ≥ 2n+ 3, 1 ≤ j < k − 1 ≤ e− 1}.
Now recall that Ee−2,e = xe−2xe − xce−1

e−1 . If h < e, we have that ce−1 = 2, so
for γ ∈ Ae2(n+1) such that ordγxe−2 ≥ n+ 1, ordγxe ≥ n+ 2 and ordγEe−2,e ≥
2n+3, we thus have that 2ordγxe−1 ≥ 2n+3 hence ordγxe−1 ≥ n+2. Similarly,
if i ≥ h, for γ ∈ Ae2(n+1) such that ordγxi−1 ≥ n + 1, ordγxi+1 ≥ n + 2 and
ordγEi−1,i+1 ≥ 2n + 3, we get that ordγxi ≥ n + 2. By descending induction
on i, this shows that

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x(n+1)
e ) ⊂ V (x

(n+1)
h , . . . , x(n+1)

e ).

Note that this inclusion is verified by definition when h = e. Moreover, for γ ∈
Ae2(n+1) such that ordγxj ≥ n+ 1(resp. n+ 2) for 1 ≤ j < h(resp. h ≤ j ≤ e),
we have that ordγEjk ≥ 2n+ 3 if h ≤ k ≤ e, indeed we have that

ordγxjxk ≥ n+ 1 + n+ 2 = 2n+ 3, and

ordγxj+1x
cj+1−2
j+1 . . . x

ck−1−2
k−1 xk−1 ≥ 3(n+ 1) (resp. n+ 1 + n+ 2)

for k = h(resp. k > h). Therefore we have that π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩
V (x

(n+1)
e ) =

{γ ∈ Ae2(n+1); ordγxj ≥ n+ 1, 1 ≤ j ≤ h− 1, ordγxj ≥ n+ 2, h ≤ j ≤ e,

ordγEjk ≥ 2n+ 3, 1 ≤ j < k − 1 ≤ h− 2}. (��)
If h ≥ 5, this can be interpreted geometrically as follows: Let S̃ be the
toric surface in Ah−1 = Spec[x1, . . . , xh−1] defined by the ideal generated
by (Ejk, 1 ≤ j < k − 1 ≤ h − 2) and for i = 2, . . . , h − 2, m ∈ N, s ∈
{1, . . . , dm2 e}, l ∈ {s, . . . , L

s
i,m} let

D̃s,l
i,m = {γ ∈ S̃m; ordγxi = s, ordγxi+1 = l}

and C̃s,li,m = D̃s,l
i,m; finally for m > p, let π̃m,p : S̃m −→ S̃p be the canonical

projection. By Lemma 4.3 again, we have that

π̃−1
2(n+1),2n+1(C̃n+1,n+1

i,2n+1 ) = {γ ∈ Ah−1
2(n+1); ordγxj ≥ n+ 1, 1 ≤ j ≤ h− 1,

ordγEjk ≥ 2n+ 3, 1 ≤ j < k − 1 ≤ h− 2}.
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Therefore we deduce that π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x
(n+1)
e ) =

π̃−1
2(n+1),2n+1(C̃n+1,n+1

i,2n+1 )× SpecK[x
(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e],

which by the inductive hypothesis is equal to⋃
i=2,...,h−2; l=n+1,...,Ln+1

i,2(n+1)

C̃n+1,l
i,2(n+1)×SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e].

Newt we claim that ⋃
i=2,...,h−2; l=n+1,...,Ln+1

i,2(n+1)

Cn+1,l
i,2(n+1) ⊂ V (x

(n+1)
h , . . . , x(n+1)

e ).

Indeed, let γ ∈ Dn+1,l
i,2(n+1) for some i and l in the above union. We have that

γ ∈ π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ), i.e., ordγxj ≥ n+ 1 for 1 ≤ j ≤ e, ordγxi = n+ 1

and ordγEie ≥ 2n+ 3. Since i ≤ h− 2 and ch−1 > 2, this implies that

ordγxi+1x
ci+1−2
i+1 . . . x

ce−1−2
e−1 xe−1 ≥ 2n+ 3,

therefore ordγxixe ≥ 2n + 3, thus ordγxe ≥ n + 2, and since we have proved
that

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x(n+1)
e ) ⊂ V (x

(n+1)
h , . . . , x(n+1)

e ),

we deduce that Cn+1,l
i,2(n+1) = Dn+1,l

i,2(n+1) ⊂ V (x
(n+1)
h , . . . , x

(n+1)
e ).

Finally by Proposition 4.7, Cn+1,l
i,2(n+1)(resp. C̃n+1,l

i,2(n+1)) is irreducible of codi-
mension (n+ 1)e+ e− 2(resp. (n+ 1)(h− 1) +h− 3) in Ae2(n+1)(resp. Ah−1

2(n+1)),
therefore

dim Cn+1,l
i,2(n+1) = dim C̃n+1,l′

i′,2(n+1) × SpecK[x
(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e]

for any i′ ∈ {2, . . . h−2}, l′ ∈ {n+1, . . . , Ln+1
i′,2(n+1)}, and we deduce from the first

inclusion (�) that Cn+1,l
i,2(n+1) coincides with C̃n+1,l′

i′,2(n+1) × SpecK[x
(n+2)
j , . . . , x

(2(n+1))
j ,

j = h, . . . , e] for some i′ ∈ {2, . . . h− 2}, and l′ ∈ {n+ 1, . . . , Ln+1
i′,2(n+1)}.

But we have that ordγxi = n + 1, ordγ(xi+1) = l for γ the generic point
of Cn+1,l

i,2(n+1), therefore since i + 1 ≤ h − 1, we have that ordγ̃xi = n + 1 and

ordγ̃xi+1 = l for γ̃ the generic point of C̃n+1,l′

i′,2(n+1). Therefore γ̃ ∈ C̃
n+1,l
i,2(n+1) and

we deduce that C̃n+1,l′

i′,2(n+1) ⊂ C̃n+1,l
i,2(n+1). But since they are irreducible of the

same codimension they are equal, so we have that

Cn+1,l
i,2(n+1) = C̃n+1,l

i,2(n+1) × SpecK[x
(n+2)
j , . . . , x

(2(n+1))
j , j = h, . . . , e].

We thus have that

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x(n+1)
e )) =

⋃
i=2,...,h−2;l=n+1,...,Ln+1

i,2(n+1)

Cn+1,l
i,2(n+1),
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and the claim follows.(Note that we get that⋃
i=2,...,h−2,e−1,l=n+1; ...,Ln+1

i,2(n+1)

Cn+1,l
i,2(n+1) =

⋃
i=2,...,e−1,l=n+1; ...,Ln+1

i,2(n+1))

Cn+1,l
i,2(n+1)

as an immediate consequence of Lemma 4.3 and Lemma 4.12.)
If h = 4, let S̃ be the toric surface in A3 = SpecK[x1, x2, x3] defined by the

ideal (E1,3) and let C̃n+1
2(n+1) = {γ ∈ S̃2(n+1); ordγxj ≥ n+ 1, j = 1, 2, 3}. The

equality (��) reduces to

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x(n+1)
e ))

= C̃n+1
2(n+1) × SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e].

Since E13 = x1x3 − xc22 , if c2 > 2, C̃n+1
2(n+1) ⊂ SpecK[x

(n+1)
j , . . . , x

(2(n+1))
j , j =

1, . . . , 3] is defined by the ideal (x
(n+1)
1 x

(n+1)
3 ), so C̃n+1

2(n+1) = V (x
(n+1)
1 ) ∪

V (x
(n+1)
3 ) while it is irreducible if c2 = 2.

We check as above that⋃
l=n+1,...,Ln+1

2,2(n+1)

Cn+1,l
2,2(n+1) ⊂ V (x

(n+1)
4 , . . . , x(n+1)

e )

and that dimCn+1,l
2,2(n+1) coincides with the dimension of any irreducible com-

ponents of C̃n+1
2(n+1) × SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e]. Again in view

of (�), each Cn+1,l
2,2(n+1) is an irreducible component of C̃n+1

2(n+1)×SpecK[x
(n+2)
j , . . .,

x
(2(n+1))
j , j = 4, . . . , e].

If c2 = 2, then Ln+1
2,2(n+1) = n+ 1 and we thus have

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x(n+1)
e )) = Cn+1,n+1

2,2(n+1) .

If c2 > 2, we have that Ln+1
2,2(n+1) = n+ 2, and the same argument as above

shows that

Cn+1,n+1
2,2(n+1) = V (x

(n+1)
1 )× SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e]

Cn+1,n+2
2,2(n+1) = V (x

(n+1)
3 × SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 4, . . . , e].

We thus have

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x(n+1)
e )) =

⋃
l=n+1; ...,Ln+1

i,2(n+1))

Cn+1,l
2,2(n+1)

hence the claim.
Finally if h = 3, by (��) we have that π−1

2(n+1),2n+1(Cn+1,n+1
i,2n+1 ∩V (x

(n+1)
e )) =

SpecK[x
(n+1)
j , . . . , x

(2(n+1))
j , j = 1, 2]×SpecK[x

(n+2)
j , . . . , x

(2(n+1))
j , j = 3, . . . , e].
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Now we have that Cn+1,n+1
2,2(n+1) ⊂ V (x

(n+1)
3 , . . . , x

(n+1)
e ). Indeed, for γ ∈ Dn+1,n+2

i,2n+1 ,
we have that ordγx2 = n+ 1, ordγx3 = n+ 2, ordγxj ≥ n+ 1, j = 4, . . . , e and
ordγE2j ≥ 2n+ 3 for j = 4, . . . , e. Since c3 = . . . = ce−1 = 2, this implies that
ordγxj ≥ n + 2 for j = 4, . . . , e, so γ ∈ V (x

(n+1)
3 , . . . , x

(n+1)
e ). We conclude

that π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ∩ V (x
(n+1)
e )) = Cn+1,n+2

2,2(n+1) because both sets are
irreducible and have the same dimension, and the claim follows in this case.

ii) If c2 = · · · = ce−1 = 2 then

π−1
2(n+1),2n+1(Cn+1,n+1

i,2n+1 ) = V (x
(0)
i , . . . , x

(n)
i , i = 1, . . . , n,

x
(n+1)
i x

(n+1)
j − x(n+1)

i−1 x
(n+1)
j−1 , 1 ≤ i < j − 1 ≤ e− 1).

The ideal generated by (x
(n+1)
i x

(n+1)
j −x(n+1)

i−1 x
(n+1)
j−1 , 1 ≤ i < j− 1 ≤ e− 1), is

isomorphic to the ideal defining S in Ae, hence it is prime and
π−1

2(n+1),2n+1(Cn+1,n+1
i,2n+1 ) is irreducible. It follows from Proposition 4.11, part

(2) that
π−1

2(n+1),2n+1(Cn+1,n+1
i,2n+1 ) = Cn+1,n+1

e−1,2(n+1),

thus the proposition in this case. �

Remark 4.14. — Note that the argument that we use in the Proposition 4.13
for e = 4 does not work in general. The argument works in the case e = 4
because the number of equations that define S ⊂ Ae (this number is

(
2
e−1

)
) is

less or equal to e if and only if e ≤ 4.

Theorem 4.15. — Let m ∈ N, m ≥ 1. Modulo the identifications Cs,si,m =

C
s,Lsi+1,m

i+1,m , the irreducible components of S0
m := π−1

m (0) are the Cs,li,m, i =

2, . . . , e − 1, s ∈ {1, . . . , dm2 e} and l ∈ {s, . . . , Lsi,m}}. The irreducible com-

ponents of Sm are π−1
m (S\0) and the irreducible components of S0

m.

Proof. — By Proposition 4.13, Sm is covered by the Cs,li,m. Consider C
s,l
i,m with

l 6= Lsi,m; since l < Lsi,m this implies that m > 2s−1 and ci 6= 2. For the generic
point γ we know from Lemma 4.2 (part 2) that for 1 ≤ j ≤ i− 1, ordγxj > s.

This forbids that Cs,l
′

i′,m ⊂ C
s,l
i,m or Cs,li,m ⊂ C

s,l′

i′,m for i′ ∈ {2, . . . , i−1} because
by Proposition 4.7, they have the same codimension in Aem, hence an inclusion
as above implies that they shoud coincide, so ordγxi′ = s. On the other hand,
Cs,li,m 6⊂ Cs

′,l′

i′,m, if s < s′, because by Proposition 4.11, Cs,li,m has non-empty

intersection with D(x
(s)
i ), but Cs

′,l′

i′,m ⊂ V (x
(s)
i ). Finally, Cs

′,l′

i′,m 6⊂ Cs
′,l′

i′,m because
by Proposition 4.7 the codimension of the first one, is less then or equal to the
codimension of the second one, and the first statement of the theorem follows.
The last statement of the theorem follows from the fact that

codim(Cs,li,m,A
e
m) ≤ codim(π−1

m (S\0),Aem).
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Indeed : By Proposition 4.7, codim(Cs,li,m,Aem) = se + (m − (2s − 1))(e − 2).

By Remark 2.2, we have that codim(π−1
m (S\0),Aem) = (m+ 1)(e− 2). and we

have that for s ≥ 1, se+ (m− (2s− 1))(e− 2) ≤ (m+ 1)(e− 2) if and only if
e ≥ 4. �

Definition 4.16. — Let m ∈ N, m ≥ 1, and let C be an irreducible com-
ponent of S0

m and γ be its generic point. By Theorem 4.15, there exist s ∈
{1, . . . , dm2 e}, l ∈ {s, . . . , L

s
i,m} and i ∈ {2, . . . , e− 1} such that C = Cs,li,m. We

say that C has index of speciality s.

Note that s = ordγ(M) := minf∈M{ordγ(f)} where M is the maximal ideal
of the local ring OS,0 and γ the generic point of C.

For i = 2, . . . , e− 1, and m ∈ N, we set

Ns
ci(m) := Lsi,m − s+ 1.

For m ∈ N, m ≥ 1, we call N(m) the number of irreducible component of S0
m.

Then counting the irreducible components in the Theorem 4.15 we find

Corollary 4.17. — If all the ci are equal to 2, then N(m) = dm2 e. Otherwise
let ci1 , . . . , cih be the elements in {c2, . . . , ce−2} different from 2, then we have

N(m) =

dm2 e∑
s=1

(Ns
ci1

(m) + (Ns
ci2

(m)− 1) + · · ·+ (Ns
cih

(m)− 1)).

Moreover, for s ∈ {1, . . . , dm2 e}, the number of irreducible components of S0
m

of index of speciality s is equal to

Ns
ci1

(m) + (Ns
ci2

(m)− 1) + · · ·+ (Ns
cih

(m)− 1.

Corollary 4.18. — Let S be a toric surface. The number of irreducible com-
ponents of S0

m and their dimensions determine the embedding dimension e of S
and the set {ct, t = 2, . . . , e− 2}.

Proof. — We have that dim(S0
1) = e, the embedding dimension of S. If e = 3,

then for m big enough, we have by Theorem 3.1 that N(m) = c is constant,
and we deduce that S is an Ac singularity. Suppose the e ≥ 4.

For m ≥ 1, let

Ñ1(m) =

dm2 e∑
s=1

((m+ 1− (2s− 1)) + (e− 3)(m+ 1− (2s− 1)− 1).

We have that N(m) ≤ Ñ1(m) and N(1) = Ñ1(1) = 1. Let

m1 = min{m ; N(m) < Ñ1(m)} and α1 = Ñ1(m1)−N(m1),

then there exists i1, . . . , iα1 ∈ {c2, . . . , ce−1} such that ci1 = · · · = ciα1
= m1.
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If α1 = e − 2, then we have found all the ci. If not, then for j ≥ 2, we
recursively define

Ñj(m) =

dm2 e∑
s=1

(Ns
ci1

(m) + (Ns
ci2

(m)− 1) + · · ·+ (Ns
ciα1

(m)− 1) + · · ·+

(Ns
ciα1+···+αj−1

(m)− 1)) + (e− 2− (α1 + · · ·+ αj−1))(m+ 1− (2s− 1)− 1),

mj = min{m ; N(m) < Ñj(m)} and αj = Ñj(mj)−N(mj).

Therefore there exists iα1+···+αj−1+1, . . . , iα1+···+αj−1+αj ∈ {c2, . . . , ce−1} such
that

ciα1+···+αj−1+1
= · · · = ciα1+···+αj−1+αj

= mj .

If α1 + · · · + αj−1 + αj = e − 2, then we have found all the ct, otherwise we
repeat the procedure at most e− 2 times. �

Remark 4.19. — Corollary 4.18 is to compare with the result of Nicaise in
[22], where he proved that the motivic Igusa Poincaré series of a toric surface
is equivalent to the set {ct, t = 2, . . . , e− 2}, and that the order of the ci in the
continued fraction can not be extracted from this series. It is clear also from
the formulas given in Proposition 4.7 and Corollary 4.17, that the number of
irreducible components and their dimensions is not affected by the order of the
ci in the continued fraction. Note that despite that these informations on the
jet schemes are closely related to the informations encoded in the motivic Igusa
Poincaré series, they are not equivalent in general.

Below we show how we extract all the ci and their order or equivalently
the analytical type of S from their jet schemes. We first explain in the next
proposition how the components C1,l

i,m behave under the truncation morphisms
πm,m−1. The proof follows from Section 3 and Propositions 4.10,4.13.

Proposition 4.20. — Let m ∈ N,m ≥ 1. Let i ∈ 2, . . . , e− 1, and l ∈
{1, . . . , L1

i,m}. For 2 ≤ m ≤ ci − 1, we have the following inclusions

πm,m−1(C1,l
i,m) ⊂ C1,l−1

i,m−1,

whenever l − 1 ∈ {1, . . . , L1
i,m−1}.

πm,m−1(C1,l
i,m) ⊂ C1,l

i,m−1,

whenever l ∈ {1, . . . , L1
i,m−1}. For m ≥ ci, we have

πm,m−1(C1,l
i,m) ⊂ C1,l

i,m−1,

for l ∈ {1, . . . , ci − 1}. And these are all the inclusions between components of
index of speciality 1 induced by πm,m−1,m ≥ 1.

π3,2(C2,2
i,3 ) ⊂ C1,l′

i′,2 , for i′ ∈ {2, . . . , e− 1}, l′ ∈ {1, L1
i′,2},
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This means that it is included in all the irreducible components of the level 2
jet scheme.

As in Section 3, we now attach to the structure of the jet schemes of S a
weighted graph that detects the invariants of the singularity S.

Definition 4.21. — 1. The weighted graph of the jet schemes of S is the
leveled weighted graph Γ obtained by
• representing every irreducible components of S0

m,m ≥ 1, by a vertex
vi,m, where the sub-index m is the level of the vertex;
• joining the vertices vi1,m+1 and vi0,m if the morphism πm+1,m in-
duces a morphism between the corresponding irreducible compo-
nents;
• weighting each vertex by the dimension of the corresponding irre-
ducible component.

2. The index 1 weighted graph of the jet schemes of S is the subgraph Γ1

of Γ whose vertices are those associated with the components of in-
dex of speciality equal to 1. It is obtained from Γ by deleting the other
vertices (those corresponding to irreducible components of index of spe-
ciality different from 1) and edges with at least one of the extremities
not corresponding to an irreducible component of index of speciality 1.

We first will describe the subgraph Γ1. The last inclusion in the Proposi-
tion 4.20 implies that we can detect the vertex associated with the component
C2,2
i,3 . We then can extract the graph Γ1 from Γ by deleting all the vertices and

edges which are connected to the vertex associated with C2,2
i,3 , and whose index

of speciality is not 1. Then, applying Proposition 4.20, we find that Γ1 can
be constructed from the c′is as follows: for every i = 2, . . . , i − 1, let Γ1

i be
the graph whose vertices are in 1 - 1 correspondence with the irreducible com-
ponents C1,l

i,m,m ≥ 1, and l ∈ {1, . . . , L1
i,m}; the graph Γ1

i coincides with the
graph associated with an Aci−1

singularity in Section 3. The identifications

C1,1
i,m = C

1,L1
i+1,m

i+1,m , induce identifications between infinite lines of Γ1
i and Γ1

i+1

(See the next example). Then Γ1 is the union of Γ1
i modulo the identifications.

We then obtain :

Corollary 4.22. — Let S be a toric surface.
1. The weighted graph Γ determines the embedding dimension e of S and

the set {ct, t = 2, . . . , e− 2}.
2. The order of the ci’s which are different from 2.

Proof. — The first part follows from Corollary 4.18 knowing only the weight
of the vertex corresponding to S0

1 , i.e., its dimension. It follows from the
discussion above (mainly from the last inclusion in the Proposition 4.20) that,
given Γ, we can extract Γ1 from it. The order of the ci’s which are different
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from 2 is then extracted from Γ1 thanks to the identifications described above
(see the figure in the next example for an illustration). �

Remark 4.23. — Notice that if ci = 2, then Γ1
i looks like a line and is not

possible to detect where it sits on Γ1 after the identifications.

Example 3. — We consider the toric surface singularity defined by the cone
generated by the vectors (1, 0) and (4, 11). We have that 11/4 = [3, 4]. Below
we show the subgraph Γ1 = Γ1

2 ∪ Γ1
3 of the graph Γ of this singularity. First

we show the graphs Γ1
2 and Γ1

3. To keep the figure the simplest possible, we do
not weight the graph here with the codimensions; but he weights are essential
to detect the invariants of S. And after the identifications we obtain Γ1 :

To recover c2, . . . , ce−1 with their order (mainly the order where the ci’s
which are equal to 2 appear), we will need to put more weights on the vertices
of Γ associated with the irreducible components of S0

2 ; these are C1,2
i1,2

, C1,1
i2,2

,
C1,1
i2,2

, . . . , C1,1
ih,2

where i1, . . . , ih are like in Corollary 4.17. Back to the equations
of S, we find that C1,2

i1,2
' S[i0,i1] × Ae, C1,1

ij ,2
' S[ij ,ij+1] × Ae, for j = 1, . . . , h

where i0 = 1, ih+1 = e, S[ij ,ij+1] is the toric surface defined by the 2× 2 minors
of the matrix (

x
(1)
ij
· · · x(1)

ij+1−1

x
(1)
ij+1 · · · x

(1)
ij+1

)
in K[x

(1)
ij
, . . . , x

(1)
ij+1

] and Ae = K[x
(2)
1 , . . . , x

(2)
e ]. Note that for j = 0, . . . , h,

the embedding dimension of S[ij ,ij+1] is ij+1 − ij + 1, in particular S[ij ,ij+1] is
isomorphic to A2 if and only if ij+1−ij = 1. Hence, after weighting the vertices
corresponding to irreducible components of S0

2 by their embedding dimensions,
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we see how the c′is which are equal to 2 are distributed between the other c′is.
Hence we define an other weighted graph as follows:

Definition 4.24. — We denote by EΓ the weighted graph which is obtained
from Γ by weighting the vertices of Γ associated with the irreducible components
of S0

2 by their embedding dimensions (note that by the definition of Γ, these
vertices are also weighted by their dimensions).

Hence we obtain:

Corollary 4.25. — Let S be a toric suface. The data of the weighted graph
EΓ of S0

m is equivalent to the data of all the ci and of their order in the
continued fraction, or equivalently to the analytical type of S.

Remark 4.26. — Note that if we reverse the order of the ct, the obtained toric
surface will be isomorphic to the original one.

Using a theorem of Mustata in [21], we obtain as a by-product the log
canonical threshold lct(S,Ae) of the pair S ⊂ Ae :

Corollary 4.27. — Let S be a toric surface of embedding dimension e. If
e = 3 (i.e., S is an An singularity) then lct(S,Ae) = 1, otherwise

lct(S,Ae) =
e

2

Proof. — By [21] we have that

lct(S,Ae) = minm∈N
Codim(Sm,Aem)

m+ 1
.

The case e = 3 follows from Section 3, since in this case we have that Sm is
irreducible of codimension m + 1. Let us suppose that e ≥ 4. If m is odd,
m = 2s − 1, s ≥ 1 then the component Cs,si,2s−1 is of maximal dimension and
we have that

Codim(Cs,si,2s−1,Ae2s−1)

2s
=
se

2s
=
e

2
.

If m is even, m = 2n, n ≥ 0 then the components Cn,li,2n, i = 2, . . . , e− 1, l =
n,Lni,m are of maximal dimension, and since e ≥ 4 we have that

Codim(Cn,li,2n,Ae2n)

2n+ 1
=
ne+ e− 2

2n+ 1
≥ e

2
,

and the lemma follows. �

Corollary 4.28. — For m ≥ max{ci, i = 2, . . . , e − 1}, the number of irre-
ducible components of S0

m, with index of speciality s = 1, is equal to the number
of exceptional divisors that appear on the minimal resolution of S.

Proof. — This comes from the comparison of Corollary 4.17 with Proposi-
tion 2.3. �
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Remark 4.29. — The Corollary 4.28 is to compare with the bijectivity of the
Nash map, due to Ishii and Kollar for this type of Singularities, [11]. Actu-
ally, the projective limits of the systems (C1,l

i,m)m gives rise to the irreducible
components of the space of arcs centered at the singular point of S.
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