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COHOMOLOGICAL CONDITIONS ON ENDOMORPHISMS
OF PROJECTIVE VARIETIES

by Holly Krieger & Paul Reschke

Abstract. — We characterize possible periodic subvarieties for surjective endomor-
phisms of complex abelian varieties in terms of the eigenvalues of the cohomological
actions induced by the endomorphisms, extending previous work in this direction by
Pink and Roessler [20]. By applying our characterization to induced endomorphisms
of Albanese varieties, we draw conclusions about the dynamics of surjective endomor-
phisms for a broad class of projective varieties. We also analyze several classes of
surjective endomorphisms that are distinguished by properties of their cohomological
actions.

Résumé (Conditions cohomologiques sur les endomorphismes des variétés projec-
tives). — Pour des endomorphismes surjectives sur des variétés abéliennes complexes,
nous décrivons les sous-variétés périodiques quit peuvent se présenter au moyens des
valeurs propres des actions cohomologiques des endomorphismes. Cette entreprise élar-
git quelques idées des Pink et Roessler [20]. Nous utilisons ensuite la description des
sous-variétés périodiques en étudiant des endomorphismes sur des variétés d’Alba-
nese qui viennent des endomorphismes sur des sous-variétés. Nous aussi définissons
et étudions quelques catégories des endomorphismes qui se différencient par certaines
propriétés de leurs actions cohomologiques.

Texte reçu le 20 juillet 2015, modifié le 16 mars 2016, accepté le 9 septembre 2016.

Holly Krieger,
Paul Reschke,

Mathematical subject classification (2010). — 32H50, 14J50, 14K02, 14K12, 37F99.

The first author was partially supported by NSF grant DMS-1303770. The second author
was partially supported by NSF grants DMS-0943832 and DMS-1045119.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2017/449/$ 5.00
© Société Mathématique de France doi:10.24033/bsmf.2744

http://dx.doi.org/10.24033/bsmf.2744


450 H. KRIEGER & P. RESCHKE

1. Introduction

In this note, we study the nature of periodic subvarieties for endomorphisms
of smooth complex projective varieties. The starting point for our investigation
is a theorem due to Pink and Roessler:

Theorem 1.1 ([20], Theorem 2.4). — Let f : A → A be an isogeny of a
complex abelian variety A, and suppose that no eigenvalue of f∗|H1,0(A)

is a
root of unity. Suppose that V ⊆ A is a reduced and irreducible subvariety
satisfying f(V ) = V . Then V is a translate of an abelian subvariety of A.

By the Lefschetz Fixed-Point Theorem, the eigenvalue condition in Theo-
rem 1.1 guarantees that f has a fixed point, and therefore is conjugate by a
translation to an isogeny, even if f is only assumed to be a surjective endo-
morphism (i.e., not necessarily a homomorphism). Thus the conclusion holds
for any surjective endomorphism f satisfying the eigenvalue condition. (See
§2.3 and §2.4 below.) We will not assume in the following that a surjective
endomorphism of an abelian variety is an isogeny.

We extend Theorem 1.1 to the case where f∗ may have eigenvalues onH1,0(A)
that are roots of unity; here, κ(V ) denotes the Kodaira dimension of any smooth
birational model of a variety V :

Theorem 1.2. — Let f be a surjective endomorphism of a complex abelian va-
riety A, and suppose that V ⊆ A is a reduced and irreducible subvariety satisfy-
ing f(V ) = V . Then there is a reduced and irreducible subvariety W ⊆ V with
κ(W ) = dim(W ) = κ(V ), and some iterate fk, such that V = Stab0

A(V ) +W
and fk(Stab0

A(V ) + w) = Stab0
A(V ) + w for every w ∈W .

The proof of Theorem 1.2 has a similar flavor to the original proof of Theo-
rem 1.1 by Pink and Roessler, and also echoes some of the content from their
Theorem 3.1 in [21]: by Ueno [26], all subvarieties of A can be built from tori
and varieties of general type; we then apply Kobayashi and Ochiai [14], which
states that every rational self-map of a variety of general type has finite order.
(See §2.1 and §2.2 below.) Note that W may be singular or zero-dimensional;
in particular, if κ(V ) = 0, then V is a translate of an abelian subvariety of A.

As a corollary of Theorem 1.2, we recover the following mild strengthening
of the theorem of Pink and Roessler:

Corollary 1.3. — Let f be a surjective endomorphism of a complex abelian
variety A, and suppose that V ⊆ A is a reduced and irreducible subvariety
satisfying f(V ) = V . Let uf denote the number of root-of-unity eigenvalues
of f∗|H1,0(A)

with multiplicity. Then

κ(V ) ≤ uf ;

in fact, the inequality is strict except possibly if κ(V ) = 0.
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Suppose now that X is an arbitrary smooth complex projective variety, and
that f is a surjective endomorphism of X. Since the Albanese variety Alb(X) is
generated by the image ofX under the Albanese map aX , f induces a surjective
endomorphism F of Alb(X); moreover, if aX(X) 6= Alb(X), then aX(X) is a
reduced and irreducible proper subvariety of Alb(X) satisfying F (aX(X)) =
aX(X). (See §3.1 below.) So we can use Theorem 1.2 to draw conclusions
about endomorphisms of varieties with non-surjective Albanese maps, as in:

Corollary 1.4. — Let X be a smooth complex projective variety with
aX(X) 6= Alb(X), and suppose that f is an infinite-order surjective endo-
morphism of X. Then some iterate fk preserves a non-trivial fibration on X.
In particular, X contains proper positive-dimensional subvarieties which are
periodic for f .

Note that any varietyX in Corollary 1.4 must have κ(aX(X)) > 0; but it will
follow from the proof that this is not necessarily true for the periodic subvariety,
so this corollary cannot be used for induction. Note also that a smooth curve
with a non-surjective Albanese map is necessarily hyperbolic and hence, by the
De Franchis Theorem, does not admit any infinite-order endomorphisms. If
we write aX(X) = B +W , where B is the stabilizer of aX(X) in Alb(X) and
W has κ(W ) = dim(W ), then the fibers in Corollary 1.4 are the pre-images
under aX of B + w for all w ∈W . (See §3.2 below.)

Corollary 1.4 relates to two recently proposed conjectures regarding Zariski
dense orbits of points under iterated maps. Reichstein, Rogalski, and Zhang
[23] conjectured that a wild automorphism—an automorphism for which every
orbit is Zariski—can only arise on an abelian variety; Corollary 1.4 gives an
alternate proof of the result in Proposition 5.1(a) in [23] that a variety whose
Albanese map is non-surjective cannot admit a wild automorphism, and in fact
shows that such a variety cannot admit a wild endomorphism. Medvedev and
Scanlon [15] conjectured that an endomorphism with no periodic non-trivial
fibration always has at least one Zariski dense orbit; Corollary 1.4 shows that
the scope of this conjecture can be restricted to varieties whose Albanese maps
are surjective.

We turn now to an assessment of certain classes of endomorphisms that are
characterized by cohomological properties.

Definition 1.5 ([17],[28]). — Let f be a surjective endomorphism of a pro-
jective variety X. We say that f is polarized if there is an ample line bundle
L ∈ Pic(X) such that f∗(L) = L⊗q for some integer q > 1.

The study of polarized endomorphisms—and those varieties which carry
them—is of particular interest to dynamicists. For an endomorphism f of a
complex varietyX, Fakhruddin [6] showed that the condition that f is polarized
is equivalent to the existence of an embedding i : X → PN and a morphism
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F : PN → PN so that i ◦ f = F ◦ i; in the case where f is defined over a field
with arithmetic (i.e., a number field or function field), Call and Silverman [3]
showed that polarization implies the existence of a dynamical canonical height
function on X, an important tool in arithmetic dynamics.

If f is a polarized endomorphism, then the ample line bundle L satisfying
f∗(L) = L⊗q also has the property that f∗(L)⊗ L−1 is ample, which leads to
a generalization of the notion of polarization.

Definition 1.6. — Let f be a surjective endomorphism of a projective variety
X. We say that f is amplified if there is a line bundle L ∈ Pic(X) such that
f∗(L)⊗ L−1 is ample.

Note that the line bundle L in Definition 1.6 need not itself be ample in
general. Suppose that f is an amplified endomorphism of a variety X. A
theorem due to Fakhruddin [6] states that the set of periodic points for f is
Zariski dense in X. If V is a subvariety of X satisfying f(V ) = V , then the
restriction of f to V is again amplified; so the periodic points for f include
a Zariski dense subset of V as well. In particular, amplified endomorphisms
satisfy one direction of a dynamical version of the Manin-Mumford conjecture;
indeed, we observe that the class of endomorphisms for which a dynamical
Manin-Mumford conjecture can be made sensible is likely to be precisely the
class of amplified endomorphisms. (See §3.3 and §4.1 below.) Thus the study
of varieties carrying amplified endomorphisms is again of dynamical interest.

Definition 1.7. — Let f be a surjective endomorphism of a projective va-
riety X with Alb(X) 6= {0}. We say that f is unity-free if no eigenvalue
of f∗|H1,0(X)

is a root of unity.

Note that the condition Alb(X) 6= {0} in Definition 1.7 is equivalent to the
condition H1,0(X) 6= {0} (so that f∗ has at least one eigenvalue on H1,0(X)).
(See §3.1 below.) The hypothesis on f in Theorem 1.1 is that it is unity-free.
In this case, the conclusion that f has a Zariski dense set of periodic points in
every periodic subvariety follows from Lemma 2.4 and Proposition 2.5 below—
without the requirement that f is amplified. (See §3.3 below.)

Theorem 1.2 restricts the set of varieties which admit unity-free endomor-
phisms:

Corollary 1.8. — Let X be a smooth complex projective variety with
aX(X) 6= Alb(X). Then X does not admit a unity-free endomorphism.

Note that the Albanese map for a variety is non-trivial if it is non-surjective,
so that it makes sense to speak of unity-free endomorphisms in this setting.
Corollary 1.8 complements work by Dinh, Nguyen, and Truong [5] which under
the same hypotheses shows that X does not admit an endomorphism with
distinct consecutive dynamical degrees. The condition that an endomorphism
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has distinct consecutive dynamical degrees is disjoint from the condition that
it is unity-free; on the other hand, it follows from a theorem of Serre [25] that
every polarized endomorphism satisfies both of these conditions. (See §3.2
below.)

Fakhruddin [6] showed that any variety admitting a polarized endomorphism
must have non-positive Kodaira dimension, and a theorem due to Kawamata
[12] states than any variety whose Kodaira dimension is zero has a surjective
Albanese map; however, there are many examples of varieties with negative Ko-
daira dimension and non-surjective Albanese maps. In particular, Corollary 1.8
applies to any bundle over a variety whose Albanese map is non-surjective; in
this way it is a generalization of the observation by S. Zhang [28] that a ruled
surface over a hyperbolic curve cannot admit a polarized endomorphism. (See
§3.2 below.) We note also that work by Nakayama and D.-Q. Zhang [17] offers
further characterizations of varieties admitting polarized endomorphisms.

We show that Corollary 1.8 applies to amplified endomorphisms as well:

Theorem 1.9. — Let f be a surjective endomorphism of a smooth complex
projective variety X with Alb(X) 6= {0}. If f is amplified, then it is unity-free.

Theorem 1.9 yields the following implication diagram for a surjective en-
domorphism of a smooth complex projective variety whose Albanese map is
non-trivial:

polarized =⇒ amplified =⇒ unity-free =⇒ infinite-order.

None of the reverse implications in the diagram hold in general; however,
we show that every unity-free endomorphism of an abelian surface is amplified,
and we speculate that the same may be true on any abelian variety. (See
§4.3 below.) We observe that the failure of an endomorphism to be amplified
indicates that the endomorphism must fix the numerical equivalence class of
some line bundle—and so is similar to the failure of an endomorphism to be
unity-free. (See §4.1 below.)

The conclusion of Corollary 1.8 for amplified endomorphisms is new and
provides a constraint on the types of varieties that should constitute a natural
arena for a dynamical Manin-Mumford conjecture. We observe that the set
of varieties admitting amplified endomorphisms is strictly larger than the set
admitting polarized endomorphisms; for example, a K3 surface may admit an
amplified endomorphism but can never admit a polarized endomorphism. (See
§4.3 below.)

While an infinite-order endomorphism of a projective variety X need not
induce an infinite-order endomorphism of Alb(X), every unity-free endomor-
phism of a projective variety X does induce a unity-free endomorphism of
Alb(X). To the end of better understanding the relationships between polar-
ized, amplified, and unity-free endomorphisms in general, we ask:
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Question 1.10. — Does an amplified (resp. polarized) endomorphism of a
projective variety X with Alb(X) 6= {0} induce an amplified (resp. polarized)
endomorphism of Alb(X)?

Note that Question 1.10 has an affirmitive answer for amplified endomor-
phisms if it is true that every unity-free endomorphism of an abelian variety is
amplified.

The remainder of this paper is organized as follows: in §2, we prove Theo-
rem 1.2 and Corollary 1.3, and we give a useful characterization of unity-free
endomorphisms of abelian varieties; in §3, we prove Corollary 1.4 and Corol-
lary 1.8, we present results about varieties admitting polarized endomorphisms,
and we discuss the notion of a dynamical Manin-Mumford problem; in §4, we
present a variety of facts about polarized, amplified, and unity-free endomor-
phisms and the connections between them, and we prove Theorem 1.9.

Acknowledgements. — We thank Mihnea Popa, Laura DeMarco, Ramin
Takloo-Bighash, and Mattias Jonsson for several useful discussions in the early
stages of writing this paper. We thank Dragos Ghioca and Damian Roessler
for pointing out connections between portions of our paper and other recent
work.

2. Invariant Subvarieties for Endomorphisms of Abelian Varieties

We say that a subvariety of an abelian variety is an abelian subvariety if it
is a reduced and irreducible group subvariety. Given a complex abelian variety
A and a reduced and irreducible subvariety V ⊆ A, the stabilizer of V in A is
the reduced (but not necessarily irreducible) group subvariety

StabA(V ) = {a ∈ A | a+ V = V } ⊆ A.

The connected component of StabA(V ) containing the identity is an abelian
subvariety Stab0

A(V ) ⊆ A. (See, e.g., [10].) Given an endomorphism f : A→ A,
there is a homomorphism φf : A → A (which is an isogeny if f is surjective)
and an element τf ∈ A such that

f(a) = φf (a) + τf

for every a ∈ A. (See, e.g., [16], §II.) If f(V ) = V , then φf (Stab0
A(V )) ⊆

Stab0
A(V ) (with equality if f is surjective).

For a complex projective variety X, we let κ(X) denote the Kodaira dimen-
sion of any smooth birational model of X and we say that X (whether it is
smooth or not) is a variety of general type if κ(X) = dim(X). (Compare, e.g.,
[27] and [13], §7.)
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2.1. Characterization of Subvarieties of Abelian Varieties

Theorem 2.1. — Let V be a reduced and irreducible subvariety of a complex
abelian variety A. Then V = Stab0

A(V ) +W for some reduced and irreducible
subvariety W ⊆ V with κ(W ) = dim(W ) = κ(V ).

Proof. — Set B = Stab0
A(V ). By the proof of Theorem 3.10 in [26], there is

an abelian subvariety B′ ⊆ A such that the quotient map q′ : A→ A/B′ gives
V the structure of a fiber bundle whose base q′(V ) has κ(q′(V )) = dim(q′(V ))
and whose fibers are isomorphic to B′. Since each fiber of q′ is invariant under
the action of B′, we have B′ ⊆ B. The quotient map q : A → A/B satisfies
q−1(q(V )) = V , and hence also gives V the structure of a fiber bundle (over
q(V ) with fibers isomorphic to B). Since Stab0

A/B′(q′(V )) = q′(B), q′(V ) is a
fiber bundle over q(V ) with fibers isomorphic to q′(B). Thus we must have

dim(q′(V )) ≥ dim(q(V )) ≥ κ(q′(V )) = dim(q′(V )).

(See, e.g., [27].) So dim(q′(B)) = 0, B′ = B, and q′ = q.
By the Poincaré Reducibility Theorem, there is an abelian subvariety T ⊆ A

such that A = B+T and the addition map from B×T to A is an isogeny. (See,
e.g., [10].) So the restriction q : T → A/B is an isogeny, and we can choose an
irreducible component W ⊆ V ∩ T so that q : W → q(V ) is a finite surjective
morphism. Then

dim(q(V )) = dim(W ) ≥ κ(W ) ≥ κ(q(V )) = dim(q(V )).

(See, e.g., [27].) Since q(W ) = q(V ), every w ∈W can be written as w = b+ v
for some b ∈ B and v ∈ V ; likewise, every v ∈ V can be written as v = b + w
for some b ∈ B and w ∈W . So V = B +W . �

2.2. Dominant Maps to Varieties of General Type

Theorem 2.2 ([14], Theorem 1). — Suppose that Y is a complex projective
variety of general type and that X is a complex projective variety. Then there
are at most finitely many dominant rational maps from X to Y .

Suppose that f is a surjective endomorphism of a complex abelian variety A
and that B ⊆ A is an abelian subvariety satisfying φf (B) = B. Then φf

certainly descends to a surjective endomorphism of A/B and, since f(a+ b) =
φf (b) + f(a) for every a ∈ A and b ∈ B, f also descends to a surjective
endomorphism of A/B.

Proof of Theorem 1.2. — Set B = Stab0
A(V ), write V = B + W as in Theo-

rem 2.1, let q : A→ A/B be the quotient map, and let fB : A/B → A/B be the
quotient of f . Then dim(q(V )) = κ(q(V )) and fB is a surjective endomorphism
of q(V ). Thus, by Theorem 2.2, some iterate fk

B is the identity map on q(V ).
So for any w ∈W , q(fk(y)) = fk

B(q(w)) = q(w) and fk(B + w) = B + w. �
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Remark 2.3. — It can be impossible to choose W in Theorem 1.2 such that
f(W ) = W (even when f is an isogeny): let A be an abelian surface, let
C be a smooth hyperbolic curve in A, and let f : A × A → A × A be given
by f(a1, a2) = (a1 + a2, a2); then f(A × C) = A × C, but no subset of A × C
that maps finitely onto C under the second projection of A×A can be preserved
by f .

2.3. Eigenvalues for Actions on First Cohomology Groups

Given a complex abelian variety A of dimension n, we can write A = Cn/Λ
for some rank-2n lattice Λ ⊆ Cn. Then the set {dz1, . . . , dzn} of holomorphic
1-forms on Cn descends to a basis for H1,0(A). Since any translation on A
induces a trivial cohomological action, any surjective endomorphism f : A→ A
satisfies f∗ = φ∗f on every cohomology group of A. Moreover, given such an
endomorphism, there is some Φf ∈ GLn(C) satisfying Φf (Λ) = Λ such that
φf is the quotient of Φf–so that φ∗f = ΦT

f on H1,0(A).

Lemma 2.4. — Let A be a complex abelian variety of dimension n with an
isogeny φ : A → A, and let Γ = {γ1, . . . , γn} be the multiset of eigenvalues
of φ∗ on H1,0(A). Suppose that B ⊆ A is an abelian subvariety of dimension
m satisfying φ(B) = B, and let ∆ = {δ1, . . . , δm} be the multiset of eigenvalues
of φ∗ on H1,0(B). Then ∆ is a submultiset of Γ and the multiset of eigenvalues
of φ∗B on H1,0(A/B) is Γ−∆, where φB : A/B → A/B is the quotient of φ.

Proof. — Write A = Cn/Λ–so that φ is the quotient of some Φ ∈ GLn(C)
satisfying Φ(Λ) = Λ. Let π : Cn → A be the quotient map, and let VB =
π−1(B) ⊆ Cn. So VB is an m-dimensional subspace, ΛB = VB ∩ Λ ⊆ Λ is a
sublattice of rank 2m, and Λ/ΛB is a lattice of rank 2(n −m). Let q be the
quotient map from A to A/B, let ρ be the quotient map from Cn to Cn/VB , and
let π′ be the quotient map from Cn/VB to (Cn/VB)/(Λ/ΛB). Then q ◦ π and
π′◦ρ have the same kernel (i.e., VB⊕Λ)–so that (Cn/VB)/(Λ/ΛB) = A/B. Now
Γ is the multiset of eigenvalues of Φ, VB is Φ-invariant, and ∆ is the multiset of
eigenvalues of Φ|VB

. Moreover, Φ descends to a map ΦB ∈ GL(Cn/VB) and the
multiset of eigenvalues of φ∗B on H1,0(A/B) is the multiset of eigenvalues of ΦB .

Let {x1, . . . , xm} be a basis for VB that gives Φ|VB
in Jordan canonical form,

and let {y1, . . . , yn−m} be a subset of Cn whose image under ρ is basis for Cn/VB

that gives ΦB in Jordan canonical form. Then {x1, . . . , xm, y1, . . . , yn−m} is a
basis for Cn with respect to which Φ is upper triangular. It follows that the
multiset of eigenvalues of ΦB is Γ−∆. �

Suppose that f is a surjective endomorphism of a complex abelian variety
A satisfying f(σ) = σ for some σ ∈ A. Then

φf (a) = f(a+ σ)− σ
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for every a ∈ A–so that f is conjugate (by a translation) to an isogeny. More-
over, φf (V − σ) = V − σ for any V ⊆ A satisfying f(V ) = V .

Proof of Corollary 1.3. — Set B = Stab0
A(V ), write V = B +W as in Theo-

rem 1.2, let q : A→ A/B be the quotient map, and let fB : A/B → A/B be the
quotient of f . Then fk

B is the identity map on q(W ) and hence, in particular,
fixes some point σ ∈ A/B. Thus φfk

B
is the identity map on q(W ) − σ, and

hence also on the abelian subvariety T ⊆ A/B generated by q(W ) − σ. (See,
e.g., [4], §8.) It then follows from Lemma 2.4 that the number of eigenvalues
(counting multiplicity) of (fk)∗ on H1,0(A) that are equal to one is at least
dim(T ), which is at least dim(q(W )) = κ(V ). Moreover, if dim(q(W )) 6= 0,
then dim(T ) must be strictly larger than dim(q(W )). The proof is concluded
by the observation that the multiset of eigenvalues of (fk)∗ on H1,0(A) is ex-
actly the set of all k-th powers of elements in the multiset of eigenvalues of f∗
on H1,0(A). �

2.4. Unity-Free Endomorphisms of Abelian Varieties

The cohomology ring H∗(A,Z) of any complex abelian variety A is gener-
ated (via the cup product) by H1(A,Z). If f is a surjective endomorphism
of a complex abelian variety A, then the pull-back action f∗ respects the cup
product–so that, in particular, the Lefschetz number for f is∑
0≤i≤2 dim(A)

(−1)i Tr(f∗ : Hi(A,Z)→ Hi(A,Z)) =
∏

1≤j≤dim(A)

(1− γj)(1− γj),

where {γ1, . . . , γdim(A)} is the multiset of eigenvalues of f∗ on H1,0(A); it then
follows from the Lefschetz Fixed-Point Theorem that f has a fixed point if it is
unity-free. (Compare [28], §2.1.) Thus any unity-free surjective endomorphism
of a complex abelian variety can, without loss of generality, be viewed as an
isogeny.

Given a complex abelian variety A, we let Tors(A) denote the set of torsion
points on A. Given an endomorphism f of a complex projective variety X, we
let Preper(f) denote the set of points on X that are preperiodic for f . If f :
A→ A is an isogeny of a complex abelian variety A, then Tors(A) ⊆ Preper(f):
for any m ∈ N, {a ∈ A | ma = 0} is finite and preserved by f . The following
result gives a useful characterization of unity-free endomorphisms of abelian
varieties. (For an alternative argument that (1) implies (3), see the proof of
Claim 2.2 in [9].)

Proposition 2.5. — Let f : A → A be an isogeny of a complex abelian vari-
ety A. Then the following three conditions are equivalent:

1) Preper(f) 6= Tors(A);
2) there is a positive-dimensional abelian subvariety of A that is pointwise

fixed by some iterate fk; and
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3) there is an eigenvalue of f∗ on H1,0(A) that is a root of unity.

Proof. — (1 ⇒ 2) If Preper(f) 6= Tors(A), then there is a nontorsion point
P ∈ A satisfying a preperiodic relation; i.e., there exists m > n ∈ N0 such that
fm(P ) = fn(P ). Since f is an isogeny, any iterate fk(P ) is also nontorsion;
so, without loss of generality, we can take P to be periodic and set n = 0.
Since {a ∈ A : fm(a) = a} is a group subvariety of A containing kP for any
k ∈ Z, it must contain some positive-dimensional abelian subvariety of A that
is pointwise fixed by fm.

(2 ⇒ 3) If fk pointwise fixes some positive-dimensional abelian subvariety
K ⊆ A, then the eigenvalues of (fk)∗ on H1,0(K) must all be one. So it follows
from Lemma 2.4 that the eigenvalues of f∗ on H1,0(A) must include a root of
unity.

(3 ⇒ 1) Write A = Cdim(A)/Λ—so that f is the quotient of some F ∈
GLdim(A)(C) satisfying F (Λ) = Λ. If some eigenvalue of f∗ on H1,0(A) is a
root of unity, then 1 is an eigenvalue of some iterate (f∗)k on H1,0(A)—and
hence also of F k. Let (gij)1≤i,j≤dim(A) be a matrix representation of F k as a
linear self-map on Cdim(A). Under the natural identification of Cdim(A) with
R2 dim(A) via

zl = xl + ıyl 7→ (xl, yl),

this matrix represention of F k becomes(
<(gij) −=(gij)
=(gij) <(gij)

)
1≤i,j≤dim(A)

.

Taking (gij)1≤i,j≤dim(A) in Jordan canonical form shows immediately that 1 is
an eigenvalue of F k on R2 dim(A)—and hence also on SpanQ(Λ). So F k pointwise
fixes some non-trivial linear subspace V ⊆ SpanQ(Λ), and fk pointwise fixes the
non-trivial (real) subtorus T ⊆ A corresponding to the closure of V in R2 dim(A).
Thus Preper(F ) contains all of T , including its nontorsion points. �

We note that Lemma 2.4 and Proposition 2.5 show that a unity-free en-
domorphism of an abelian variety is the same as a positive endomorphism in
Definition 2.1(b) in [21].

Remark 2.6. — In Theorem 1.1, the hypothesis that f is an isogeny actually
leads to a stronger conclusion, via an application of Proposition 2.5: set B =
Stab0

A(V ), write V = B + w as in Theorem 1.2 with w ∈ A a point, let
q : A → A/B be the quotient map, and let fB : A/B → A/B be the quotient
of f ; then, since fB is an isogeny and fB(q(w)) = q(w), q(w) must be an
element of Tors(A/B); thus w can be taken to be an element of Tors(A)—so
that V is in fact a torsion translate of an abelian subvariety.
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3. Induced Maps on Albanese Varieties

Given a smooth complex projective variety X, we let Alb(X) denote the Al-
banese variety forX and we let αX denote the Albanese map fromX to Alb(X).

3.1. Functorial Properties of Albanese Maps

Any endomorphism f of a smooth complex projective variety X induces a
map F : Alb(X) → Alb(X) satisfying F ◦ αX = αX ◦ f ; moreover, since α∗X
gives an isomorphism from H1,0(Alb(X)) to H1,0(X), the pull-back action F ∗
on H1,0(Alb(X)) is conjugate to the pull-back action f∗ on H1,0(X). (See,
e.g., [11], §3.3.) The universal property of Albanese varieties states that any
morphism fromX to a complex abelian variety must factor through αX–so that,
in particular, αX(X) cannot be contained in a translate of a proper abelian
subvariety of A. (See, e.g., [2], §I.13.) So F must be surjective if f is surjective.

Suppose now that αX(X) 6= Alb(X) and that f is surjective. Then Theo-
rem 1.2 shows that

αX(X) = Stab0
Alb(X)(αX(X)) +W

for some variety W ⊆ Alb(X) of general type, and that there is an iterate F k

that satisfies

F k(Stab0
Alb(X)(αX(X)) + w) = Stab0

Alb(X)(αX(X)) + w

for every w ∈W . Moreover, the universal property of Albanese varieties implies
that κ(αX(X)) > 0, and hence also that κ(W ) > 0.

3.2. Endomorphisms of Varieties with Non-Surjective Albanese Maps

Proof of Corollary 1.4. — Set B = Stab0
Alb(X)(αX(X)), write αX(X) = B +W

as in Theorem 1.2, and let F : Alb(X) → Alb(X) be the map induced by f .
Since dim(W ) > 0 and F k(B + w) = B + w for any w ∈ W , the pre-image
of B + w satisfies α−1

X (B + w) 6= X and

fk(α−1
X (B + w)) = α−1

X (B + w)

for any w ∈ W . So fk preserves the fibers of q ◦ αX , where q : Alb(X) →
Alb(X)/B is the quotient map. If dim(B) > 0 then α−1

X (B + w) is a proper
positive-dimensional subvariety of X for any w ∈W .

Suppose that dim(B) = 0. If it were the case that dim(α−1
X (B + w)) = 0

for some w ∈ W , then αX : X → αX(X) would necessarily be a generically
finite map; but then X would necessarily have the same dimension as αX(X)
and hence (as in the argument that W is a variety of general type in the proof
of Theorem 2.1) would be a variety of general type–which, by Theorem 2.2,
contradicts the assumption that X admits an infite-order surjective endomor-
phism. So α−1

X (B + w) is still a proper positive-dimensional subvariety of X
for any w ∈W . �
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Proof of Corollary 1.8. — Since κ(αX(X)) > 0, Corollary 1.3 shows that no
endomorphism of Alb(X) that is induced by a surjective endomorphism of X
can be unity-free. So no surjective endomorphism of X can be unity-free. �

Theorem 3.1 ([25], Théorème 1). — Suppose that f is a polarized endomor-
phism of a smooth complex projective variety X of dimension n and that,
in particular, f∗L = L⊗q for some ample L ∈ Pic(X) and q ∈ N − {1}.
Then, for every j ∈ {0, . . . , 2n}, the magnitude of every eigenvalue of f∗

on Hj(X,Z) is qj/2.

It is clear from Theorem 3.1 that a polarized endomorphism must be unity-
free if it occurs on a variety whose Albanese map is non-trivial—and hence
cannot occur on a variety whose Albanese map is non-surjective. For a sur-
jective endomorphism f of a smooth complex projective variety X, the j-th
dynamical degree of f is

λj(f) = ρ(f∗ : H2j(X,Z)→ H2j(X,Z)),

where ρ denotes the spectral radius. It is again clear from Theorem 3.1 that
polarized endomorphisms are excluded (because they have distinct consecutive
dynamical degrees) from varieties with non-surjective Albanese maps by the
following result.

Theorem 3.2 ([5], Corollary 1.4). — Let f be a surjective endomorphism
of a smooth complex projective variety X of dimension n, and suppose that
αX(X) 6= Alb(X). Then there is an integer j ∈ {0, . . . , n − 1} such that
λj(f) = λj+1(f).

We remark that Theorem 3.2 is independent from Corollary 1.8; that is,
there exist endomorphisms which are not unity-free but have distinct dynam-
ical degrees, and there exist endomorphisms which are unity-free but do not
have distinct dynamical degrees. An example of the former is simply the mul-
tiplication map [2]× [1] on E ×E for any elliptic curve E. On the other hand,
the automorphism (among others) of E × E × E × E given by

(e1, e2, e3, e4) 7→ (e2, e3, e4,−e1 + 3e2 + 4e3 + 3e4)

is unity-free but does not have distinct consecutive dynamical degrees. (See
also [18].)

The constraint on varieties admitting polarized endomorphisms provided by
Corollary 1.8 complements the following characterization.

Theorem 3.3 ([6], Theorem 4.2). — Let X be a smooth complex projective
variety admitting a polarized endomorphism, and suppose that κ(X) ≥ 0. Then
there is an abelian variety A and a finite surjective map π : A→ X.
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Since the Kodaira dimension of any abelian variety is zero, it follows from
Theorem 3.3 that the Kodaira dimension of any smooth complex projective va-
riety admitting a polarized endomorphism must be non-positive. Corollary 1.8
addresses the case of a smooth complex projective variety with negative Ko-
daira dimension and a non-surjective Albanese map. For example, if X → Y is
a fiber bundle whose fibers have negative Kodaira dimension and whose base
satisfies αY (Y ) 6= Alb(Y ), then κ(X) < 0 and (by the universal property of
Albanese varieties) αX(X) 6= Alb(X).

3.3. Implications for a Dynamical Manin-Mumford Conjecture. — The Manin-
Mumford Conjecture (proved by Raynaud) states that a reduced and irre-
ducible subvariety V ⊆ A of a complex abelian variety A is a torsion translate
of an abelian subvariety if and only if V ∩Tors(A) is Zariski dense in V . (See,
e.g., [22] and [9].) The following conjecture (now known to be false) is a first
attempt to transport this idea to dynamical systems.

Conjecture 3.4 ([28], Conjecture 1.2.1). — Let f be a polarized endomor-
phism of a smooth complex projective variety X, and let Y ⊆ X be a reduced and
irreducible subvariety. Then Y is preperiodic for f if and only if Y ∩Preper(f) is
Zariski dense in Y .

When X is an abelian variety, Proposition 2.5 constrains the subvarieties Y
which could disprove Conjecture 3.4 by containing Zariski dense sets of prepe-
riodic points without themselves being preperiodic: since, by Theorem 3.1, f is
unity-free, it follows from Proposition 2.5 that Preper(f) = Tors(X); thus,
by the Manin-Mumford Conjecture, any reduced and irreducible subvariety
Y ⊆ X with Y ∩Preper(f) Zariski dense in Y must be a torsion translate of an
abelian subvariety of X. We note below that Conjecture 3.4 does in fact fail
in this direction–and the main counterexamples are indeed torsion translates
of abelian subvarieties which are not preperiodic. As for the converse direc-
tion of Conjecture 3.4, the following results (which can also be deduced from
Proposition 6.1 in [21]) show that it is true when X is an abelian variety even
when the requirement that f be polarized is relaxed to require only that f be
unity-free.

Proposition 3.5. — Let f : A → A be a unity-free isogeny of a complex
abelian variety A, and suppose that V ⊆ A is a reduced and irreducible sub-
variety that is preperiodic for f . Then V ∩ Preper(f) is Zariski dense in V .
Moreover, V is a torsion translate of an abelian subvariety of A.

Proof. — There are iterates fk1 and fk2 such that fk1(fk2(V )) = fk2(V ).
Since fk1 is a unity-free isogeny, Remark 2.6 shows that fk2(V ) must be a
torsion translate of an abelian subvariety of A. So, by the Manin-Mumford
Conjecture, the set P = fk2(V ) ∩ Tors(A) must be Zariski dense in fk2(V ).
Then (fk1)−1(P ) ∩ V is Zariski dense in V and consists entirely of points
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in Preper(f). Since Preper(f) = Tors(A), V must itself be a torsion translate
of an abelian subvariety of A. �

If V (with dim(V ) > 0) is periodic, so fixed by some iterate fk, in Proposi-
tion 3.5, then fk|V is again a unity-free isogeny: there is some τ ∈ V ∩Tors(A)

that is fixed by some iterate fk′
with k|k′; so V ′ = V − τ is an abelian sub-

variety of A satisfying fk′
(V ′) = V ′; it follows from Lemma 2.4 that fk′

is
unity-free on V ′; finally, since fk′

|V ′ is conjugate to fk′

|V , fk′
(and hence also

fk) must be unity-free on V . By the following result, we conclude that V in
fact contains a Zariski dense set of periodic points.

Proposition 3.6. — Let f : A → A be a unity-free isogeny of a complex
abelian variety A. Then the set of periodic points for f is Zariski dense in A.

Proof. — Let B ⊆ A be the Zariski closure of the periodic points for f , and let
B0 be an irreducible component of B containing the identity. Since f(B) = B,
every irreducible component of B is preperiodic, and hence is a torsion translate
of an abelian subvariety of A. If B′ is an irreducible component of B containing
the identity, then every point of the form τ + τ ′ with τ ∈ B0 periodic and
τ ′ ∈ B′ periodic is also periodic and the set of all such points is Zariski dense
in B0 + B′; so B′ = B0. Since the identity is a fixed point for f , it follows
that f(B0) = B0. If B′ is any irreducible component of B and τ ′ ∈ B′ is
periodic, then B′ − τ ′ is contained in B0. Let q : A → A/B0 be the quotient
map, and let fB : A/B0 → A/B0 be the quotient of f . So the image of B
in A/B0 is a finite set of points. If σ ∈ A/B0 is periodic for fB , then the orbit
of q−1(σ) is finite under f and some component of q−1(σ) is periodic under f ;
so q−1(σ) ∩ B 6= ∅ and σ is in the image of B. Thus (by Lemma 2.4) fB is a
unity-free isogeny with only finitely many periodic points if dim(A/B0) > 0,
which cannot happen. So B0 = A. �

As shown by Ghioca, Tucker, and Zhang [9], counterexamples to Conjec-
ture 3.4 can be constructed on an abelian surface of the form E × E, where
E is an elliptic curve with complex multiplication: an endomorphism given by
coordinate-wise multiplication by distinct elements of End(E) with the same
magnitude will always be polarized, but may give the diagonal in E × E an
infinite orbit; on the other hand, the diagonal in E × E will always contain
infinitely many torsion points, all of which must be preperiodic for the en-
domorphism. For additional details, see [9], §2. Many similar examples can
also be constructed on higher-dimensional abelian varieties; see [19]. All of the
known counterexamples to Conjecture 3.4 come from this type of construction.
On the other hand, Conjecture 3.4 has been verified in certain settings which
exclude this type of construction; see [1] and [8]. In light of these results,
Ghioca, Tucker, and Zhang offer the following modification to Conjecture 3.4:
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Conjecture 3.7 ([9]). — Let X be a projective variety, f : X → X a polarized
endomorphism defined over C, and Y a subvariety with no component contained
in the singular part of X. Then Y is preperiodic under f if and only if there
exists a subset of smooth preperiodic points x ∈ Y which are Zariski dense
in Y , such that the tangent subspace of Y at x is preperiodic under the induced
action of f on the Grassmanian Grdim(Y )(TX,x).

In [9], Conjecture 3.7 is verified for group endomorphisms of abelian varieties,
and for the case X = P1 × P1, Y a line, and f a product map. It is worth
noting that the tangent space condition is essentially used only to eliminate
counterexamples of the form mentioned above, though they can appear subtly
in the form of Lattés maps.

Remark 3.8. — In light of Propositions 3.5 and 3.6, it is natural to ask if
the assumption in Conjecture 3.4 that f is polarized should be replaced by the
assumption that f is unity-free (along with whatever other changes are made
to account for the known counterexamples). However, outside the realm of
abelian varieties, a unity-free endomorphism can fail to have a Zariski dense
set of preperiodic points: the endomorphism of P1 × E (where E is an elliptic
curve) given by

([x0 : x1], e) 7→ ([2x0 : x1], 2e)

is unity-free, but has all of its preperiodic points contained in {[0, 1], [1, 0]}×E.
Moreover, it is possible in general for a unity-free endomorphism to have an
invariant subvariety on which the restriction is not unity-free.

4. Cohomological Properties of Endomorphisms

4.1. Properties of Polarized and Amplified Endomorphisms. — We place the
cohomological conditions of the above theorems into context among other en-
domorphisms of projective varieties.

Proposition 4.1. — Let X be a smooth projective variety over C, and φ :
X → X a surjective endomorphism. The following hold:

1. If f is polarized (resp. amplified or unity-free), fk is polarized (resp.
amplified or unity-free) for all k ≥ 1.

2. If f is polarized (resp. amplified) and Y is a closed subvariety of X
satisfying f(Y ) = Y , then f |Y is polarized (resp. amplified).

3. If f is amplified, each set of the form {x ∈ X : fm(x) = fn(x)} for m >
n ≥ 0 is a finite set.

Proof. — The first two statements are easily checked, since the restriction
of an ample divisor to a closed subvariety is ample, and restriction commutes
with the action of f∗. For the third, note that if m > n ≥ 0 and {x ∈
X : fm(x) = fn(x)} is not finite, then it is a closed, positive-dimensional
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subvariety Y of X, and Z = fn(Y ) is pointwise-fixed by fm−n. Since f is
amplified, g := fm−n |Z is amplified, so there exists a line bundle L on Z such
that g∗(L)⊗L−1 is ample. However, g acts trivially on Z; so we conclude that
the trivial bundle on Z is ample, a contradiction. �

When an endomorphism f is not amplified, there is an immediate conse-
quence for the action of f∗ on the Néron-Severi group NS(X): since the linear
transformation f∗ − ID cannot be surjective on NS(X)Q (as it must miss the
ample cone), 1 must be an eigenvalue of f∗ on NS(X)Q; so there must be some
line bundle in Pic(X) has numerical equivalence class is fixed by f∗.

As discussed in §3.3, the simplest proposed version of a dynamical Manin-
Mumford conjecture was proven to be false in [9], and an alternate conjecture
proposed. Both versions include the strong hypothesis that the endomorphism
f : X → X be polarized. However, for the direction of the conjecture which is
true, this hypothesis is unnecessarily strong, as was shown by Fakhruddin.

Theorem 4.2 ([6]). — Let X be a projective variety over an algebraically closed
field, and f : X → X a dominant amplified morphism. Then the subset of X
consisting of periodic points is Zariski dense in X.

As noted in Remark 3.8, unity-free endomorphisms are likely not the right
setting for a dynamical Manin-Mumford conjecture; however, Fakhruddin’s
theorem gives hope that a dynamical Manin-Mumford conjecture may hold in
the much broader setting of amplified endomorphisms.

4.2. The Implication Diagram for Varieties with Non-Trivial Albanese Maps

Proof of Theorem 1.9. — Suppose X is a smooth complex projective variety
with non-trivial Albanese, f : X → X is a dominant, amplified endomorphism,
and f is not unity-free. By Proposition 4.1, these conditions will hold for any
iterate of f as well. By Theorem 4.2, some iterate of f has a fixed point.
Replacing f by this iterate, f has a fixed point, and so the Albanese map can
be chosen so that the induced map F : Alb(X)→ Alb(X) is an isogeny.

Since f is not unity-free, F is not unity-free. By Proposition 2.5, Alb(X)
contains a positive-dimensional abelian subvariety T which is pointwise fixed
by some iterate of f . Replace f by an iterate to assume T is pointwise fixed
by F . Since αX : X → Alb(X) has image which generates Alb(X) as a group,
there exists a positive integer M such that the map

αM : X×2M → Alb(X)

given by

αM (x1, . . . , x2M ) := αX(x1) + · · ·+ αX(xM )− αX(xM+1)− · · · − αX(x2M )

satisfies T ⊂ αM (X). Let f2M : X×2M → X×2M denote the coordinate-wise
application of f to X×2M . Since f is amplified, there exists a line bundle
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L ∈ Pic(X) with f∗(L)⊗L−1 ample; then f2M is amplified with respect to the
bundle π∗1(L)⊗ · · · ⊗ π∗2M (L), where πj is the usual projection to the jth coor-
dinate. By definition, f2M fixes the fiber St over any point t ∈ T ; since f2M is
amplified, Proposition 4.1 and Theorem 4.2 imply that each fiber St contains
a Zariski dense subset of periodic points. Since there are uncountably many
such fibers, there must be some positive integer N such that infinitely many
points in X×2M have exact period N . Therefore X×2M contains a positive-
dimensional subvariety which is pointwise fixed by fN

2M , which is a contradiction
by Proposition 4.1. �

4.3. Converse Directions in the Implication Diagram. — We now make some
remarks on the relative strengths of the various types of endomorphisms de-
fined throughout. By Theorem 1.9, we have the following diagram for any
endomorphism of a smooth complex projective variety X with non-trivial Al-
banese:

polarized =⇒ amplified =⇒ unity-free =⇒ infinite-order.

In general, none of the reverse implications are true; we provide examples
from the right-hand side of the diagram to the left. By Proposition 2.5, the
product of any infinite-order endomorphism on an abelian variety A with the
identity map idA will have infinite-order, but not be unity-free. By Remark 3.8,
there exist unity-free endomorphisms whose periodic points are contained in a
proper subvariety; by Theorem 4.2, such an endomorphism cannot be amplified.
Finally, consider the map φ := [2] × [3] on the product E × E of an elliptic
curve E. The eigenvalues of φ∗ on H1,1(E × E) are 4, 6, and 9. So, by
Theorem 3.1, φ is not polarized; on the other hand, since 1 is not an eigenvalue
of f∗ on NS(X), φ is amplified.

Note that the above counterexamples to the reverse implications were given
for abelian varieties, except for the unity-free, non-amplified example. Addi-
tionally, these counterexamples could occur in all dimensions ≥ 2. It is perhaps
surprising then that for abelian surfaces, unity-free does imply amplified.

Proposition 4.3. — Let f be a surjective endomorphism of an abelian sur-
face X which is not amplified. Then f is not unity-free.

Proof. — Let γ1 and γ2 be the eigenvalues of f∗ on H1,0(X). Then the eigen-
values of f∗ on H0,1(X) are γ1 and γ2, and the eigenvalues of f∗ on H1,1(X)
are |γ1|2, γ1γ2, γ1γ2, and |γ2|2. Since f is not amplified, 1 is an eigenvalue
of f∗ on H1,1(X).

If |γ1| = 1, then γ−1
1 is a Galois conjugate of γ1. So the minimal polynomial

for γ1, which is a factor in the characteristic polynomial for f∗ on H1(X,Z), is
reciprocal–and hence has constant term 1. If γ2 is a Galois conjugate of γ1, then
so is γ−1

2 —which forces |γ2| = 1. So, whether or not γ2 is a Galois conjugate
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of γ1, it follows from Kronecker’s theorem that the minimal polynomial for γ1 is
cyclotomic. (A similar argument applies if |γ2| = 1.)

If |γ1| 6= 1 and |γ2| 6= 1, then γ1γ2 = γ1γ2 = 1. So the topological degree
of f—that is, the eigenvalue of f∗ on H4(X)—is γ1γ2γ1γ2 = 1; thus f is an
automorphism. Since |γ2| = |γ1|−1 6= 1, f has positive entropy. Since the
signature of the intersection form on H1,1(X) is (1,3) and the signature of the
subspace of H1,1(X) generated by the eigenvectors for |γ1|2 and |γ2|2 is (1,1),
the eigenspace for the eigenvalue 1 must be negative definite. So any periodic
curve for f would necessarily have negative self-intersection, and hence by the
adjunction formula would necessarily be a rational curve; but abelian varieties
cannot contain rational curves. Thus f has no periodic curves, and Lemma 4.4
below contradicts the assumption that f is not amplified. �

Lemma 4.4. — Let f be an automorphism with positive entropy of a smooth
complex projective surface X. If f has no periodic curves, then f is amplified.

Proof. — (See [24] for details.) The entropy of f is log(λ) for some Salem
number λ. There is a sublattice NS(X)′ ≤ NS(X) such that f∗ preserves
NS(X)′ and the characteristic polynomial here is the minimal polynomial for λ.
So, in particular, f∗ − ID is surjective on NS(X)′. Since f has no periodic
curves, NS(X)′ contains classes of ample line bundles. �

The proof given of Proposition 4.3 intrinsically uses the well-understood
intersection theory of abelian surfaces. However, in light of Proposition 3.6,
it seems possible that all unity-free endomorphisms of an abelian variety are
amplified; we leave the question for the reader and future exploration.

Lemma 4.4 shows that the types of varieties admitting polarized endomor-
phisms are more restricted than those admitting amplified endomorphisms.
Indeed, there are many examples of K3 surface automorphisms with positive
entropy and no periodic curves. On the other hand, a K3 surface can never
admit a polarized endomorphism. (See, e.g., [7].)
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