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DIFFERENTIAL FORMS IN POSITIVE CHARACTERISTIC
AVOIDING RESOLUTION OF SINGULARITIES

by Annette Huber, Stefan Kebekus & Shane Kelly

Abstract. — This paper studies several notions of sheaves of differential forms that
are better behaved on singular varieties than Kähler differentials. Our main focus
lies on varieties that are defined over fields of positive characteristic. We identify two
promising notions: the sheafification with respect to the cdh-topology, and right Kan
extension from the subcategory of smooth varieties to the category of all varieties.
Our main results are that both are cdh-sheaves and agree with Kähler differentials on
smooth varieties. They agree on all varieties under weak resolution of singularities.

A number of examples highlight the difficulties that arise with torsion forms and
with alternative candiates.
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1. Introduction

Sheaves of differential forms play a key role in many areas of algebraic and
arithmetic geometry, including birational geometry and singularity theory. On
singular schemes, however, their usefulness is limited by bad behavior such as
the presence of torsion sections. There are a number of competing modifications
of these sheaves, each generalizing one particular aspect. For a survey see the
introduction of [14].

In this article we consider two modifications, Ωncdh and Ωndvr, to the presheaves
Ωn of relative k-differentials on the category Sch(k) of separated finite type
k-schemes. By Ωncdh we mean the sheafification of Ωn with respect to the cdh-
topology, cf. Definition 5.5, and by Ωndvr we mean the right Kan extension along
the inclusion Sm(k)→ Sch(k) of the restriction of Ωn to the category Sm(k) of
smooth k-schemes, cf. Definition 5.2.

The following are three of our main results.

Theorem 1.1. — Let k be a perfect field and n ≥ 0.
1. (Theorem 5.11). If X is a smooth k-variety then Ωn(X) ∼= Ωncdh(X).

The same is true in the rh- or eh-topology.
2. (Observation 5.3, Proposition 5.12). Ωndvr is a cdh-sheaf and the canon-

ical morphism
Ωncdh → Ωndvr

is a monomorphism.
3. (Proposition 5.13). Under weak resolution of singularities, this canonical

morphism is an isomorphism Ωncdh
∼= Ωndvr. �

Item 1 was already observed by Geisser, assuming a strong form of resolu-
tion of singularities, [8]. We are able to give a proof which does not assume
any conjectures. The basic input into the proof is a fact about torsion forms
(Theorem 5.8): given a torsion form on an integral variety, there is a blow-up
such the pull-back of the form vanishes on the blow-up.

1.1. Comparison to known results in characteristic zero. — This paper aims to
extend the results of [14] to positive characteristic, avoiding to assume reso-
lution of singularities if possible. The following theorem summarizes the main
results known in characteristic zero.

Theorem 1.2 ([14]). — Let k be a field of characteristic zero, X a separated
finite type k-scheme, and n ≥ 0.

1. The restriction of Ωnh to the small Zariski site of X is a torsion-free
coherent sheaf of OX-modules.

2. If X is reduced we have

Ωn(X)/{torsion elements} ⊆ Ωnh(X)
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and if X is Zariski-locally isomorphic to a normal crossings divisor in
a smooth variety then

Ωn(X)/{torsion elements} ∼= Ωnh(X).

3. If X is smooth, then Ωn(X) ∼= Ωnh(X) and Hi
Zar(X,Ω

n) ∼= Hi
h(X,Ωnh)

for all i ≥ 0. The same is true using the cdh-or eh-topology in place of
the h-topology.

4. We have Ωndvr
∼= Ωnh, cf. Definition 5.2. �

Failure of Items 1 and 2 in positive characteristic. — In positive characteristic,
the first obstacle to this program one discovers is that Ωnh = 0 for n ≥ 1,
cf. Lemma 6.1. This is due to the fact that the geometric Frobenius is an
h-cover, which induces the zero morphism on differentials. However, almost all
of the results of [14] are already valid in the coarser cdh-topology, and remain
valid in positive characteristic if one assumes that resolutions of singularities
exist. So let us use the cdh-topology in place of the h-topology. But even then,
Items 1 and 2 of Theorem 1.2 seem to be lost causes:

Corollary 1.3 (Corollary 5.16, Corollary 5.17, Example 3.6). — For perfect
fields of positive characteristic, there exist varieties X such that the restriction
of Ω1

cdh to the small Zariski site of X is not torsion-free.
Moreover, there exist morphisms Y → X and torsion elements of Ω1

cdh(X)
(resp. Ω1(X)) whose pull-back to Ω1

cdh(Y ) (resp. Ω1(Y )) are not torsion. �

Note that functoriality of torsion forms over the complex numbers is true,
cf. Theorem 3.3, [18, Corollary 2.7].

Positive results. — On the positive side, Item 1 in Theorem 1.1 can be seen as
an analog of Item 3 in Theorem 1.2. In particular, we can give an unconditional
statement of the case i = 0. In a similar vein, Items 2 and 3 of Theorem 1.1
relate to Item 4 in Theorem 1.2.

1.2. Other results. — Many of the properties of Ωndvr hold for a more gen-
eral class of presheaves, namely unramified presheaves, introduced by Morel,
cf. Definition 4.5. The results mentioned above are based on the following very
general result which should be of independent interest.

Proposition 1.4 (Proposition 4.18). — Let S be a Noetherian scheme. If
F is an unramified presheaf on Sch(S) then Fdvr is an rh-sheaf. In particular,
if F is an unramified Nisnevich (resp. étale) sheaf on Sch(S) then Fdvr is a
cdh-sheaf (resp. eh-sheaf). �

In our effort to avoid assuming resolution of singularities, we investigated the
possibility of a topology sitting between the cdh-and h-topologies which might
allow the theorems of de Jong or Gabber on alterations to be used in place
of resolution of singularities. An example of the successful application of such
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308 A. HUBER, S. KEBEKUS & S. KELLY

an idea is [19] where the ldh-topology is introduced and successfully used as a
replacement to the cdh-topology. Section 6 proposes a number of new, initially
promising sites, cf. Definitions 6.2 and 6.8, but then also shows in Example 6.5
that, somewhat surprisingly, the sheafification of Ω1 on these sites does not
preserve its values on regular schemes, cf. Proposition 6.6 and Lemma 6.12.

1.3. Outline of the paper. — After fixing notation in Section 2, the paper be-
gins in Section 3 with a discussion of torsion- and torsion-free differentials.
Section 4 contains a general discussion of the relevant properties of unramified
presheaves, whereas properties that are specific to Ω1 are collected in Section 5.
Section 5 discusses our proposals for a good presheaf of differentials on singular
schemes—Ω1

cdh and Ω1
dvr—and their properties. Appendix A gives the proof of

the above mentioned result on killing torsion forms by blow-up. We also discuss
a hyperplane section criterion for testing the vanishing of torsion forms.

1.4. Open problems. — What is missing from this paper is a full cdh-analog of
Theorem 1.2, Item 3. Assuming resolutions of singularities, Geisser has shown
[8] that the cdh-cohomology of Ωncdh agrees with Zariski-cohomology of Ωn on
all smooth varieties X. It remains open if this can be extended unconditionally
to Ωncdh and Ωndvr.

In a similar vein, we do not know if the assumption on resolutions of singu-
larities can be removed from Item 3 of Theorem 1.1.

1.5. Acknowledgements. — The authors thank Daniel Greb for stimulating
discussions about torsion-forms, and Orlando Villamayor as well as Mark Spi-
vakovsky for answering questions concerning resolution of singularities. We are
most indebted to a referee of an earlier version of this paper for pointing us to
the work of Gabber-Ramero.

2. Notation and Conventions

2.1. Global assumptions. — Throughout the present paper, all schemes are
assumed to be separated. The letter S will always denote a fixed, separated,
Noetherian base scheme.

2.2. Categories of schemes and presheaves. — Denote by Sch(S) the category
of separated schemes of finite type over S, and let Reg(S) be the full subcat-
egory of regular schemes in Sch(S). If S is the spectrum of a field k, we also
write Sch(k) and Reg(k). If k is perfect, then Reg(k) is the category of smooth
k-varieties, which need not necessarily be connected.

Notation 2.1 (Presheaf on Sch(S)). — Given a Noetherian scheme S, a
presheaf F of abelian groups on Sch(S) is simply a contravariant functor

Sch(S)→ {abelian groups}.
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A presheaf F is called a presheaf of O-modules, if every F (X) has an
OX(X)-module structure such that for every morphism Y → X in Sch(S),
the induced maps F (X)→ F (Y ) are compatible with the morphisms of rings
of functions O(X)→ O(Y ).

We are particularly interested in the presheaf of Kähler differentials.

Example 2.2 (Structure sheaf, Kähler differentials). — We denote by O the
presheaf X 7→ OX(X). Given any n ∈ N, we denote by Ωn the presheaf X 7→
ΩnX/S(X). Note that Ω0 = O. We also abbreviate Ω = Ω1.

The notation ΩnX means the usual Zariski-sheaf onX. That is, ΩnX = Ωn|XZar

where XZar is the usual topological space associated to the scheme X.

Definition 2.3 (Torsion). — Let F be a presheaf on Sch(S) and X ∈ Sch(S).
We write tor F (X) for the set of those sections of F (X) which vanish on a
dense open subscheme.

Warning 2.4 (Torsion groups might not form a presheaf). — In the setting
of Definition 2.3 note that the groups tor F (X) do not necessarily have the
structure of a presheaf on Sch(S)! For a morphism Y → X in Sch(S), the im-
age of tor F (X) under the morphism F (X) → F (Y ) does not necessarily lie
in tor F (Y ). A very simple example (pointed out to us by a referee) is the sec-
tion x on Spec k[x, y]/(x2, xy). It is torsion, but its pull-back to Spec k[x]/(x2) is
not. Example 3.6 on page 315 shows that the problem also happens for reduced
varieties in positive characteristic in the case where F = Ω. On the positive
side, note that the restriction of a torsion section to an open subscheme is again
a torsion section.

Warning 2.5 (Possible conflict with commutative algebra). — Note that in
the case that F is an O-module, there is a competing notion of torsion element:
an element t ∈ F (X) is torsion if Zariski locally onX there is a non-zero divisor
s ∈ O(X) such that s · t = 0. If X is reduced (and Noetherian) and F |XZar

is
quasi-coherent then these two notions of “torsion” agree by [12, Proposition
(8.4.6)], see also the Appendix of [18], but in general they may differ.

Indeed, if F |XZar
is the skyscraper sheaf at a point x ∈ X with value OX,x

we get a counterexample in the non-quasi-coherent case. The characterization
also fails when F |XZar

is quasi-coherent, and when X is non-reduced as the
example X = Spec(k[x, y]/(xy, y2)) and the element y ∈ tor O(X) shows.

Moreover, one can see that the “Zariski locally” part of the above definition
is also necessary by considering the structure sheaf i∗Ox of a closed point
i : x→ X of any integral projective variety X of dimension > 0.
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2.3. Schemes and morphisms of essentially finite type. — Parts of Section 4 use
the notion of “S-schemes that are essentially of finite type”. While this notion
has been used at several places in the literature, we were not able to find a
convenient reference for its definition. We have therefore chosen to include a
definition and a brief discussion here.

Definition 2.6. — We say that an S-scheme X ′ is essentially of finite type
over S if there is a scheme X of finite type over S and a filtered inverse system
{Ui}i∈I of open subschemes of X with affine transition maps such that X ′ =⋂
i∈I Ui.

Lemma 2.7 (Morphisms of schemes essentially of finite type). — Let X and Y
be in Sch(S). Let {Ui}i∈I be a filtered inverse system of open subschemes of X
with affine transitions maps with intersection X ′ and {Vj}j∈J a filtered inverse
system of open subschemes of Y with affine transition maps with intersection
Y ′. Then

MorS(X ′, Y ′) = lim←−
j

lim−→
i

MorS(Ui, Vj) .

Remark 2.8. — Using the language of pro-categories, briefly recalled in Sec-
tion 4.3, Lemma 2.7 asserts that the category of schemes essentially of finite
type over S is a full subcategory of the pro-category of Sch(S).

Proof of Lemma 2.7. — This is just a special case of [10, Corollaire 8.13.2].
The key point of the argument is that a morphism towards a finite type
S-scheme with source Spec of the local ring of a variety always extends to
an open neighborhood. �

Example 2.9. — Let X ∈ Sch(S) and U = {Ui}i∈I be a filtered inverse system
of open affine subschemes of X and with intersection X ′. Let U be an open
affine neighborhood of X ′ in X. By Lemma 2.7, we have

MorX(X ′, U) = lim−→
i

MorX(Ui, U).

Hence the inclusion X ′ → U factors via some Ui. This means that U is cofinal
in the system of all affine open neighborhoods of X ′.

2.4. Topologies. — We are going to use various topologies on Sch(S), which
we want to introduce now. They are variants of the h-topology introduced by
Voevodsky in [26]. Recall that a Grothendieck topology on Sch(S) is defined by
specifying for each X ∈ Sch(S) which collections {Ui → X}i∈I of S-morphisms
should be considered as open covers. By definition, a presheaf F is a sheaf
if for any such collection, F (X) is equal to the set of those elements (si)i∈I
in
∏
i∈I F (Ui) for which si|Ui×XUj

= sj |Ui×XUj
for every i, j ∈ I.

We refer to the ordinary topology as the Zariski topology.
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Definition 2.10 (cdp-morphism). — A morphism f : Y → X is called a
cdp-morphism if it is proper and completely decomposed, where by “completely
decomposed” we mean that for every point x ∈ X there is a point y ∈ Y with
f(y) = x and [k(y) : k(x)] = 1.

These morphisms are also referred to as proper cdh-covers, or envelopes in
the literature.

Remark 2.11 (rh, cdh and eh-topologies). — Recall that the rh-topology
on Sch(S) is generated by the Zariski topology and cdp-morphisms, [9]. In
a similar vein, the cdh-topology is generated by the Nisnevich topology and
cdp-morphisms, [25, § 5]. The eh-topology is generated by the étale topology
and cdp-morphisms, [8].

We are going to need the following fact from algebraic geometry.

Lemma 2.12. — Let X be a regular, Noetherian scheme. Let x ∈ X be a
point of codimension n. Then there is point y ∈ X of codimension n − 1, a
discrete valuation ring R essentially of finite type over X together with a map
Spec R → X such that the special point of Spec R maps to x and the generic
point to y, both inducing isomorphisms on their respective residue fields.

Proof. — The local ring OX,x is a regular local ring, and as such admits a
regular sequence f1, . . . , fn generating its maximal ideal. The quotient ring

R := OX,x
/
〈f1, . . . , fn−1〉

is then a regular local ring of dimension one, that is, a discrete valuation
ring, [21, Theorems 36(3) and 17.G]. Let y be the image of the generic point
of Spec R. By construction, this is a point of codimension n− 1. �

Proposition 2.13 (Birational– and cdp-morphisms). — Suppose that X is
a regular, Noetherian scheme. Then, every proper, birational morphism is a
cdp-morphism, and every cdp-morphism is refinable by a proper, birational
morphism.

Remark 2.14. — This fact is well-known over a field of characteristic zero and
is usually proven using strong resolution of singularities. That is, by refining a
proper birational morphism by a sequence of blow-ups with smooth centers. By
contrast, the proof below works for any regular, Noetherian scheme X, without
restriction on a potential base scheme, or structural morphism.

Proof of Proposition 2.13. — WithX as in Proposition 2.13, we show the two
statements separately.
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Step 1: Birational morphisms are cdp. — Let Y → X be proper and bira-
tional. We must show that for every point x ∈ X the canonical inclusion admits
a factorization x → Y → X. We proceed by induction on the codimension. In
codimension zero, the factorization is a consequence of birationality. Suppose
that it is true up to codimension n− 1 and let x be a point of codimension n.
By Lemma 2.12 we can find a discrete valuation ring R and a diagram

y
++
Spec R // X

x
33

for some y of codimension n−1. By the inductive hypothesis, the inclusion of y
into X admits a factorization through Y , so we have a commutative diagram

y //

��

Y

��
Spec R // X

and now the valuative criterion for properness implies that the inclusion of
Spec R into X factors trough Y , and therefore so does the inclusion of x.

Step 2: cdp-morphisms are refinable. — If Y → X is a proper, completely
decomposed morphism with X connected (hence irreducible), choose a factor-
ization η → Y → X of the inclusion of the generic point η of X. Then, the
closure of the image of η in Y is birational and proper over X. �

Lemma 2.15. — Let Y ∈ Sch(S) be an integral scheme and let {Ui → Y }i∈I be
an étale cover of Y by finitely many integral schemes. Assume further that for
each for i ∈ I we are given a proper, birational morphism Ti → Ui. Then there
exists a proper, birational morphism Y ′ → Y , an étale cover {U ′i → Y ′}i∈I and
for each i ∈ I a commutative diagram of the following form,

U ′i
étale //

proper, biratl.
��

Y ′

proper, biratl.
��

Ti proper, biratl.
// Ui étale

// Y

If {Ui → Y }i∈I is a Nisnevich– or a Zariski-cover, then so is the cover {U ′i →
Y ′}i∈I .

Proof. — It follows from flattening by blow-up, [23, Théorème 5.2.2], that
there exists an integral scheme Y ′ and a proper birational morphism Y ′ → Y
such that for any i ∈, the strict transforms T ′i → Y ′ of the Ti → Y are flat.
These morphisms factor via the pullbacks U ′i = Ui ×Y Y ′ of the Ui,

T ′i → U ′i → Y.
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Since {Ui → Y }i∈I is an étale (resp. Zariski, Nisnevich) cover, so is {U ′i →
Y ′}i∈I .

It remains to show that T ′i ∼= U ′i . The scheme U ′i is integral because it is
proper and birational over Ui. The scheme T ′i is integral because it is proper and
birational over Ti. As T ′i → Y ′ is flat and U ′i → Y ′ is unramified, the morphism
T ′i → U ′i is flat by [11, Proposition 17.7.10]. We now have a flat, proper and
birational morphism between integral schemes, hence an isomorphism. In detail:
by flatness, the morphism T ′i → U ′i has constant fiber dimension, which, by
birationality, equals zero. This means that the morphism is quasi-finite. As it
is also proper, this means that it is finite and still flat. It follows that OT ′i is
a locally free OU ′i -module of constant rank. The rank is one because again the
morphism is birational. �

Corollary 2.16 (Normal form). — Let Y ∈ Sch(S), and let {Yi → Y }i∈I be
an rh-, cdh-or eh-cover, respectively. Then there exists a refinement of the
following form,

{Y ′i −→ Y ′
cdp-covering−−−−−−−−→ Y }i∈I ,

where {Y ′i → Y ′}i∈I is a Zariski-, Nisnevich- or étale cover, respectively, with
I finite. If Y is regular, then we can even assume that Y ′ → Y is a proper
birational morphism.

Proof. — In the cdh-case, this is precisely [25, Prop. 5.9]. In the two other
cases, the same argument works using Noetherian induction, and using
Lemma 2.15 in the appropriate place. The last claim uses Proposition 2.13. �

3. (Non-)Functoriality of torsion-forms

One very useful feature of differential forms on a smooth varieties is that
they form a vector bundle, in particular, they are torsion-free. In characteristic
zero, the different candidates for a good theory of differential forms share this
behavior on all varieties. It is disappointing but true that this property fails in
positive characteristic, as we are going to establish. The following notion will
be used throughout.

Definition 3.1 (Torsion-differentials and torsion-free differentials, [18, Sec-
tion 2.1]). — Let k be a field and X ∈ Sch(k). We define the sheaf Ω̌nX on XZar

as the cokernel in the sequence

(3.1.1) 0 // tor ΩnX
αX // ΩnX

βX // Ω̌nX // 0.

Sections in tor ΩnX are called torsion-differentials. By slight abuse of language,
we refer to sections in Ω̌nX as torsion-free differentials.
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Remark 3.2 (Torsion-sheaves on reducible spaces). — Much of the literature
discusses torsion-sheaves and torsion-free sheaves only in a setting where the
underlying space is irreducible. We refer to [18, Appendix A and references
there] for a brief discussion of torsion-sheaves on reduced, but possibly reducible
spaces.

3.1. Torsion-free forms over the complex numbers. — Given a morphism be-
tween two reduced varieties that are defined over the complex numbers, the
usual pull-back map of Kähler differentials induces pull-back maps for torsion-
differentials and for torsion-free differentials, even if the image of the morphism
is contained in the singular set of the target variety.

Theorem 3.3 (Pull-back for sheaves of torsion-free differentials, [18, Corol-
lary 2.7]). — Let f : X → Y be a morphism of reduced, quasi-projective
schemes that are defined over the complex numbers. Then there exist unique
morphisms dtorf and ďf such that the following diagram, which has exact rows,
becomes commutative

f∗ tor ΩnY
f∗αY //

dtorf

��

f∗ΩnY
f∗βY //

df

��

f∗Ω̌nY
//

ďf

��

0

0 // tor ΩnX αX

// ΩnX βX

// Ω̌nX // 0.

In other words, tor Ωn is a presheaf on Sch(C). �

The same argument works for any field of characteristic zero.

Remark 3.4 (Earlier results). — For complex spaces, the existence of a map
ď has been shown by Ferrari, [5, Proposition 1.1], although it is perhaps not
obvious that the sheaf discussed in Ferrari’s paper agrees with the sheaf of
Kähler differentials modulo torsion.

Warning 3.5 (Theorem 3.3 is wrong in the relative setup). — One can easily
define torsion-differentials and torsion-free differentials in the relative setting.
The proof of Theorem 3.3, however, relies on the existence of a resolution of
singularities for which no analog exists in the relative case. As a matter of fact,
Theorem 3.3 becomes wrong when working with relative differentials, unless
one makes rather strong additional assumptions. A simple example is given in
[18, Warning 2.6].

3.2. Torsion-free forms in positive characteristic. — Now let f : X → Y be
a morphism of reduced, quasi-projective schemes that are defined over a field
of positive characteristic. We will see in this section that in stark contrast
to the case of complex varieties, the pull-back map df of Kähler differential
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does generally not induce a pull-back map between the sheaves of torsion-free
differential forms.

Indeed, if there exists a pull-back map ďf : f∗Ω̌nY → Ω̌nX which makes the
following diagram commute,

f∗ΩnY
f∗βY //

df

��

f∗Ω̌nY

ďf

��
ΩnX βX

// Ω̌nX ,

and if σ ∈ tor Ω1
Y is any torsion-differential, then df(σ) is necessarily a torsion-

differential on X, that is df(σ) ∈ tor Ω1
X . The following example discusses a

morphism between varieties for which this property does not hold.

Example 3.6 (Pull-back of torsion-form is generally not torsion). — Variants
of this example work for any prime p, but we choose p = 2 for concreteness. Let
k be an algebraically closed field of characteristic two and let Y ⊂ A3

k be the
Whitney umbrella. More precisely, consider the ring R := k[x, y, z]

/
(y2 − xz2)

and the schemes

X := Spec k[x] and Y := Spec R.

An elementary computation shows that the polynomial y2− xz2 is irreducible.
As a consequence, we see that Y is reduced and irreducible and that z is not a
zerodivisor in R. Finally, let f : X → Y be the obvious inclusion map, which
identifies X with the x-axis in A3, and which is given by the following map of
rings,

f# : k[x, y, z]
/

(y2 − xz2)→ k[x] Q(x, y, z) 7→ Q(x, 0, 0).

Note that X is nothing but the reduced singular locus of Y . We want to con-
struct a torsion-differential σ on Y . To this end, notice that the differential
form dP ∈ Γ

(
Ω1

A3

)
, where P = y2 − xz2, induces the zero-form on Y ,

0 = dP = −z2 · dx+ 2y · dy − 2xz · dz = −z2 · dx ∈ Γ
(
Ω1
Y

)
.

Since z2 is not a zerodivisor, we see that the form σ := dx is torsion, that is,
σ ∈ Γ

(
tor Ω1

Y

)
. On the other hand, the pull-back of σ to X is clearly given

by df(σ) = dx ∈ Γ
(
Ω1
X

)
, which is not torsion.

Summary 3.7. — Example 3.6 shows that the assignments X 7→ tor Ωn(X)
and X 7→ Ω̌nX(X) do not in general define presheaves on Sch(k).
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4. The extension functor

4.1. Definition and first properties. — In analogy with the sheaves discussed
in the introduction, we aim to define a “good” sheaf on Sch(S), which agrees
on Reg(S) with S-relative1 Kähler differentials and avoids the pathologies ex-
posed by Kähler differentials on singular schemes. This section provides the
technical framework for one construction in this direction: ignoring non-regular
schemes, we define a sheaf on Sch(S) whose value group at one X ∈ Sch(S) is
determined by differential forms on regular schemes over X. The following def-
inition makes this idea precise.

Definition 4.1 (Extension functor). — Given a presheaf F on Reg(S), define
a presheaf Fdvr on Sch(S) by setting

Fdvr(X) := lim←−
Y ∈Reg(X)

F (Y ) for any X ∈ Sch(S).

The assignment

{Presheaves on Reg(S)} → {Presheaves on Sch(S)}
F 7→ Fdvr

is clearly functorial, and referred to as the extension functor.

Warning 4.2. — 1. Observe Fdvr(X) is defined via limits and not by
colimits.

2. Given a morphism X ′ → X, the induced morphism Fdvr(X)→ Fdvr(X
′)

is induced by the composition functor, Reg(X ′)→ Reg(X), not X ′×X−,
which does not necessarily preserve regular schemes.

Remark 4.3 (Elementary properties of the extension functor). —
1. Explicitly, a section of Fdvr(X) is a sequence of compatible sections. To

give a section, it is therefore equivalent to give an element sY ∈ F (Y )
for every morphism Y → X with Y ∈ Reg(X), such that the following
compatibility conditions hold: for every triangle Y ′ → Y → X with
Y ′, Y ∈ Reg(X), we have sY |Y ′ = sY ′ .

2. The assignment F 7→ Fdvr could equivalently be defined as the right ad-
joint to the restriction functor from presheaves on Sch(S) to presheaves
on Reg(S).

3. If X itself is regular, then F (X) = Fdvr(X), since X is then a final
object in Reg(X).

4. Let S = Spec k with k a field of characteristic zero. Consider the presheaf
F = Ωn. Under these assumptions, it has been shown in [14, Theorem 1]
that Ωndvr = Ωnh .

1. For applications to differential forms, S will be the spectrum of a perfect field, so a
scheme is regular if and only if it is smooth. However it is the property of being regular that
is used extensively in this section.
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Lemma 4.4 (Extension preserves sheaves). — In the setting of Definition 4.1,
suppose that τ is a topology on Sch(S) that is equal to or coarser than the
étale topology. Observe that τ restricts to a topology τdvr on Reg(S). If F is
a τdvr-sheaf (respectively, a τdvr-separated presheaf) on Reg(S), then Fdvr is a
τ -sheaf (respectively, a τ -separated presheaf) on Sch(S).

Lemma 4.4 is in fact a consequence of Reg(S)→ Sch(S) being a cocontinuous
morphism of sites for such a topology, cf. [2, Definitions III.2.1 and II.1.2] and
[1, Tags 00XF and 00XI]. For the reader who is not at ease with categorical
constructions we give an explicit proof below. The key ingredient is the fact
that a τ -cover of a regular scheme is regular when τ is coarser than or equal to
the étale topology.

Proof of Lemma 4.4. — We prove the two assertions of Lemma 4.4 separately.

Step 1, (−)dvr preserves separatedness:Assume that F is a τdvr-separated
presheaf. To prove that Fdvr is τ -separated, consider a scheme X ∈ Sch(S),
a τ -cover U → X and two sections s, t ∈ Fdvr(X). We would like to show
that the assumption that s|U and t|U agree as elements of Fdvr(U) implies
that s = t. Notice that a consequence of the definition of (−)dvr is that two
sections s, t ∈ Fdvr(X) are equal if and only if for every Y → X in Reg(X),
their restrictions s|Y and t|Y are equal.

Consider the fiber product diagram,

U ×X Y =: UY

étale
��

// U

étale
��

Y // X.

Since U → X is étale by assumption, the fiber product UY := U ×X Y is étale
over Y (which we are assuming is regular) and therefore UY is also regular.
By functoriality, equality of s|U and t|U implies equality of the restrictions
s|UY

and t|UY
, and by Remark 3 above, we have Fdvr(UY ) = F (UY ) and

Fdvr(Y ) = F (Y ). Since UY is a τdvr-cover of Y , separatedness of F therefore
guarantees that the elements s|Y , t|Y ∈ F (Y )dvr = F (Y ) agree.

Step 2, (−)dvr preserves sheaves:Assume that F is a τdvr-sheaf, that X ∈
Sch(S) and that U → X is a τ -cover, with connected components (Ui)i∈I .
Assume further that we are given one s ∈ Fdvr(U) such that the associated
restrictions satisfy the compatibility condition

(4.4.1) s|Ui×XUj
= s|Ui×XUj

for every i, j ∈ I.

To prove that Fdvr is a τ -sheaf, we need to construct a section t ∈ Fdvr(X)
whose restriction t|U agrees with the s|U . Once t is found, uniqueness follows
from τ -separatedness of Fdvr that was shown above.
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To give t ∈ Fdvr(X), it is equivalent to give compatible elements tY ∈ F (Y ),
for every Y ∈ Reg(X). Given one such Y , consider the base change diagram

(U ×X U)Y // //

��

UY

��

étale // Y

��
U ×X U //// U

étale
// X.

As before, observe that UY = U ×X Y and (U ×X U)Y = U ×X U ×X Y are
regular, that Fdvr(UY ) = F (UY ) and Fdvr((U×XU)Y ) = F ((U×XU)Y ), and
that s|UY

∈ F (UY ) satisfies a compatibility condition, analogous to (4.4.1).
Since F is a τdvr-sheaf, we obtain an element tY ∈ F (Y ) = Fdvr(Y ) such
that tY |UY

= s|UY
. The elements tY so constructed clearly define an element

t ∈ Fdvr(X) where t|U = s|U . �

4.2. Unramified presheaves. — We will see in Section 4.4 that the extension
functor admits a particularly simple description whenever the presheaf F is
unramified. The notion is due to Morel. We refer the reader to [22, Definition 2.1
and Remarks 2.2, 2.4] for a detailed discussion of unramified presheaves, in the
case where the base scheme S is the spectrum of a perfect field.

Definition 4.5 (Unramified presheaf). — A presheaf F on Reg(S) is unram-
ified if the following axioms are satisfied for all X,Y ∈ Reg(S).
(UNR1) The canonical morphism F (X q Y ) → F (X) ×F (Y ) is an isomor-

phism.
(UNR2) If U → X is a dense open immersion, then F (X)→ F (U) is injective.
(UNR3) The presheaf F is a Zariski sheaf, and for every open immersion

U → X which contains all points of codimension ≤ 1 the morphism
F (X)→ F (U) is an isomorphism.

We will say that a presheaf F on Sch(S) is unramified if its restriction to Reg(S)
is unramified.

Example 4.6. — 1. The sheaf O is unramified [21, Theorem 38, page 124].
2. If F is a presheaf on Reg(S) whose restrictions F |XZar

to the small
Zariski sitesX|Zar

of eachX ∈ Reg(S) are locally free, coherent OX -mod-
ules, then F is unramified.

3. If S = Spec k is the spectrum of a perfect field, then the presheaves Ωn

are unramified, for all n ≥ 0.
4. There are other, important examples of unramified presheaves, which

fall out of the scope of the article. These include the Zariski sheafifi-
cations of K-theory, étale cohomology with finite coefficients (prime to
the characteristic), or homotopy invariant Nisnevich sheaves with trans-
fers. More generally, all reciprocity sheaves in the sense of [17] which are
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Zariski sheaves satisfy (UNR2) and satisfy (UNR3), by [17, Theorem 6
and Conjecture 1] and [24, Cor.0.3]..

4.3. Discrete valuation rings. — If X ∈ Sch(S) is any scheme over S and if
x ∈ X is any point, we consider Spec OX,x, which can be seen as the intersection
of (usually infinitely many) open subschemes Ui ⊆ X. Hence it is an example
of a scheme essentially of finite type over S.

Definition 4.7 (The category Dvr(S)). — The category of schemes essentially
of finite type over S will be denoted by Sch(S)ess. It contains Sch(S) as a
subcategory. Let Dvr(S) be the category of schemes essentially of finite type
which are regular, local, and of dimension ≤ 1.

Remark 4.8 (A description of Dvr(S)). — The schemes in Dvr(S) are of the
form Spec R with R either a field or a discrete valuation ring. More precisely,
R = OX,x where X ∈ Reg(S) and x ∈ X is a point of codimension one or
zero. The latter amounts to a scheme of the form Spec K for a field extension
K/k(s) of finite transcendence degree of the residue field k(s) of a point s ∈ S.

Any presheaf F on Sch(S) extends to a presheaf on the larger category
Sch(S)ess, in a canonical way2.

Definition and Proposition 4.9 (Extension from Sch(S) to Sch(S)ess). —
Given a presheaf F on Sch(S), define a presheaf F ess on Sch(S)ess as follows.
Given any X ′ ∈ Sch(S)ess, choose X ∈ Sch(S) and any filtered inverse system
{Ui}i∈I of open subschemes with affine transition maps with intersection X ′ ∼=⋂
i∈I Ui, and write

F ess(X ′) := lim−→
i∈I

F (Ui).

Then, F ess is well-defined and functorial, in particular independent of the
choice of X and Ui. Moreover,

F ess|Sch(S)
= F .

The proof of 4.9, given below on the next page, uses the pro-category of
schemes. To prepare for the proof, we briefly recall the relevant definitions.

Reminder 4.10 (Cofiltered category). — A category is called cofiltered if the
following conditions hold.

1. The category has at least one object.

2. In contrast to (−)dvr however, (−)ess is a left Kan extension as opposed to a right
Kan extension and so the limits in the definition are colimits instead of (inverse) limits.
That is, instead of a section being described as a coherent sequence of sections, it is given
by an equivalence class of sections. Recall the difference ΠXi vs qXi, or lim←−n Z/pn = Zp vs

lim−→n
Z/pn = {enπi/pk

: n, k ∈ Z} ⊂ C.
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2. For every pair of objects λ, λ′ there is a third object λ′′ with morphisms
λ′′→λ, λ′′→λ′ towards both of them.

3. For every pair of parallel morphisms λ′ ⇒ λ there is a third morphism
λ′′→λ′ such that the two compositions are equal.

Reminder 4.11 (Pro-category of schemes). — The objects of the pro-category
of schemes are pairs (Λ, X) with Λ a small, cofiltered category and Λ

X→ Sch(S)
a contravariant functor, and the set of morphisms between two pro-schemes
(Λ, X), (M,Y ) is defined as:

homPro(Sch(S))

(
(Λ, X), (M,Y )

)
:= lim←−

µ∈M
lim−→
λ∈Λ

homSch(S)(Xλ, Yµ).

Proof of well-definedness in Proposition 4.9. — We have seen in Lemma 2.7
and Remark 2.8 that Sch(S)ess is equivalent to a subcategory of Pro

(
Sch(S)

)
.

To prove well-definedness and functoriality, it will therefore suffice to note that
F has a well-defined functorial extension, say FPro to Pro

(
Sch(S)

)
, and that

F ess is just FPro|Sch(S)ess
, considering Sch(S)ess as a subcategory of Pro

(
Sch(S)

)
by abuse of notation. Indeed, for any pro-scheme (Λ, X), we can define

FPro(Λ, X) = lim−→
λ∈Λ

F (Xλ).

It follows from functoriality, that given any two pro-schemes (Λ, X), (M,Y ),
an element of homPro(Sch(S))

(
(Λ, X), (M,Y )

)
induces an element of

lim←−
µ∈M

lim−→
λ∈Λ

Hom
(
F (Yµ), F (Xλ)

)
,

and from therefore an element in

Hom
(

lim−→
µ∈M

F (Yµ), lim−→
λ∈Λ

F (Xλ)
)
.

One checks that all this is compatible with the composition in the various
categories. �

Remark 4.12. — In the setting of Definition 4.9, ifX ∈ Sch(S), if x ∈ X and if
{Ui}i∈I are the open affine subschemes ofX containing x, then F ess(

⋂
i∈I Ui) is

just the usual (Zariski) stalk of F at x.

Remark 4.13. — Note, however, that in general, a presheaf G on Sch(S)ess will
not necessarily satisfy G(

⋂
i∈I Ui) = lim−→i∈I G(Ui), but many sheaves of interest

do. One prominent example of a presheaf which does satisfy G = Gess is Ωn, for
all n ≥ 0.
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4.4. Description of the extension functor. — The following is the main result of
this section. It asserts that, under good assumptions, the values of an extended
sheaf can be reconstructed from is values on elements of Dvr.

In this section we assume that S is J-2, by which we mean that for any
X ∈ Sch(S), the set of regular points of X is open, cf. [1, Tags 07P7, 07QT,
07QW]. This is true, for example, if S is the spectrum of a quasi-excellent
ring, such as any ring of finite type over a field, or a Dedekind domain whose
fraction field is characteristic zero. This hypothesis is used in the proof of
Proposition 4.14.

Proposition 4.14 (Reconstruction of unramified presheaves). — Suppose that
S is J-2, for example the spectrum of a field. Let F be an unramified presheaf
on Reg(S). If X ∈ Sch(S) is any scheme, then

Fdvr(X) = lim←−
W∈Dvr(X)

F ess(W ).

The proof of this Proposition 4.14 will take the rest of the present Section 4.4.
Before beginning the proof on page 323, we note two lemmas that (help to)
prove the proposition in special cases.

Lemma 4.15 (cf. [22, Remark 1.4]). — In the setting of Proposition 4.14, if
X ∈ Reg(S), then

F (X) = lim←−
x∈X(≤1)

F ess
(
Spec OX,x

)
where X(≤1) is the subcategory of Dvr(X) consisting of inclusions of localisa-
tions of X at points of codimension ≤ 1.

Proof. — To keep notation short, we abuse notation slightly and write F for
the presheaf, as well as for its extension F ess to Sch(S)ess. Since F ess(Y ) =
F (Y ) for all Y ∈ Sch(S), no confusion is likely to occur. Using the Ax-
iom (UNR1), we can restrict ourselves to the case where X is a connected,
regular scheme. Given X, we aim to show that the following canonical map is
an isomorphism,

F (X)→ lim←−
x∈X(≤1)

F
(
Spec OX,x

)
.

Injectivity. — Axiom (UNR2) implies that F (X)→ F (η) is injective, where
η is the generic point of X. Since this factors as

F (X)→ lim←−
x∈X(≤1)

F
(
Spec OX,x

) canon. projection−−−−−−−−−−−→ F (η),

we obtain that the first map is injective.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



322 A. HUBER, S. KEBEKUS & S. KELLY

Surjectivity. — Assume we are given a section

(sx)x∈X(≤1) of lim←−
x∈X(≤1)

F
(
Spec OX,x

)
.

By definition of the groups F
(
Spec OX,x

)
, for every x ∈ X(≤1) there is some

open Ux ⊂ X containing x and an element tx ∈ F (Ux) which represents sx.
Furthermore, by the required coherency, for every x ∈ X of codimension one
there is an open subscheme Uxη of Ux ∩Uη such that the restrictions of tx and
tη to Uxη agree. By (UNR2), this means that we actually have

tx|Ux∩Uy
= ty|Ux∩Uy

for each x, y ∈ X of codimension one.

Since F is a Zariski sheaf by (UNR3), the sections tx therefore lift to a section
t on

⋃
x∈X(1) Ux, but by (UNR3), we have F

(⋃
x∈X(1) Ux

)
= F (X). So the

map is surjective. �

Lemma 4.16 (cf. [19, Proof of 3.6.12]). — In the setting of Proposition 4.14, if
X is connected, regular and Noetherian with generic point η, then the projection
map

(4.16.1) lim←−
W∈Dvr(X)

F ess(W )→ F ess(η)

is injective. Consequently, Proposition 4.14 is true when X is regular.

Proof. — As before, write F as a shorthand for F ess. Recall from Remark 4.3(3)
that when X is regular, F (X) = Fdvr(X). The composition

F (X)→ lim←−
W∈Dvr(X)

F (W )→ lim←−
x∈X(≤1)

F
(
Spec OX,x

)
is the map we have shown is an isomorphism in Lemma 4.15. So to show that
the first map is an isomorphism, it suffices to show that the second map is
a monomorphism. Since (4.16.1) factors through this, it suffices to show that
(4.16.1) is injective.

Assume we are given two sections

(sW )W∈Dvr(X), (tW )W∈Dvr(X) of lim←−
W∈Dvr(X)

F (W )

such that sη = tη. We wish to show that tW = sW for all W ∈ Dvr(X).
First, we consider W of the form a point x ∈ X. This is by induction on

the codimension. We already know sη = tη for the point η of codimension zero,
so suppose it is true for points of codimension at most n − 1 and let x be of
codimension n. By Lemma 2.12 there is a point y of codimension at most n−1
and a discrete valuation ring R satisfying the diagram

y
++
Spec R // X.

x
33
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By the inductive hypothesis sy = ty and then by (UNR2) we have sSpec R =
tSpec R. Therefore sSpec R|x = tSpec R|x but by the coherency requirement on s
and t and we have sSpec R|x = sx and tSpec R|x = tx and therefore tx = sx.

Now for an arbitrary W → X in Dvr(X) with W of dimension zero, if x
is the image of W we have tW = tx|W = sx|W = sW . For an arbitrary W of
dimension one and generic point η̃ we have tW |η̃ = tη̃ = sη̃ = sY |η̃ and so by
(UNR2) we have tW = sW . �

Proof of Proposition 4.14. — Again we write F as a shorthand for F ess. By
Lemma 4.16 we have

Fdvr(X) = lim←−
Y ∈Reg(X)

F (Y ) = lim←−
Y ∈Reg(X)

lim←−
W∈Dvr(Y )

F (W ).

Investigating this last double limit carefully, we observe that it can be described
as sequences (sW→Y→X), where sW→Y→X ∈ F (W ), indexed by pairs of com-
posable morphisms W → Y → X with W ∈ Dvr(X) and Y ∈ Reg(X), and
subject to the following two conditions:

1. For each W ′ → W → Y → X with W ′,W ∈ Dvr(X) and Y ∈ Reg(X)
we have sW ′→Y→X = sW→Y→X |W ′ .

2. For each W → Y ′ → Y → X with W ∈ Dvr(X) and Y, Y ′ ∈ Reg(X) we
have sW→Y→X = sW→Y ′→X .

By forgetting Y we get a natural map

α : lim←−
W→X

F (W )→ lim←−
W→Y→X

F (W )

with W , Y as before. It is given by sending an element

(tW→X)Dvr(X) ∈ lim←−
W∈Dvr(X)

F (W )

to the element

s ∈ lim←−
W→Y→X

F (W ) with sW→Y→X = tW→X .

In order to check that α is surjective, we only need to check that for any

s ∈ lim←−
W→Y→X

F (W ),

the section sW→Y→X is independent of Y . Let W → Y1 → X and W → Y2 → X
be in the index system. By Example 2.9,W is the intersection of its affine open
neighborhoods in some Y3 ∈ Sch(S). Since S is J-2, the regular points of a
scheme in Sch(S) form an open set, and we can assume that Y3 ∈ Reg(S). By
the description of morphisms of schemes essentially of finite type in Lemma 2.7
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there exists an open affine subscheme U of Y3 containing W such that we can
lift the morphisms W → Y1, Y2 to morphisms U → Y1, Y2. Hence

sW→Y1→X = sW→U→X = sW→Y2→X .

To show that α is a monomorphism, it suffices to notice that each W ∈
Dvr(X) can be “thickened” to a Y ∈ Reg(X): By Example 2.9 is W is of
the form

⋂
U for U running through the open neighborhoods of W in some

Y ′ ∈ Sch(X). Let Y be the open subscheme of regular points of Y ′. We claim
that W → Y ′ factors via Y . The generic point of W maps to a generic point
of Y ′, hence Y is non-empty. If W is of dimension 0, we are done. If W is
of dimension one, consider the image y′ ∈ Y ′ of the closed point of W . Then
W = Spec OY ′,y′ and y′ is a regular point because W is regular. In particular,
W is contained in Y . Hence, the functor of indexing categories which sends
W → Y → X to W → X is essentially surjective, and therefore the induced
morphism α of limits is injective. �

4.5. Descent properties. — Recall the notion of a cdp-cover from Definition 2.10
and the rh, cdh and eh-topologies generated by cdp-covers together with open
covers, resp. Nisnevich covers, resp. étale covers.

Proposition 4.18. — Let S be a J-2 Noetherian scheme, such as the spectrum
of a field. If F is an unramified presheaf on Sch(S) then Fdvr is an rh-sheaf.
Consequently, if F is an unramified Nisnevich (resp. étale) sheaf on Sch(S)
then Fdvr is a cdh-sheaf (resp. eh-sheaf).

Example 4.19. — Let S = Spec k with k perfect. Then Ωndvr is an eh-sheaf
for all n. In particular, Ωndvr is a cdh-sheaf since this is a weaker topology.

Proof of Proposition 4.18. — By Lemma 4.4, Fdvr is a Zariski-sheaf (resp.
étale or Nisnevich sheaf). It remains to establish the sheaf property for cdp-mor-
phisms. As before, write F as a shorthand for F ess, in order to simplify nota-
tion.

Using the description Fdvr(X) = lim←−W∈Dvr(X)
F (W ) from Proposition 4.14,

in order to show that Fdvr is separated for cdp-morphisms, it suffices to show
that for every cdp-morphismX ′ → X, everyW → X in Dvr(X) factors through
X ′ → X. Since X ′ → X is completely decomposed it is true forW of dimension
zero, and therefore also true for the generic points of thoseW of dimension one.
To factor all of a W of dimension one, we now use the valuative criterion for
properness.

Now consider a cdp-morphism X ′ → X and a cocycle

s = (sW )W∈Dvr(X′) ∈ ker
(
Fdvr(X

′)→ Fdvr(X
′ ×X X ′)

)
.

We have just observed that every scheme in Dvr(X) factors through X ′ and so
making a choice of factorization for each W → X in Dvr(X), and taking tW to
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be the sW of this factorization, we have a potential section t = (tW )W∈Dvr(X) ∈
Fdvr(X), which potentially maps to s.

Independence of the choice: Suppose that f0, f1 : W ⇒ X ′ → X are two
factorizations of some W ∈ Dvr(X). Then there is a unique morphism W →
X ′ ×X X ′ such that composition with the two projections recovers the two
factorizations. Saying that s is a cocycle is to say precisely that in this situation,
the two sW corresponding to f0 and f1 are equal as elements of F (W ).

This independence of the choice implies that t is actually a section of Fdvr(X).
In other words, that sW |W ′ = sW ′ for any morphism W ′ → W in Dvr(X). It
also implies that t is mapped to s. �

5. cdh-differentials

Throughout the present Section 5, the letter k will always denote a perfect
field. To keep our statements self-contained, we will repeat this assumption at
times.

Remark 5.1 (Perfect fields). — Perfect fields have a number of characterisa-
tions. A pertinent one for us is: the field k is perfect if and only if Ω1

L/k = 0 for
every algebraic extension L/k.

Definition 5.2 (Dvr differentials). — Let k be a perfect field and n ∈ N be
any number. Let Ωndvr be the extension of the presheaf Ωn on Reg(k) to Sch(k)
in the sense of Definition 4.1. A section of Ωndvr is called a dvr differential. The
justification for this name is Proposition 4.14.

Observation 5.3. — Let k be perfect field and n ∈ N be any number. Then
Ωndvr is an eh-sheaf. If X is regular, then Ωndvr(X) = Ωn(X).

Proof. — Recall from Example 4.6 that Ωn is an unramified presheaf. The
observations are therefore special cases of Proposition 4.18 and Remark 3, re-
spectively. �

Remark 5.4. — If the characteristic of k is zero, the description as dvr differ-
entials is one of the equivalent characterisations of h-differentials given in [14,
Theorem 1], without the terminology being introduced.

5.1. cdh-differentials. — We introduce an alternative candidate for a good
theory of differentials and show that it agrees with Ωndvr, if we assume that
weak resolutions of singularities exist.

Definition 5.5 (cdh-differentials). — Let k be a perfect field and n ∈ N be
any number. Let Ωncdh be the sheafification of Ωn on Sch(k) in the cdh-topology.
Sections of Ωncdh are called cdh-differentials. Analogously, we define Ωnrh and Ωneh

via the rh-or eh-topology.
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Remark 5.6 (Sheafification in characteristic zero). — If k has characteris-
tic zero, then Ωncdh, Ωnrh and Ωneh agree. In fact, Ωncdh is even an h-sheaf, [14,
Theorem 3.6].

Remark 5.7 (Comparison map). — In the setting of Definition 5.5, recall
from Observation 5.3 that Ωndvr is an eh-sheaf. By the universal property of
sheafification, there are canonical morphisms

Ωnrh → Ωncdh → Ωneh → Ωndvr.

We aim to compare these sheaves. As it will turn out, the comparison is a
question about torsion. The decisive input is the following theorem:

Theorem 5.8 (Killing torsion in Ω). — Let k be a perfect field, Y ∈ Sch(k)
integral, n ∈ N and ω ∈ tor Ωn(Y ). Then there is a birational proper morphism
π : Ỹ → Y such that the image of ω in Ωn(Ỹ ) vanishes.

Remark 5.9. — The above result is a consequence of weak resolution of sin-
gularities, but in fact weaker. We will give a direct proof in Appendix A.

Corollary 5.10. — Let k be a perfect field, Y ∈ Sch(k), n ∈ N and ω ∈ Ωn(Y )
an element such that ω|y = 0 for every point y ∈ Y . Then there exists a
cdp-morphism (Definition 2.10) Y ′ → Y such that ω|Y ′ = 0.

Proof. — The proof is by induction on the dimension of Y . If the dimension
of Y is zero then Yred → Y is a cdp-morphism such that ω|Yred

vanishes, so
suppose that Y is of dimension n > 0 and that the result is true for schemes
of dimension < n. Replacing Y by its reduced irreducible components we can
assume that Y is integral. Then Theorem 5.8 gives a proper birational mor-
phism Y ′ → Y for which ω|Y ′ vanishes. Let Z ⊂ Y be a closed nowhere
dense subscheme outside of which Y ′ → Y is an isomorphism, and Z ′ → Z a
cdp-morphism provided by the inductive hypothesis. Then Z ′ q Y ′ → Y is a
cdp-morphism on which ω vanishes. �

Theorem 5.11. — Let k be a perfect field, n ∈ N be any number and X ∈
Reg(k) any regular scheme. Then the following canonical morphisms are all
isomorphisms:

(5.11.1) Ωn(X)
∼→ Ωnrh(X)

∼→ Ωncdh(X)
∼→ Ωneh(X)

∼→ Ωndvr(X).

The isomorphism Ωn(X) ∼= Ωneh(X) has been shown previously by Geisser in
[8, Theorem 4.7] assuming the existence strong resolutions of singularities ex-
ists, i.e., under the additional assumption that any birational proper morphism
between smooth varieties can be refined by a series of blow-ups with smooth
centers.
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Proof of Theorem 5.11. — We formulate the proof in the case of the cdh-topol-
ogy. The same arguments also apply, mutatis mutandis, in the other cases.

Step 1, proof of (5.11.1) up to torsion. — Since X is regular, the composition
of natural maps,

(5.11.2) Ωn(X)→ Ωncdh(X)→ Ωndvr(X)︸ ︷︷ ︸
=Ωn(X) by Rem. 4.3(3)

,

is an isomorphism by Remark 4.3(3). We claim that the direct complement
Tcdh(X) of Ωn(X) in Ωncdh(X) is torsion. To this end, we may assume X is con-
nected, say with function fieldK. Applying the functor (•)ess to Sequence (5.11.2),
we obtain

(5.11.3) (Ωn)ess(K)︸ ︷︷ ︸
=Ωn(K) by Rem. 4.12

−→ (Ωncdh)ess(K) −→ (Ωndvr)
ess(K)︸ ︷︷ ︸

=Ωn(K) by Rems. 4.3(3), 4.12

.

We claim that both morphisms in (5.11.3) are isomorphisms. Equation (5.11.1)
then follows from (UNR2). In order to justify the claim, it suffices to show that
the first morphism is surjective. Suppose that s ∈ (Ωncdh)ess(K). By the defi-
nition of (−)ess, there is some open affine U ⊆ X such that s is represented
by a section s′ ∈ (Ωncdh)(U). Then, there exists a cdh-cover V → U such that
s′|V is in the image Ωn(V ) → Ωncdh(V ). Replacing U by some smaller open
affine, we can assume that V = U . That is, the representative s′ ∈ (Ωncdh)(U) is
in the image of (Ωn)(U) → (Ωncdh)(U). Hence, the section s ∈ (Ωncdh)ess(K) it
represents is in the image of (Ωn)ess(K)→ (Ωncdh)ess(K).

Step 2, vanishing of torsion. — We will now show that Tcdh(X) = 0. Let
ω ∈ Tcdh(X) be any element—so ω is an element of Ωncdh(X) which vanishes
in (Ωncdh)ess(K). We aim to show that ω = 0. To this end, we construct a
number of covering spaces, associated groups and preimages, which lead to
Diagrams (5.11.4) and (5.11.5) below. We may assume without loss of generality
that X is reduced.

By definition of sheafification, there exists a cdh-cover V → X of X for
which ω|V is in the image of Ωn(V ) → Ωncdh(V ). Again we may assume that
V is reduced. We choose one element ω′ ∈ Ωn(V ) contained in the preimage
of ω. As V → X is a cdh-cover, we have a factorization Spec K → V → X.
Recalling from Step 1 that (Ωn)ess(K) → (Ωncdh)ess(K) is an isomorphism, it
follows that ω′ ∈ Ωn(V ) is a torsion element.

By Corollary 2.16 we may refine the covering map and assume without loss
of generality that it factorizes as follows,

V
Nisnevich cover−−−−−−−−−−→ Y

proper birational−−−−−−−−−−−→ X.

Since ω′ ∈ Ω(V ) is torsion, Theorem 5.8 gives a proper birational morphism
V ′ → V such that ω′|V ′ = 0. Finally, Lemma 2.15 allows one to find Y ′′, Y ′
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fitting into the following commutative diagram

(5.11.4)

Y ′′
Nisnevich cover //

proper biratl.
��

Y ′

proper biratl.
��

V ′
proper biratl.

// V
Nisnevich cover

// Y
proper biratl.

// X.

Proposition 2.13 implies that Y ′ → X and Y ′′ → Y are cdh-covers. A diagram
chase will now finish the argument:
(5.11.5)

Ωncdh(Y ′′)
contains ω|

Y ′′
=0

Ωncdh(Y ′)oo

Ωn(Y ′′)
contains ω′|

Y ′′
=0

??

Ωncdh(V ′)

OO

Ωncdh(V )
contains ω|

V

oo Ωncdh(Y )oo

OO

Ωncdh(X)
contains ω

oo

Ωn(V ′)
contains ω′|

V ′
=0

OO

??

Ωn(V )
contains ω′

oo

??

�

Proposition 5.12. — Let k be a perfect field and n ∈ N be any number. The
canonical map Ωncdh → Ωndvr is a monomorphism.

Proof. — Let X ∈ Sch(k) and ω be in the kernel of Ωncdh(X) → Ωndvr(X).
Choose a cdh-cover X ′ → X such that the restriction of ω to X ′ is in the
image of Ωn(X ′) → Ωncdh(X ′), so now we have a section ω′ in the kernel
of Ωn(X ′) → Ωndvr(X

′) and we wish to show that it vanishes on a cdh-cover
of X ′. By Corollary 5.10 it suffices to show that ω′ vanishes on every point
of X ′. Let x ∈ X ′ be a point, {x} its closure in X ′ with the reduced scheme
structure, and let V = ({x})reg be its regular locus. Since the section ω′ van-
ishes in Ωndvr(X

′), it vanishes on every scheme in Reg(X ′), and in particular,
on V . But the generic point of V is isomorphic to x, and therefore ω′ vanishes
on x. �

Proposition 5.13. — Let k be a perfect field and n ∈ N be any number.
Assume that weak resolutions of singularities exist for schemes defined over k.
Then the natural maps

Ωnrh → Ωncdh → Ωneh → Ωndvr

of presheaves on Sch(k) are isomorphisms. As such, all four are unramified.
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Proof. — We argue by induction on the dimension. In dimension zero, there
is nothing to show. Now, let X ∈ Sch(k) be of positive dimension. We may
assume that X is reduced and hence generically regular. Let X̃ → X be a
desingularisation, isomorphic outside a proper closed set Z ( X and with
exceptional locus E ( X̃. It follows from cdp-descent that the sequences

0→ Ωn• (X)→ Ωn•
(
X̃
)
⊕ Ωn• (Z)→ Ωn• (E) where • ∈ {rh, cdh, eh,dvr}

are all exact. By inductive hypothesis the comparison map is an isomorphism
for Z and E. It is also an isomorphism for X̃, by Proposition 5.11. Hence it is
also an isomorphism for X. �

Remark 5.14. — It is currently unclear to us if Theorem 5.8 suffices to es-
tablish the conclusion of Proposition 5.13. For all we know, Theorem 5.8 only
implies that the natural map Ωndvr → (Ωn• )dvr for • ∈ {rh, cdh, eh} is an iso-
morphism.

5.2. Torsion of cdh-sheaves. — Over fields of characteristic zero, the results
[14, Theorem 1, Remark 3.11 and Proposition 4.2] show that Ωncdh = Ωndvr is
torsion free. We are going to show that this fails in positive characteristic.

Example 5.15 (Existence of cdh-torsion). — We maintain the setting and
notation of Example 3.6: the field k is algebraically closed of characteristic two,
Y := Spec k[x, y, z]

/
(y2 − xz2) is the Whitney umbrella, andX := Spec k[x] is

its singular locus. Write Ỹ := Spec k[u, z] ∼= A2 and consider the (birational)
desingularisation π : Ỹ → Y , given by

π# : k[x, y, z]
/

(y2 − xz2)→ k[u, z], x 7→ u2, y 7→ uz, z 7→ z.

Let E ( Ỹ be the exceptional locus of π. In other words, E equals the preimage
of X and is hence given by z = 0. Note that the morphism E → X corresponds
to the ring morphism k[x] → k[u], x 7→ u2, and therefore induces the zero
morphism on Ω1. We compute Ω1

dvr of Y , Ỹ , X, and E. The last three are
regular, hence Ω1 → Ω1

dvr is an isomorphism on these varieties. Since Ω1
cdh is a

cdh-sheaf and Ỹ qX → Y is a cdh-cover, we have the following exact sequence:

0→ Ω1
cdh(Y )

a−→ Ω1
(
Ỹ
)
⊕ Ω1(X)

b−→ Ω1(E).

We have seen above that Ω1(X) ⊆ ker b ∼= Ω1
cdh(Y ). The associated sections

of Ω1
cdh(Y ) vanish on Y \ X and are therefore torsion on Y . It follows that

tor Ω1
dvr(Y ) 6= 0, and that there are torsion elements whose restrictions to X

do not vanish, and furthermore, are not torsion elements of Ω1
cdh(X).

Corollary 5.16. — For perfect fields of positive characteristic, the sheaves
Ω•cdh are not torsion-free in general. �
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Corollary 5.17. — For perfect fields of positive characteristic, the pull-back
maps of Ω1

cdh(·) do not induce pull-back maps between the groups tor Ω1
cdh(·).

In other words, tor Ω1
cdh is generally not a presheaf on Sch(k). �

Remark 5.18. — The same computation works for any extension of Ω1 to
a sheaf on Sch which has cdp-descent and agrees with Kähler differentials on
regular varieties. By Theorem 5.8 this includes dvr-, rh-, and eh-differentials.

6. Separably decomposed topologies

In many applications, de Jong’s theorem on alterations [16] and Gabber’s
refinement [15] have proved a very good replacement for weak resolution of
singularities, which is not (yet) available in positive characteristic. It is natural
to ask if one can pass from the eh-topology to a suitable refinement that allows
alterations as covers, but still preserves the notion of a differential in the smooth
case. This turns out impossible.

6.1. h-topology. — We record the following for completeness.

Lemma 6.1 (Sheafification of differentials in the h-topology). — Assume that
there is a positive integer m such that m = 0 in OS (for example, S might be
the spectrum of a field of positive characteristic). If n > 0 is any number, then
the h-sheafification Ωnh of Ωn on Sch(S) is zero. In fact, even the h-separated
presheaf associated to Ωn is zero. This is true regardless of whether Ωn is the
sheaf of absolute differentials, or the sheaf of S-relative differentials.

Proof. — Since the h-topology is finer than the Zariski topology, it suffices to
prove the statement for affine schemes. We claim that for any ring A, and any
differential of the form da ∈ Ω

(
Spec A

)
, there exists an h-cover Y → Spec A

such that da is sent to zero in Ω(Y ). Indeed, it suffices to consider the finite
surjective morphism

Spec A[T ]
/

(Tm − a)→ Spec A.

The image of da under this morphism is da = d(Tm) = mTm−1 · dT = 0. �

6.2. sdh-topology. — To avoid the phenomenon encountered in Lemma 6.1,
one could try to consider the following topology, which is coarser than the
h-topology. We only allow proper maps that are generically separable. By mak-
ing the notion stable under base change, we are led to the following notion.

Definition 6.2 (sdh-topology). — We define the sdh-topology on Sch(S) as
the topology generated by the étale topology, and by proper morphisms f :
Y → X such that for every x ∈ X there exists y ∈ f−1(x) with [k(y) : k(x)]
finite separable.
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Example 6.3. — Let π : X̃ → X be a proper morphism and let Z ⊂ X be a
closed subscheme such that π is finite and étale over X \ Z. The obvious map
X̃ q Z → X is then an sdh-cover.

Remark 6.4. — In characteristic zero, the h-and sdh-topologies are the same,
[26, Proof of Proposition 3.1.9].

Example 6.5 (Failure of sdh-descent). — Let k be a perfect field of charac-
teristic p, let n be a positive integer,

S :=
k[x, y, z]

(zp + zxn − y)
∼= k[x, z], and R := k[x, y].

The obvious morphism R→ S defines a covering map,

π : Spec S︸ ︷︷ ︸
=:X̃

→ Spec R.︸ ︷︷ ︸
=:X

Note that both X and X̃ are regular. The covering map is finite of degree p.
It is étale outside the exceptional set Z = V (x) ⊂ X. Indeed, the minimal
polynomial of z over k[x, y] is T p + xnT − y with derivative xn. Hence π is an
alteration and generically separable. This also means that X̃×XX̃ is regular
outside of Z×XX̃×XX̃.

We have observed in Example 6.3 that X̃ qZ → X is an sdh-cover. We will
now show that sdh-descent fails for Ω1

dvr and this cover. Example 6.5 will also
be used in Lemma 6.12 to show that Ω1

dvr does not have descent for a local (in
the birational geometry sense) version of the sdh-site. The reader who wishes to
explore it in more detail can consult Appendix B where we make some explicit
calculations.

Proposition 6.6 (Failure of sdh-descent). — In the setting of Example 6.5,
sdh-descent fails for Ω1

cdh and the cover X̃ qZ → X. In other words, Ω1(X) 6=
Ω1

sdh(X) for this regular X.

Remark 6.7. — The argument shows more: no presheaf F with F |Reg
∼= Ω1

can ever be an sdh-sheaf.

Proof of Proposition 6.6. — We have to discuss exactness (or rather failure
of exactness) of the sequence

0→ Ω1
dvr(X)

α−→ Ω1
dvr(X̃)⊕ Ω1

dvr(Z)

β−→ Ω1
dvr(X̃ ×X X̃)⊕ Ω1

dvr(X̃ ×X Z)⊕ Ω1
dvr(Z ×X X̃)⊕ Ω1

dvr(Z ×X Z).

(6.7.1)
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Notice that Z×XZ = Z, and that Z̃ := X̃ ×X Z is given as

(6.7.2) Z̃ = Spec
k[x, y, z]

(zp + zxn − y, x)
∼= Spec

k[y, z]

(zp − y)
∼= Spec k[z].

Using smoothness of X,Z, X̃ and Z̃, Sequence (6.7.1) simplifies to

0→ Ω1(X)
α−→ Ω1(X̃)⊕ Ω1(Z)

β−→ Ω1
dvr(X̃ ×X X̃)⊕ Ω1(Z̃)⊕ Ω1(Z̃)⊕ Ω1(Z).

We will work with this simplified description. Recalling that Ω1(Z) = k[y] · dy,
consider the element in the middle that is given by

0⊕ dy ∈ Ω1(X̃)⊕ Ω1(Z).

We claim that β(0 ⊕ dy) = 0. This will be shown by considering the four
components of β(0 ⊕ dy) one at a time. The component in Ω1

dvr(X̃ ×X X̃)
clearly vanishes because the first component of 0 ⊕ dy does. The components
in Ω1(Z̃)⊕ Ω1(Z̃) vanish because d(π|Z̃) : Ω1(Z)→ Ω1(Z̃) is the map

k[y] · dy → k[z]dz; f(y) · dy 7→ f(zp) · d(zp) = 0.

Finally, recall that we used the identity Z ×X Z = Z in the simplification. The
two restriction maps Ω1(Z) → Ω1(Z ×X Z) = Ω1(Z) agree, so that the last
component vanishes as well. The claim is thus shown.

On the other hand, 0⊕dy cannot be in the image of α because the restriction
map Ω1(X) → Ω1(X̃) is injective. In summary, we see that (6.7.1) can not
possibly be exact. This concludes the proof. �

6.3. The site s-alt. — As the problem that arises in Example 6.5 seems to lie
in the non-separable locus of X ′ → X, one could try removing the need for Z,
by considering the following version of [15, Exposé II, Section 1.2].

Definition 6.8 (Site s-alt(X)). — Let S be Noetherian, X ∈ Sch(S). We
define the site s-alt(X) as follows. The objects are those morphisms f : X ′ → X
in Sch(S) such that X ′ is reduced, and for every generic point ξ ∈ X ′, the
point f(ξ) is a generic point of X and moreover, k(ξ)/k

(
f(ξ)

)
is finite and

separable. The topology is generated by the étale topology, and morphisms
of s-alt(X), which are proper. Note that by virtue of being in s-alt(X), the
latter are automatically generically separable.

Example 6.9. — 1. Let X be integral and f : X ′ → X a blowing-up.
Then f is proper and birational, and hence an s-alt-cover.

2. Let X be reduced with irreducible components X1, X2. Then X̃ = X1q
X2 → X is an s-alt-cover.

3. The morphism π : X̃ → X of Example 6.5 is an s-alt-cover.
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The category s-alt(X) admits fiber products in the categorical sense, which
can be calculated as follows: For morphisms Y ′ → Y and Y ′′ → Y in s-alt(X)
let Y ′×s-alt

Y Y ′′ be the union of the reduced irreducible components of the usual
fiber product of schemes, Y ′×Y Y ′′, that dominate an irreducible component
of X.

Example 6.10. — 1. Let X be reduced and connected with irreducible
components X1, X2. Let X̃ := X1 qX2. Then

X̃ ×X X̃ = X1 qX2 q (X1 ∩X2)q (X2 ∩X1).

In order to obtain the product in s-alt we have to drop the components
which are not dominant over an irreducible component of X and get

X̃ ×s-alt
X X̃ = X̃.

2. Let k be a perfect field, C/k a nodal curve with normalization C̃ —
this means that locally for the étale topology we are in the situation
of the previous example. Then C̃ ×C C̃ has one irreducible component
isomorphic to C̃ and two isolated points. Hence

C̃ ×s-alt
C C̃ ∼= C̃.

3. In the setting of Example 6.5, the canonical inclusion X̃ ×s-alt
X X̃ →

X̃ ×X X̃ is an isomorphism.

Since we have access to fiber products, a presheaf F on s-alt(X) is an
s-alt-sheaf if the following sequence is exact for all covers X2 → X1,

0→ F (X1)→ F (X2)→ F (X2 ×s-alt
X1

X2).

By de Jong’s theorem on alterations [16], the system of covers Y → X with Y
regular is cofinal.

Lemma 6.11. — Let k be perfect, X ∈ Sch(k). For general X, the presheaf
Ω1

dvr restricted to s-alt(X) is not an s-alt-sheaf. In fact, it is not separated.

Proof. — Assume that Ω1
dvr is separated. In other words, assume that the

natural map Ω1
dvr(Y )→ Ω1

dvr(Y
′) is injective for all separable alterations Y ′ →

Y in s-alt(X). Let X be irreducible. Choose a separable alteration Y → X with
Y regular. Then, we have injective maps

Ω1
dvr(X)→ Ω1

dvr(Y )︸ ︷︷ ︸
=Ω1(Y )

→ Ω1
(
k(Y )

)
.

The composition factors via Ω1
(
k(X)

)
→ Ω1

(
k(Y )

)
. This map is also injective,

because k(Y )/k(X) is separable. In total, we obtain that the map

Ω1
dvr(X)→ Ω1

(
k(X)

)
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is injective. In particular, we obtain that Ω1
dvr(X) is torsion-free, contradicting

Corollary 5.16. �

Torsion in Ω1
dvr(X), which played a role in the proof of Lemma 6.11, occurs

only for singular X. The following example shows, however, that s-alt-descent
also fails for regular X.

Lemma 6.12. — Let k be perfect. Then, Ω1
dvr restricted to s-alt(X) does not

have s-alt-descent for the morphism π : X̃ → X of Example 6.5 if n ≥ 2. In
particular, Ω1

s-alt(X) 6= Ω1(X) for this particular X.

The reader interested in following the computations here might also wish to
look at Appendix B first, where many of the relevant rings and morphisms are
explicitly computed.

Proof. — We consider the following commutative diagram,

0 // Ω1(X)

��

// Ω1(X̃)

��

α //

β
''

Ω1
dvr(X̃×XX̃)

��
0 // Ω1

(
k(X)

)
// Ω1
(
k(X̃)

)
// Ω1
(
k(X̃×XX̃)

)
.

We wish to show that the top row is not exact. As X and X̃ are smooth, the
left two vertical morphisms are monomorphisms. Moreover, since X̃ → X is
generically étale and Ω1 is an étale sheaf, the lower row is exact. Consequently,
the top row is exact at Ω1(X). Now, for the moment, we ask the reader to
admit the following claim.

Claim:The kernels of α and β are equal.

Application of the claim: If this claim holds, then from a diagram chase, ex-
actness of the top row at Ω1(X̃) would imply that Ω1(X) is the intersection
of Ω1(k(X)) and Ω1(X̃) inside Ω1(k(X̃)). That is, exactness at Ω1(X̃) would
imply the that inclusion

k[x, y] · dx⊕ k[x, y] · dy︸ ︷︷ ︸
=Ω1(X)

⊆ k(x, y) · dx⊕ k(x, y) · dy︸ ︷︷ ︸
=Ω1
(
k(X)

) ∩ k[x, z] · dx⊕ k[x, z] · dz︸ ︷︷ ︸
=Ω1(X̃)

is in fact an equality inside Ω1
(
k(X̃)

)
= k(x, z) · dx ⊕ k(x, z) · dz, where y =

zp + zxn.
However, the element

x−1 · dy = nzxn−2 · dx+ xn−1 · dz ∈ Ω1
(
k(X̃)

)
is in the intersection on the right, but cannot come from an element on the
left, since for any element coming from the left the coefficient of dz is divisible
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by xn. Hence, the inclusion is strict, as long as our claim that kerα = kerβ
holds.

Proof of the Claim:To see that kerα = kerβ, let X(2) be the normalization
of X̃ ×X X̃. A direct computation, given in Section B.0.5 below, shows that
X(2) is in fact smooth over Spec k. The canonical map ρ : X(2) → X̃ ×X X̃ is
proper, birational, and an isomorphism outside Z×X X̃×X X̃, cf. Section B.0.4
for that. Setting Z(2) = (Z ×X X̃ ×X X̃)red, we now have a proper cdh-cover
Z(2) qX(2) of X̃ ×X X̃. This is useful because we have seen in Example 4.19
that Ω1

dvr is a cdh-sheaf and so

Ω1
dvr

(
X̃ ×X X̃

)
→ Ω1

dvr

(
X(2) q Z(2)

)
is injective. Now since Z ×X X̃ ×X X̃ = (Z ×X X̃) ×Z (Z ×X X̃) = Z̃ ×Z Z̃,
one calculates Z(2) as in (6.7.2) as(

Spec k[z]⊗k[y] k[z]
)

red
=
(
Spec k[z]⊗k[zp] k[z]

)
red

= Spec k[z].

From this calculation we glean two important pieces of information. Firstly
Z(2) is smooth, and so

Ω1
dvr

(
X(2) q Z(2)

)
= Ω1

(
X(2) q Z(2)

)
and since Ω is torsion-free on regular schemes, the morphism

Ω1
(
X(2)

)
⊕ Ω1

(
Z(2)

)
→ Ω1

(
k(X(2))

)
⊕ Ω1

(
k(Z(2))

)
is injective. Since X(2) → X̃ ×X X̃ was birational, all this implies that the
morphism

Ω1
dvr

(
X̃ ×X X̃

)
→ Ω1

(
k(X̃ ×X X̃)

)
⊕ Ω1

(
k(Z(2))

)
is injective. So, to finish the proof of the claim, it suffices to show that the
induced morphism Ω1

(
X̃
)
→ Ω1

(
k(Z(2))

)
is zero. This is the second piece of

information we obtain from the description of Z(2) above. Since Z(2) = Z̃, the
two compositions

Z(2) → X̃×XX̃ ⇒ X̃

induced by the projections are equal, and so Ω1
(
X̃
)
→ Ω1

(
k(Z(2))

)
is indeed

zero. �

Appendix A. Theorem 5.8

We have seen in the main text that understanding the torsion in Ωn is
crucial in order to understand Ωncdh. The main purpose of this appendix is
to give a proof of Theorem 5.8. We are highly indepted to an anonymous
referee who provided the crucial reference to the result of Gabber-Ramero [7,
Corollary 6.5.21], which appeared as a hypothesis in an earlier version of this
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article. We also give criteria for testing the existence of torsion in special cases.
These considerations are independent of the main text.

Before going into the direct proof, we explain how Theorem 5.8 follows easily
from resolution of singularities.

Lemma A.1. — Let k be perfect. Assume weak resolution of singularities holds
over k, that is, assume that for every reduced Y there is a proper birational
morphism X → Y with X smooth. Then, Theorem 5.8 holds true.

Proof. — Let ω ∈ tor Ωn(Y ). By definition there is a dense open subset U ⊂ Y
such that ω|U vanishes. Let π : X → Y a desingularisation. Then π∗ω ∈ Ωn(X)

is a torsion form because it vanishes on π−1U . As X is smooth, this implies
that π∗ω = 0. �

A.1. Valuation rings. — We give a reformulation of Theorem 5.8 in terms of
vanishing of differential forms on (not necessarily discrete) valuation rings. In
this section, let k be a perfect field.

Let A be an integral k-algebra of finite type. Recall that the Riemann-Zariski
space RZ(A), called the “Riemann surface” in [28, § 17, p. 110], as a set, is the
set of (not necessarily discrete) valuation rings of Frac(A) which contain A.
To a finitely generated sub-A-algebra A′ is associated the set E(A′) = {R ∈
RZ(A) : A′ ⊆ R} and one defines a topology on RZ(A) taking the E(A′) as
a basis. This topological space is quasi-compact, in the sense that every open
cover admits a finite subcover [28, Theorem 40].

Consider the following hypothesis.

Hypothesis V. — For every finitely generated extensionK/k and every k-val-
uation ring R of K the map Ωn(R)→ Ωn(K) is injective for all n ≥ 0.

Remark A.2 (Hypothesis V true). — The statement is true for n = 0 because
valuation rings are torsion free. [7, Corollary 6.5.21] states that Hypothesis V
is true for n = 1, and then Lemma A.4 says that this implies it is true for all
n ≥ 0.

We repeat Theorem 5.8 here as well for ease of reference.

Hypothesis H (Theorem 5.8). — Given a perfect field k, assume that for
every integral Y ∈ Sch(k), every number n ∈ N and every ω ∈ tor Ωn(Y ), there
is a birational proper morphism π : Ỹ → Y such that the image of ω in Ωn(Ỹ )
vanishes.

Proposition A.3. — Let k be perfect. Then Hypothesis V and Hypothesis H
for k are equivalent. In particular, Hyothesis H is true.

Proof. — For the reader’s convenience, the proof is subdivided into steps.
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Step 1: Proof V⇒H in the affine case. — Let X = Spec A ∈ Sch(k) be
integral and ω ∈ Ωn(X) an element which vanishes on a dense open, that is,
the image of ω in Ωn

(
Frac(A)

)
is zero. We wish to find a proper birational

morphism Y → X such that ω|Y = 0.
Hypothesis V implies then that the image of ω in Ωn(R) is zero for every

valuation ring R of Frac(A) which contains A. As each R is the union of its
finitely generated sub-A-algebras, for each such R there is a finitely generated
sub-A-algebra, say AR, for which ω vanishes in Ωn(AR). The E(AR) then form
an open cover of RZ(A) and so since it is quasi-compact, there exists a finite
subcover. That is, there is a finite set {Ai}mi=1 of finite generated sub-A-alge-
bras of Frac(A) such that ω is zero in each Ωn(Ai), and every valuation ring
of Frac(A) which contains A, also contains one of the Ai’s.

Zariski’s Main Theorem in the form of Grothendieck, [10, Théorème 8.12.6],
allows us, for each i, to choose a factorization Spec Ai → Yi → X as a
dense open immersion followed by a proper morphism and to define Y :=
Y1×X . . .×XYm (or better, define Y to be the closure of the image of the
generic point of Spec Frac(A) in this product) so that Y → X is now a proper
birational morphism. Since ω|Ai

= 0 for each i, it suffices now to show that the
set of open immersions {(Spec Ai)×Yi Y → Y }mi=1 is an open cover of Y to con-
clude that ω|Y = 0. But for every point y ∈ Y , there exists a valuation ring Ry
of Frac(A) such that Spec Ry → Y sends the closed point of Spec Ry to y, and
since Ry contains some Ai, there is a factorization Spec Ry → Spec Ai → Y ,
and we see that y ∈ (Spec Ai)×Yi

Y .

Step 2: Proof V⇒H in general. — For the case of a general integral X ∈
Sch(k) we use the same trick. Take an affine cover {Ui}mi=1 of X. We have
just seen that there exist proper birational morphisms Vi → Ui such that
ω|Vi

= 0 for each i. Zariski’s Main Theorem in the form of Grothendieck gives
compactifications Vi → Yi → X. We set Y := Y1×X . . .×XYm so that Y → X is
proper birational, and the same argument as above shows that {Vi×Yi

Y →
Y }mi=1 is an open cover. Since ω|Vi

= 0 for each i, this implies that ω|Y = 0.

Step 3: Proof H⇒V. — Let K be a finitely generated extension of k, let R be
a k-valuation ring of K, and let ω be in the kernel of Ωn(R)→ Ωn(K). There
is some finitely generated sub-k-algebra A of R and ω′ ∈ Ωn(A) such that
Spec R → Spec A is birational, and ω′|R = ω. Now by Hypothesis H there

is a proper birational morphism Ỹ → Spec A such that ω′|Ỹ is zero. But by

the valuative criterion for properness, there is a factorization Spec R → Ỹ →
Spec A, and so ω = 0. �

The following lemma says that if Hypothesis V is true for n = 1 then it is
true for all n ≥ 0.
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Lemma A.4. — Let R be a (possibly non-discrete) valuation ring. Let M be a
torsion-free R-module. Then

∧n
M is torsion-free for all n ≥ 0.

Proof. — First note that for valuation rings, being a torsion-free module is
equivalent to being flat, [3, Ch.VI, §3, n.6, Lemma 1] or [1, Tag 0539]. In general
(even for noncommutative rings), a moduleM is flat if and only if it is possible
to write M as M = lim−→i∈IMi, a colimit of free modules of finite type indexed
by a filtered partially orderd set I, [20, Théorème 1.2]. So it suffices to show
that if M is of this form, then so is

∧n
M . Now it follows from the fact that

tensor products commute with filtered colimits: We have

M⊗n = lim−→
i∈I

M⊗ni

because tensor product commutes with direct limits. By definition
n∧
M = M⊗n/N

where N is generated by elementary tensors of the form x1 ⊗ x2 ⊗ · · · ⊗ xn
with xj = xj′ for some j 6= j′. Hence N = lim−→i∈I Ni where Ni is generated by
elementary tensors as above with all xj ∈Mi. The direct limit of the sequences

0→ Ni →M⊗ni →
n∧
Mi → 0

is

0→ N →M⊗n → lim−→
i∈I

n∧
Mi → 0

and hence
n∧
M = lim−→

i∈I

n∧
Mi.

Since the Mi are free modules of finite type, the same is true of the
∧n

Mi.
Hence, as mentioned at the beginning, these are flat, and therefore torsion-
free. �

A.2. Hyperplane section criterion. — We give a criterion for testing the van-
ishing of torsion-forms.

Lemma A.5 (Hyperplane section criterion). — Let X be an integral, quasi-
projective variety, defined over an algebraically closed field k. Let H ⊂ X be
any integral hyperplane that is not contained in the singular locus of X. Then,
the natural map (tor Ω1

X)|H → Ω1
H is injective.

In particular, if U ⊆ X is open and σ ∈ (tor Ω1
X)(U) is any torsion-form

with induced form σH ∈ Ω1
H(U ∩H), then suppσ ∩H ⊆ suppσH .
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Proof. — Consider the restriction (tor Ω1
X)|H . Since H is not contained in the

singular locus of X, this is a torsion-sheaf on H. Recalling the exact sequence
that defines torsion- and torsion-free forms, Sequence (3.1.1) on page 313, and
using that Ω̌1

X is torsion-free and TorOX
1 (OH , Ω̌1

X) hence zero, observe that this
sequence restricts to an exact sequence of sheaves on H,

0 // (tor Ω1
X)|H

α // Ω1
X |H

β // Ω̌1
X |H

// 0,

where •|H denotes pull-back of in the sense of quasi-coherent modules. The
sequence shows that α injects the torsion-sheaf (tor Ω1

X)|H into the middle term
of the second fundamental sequence for differentials, [13, II. Proposition 8.12],

(tor Ω1
X)|H

α injection

��
IH
/
I 2

H a
// Ω1
X |H b

// Ω1
H

// 0.

We claim that the morphism a is also injective. To this end, recall that IH is
locally principal. In particular, IH

/
I 2

H
is a locally free sheaf of OH -modules

and that the morphism a is injective at the generic point of H, where X is
smooth, [4, Exercise 17.12]. It follows that ker a is a torsion-subsheaf of the
torsion-free sheaf IH

/
I 2

H
, hence zero. The image img a is hence isomorphic

to IH
/
I 2

H
, and in particular torsion-free. As a consequence, note that the

imgα, which is the image of a torsion-sheaf and hence itself torsion, intersects
img a = ker b trivially. The composed morphism b ◦ α is thus injective. This
proves the main assertion of Lemma A.5.

To prove the “In particular. . . ”-clause, let U ⊆ X be any open set, σ ∈
(tor Ω1

X)(U) be any torsion-form and x ∈ suppσ be any closed point. It fol-
lows from Nakayama’s lemma that x ∈ supp(σ|H∩U ) ⊆ supp

(
(tor Ω1

X)|H∩U
)
.

Since H is not contained in the singular locus, the sheaf Ω1
X is locally free

at the generic point of H, and σH is thus a torsion-form on H ∩ U . Since
b ◦ α is injective, its support contains x as claimed. This finishes the proof of
Lemma A.5. �

This lemma and Flenner’s Bertini-type theorems, [6], imply the following
two theorems.

Theorem A.6 (Existence of good hyperplanes through normal points). — Let
X be a integral, quasi-projective variety of dimension dimX ≥ 3, defined over
an algebraically closed field k, and let x ∈ X be a closed, normal point. Then,
there exists a hyperplane section H through x such that H is irreducible and
reduced at x and such that the following holds: if U ⊆ X is an open neighborhood
of x and if σ ∈ tor Ω1

X(U) is any torsion-form whose induced form σH ∈
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Ω1
H(U ∩H) vanishes at x, then σ vanishes at x; in other words, its image in

the fiber Ω1
X ⊗ k(x) is zero.

In particular, Ω1
X is torsion-free at x if Ω1

H is torsion-free at x.

Proof. — It follows from normality of x ∈ X that the local ring OX,x sat-
isfies Serre’s condition (R1), has depth OX,x ≥ 2 and that it is analytically
irreducible, [27, Theorem on page 352]. We can thus apply [6, Korollar 3.6] and
find a hyperplane section H through x that is irreducible and reduced at x.
Shrinking X if need be, we can assume without loss of generality that H is
irreducible and reduced. Lemma A.5 then yields the claim. �

Theorem A.7 (Existence of good hyperplanes in bpf linear systems). — Let
X be a integral, quasi-projective variety of dimension dimX ≥ 3, smooth in
codimension one and defined over an algebraically closed field. Let H be a finite-
dimensional, basepoint-free linear system. Then, there exists a dense, open sub-
set H◦ ⊆ H such that any hyperplane section H ⊂ X which corresponds to a
closed point of H◦ is irreducible, reduced, and satisfies the following additional
property: if U ⊆ X is open and σ ∈ tor Ω1

X(U) is any torsion-form with induced
form σH ∈ Ω1

H(U ∩H), then suppσ ∩H ⊆ suppσH .
In particular, if Ω1

H is torsion-free, then supp tor Ω1
X is finite and disjoint

from H.

Proof. — Recall from Flenner’s version of Bertini’s first theorem, [6, Satz 5.2],
that any general hyperplane H is irreducible and reduced. The main assertion
of Theorem A.7 thus follows from Lemma A.5.

If Ω1
H is torsion-free, the support of tor Ω1

X necessarily avoids H. Since gen-
eral hyperplanes can be made to intersect any positive-dimensional subvariety,
we obtain the finiteness of supp tor Ω1

X . �

Appendix B. Explicit computations

Here we make some explicit calculations around Example 6.5. Recall that
k is a perfect field of characteristic p, we let n be a positive integer,

S :=
k[x, y, z]

(zp + zxn − y)
∼= k[x, z], and R := k[x, y].

We consider the morphism

π : Spec S︸ ︷︷ ︸
=:X̃

→ Spec R.︸ ︷︷ ︸
=:X

associated to the obvious morphism R→ S.
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B.0.1. Differentials of X and X̃, and the pull-back map. — The modules of
k-differentials are given as Ω1(X) = R ·dx⊕R ·dy and Ω1(X̃) = S ·dx⊕S ·dz.
In terms of these generators, the pull-back map dπ is given by

dx 7→ dx and dy 7→ d(zp + zxn) = xn · dz + nzxn−1 · dx.
B.0.2. The preimage of Z. — We have seen above that Z = V (x) is a regular
subvariety of X. Its preimage Z̃ := π−1(Z) is then given as

Z̃ = Spec
k[x, y, z]

(zp + zxn − y, x)
∼= Spec

k[y, z]

(zp − y)
∼= Spec k[z].

In particular, we see that Z̃ is likewise regular.

B.0.3. Differentials of Z and Z̃, and the pull-back map. — The modules of
k-differentials are given as Ω1(Z) = k[y] · dy and Ω1(Z̃) = k[z] · dz. In terms
of these generators, the pull-back map d(π|Z̃) is given by dy 7→ d(zp) = 0. The
map d(π|Z̃) is thus the zero map.

B.0.4. Fibred products. — Finally, X̃ ×X X̃ is the spectrum of the ring

k[x, y, z1]

(zp1 + z1xn − y)
⊗k[x,y]

k[x, y, z2]

(zp2 + z2xn − y)
=

k[x, y, z1, z2]

(zp1 + z1xn − y, zp2 + z2xn − y)

∼=
k[x, z1, z2]

(zp2 + z2xn − zp1 − z1xn)
∼=

k[x, z1, u]

(up + xnu)
,

with u = z2−z1. Under this identification, the two projections X̃×XX̃ ⇒ X̃
correspond to the ring maps z 7→ z1 and z 7→ u + z1—notice that
y = zp1+z1x

n = zp2+z2x
n in this ring. The scheme X̃×XX̃ is regular outside of

Z(2) := V (x, u) = Spec
k[x, z1, u]

(up + xnu, x, u)
∼= Spec k[z1] ⊂ X̃ ×X X̃.

B.0.5. The normalization of X̃ ×X X̃. — The factorization up + xnu =

u · (up−1 + xn) decomposes X̃ ×X X̃ as the union of two closed subschemes,

X̃ ×X X̃ = Spec k[x, z1]︸ ︷︷ ︸
∼=A2

∪ Spec
k[x, z1, u]

(up−1 + xn)︸ ︷︷ ︸
∼=A1×(curve C)

The k-curve C need not be smooth, but since k is perfect by assumption,
its normalization will be smooth over Spec k. It follows that normalization
of X̃ ×X X̃ is likewise smooth over Spec k.

B.0.6. Dvr-differentials on X̃ ×X X̃. — As we have seen in Subsections B.0.4
and B.0.5, the normalization of X̃ ×X X̃ provides a proper birational map
ρ : X(2) → X̃ ×X X̃, which is an isomorphism outside Z(2). Recall from Re-
mark 2.11 that the obvious morphism X(2) q Z(2) → X̃ ×X X̃ is a cover in
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the cdh-topology. We have seen in Example 4.19 that Ω1
dvr is a cdh-sheaf. We

obtain an injection

Ω1
dvr(X̃ ×X X̃)→ Ω1

dvr

(
X(2)

)
⊕ Ω1

dvr(Z
(2)).

Recall that X(2) and Z(2) are both smooth. This has two consequences. First,
we have observed in Remark 4.3(3) that reg-differentials and Kähler differentials
agree,

Ω1
dvr

(
X(2)

)
⊕ Ω1

dvr(Z
(2)) ∼= Ω1

(
X(2)

)
⊕ Ω1(Z(2)).

Secondly, the sheaves of Kähler-differentials are torsion-free, and inject into
rational differentials. Summing up, we obtain an inclusion

Ω1
dvr

(
X̃ ×X X̃

)
→ Ω1

(
k(x, z1)[u]

(up + xnu)

)
⊕ Ω1

(
k(z1)

)
.
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