
Bulletin

SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

de la SOCIÉTÉ MATHÉMATIQUE DE FRANCE

pages 575-602

Tome 145
Fascicule 3

2017

CUTTING ARCS FOR
TORUS LINKS AND TREES

Filip Misev



Le Bulletin de la Société Mathématique de France est un périodique
trimestriel de la Société Mathématique de France.

Fascicule 3, tome 145, septembre 2017

Comité de rédaction

Christine BACHOC
Emmanuel BREUILLARD

Yann BUGEAUD
Jean-François DAT
Charles FAVRE
Marc HERZLICH

Raphaël KRIKORIAN

Laurent MANIVEL
Julien MARCHÉ
Kieran O’GRADY
Emmanuel RUSS

Christophe SABOT
Wilhelm SCHLAG

Pascal HUBERT (Dir.)

Diffusion

Maison de la SMF - Case 916 - Luminy - 13288 Marseille Cedex 9 - France
christian.smf@cirm-math.fr

Hindustan Book Agency AMS
O-131, The Shopping Mall P.O. Box 6248
Arjun Marg, DLF Phase 1 Providence RI 02940
Gurgaon 122002, Haryana USA

Inde www.ams.org

Tarifs

Vente au numéro : 43 e ($ 64)
Abonnement électronique : 135 e ($ 202),

avec supplément papier : Europe 179 e, hors Europe 197 e ($ 296)
Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat : Nathalie Christiaën
Bulletin de la Société Mathématique de France

Société Mathématique de France
Institut Henri Poincaré, 11, rue Pierre et Marie Curie

75231 Paris Cedex 05, France
Tél : (33) 01 44 27 67 99 • Fax : (33) 01 40 46 90 96

bullsmf@ihp.fr • smf.emath.fr

© Société Mathématique de France 2017

Tous droits réservés (article L 122–4 du Code de la propriété intellectuelle). Toute représen-
tation ou reproduction intégrale ou partielle faite sans le consentement de l’éditeur est il-
licite. Cette représentation ou reproduction par quelque procédé que ce soit constituerait une
contrefaçon sanctionnée par les articles L 335–2 et suivants du CPI.

ISSN 0037-9484 (print) 2102-622X (electronic)

Directeur de la publication : Stéphane SEURET

smf.emath.fr


Bull. Soc. Math. France
145 (3), 2017, p. 575-602

CUTTING ARCS FOR TORUS LINKS AND TREES

by Filip Misev

Abstract. — Among all torus links, we characterise those arising as links of simple
plane curve singularities by the property that their fibre surfaces admit only a finite
number of cutting arcs that preserve fibredness. The same property allows a charac-
terisation of Coxeter-Dynkin trees (i.e., An, Dn, E6, E7 and E8) among all positive
tree-like Hopf plumbings.

Résumé (Découpages d’entrelacs toriques et de plombages positifs arborescents). —
Parmi les entrelacs toriques, nous caractérisons ceux qui apparaissent comme entrelacs
d’une singularité simple d’une courbe plane par la propriété que leurs surfaces fibres
n’admettent qu’un nombre fini d’arcs de découpage qui préservent la fibration. La
même propriété permet une caractérisation des arbres de Coxeter-Dynkin (i.e., An,
Dn, E6, E7 et E8) parmi tous les plombages positifs arborescents.

1. Introduction

A fibred link is a link L ⊂ S3 such that S3\L fibers over the circle, and where
each fibre is the interior of a Seifert surface S for L in S3. Cutting S along
a properly embedded interval α (an arc for short) results in another Seifert
surface S′ for another link ∂S′ = L′. If L′ is again a fibred link with fibre
S′, we say that α preserves fibredness. For example, α could be the spanning
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576 F. MISEV

arc of a plumbed Hopf band, and cutting along α amounts to deplumbing that
Hopf band. In [4], Buck et al. give a simple criterion for when an arc preserves
fibredness in terms of the monodromy ϕ : S → S. As a corollary, they prove
that each of the torus links of type T (2, n) admits only a finite number of such
arcs up to isotopy. It turns out that among torus links, this is an exception:

Theorem 1. — Let n,m > 4 or n = 3,m > 6. Then the fibre surface S of the
torus link T (n,m) contains infinitely many homologically distinct cutting arcs
preserving fibredness.

The remaining torus links T (2, n), T (3, 3), T (3, 4) and T (3, 5) happen to be
exactly those torus links that can also be obtained as plumbings of positive
Hopf bands according to a finite tree, where vertices correspond to positive
Hopf bands and edges indicate plumbing.

Theorem 2. — Let S be the fibre surface obtained by plumbing positive Hopf
bands according to a finite tree T . There are, up to isotopy, only finitely many
cutting arcs in S preserving fibredness, if and only if T is one of the Coxeter-
Dynkin trees An, Dn, E6, E7 or E8.

To prove the “only if” part of Theorem 2, we consider orbits of a fixed
arc under the monodromy to produce families of arcs that preserve fibredness.
The basic idea is that such an orbit is infinite if the monodromy has infinite
order. For example, we show that in fact every (prime) positive braid link with
pseudo-Anosov monodromy admits infinitely many non-isotopic arcs preserving
fibredness. This suggests the following question: is it true that among all (non-
split prime) positive braid links, the ADE plane curve singularities are exactly
those that admit just a finite number of fibredness preserving arcs up to isotopy?

Plan of the article. — We use the shorthand ADE links to refer to the links of
the positive tree-like Hopf plumbings according to the trees An, Dn, E6, E7 or
E8. The subsequent section combines a criterion on arcs to preserve fibredness
from [4] with the property of monodromies of positive Hopf plumbed surfaces to
be right-veering. This allows for the following simple test for an arc to preserve
fibredness, in our situation: an arc preserves fibredness if and only if it does
not intersect its image under the monodromy (up to free isotopy).

Section 3 contains descriptions of the fibre surfaces and the monodromies of
the links we consider (torus links and the ADE links). Alongside, we give a
constructive proof of Theorem 1.

In Section 4, we explain the idea of proof for the finiteness result that pro-
vides the “if” part of Theorem 2, and list the fibred links obtained by cutting
the fibre surfaces of the ADE links along an arc in Table 4.1.

tome 145 – 2017 – no 3



CUTTING ARCS FOR TORUS LINKS AND TREES 577

Section 5 accounts for the cases where the monodromy has infinite order.
This concerns in particular the positive tree-like Hopf plumbings that corre-
spond to trees different from the ADE trees and settles the “only if” part of
Theorem 2.

At the beginning of Section 6, we set up the notation and methods needed
for the proof of the finiteness part of Theorem 2, which we split into Propo-
sition 1 (concerning torus links) and Proposition 2 (concerning tree-like Hopf
plumbings). The rest of that section is devoted to the proofs of these proposi-
tions.

Acknowledgements. — This work is part of the author’s doctoral thesis under
the guidance of Sebastian Baader. The author also wishes to thank the referee
for helpful suggestions and comments.

2. Right-veering surface diffeomorphisms and cutting arcs that
preserve fibredness

In the sequel we would like to make statements on the relative position of
two arcs α, β in a surface S with boundary (that is, α, β are embedded intervals
with endpoints on the boundary of S that are nowhere tangent to ∂S). The
following definition will simplify matters.

Definition 1. — Let S be an oriented surface with boundary and let α, β ⊂
S be two arcs. A property P (α, β) is said to hold after minimizing isotopies
on α and β, if P (α̃, β̃) holds, where α̃ and β̃ are obtained from α, β by two
isotopies (fixed at the endpoints) that minimize the geometric number of inter-
sections between the two arcs.

The remainder of this section will recall the fact that every positive braid
link (that is, the closure of a braid word consisting only of the positive gen-
erators of the braid group, without their inverses) is fibred and has so-called
right-veering monodromy (see below for a definition). The torus links T (n,m)
provide examples, since they can be viewed as the closures of the positive braids
(σ1 · · ·σn−1)m, where the σi denote the (positive) standard generators of the
braid group.

Definition 2 (see [8], Definition 2.1). — Let S be an oriented surface with
boundary and ϕ : S → S a diffeomorphism that restricts to the identity on ∂S.
Then ϕ is called right-veering if for every arc α : [0, 1] → S, the vectors
((ϕ ◦ α)′(0), α′(0)) form an oriented basis after minimizing isotopies on α and
ϕ ◦ α. This means basically that arcs starting at a boundary point of S get
mapped “to the right” by ϕ.

It is known that every positive braid can be obtained as an iterated plumb-
ing of positive Hopf bands (see [9]). Since a Hopf band is a fibre and plumbing
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578 F. MISEV

preserves fibredness, every positive braid link is fibred. Moreover the mono-
dromy is a product of positive Dehn twists, since the monodromy of a (positive)
Hopf band is a (positive) Dehn twist and the monodromy of a plumbing is the
composition of the monodromies of the plumbed surfaces (see [6]). A product
of positive Dehn twists is right-veering [8]. So we conclude that every positive
braid link is fibred with right-veering monodromy. Together with a theorem by
Buck et al., this property implies the following simple geometric criterion for
when an arc preserves fibredness.

Theorem 3 (compare Theorem 1 in [4]). — Let L be a fibred link with fibre
surface S and right-veering monodromy ϕ : S → S. Then, a cutting arc α
preserves fibredness if and only if α ∩ ϕ(α) = ∂α after minimizing isotopies
on α and ϕ(α).

Proof. — This is a special case of Theorem 1 in [4], saying that the arc α
preserves fibredness if and only if α is clean and alternating or once unclean
and non-alternating (see Figure 2.1), without the assumption on ϕ to be right-
veering. But for a right-veering map, every arc is alternating, by definition.
Finally, α is clean if and only if α∩ϕ(α) = ∂α after minimizing isotopies on α
and ϕ(α). �
Remark 1. — An arc α is clean if and only if ϕk(α) is clean, for all k ∈ Z.
This is clear since α ∩ ϕ(α) = ∂α after minimizing isotopies if and only if
ϕk(α) ∩ ϕk+1(α) = ∂α after minimizing isotopies. Similarly, if τ : S → S is
a homeomorphism such that ϕ ◦ τ ◦ ϕ = τ , then α is a clean arc if and only
if α′ = τ(ϕ(α)) is. Indeed, α ∩ ϕ(α) = ∂α ⇔ τ(α) ∩ τ(ϕ(α)) = ∂α′ ⇔
ϕ(τ(ϕ(α))) ∩ τ(ϕ(α)) = ∂α′ ⇔ ϕ(α′) ∩ α′ = ∂α′.

ϕ(α) α ϕ(α) α

clean and
alternating

once-unclean and
non-alternating

1

Figure 2.1. (Adapted from [4])

3. Monodromy of torus links, E7 and Dn.

The links that correspond to the trees An, E6 and E8 are torus links, namely
An−1 = T (2, n), E6 = T (3, 4) and E8 = T (3, 5). Together with D4, which is
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CUTTING ARCS FOR TORUS LINKS AND TREES 579

T (3, 3), these form the intersection between torus links and positive tree-like
Hopf plumbings. For our purpose it therefore suffices to study torus links, E7

and the Dn family.
The monodromies ϕ : S → S of the links in question are particular examples

of tête-à-tête twists, a notion invented by A’Campo and further developed by
Graf in his thesis [7]. This means that there exists a ϕ-invariant spine Γ ⊂ S,
called tête-à-tête graph. Cutting S along the tête-à-tête graph results in finitely
many annuli, on which ϕ descends to certain twist maps. More precisely, each
of these annuli has one component of ∂S as one boundary circle and a cycle
consisting of edges of Γ as the other. ϕ fixes ∂S pointwise and rotates the
edge-cycles by some number ` of edges. The number ` ∈ Z is called the twist
length of the corresponding boundary annulus. After an isotopy (fixing the
boundary of S), we may therefore assume that ϕ is periodic except on some
annular neighborhoods of ∂S. It is thus easy to understand the effect of ϕ on
an arc α, up to isotopy, given the combinatorics of the action of ϕ on Γ and
the amount of twisting on each annulus. Note that tête-à-tête twists define
periodic mapping classes in the sense that some power is freely isotopic to the
identity. However, this isotopy cannot be taken to be fixed on the boundary
of S.

In a way dual to the tête-à-tête graph, we will find in each case a finite set of
disjoint arcs that are permuted by ϕ and which decompose S into finitely many
polygons, one for each vertex of Γ. The combinatorics of how these polygons
are permuted will be used to prove Theorems 1 and 2.

Monodromy of torus links. — The fibre surface S of the torus link T (n,m) can
be constructed as thickening of a complete bipartite graph on n and m vertices
in the following way, as in Figure 3.1. Arrange n collinear points a1, . . . , an

(in this order) in a plane and, similarly, another m points b1, . . . , bm along a
line parallel to the ai. Connect ai and bj by a straight segment kij , for every
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Avoid intersections between the segments by
letting kij pass slightly under kpq if i > p and j < q (in a slight thickening
of the plane containing the points ai and bj). Use the blackboard-framing to
thicken ai, bj , kij to disks Ai, Bj and bands Kij . Choose the thickness of the
bands Kij so that they do not intersect outside the disks Ai, Bj .

It can be seen that S :=
⋃

iAi ∪
⋃

j Bj ∪
⋃

i,j Kij ⊂ R3 ⊂ S3 is isotopic
to the minimal Seifert surface of T (n,m) in S3 (compare [3]). In addition,
the monodromy ϕ : S → S is a tête-à-tête twist along the above graph. In
each of the gcd(n,m) complementary annuli, ϕ fixes ∂S pointwise and rotates
the edge-cycles two edges to the right with respect to the orientation of S.
Using this description, it is possible to see that ϕ acts on the graph as follows:
ϕ(ai) = ai−1, ϕ(bj) = bj+1, ϕ(kij) = ki−1,j+1, where the indices i, j are to be
taken modulo n,m respectively. A subarc of α that travels near kij will be
mapped to a subarc of ϕ(α) that travels near ki−1,j+1. The edges kij induce
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a1 a2

b1 b2 b3

k11 k23

A1 A2

B1 B2 B3

K11 K23

1

Figure 3.1. The complete bipartite graph on 2 and 3 vertices
and blackboard framed thickening.

a decomposition of ∂Ai into circular arcs lying between points of the form
kij ∩ ∂Ai (and the same for Bj). If n,m > 3, it is hence meaningful to speak
of points on ∂Ai between kij and ki,j+1.

Theorem 1. — Let n,m > 4 or n = 3,m > 6. Then the fibre surface S of the
torus link T (n,m) contains infinitely many homologically distinct cutting arcs
preserving fibredness.

Proof. — For n,m > 4 consider the following arcs in S, using the notation
from above (compare Figure 3.2):
• Let γ1 be a straight segment starting at a point of ∂An between kn1 and
knm and ending at the vertex an.

• Let γ2 start at an, follow the edges kn,m−1 and kn−2,m−1, thus ending
at an−2.

• γ3 starts at an−2, runs along kn−2,1, kn1, kn,m−1, kn−2,m−1 and ends
again at an−2.

• γ4 is a straight segment from an−2 to a point of ∂An−2 between kn−2,1

and kn−2,m.
From γ1, γ2, γ3, γ4 we can build an infinite family (αr)r∈N of arcs in S, taking

αr = γ1 ∗ γ2 ∗ γ3 ∗ · · · ∗ γ3︸ ︷︷ ︸
r−times

∗γ4. Here, ∗ denotes concatenation of paths.

Replacing the r consecutive copies of γ3 by r parallel copies, the αr can be
thought of as embedded arcs. It is now easy to check that αr and its image
ϕ∗αr under the monodromy ϕ have only their endpoints in common. Using
Theorem 3 it follows that each αr preserves fibredness. Finally, the αr are
homologically pairwise distinct. This can be seen in the following way: let
[c] ∈ H1(S,Z) be the cycle represented by a simple closed curve c whose image
is knm ∪ kn−1,m ∪ kn−1,m−1 ∪ kn,m−1. After an isotopy, c will intersect αr

transversely in r+ 1 points. Now, the linear form on H1(S, ∂S,Z) that sends α
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B1 B2 Bm−1 Bm

An−3 An−2 An−1 An

· · ·

· · · · · ·

γ1

γ2γ3
γ3

γ4

Figure 3.2. The arc α1 = γ1 ∗ γ2 ∗ γ3 ∗ γ4 (solid line) and its
image under the monodromy (dotted line). Note that these
two arcs do not intersect, except at their endpoints.

to i(c, α), the number of intersections with c (counted with signs), defines an
element c∗ of H1(S, ∂S,Z) such that c∗(αr) = r + 1, hence the claim.

If n = 3,m > 6, take the following arcs (compare Figure 3.3):
• γ1 is a straight segment from a point of ∂A3 between k31 and k3m to a3.
• γ2 starts at a3, follows the edges k3,m−1 and k2,m−1, thus ending at a2.
• γ3 starts at a2, follows k23, k13, k11, k31, k3,m−1 and k2,m−1, ending

at a2.
• γ4 is a straight segment from a2 to a point of ∂A2 between k22 and k23.

As above, we get a family (αr)r∈N of homologically distinct arcs preserving
fibredness, where αr = γ1 ∗ γ2 ∗ γ3 ∗ · · · ∗ γ3︸ ︷︷ ︸

r−times

∗γ4, using the curve with image

k3m ∪ k1m ∪ k1,m−2 ∪ k3,m−2 to distinguish the αr.
�

Monodromy of E7 and Dn. — In order to obtain a similar model for the fibre
surface S of E7 or Dn, start with two disjoint planar disks D,D′ in R3 and
connect them by half twisted bands b1, . . . , bn, where n = 7 in the case of E7.
The embedded surface S′ = D∪D′ ∪ b1 ∪ · · · ∪ bn is then a fibre surface for the
T (2, n) torus link. Let p ∈ ∂D be a point between b2 and b3 in the case of Dn,
respectively between b3 and b4 in the case of E7. Let I be an arc in D from a

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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B1 B2 B3 B4 Bm−1 Bm

A1 A2 A3

· · ·

γ1

γ2

γ3

γ4

Figure 3.3. The arc α1 (solid line) and its image under the
monodromy (dotted line) for a T (3,m) torus link, m > 6.
Again, the two arcs do not intersect.

point of ∂D between b1 and bn to p. Finally, define S to be the surface obtained
from S′ by plumbing a positive Hopf band along I below the surface S′. Denote
the core curve of that plumbed Hopf band by e1 (so e1 ∩ S′ = I). Each pair of
consecutive bands bi, bi+1, 1 6 i 6 n, gives rise to a closed curve ei+1 that runs
from D to D′ through bi and back to D through bi+1. The incidence graph for
the system of curves e1, . . . , en in S is exactly the respective Coxeter-Dynkin
tree E7 or Dn (compare Figure 3.4). The ei are core curves of positive Hopf
bands and S is a tree-like positive Hopf plumbing according to the respective
tree. In particular, the monodromy ϕ of S is the product of the right handed
Dehn twists about the curves e2, e3, . . . , en, e1, in this order. Just as in the
case of torus links, we will find a finite number of disjoint arcs in S that are
permuted (up to free isotopy) by ϕ and such that these arcs cut S into polygons.
For E7, let k1 be the spanning arc of b7, and let ki+1 = ϕi(k1), i = 1, . . . , 8,
up to free isotopy (compare Figure 3.5). Up to free isotopy, ϕ(k9) = k1. This
can be seen by applying the Dehn twists about the ej to the ki, as described
above.

Another more visual way to see this is via dragging arcs. Imagine the arcs
ki to be elastic bands whose ends are attached to the surface boundary and
whose interiors are pushed slightly off the surface into the positive normal
direction. Applying the monodromy ϕ amounts to dragging the arc through
the complement of S to the negative side of the surface, while its endpoints
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e7 e6 e5
e4 e3 e2

e1

	

Figure 3.4. E7 fibre surface with homology basis coming
from the plumbing tree. ϕ is the product of the right handed
Dehn twists on the cuves ei.

A1

A2

A3

1 2

3 4

5

6

7

8

9

1

Figure 3.5. Decomposition of the surface into three hexa-
gons A1, A2, A3. Hexagon A3 is shaded gray. The monodromy
permutes the intervals ki (marked 1, 2, . . . , 9) cyclically.

stay fixed on ∂S. Since we are only interested in the position of ϕ(ki) up to free
isotopy, the endpoints of the dragging arc may move freely along ∂S during
that process. Let A1, A2, A3 be the three disk components of S \

⋃9
i=1 ki. The

boundary of Aj alternates between parts of ∂S and the ki. We choose the order
as in Figure 3.6, where the components of ∂Aj ∩ ∂S are shrunk to points.

Examination of the action of ϕ on the ki reveals that the Ai are cyclically
permuted by ϕ, in the order A1 7→ A2 7→ A3 7→ A1. In Figure 3.6, the Ai are
drawn in such a way that A1 7→ A2 7→ A3 by translation to the right, and A3 is

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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1 2 38 9 1

7 8 92 3 4

4 5 65 6 7

A1 A2 A3

Figure 3.6. Edges with the same label are glued. The mono-
dromy sends Aj to Aj+1, indices taken modulo 3, such that
edge ki is sent to edge ki+1, modulo 9.

mapped to A1 by a translation, followed by a clockwise rotation through 1/3.
To obtain the tête-à-tête graph Γ, put a vertex in the middle of each hexagon
Aj and connect them by edges through the center of every ki, connecting the
vertices of the adjacent hexagons. The tête-à-tête twist lengths on the two
boundary annuli are 1 and 2, respectively.

1

2

3

4

n

n+1

n+2

n+3

n−1

n−2

2n−3

A1

A2

A3

An−1

2n−2

1

Figure 3.7. Decomposing arcs k1, . . . , k2n−2 on the fibre sur-
face of Dn for odd n.

For the case of Dn, n odd, take k1 to be the spanning arc of b1 and let ki+1 =
ϕi(k1), i = 1, . . . , 2n − 3. As before, we have ϕ(k2n−2) = k1, and the ki

decompose S into n − 1 disks A1, . . . , An−1, as in Figure 3.7. In Figure 3.9
(top), ϕ maps A1 7→ A2 7→ · · · 7→ An−1 by right translations and sends An−1

back to A1 by a rotation of 180◦.
If n is even, we use two orbits of intervals instead of one: define k1, . . . , kn−1

and k′1, . . . , k
′
n−1 by letting k1, k

′
1 be the spanning arcs of b1, bn respectively

and ki+1 = ϕi(k1), k′i+1 = ϕi(k′1). Again, the union of the ki and the k′i
decomposes S into disks A1, . . . , An−1 (see Figure 3.8). In Figure 3.9 (bottom),
the monodromy maps A1 7→ A2 7→ · · · 7→ An−1 7→ A1 by translations. The
tête-à-tête graphs for Dn have one vertex at the center of each square and edges
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1′ 2′ 3′ 4′ 1

2

3

4

5

(n−1)′

n−1(n−3)′ (n−2)′

n−3

n−2

A1

A2

A3

An−2An−1

1

Figure 3.8. Decomposing arcs k1, . . . , kn−1, k
′
1, . . . , k

′
n−1 on

the fibre surface of Dn for even n.

pass through the ki and k′i. Twist lengths on the boundary annuli are 1, n− 2
for odd n, and 1, 2, n

2 − 1 for even n.

1 2 3 4 · · ·

2 3 4 5

n

n
+

1

n
+

2

n
+

3

n+1 n+2 n+3 n+4

n
−

1

n

1

2
n
−

2n
−

2

n−1

2n−2

2
n
−

3

A1 A2 A3 A4 An−2 An−1 26 |n

1 2 3 4 · · ·

1′ 2′ 3′ 4′

2′ 3′ 4′ 5′

3 4 5 6

n
−

1

(n−1)′

2

1′

n
−

2

(n−2)′

1

(
n
−

1
)
′

A1 A2 A3 A4 An−2 An−1 2|n

Figure 3.9. Description of the monodromy of Dn, for odd n
(top) and for even n (bottom).

4. The finite cases.

In [4, Corollary 2], Buck et al. show that T (2, n) admits only finitely many
arcs preserving fibredness (up to isotopy). More precisely, they show that every
clean arc is isotopic (free on the boundary) to an arc that is contained in one of
the disks A1, A2 from the above description of the monodromy of torus links.
Apart from this infinite family of torus links, there are only three more torus
links with just a finite number of arcs that preserve fibredness:

Proposition 1. — The torus links T (3, 3), T (3, 4) and T (3, 5) admit, up to
isotopy (free on the boundary), only a finite number of cutting arcs that preserve
fibredness.

For positive tree-like Hopf plumbed surfaces we similarly obtain:
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Proposition 2. — The positive tree-like Hopf plumbings associated to any of
the Coxeter-Dynkin trees An, Dn, E6, E7 or E8 admit, up to isotopy (free on
the boundary), only a finite number of cutting arcs that preserve fibredness.

The proofs of Propositions 1 and 2 are rather technical and will be given
in Section 6. Nevertheless, the idea is very simple: let S be the fibre surface
of any torus link T (n,m), given as thickening of a complete bipartite graph
on n+m vertices, or of Dn or E7, as described in Section 3. An arc α ⊂ S is
determined up to isotopy by its endpoints and by the sequence of bands K it
passes through. Now start listing all possible such sequences that yield clean
arcs, for increasing length of the sequence. In order to prove finiteness of this
list, we use three Lemmas, also given in Section 6. The intuitive meaning of
Lemma 1 and Lemma 2 can be phrased as follows: if α and ϕ(α) intersect and
this intersection seemingly cannot be removed by an isotopy, then α is indeed
unclean. Lemma 3 asserts that a clean arc cannot stay in the complement
of the graph for a distance of more than ` consecutive bands, where ` is the
tête-à-tête twist length on the corresponding boundary annulus (for example,
` = 2 for all torus links).

This is made precise in Section 6, using a notion of arcs in normal position
(cf. Definition 3). Along with this case-by-case analysis, one can find all possible
fibred links obtained from An−1 = T (2, n), D4 = T (3, 3), Dn, E6 = T (3, 4), E7

and E8 = T (3, 5) by cutting along an arc. Consult Table 4.1 for a complete
list.

5. Arcs for links with infinite order monodromy

Theorem 4. — Let S be a fibre surface whose monodromy ϕ : S → S is
pseudo-Anosov and right-veering. Assume that a Hopf band can be deplumbed
from S. Then S contains infinitely many non-isotopic cutting arcs preserving
fibredness.

Proof. — By Theorem 3, an arc in S preserves fibredness if and only if it
is clean, since the monodromy ϕ is right-veering by assumption. Let S′ be
a surface obtained from S by deplumbing a Hopf band and denote by c the
core curve of that Hopf band. S′ is again a fibre surface because deplumbing
preserves fibredness, and ϕ is the monodromy of S′ followed by a Dehn twist
along c (compare [6]). Let α be an arc dual to c that does not enter S′. Then,
applying ϕ, only the Dehn twist along c affects α (in particular, the deplumbed
Hopf band is necessarily positive since ϕ is right-veering). It follows that α is
clean, and therefore ϕn(α) is also clean by Remark 1. Since ϕ is pseudo-Anosov
and α is essential, the length of ϕn(α) (with respect to an auxiliary Riemannian
metric) grows exponentially as n tends to infinity (compare [5, Section 14.5]).
In particular, the arcs ϕn(α) are pairwise non-isotopic and clean. �
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From one obtains by cutting along a clean arc
T (2, n) T (2, n− 1), T (2,m1)#T (2,m2) for m1 +m2 = n
T (3, 3) T (2, 4), (T (2, 2)#T (2, 2)#T (2, 2))∗1

T (3, 4) D5, T (2, 6), T (2, 5)#T (2, 2),
T (2, 3)#T (2, 3)#T (2, 2), (T (2, 3)#T (2, 2)#T (2, 3))∗2

T (3, 5) E7, D7, T (2, 8), (D5#T (2, 3))∗3 ,
T (2, 5)#T (2, 4), T (2, 7)#T (2, 2), T (3, 4)#T (2, 2),
T (2, 5)#T (2, 3)#T (2, 2), (T (2, 5)#T (2, 2)#T (2, 3))∗4

Dn T (2, n), Dn−1, Dm1#T (2,m2) for m1 +m2 = n,
T (2, 2)#T (2, 2)#T (2, n− 2)

E7 E6, D6, T (2, 7), T (2, 4)#T (2, 2)#T (2, 3),
T (2, 6)#T (2, 2), T (2, 5)#T (2, 3)

K1#K2 denotes the connected sum ofK1 andK2, Dn denotes the closure of the
braid σn−2

1 σ2σ
2
1σ2, n > 3, and En denotes the closure of the braid σn−3

1 σ2σ
3
1σ2,

n = 6, 7, 8.
∗1 Chain of four successive unknots.
∗2 Both Hopf link components are summed to one trefoil knot each.
∗3 Both possible sums appear (trefoil summed with the unknot component of D5 as well as
trefoil summed with the trefoil component of D5).
∗4 One component of the Hopf link in the middle is summed to T (2, 5) and the other is
summed to the trefoil.

Table 4.1. Fibred links obtained from the exceptional torus
links by cutting along an arc.

Corollary 1. — Let S be a surface obtained by iterated plumbing of positive
Hopf bands and suppose the monodromy ϕ : S → S is pseudo-Anosov. Then S
contains infinitely many non-isotopic cutting arcs preserving fibredness.

Proof. — The monodromy ϕ is a composition of right Dehn twists along the
core curves of the Hopf bands used for the construction of S as a Hopf plumbing.
This implies that ϕ is right-veering [8, Lemma 2.5]. Now apply Theorem 4 to
the last plumbed Hopf band. �

Proposition 3. — Let S be a surface obtained by plumbing positive Hopf
bands according to a tree other than An, Dn, E6, E7 and E8. Then S contains
infinitely many non-isotopic cutting arcs preserving fibredness.

Proposition 3 is basically a consequence of A’Campo’s work on slalom knots [2].
These are tree-like Hopf plumbings whose plumbing tree is obtained from a
rooted tree by subdividing every edge except the root edge. A’Campo proved
that a slalom knot has pseudo-Anosov monodromy if and only if the corre-
sponding plumbing tree is different from A2n, E6 and E8 [2, Theorem 1]. In
fact, his argument carries over to general trees except the ones of type ADE
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and the affine Coxeter-Dynkin trees D̃n, Ẽ6, Ẽ7, Ẽ8 (compare [2, 1, 10]). Up
to these exceptions, the statement can therefore be seen as a special case of
Corollary 1. In the affine cases, the monodromy ϕ is not pseudo-Anosov, but
still has infinite order. In fact, the corresponding links are T (2,m)-satellites
of T (2, 2)#T (2, 2) and T (2, 4) respectively, so ϕ is reducible with periodic re-
ducible pieces. To prove Proposition 3, we therefore have to find a clean arc α
which is not contained in one periodic piece in these cases.

Proof of Proposition 3. — By the above discussion, it remains to study the
affine Coxeter-Dynkin trees. To this end, let S be any surface obtained by
positive Hopf plumbing according to an affine Coxeter-Dynkin tree. Denote
the induced action of the monodromy on H1(S,Z) by ϕ∗ and let e1, . . . , en ∈
H1(S,Z) be the basis vectors represented by the core curves of the Hopf bands
used in the plumbing construction. As mentioned above, ϕ∗ has infinite order.
The reason for this is the existence of Jordan blocks to the eigenvalue −1. We
can hence find a vector v ∈ H1(S,Z) whose orbit under the monodromy is
infinite. Choose j ∈ {1, . . . , n} such that the j-th coordinate of (ϕ∗)

k(v) is
unbounded. Let α ⊂ S be a spanning arc of the Hopf band with core curve
ej . Then α is clean, since cutting along α yields a connected sum of positive
tree-like Hopf plumbings, which is fibred. Moreover we have |i(v, ϕ−k(α))| =
|i(ϕk(v), α)| → ∞ for k →∞ by construction, and the arcs ϕ−k(α) are all clean
by Remark 1. In particular, there are infinitely many non-isotopic cutting arcs
preserving fibredness. �

Proof of Theorem 2. — Combine Propositions 2 and 3. �

6. Proof of Propositions 1 and 2

Proposition 1. — The torus links T (3, 3), T (3, 4) and T (3, 5) admit, up to
isotopy (free on the boundary), only a finite number of cutting arcs that preserve
fibredness.

Proposition 2. — The positive tree-like Hopf plumbings associated to any of
the Coxeter-Dynkin trees An, Dn, E6, E7 or E8 admit, up to isotopy (free on
the boundary), only a finite number of cutting arcs that preserve fibredness.

Before we begin with the proofs, some notation and remarks are necessary.
Let S be the fibre surface of either T (n,m), Dn or E7, and let ϕ : S → S be
the monodromy. Precisely as in Section 3, we decompose S into finitely many
disjoint polygonal disks Ai (and Bj in the case of torus links) that are glued
using bands (Kij for the torus links and neighborhoods of the ki, k′i for Dn and
E7). We use the letter D to denote any of the disks and the letter K to denote
any of the bands. Let U be the union of all the disks and let N ⊂ S be the
neighborhood of the tête-à-tête graph on which ϕ is assumed to be periodic.
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Definition 3. — An arc α ⊂ S is in normal position if the following conditions
hold:
a. The endpoints of α lie in ∂U .
b. For every band K, α ∩ K \ U consists of finitely many straight segments

parallel to the edges of the tête-à-tête graph.
c. The number of such segments in K is minimal among all arcs isotopic to α.
d. α intersects the graph transversely in finitely many points of U .
e. α \N ⊂ U , that is, before α enters N and after it leaves N , it stays in the

disks that contain its endpoints.
f. α ∩ U consists of finitely many straight arcs.

Remarks 2 (On normal position). — • Any arc can be brought into normal
position by a free isotopy.
• If α is in normal position, then ϕ(α) can be brought into normal position

keeping N fixed. Indeed, it suffices to straighten the two subarcs ϕ(α) \ N
(or, undoing the twisting that occurs in the respective annuli), sliding the
endpoints of ϕ(α) along ∂S, see Figure 6.1.

 

7→

slide

→

N αϕ(α)
graph

∂S

1

Figure 6.1. How to bring ϕ(α) in normal position, keeping N fixed.

• If α and ϕ(α) are in normal position as above, we may isotope ϕ(α) with
endpoints fixed and keeping it in normal position, such that α and ϕ(α)
intersect transversely in finitely many points of U . In particular, the sets
α \ U and ϕ(α) \ U are now disjoint (cf. Figure 6.2).
• Let α be in normal position and suppose it passes through at least one band.

Let K be the first (respectively last) band traversed by α after (before) it
starts (ends) at a boundary point p of one of the disks, say D. Then p cannot
lie between K and one of the two bands adjacent to K on ∂D. Otherwise an
isotopy sliding the starting point (endpoint) of α along ∂K would decrease
the number of segments in K, contradicting part (c) of Definition 3.

 N αϕ(α)
graph

∂S

1

Figure 6.2. How to make α,ϕ(α) intersect transversely,
keeping normal position.
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Remarks 3 (compare the bigon criterion, Proposition 1.7 in [5]). — Suppose
α intersects ϕ(α). If α is clean, there must be a bigon ∆ ⊂ S whose sides
consist of a subarc of α and a subarc of ϕ(α). If α,ϕ(α) are in normal position,
such ∆ takes a particularly simple form:
• ∆ cannot be contained in U (i.e., in one of the disks Ai or Bj). This would

contradict part (f) of the above Definition 3.
• None of the two sides of ∆ is contained in U , since the other side of ∆ would

have to leave U through one of the bands K and return through the same K.
The disk ∆ would then yield an isotopy reducing the number of segments
of α ∩K or ϕ(α) ∩K, contradicting part (c) of Definition 3.
• For every band K, ∆ ∩K \ U consists of rectangles with two opposite sides

parallel to the edge passing through K.
• ∆ ∩ U consists of topological disks δ connected to at least one rectangle.
• Construct a spine T for ∆ as follows: put a vertex for each δ and connect

two vertices by an edge if the corresponding disks δ connect to the same
rectangle. T is a tree, for ∆ is contractible. Two of its vertices correspond
to the vertices of the bigon ∆. Among the other vertices of T , there is none
of degree one because the adjacent edge would correspond to a rectangle
in some K whose sides parallel to its core edge both belong to the same
arc (α or ϕ(α)). In other words, either α or ϕ(α) would pass through K
and immediately return through K in the opposite direction. This would
contradict part (c) of Definition 3. Therefore, T is a line consisting of some
number of consecutive edges, and the two extremal vertices correspond to
the vertices of ∆.

For the next two lemmas, note that ∂U is a disjoint union of circles, each
partitioned into finitely many circular arcs that alternate between parts of ∂S
and the regions where bands attach to a disk. We call the latter band attaching
regions.

Lemma 1. — Let α,ϕ(α) be in normal position and suppose they intersect in
a point p ∈ D, where D is one of the disks Ai (or Bj in the torus link case).
Let α′, α′′ be the components of α ∩ D,ϕ(α) ∩ D containing p. If no two of
the four points ∂α′ ∪ ∂α′′ ⊂ ∂D lie in the same band attaching region, then α
cannot be clean.

Remark 4. — Note that we did not exclude the possibility that one of the
endpoints of α or ϕ(α) lie in ∂α′ ∪ ∂α′′. In other words, endpoints of α′ and
ϕ(α′) may lie on ∂S ∩ ∂U as well as on band attaching regions.

Proof of Lemma 1. — If α were clean, there would be a bigon. After possibly
removing a certain number of such bigons, we are left with a bigon ∆ with
vertex p. By Remark 3, ∆ has to leave D through one of the adjacent bands.
Since one of the sides of ∆ is a subarc of α and the other side is a subarc
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D

p

α′ α′′

α ϕ(α)

1

Figure 6.3. α cannot be clean by Lemma 1.

of ϕ(α), we find two points among ∂α′ ∪ ∂α′′ that lie in the attaching region
of this band, contradicting the assumption on α′, α′′. �

The second lemma is a generalization of Lemma 1 to subarcs α′, α′′ that
can pass through bands and visit several disks rather than staying in one disk.

Lemma 2. — Let α,ϕ(α) be in normal position and let α′, α′′ be subarcs
of α,ϕ(α) respectively (not necessarily contained in U). Suppose that the four
endpoints of α′ and α′′ are contained in ∂U and that no two of them lie in the
same band attaching region. We further assume that α′ and α′′ intersect in
exactly one point, that α′, α′′ traverse the same sequence of bands and that the
segments of α′, α′′ near their endpoints are contained in U (see Figure 6.4).
Then α cannot be clean.

KijAi

Bj

α

ϕ(α)

ϕ(α)

α

p

· · ·

α′′

α′

α′′

α′

Figure 6.4. α cannot be clean by Lemma 2.

Proof. — Assume α′ ∩ α′′ = {p}, then p ∈ U . As in the proof of Lemma 1,
study a bigon ∆ that starts at p. ∆ consists of a sequence of rectangles as
described in Remarks 3. Starting at p, it therefore has to follow α′ and α′′

through the sequence of bands they traverse. Since p is the only intersection
between α′ and α′′, ∆ has to pass through at least one more band. But this is
impossible by the assumption on the endpoints of α′ and α′′. �
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In order to formulate the third lemma we recall the description of the mono-
dromy ϕ : S → S as a tête-à-tête twist from Section 3: cutting the surface
S along the tête-à-tête graph Γ results in d annuli O1, . . . , Od, where d is the
number of components of ∂S = L. Each annulus Oi has a link component as
one boundary and a cycle consisting of edges of the graph as the other bound-
ary. We call the latter the graph boundary of Oi and denote by ri its length
(that is, the number of edges). The monodromy ϕ keeps the link boundary
of Oi fixed and rotates the neighborhood N of the graph boundary by some
number of edges `i called the twist length. In all cases we consider, we have
1 6 `i 6 ri − 1. A sequence of bands K(1),K(2), . . . is consecutive, if the set
(
⋃

r K
(r) ∪

⋃
iAi ∪

⋃
j Bj) \ Γ has a connected component that intersects all

bands K(r) of the sequence in this order, i.e., it is possible to stay on the same
side of the graph when walking along the bands.

Lemma 3. — A clean arc in normal position cannot traverse more than `
consecutive bands along an annulus of twist length `.

Proof. — Let α be a clean arc in normal position that traverses n consecutive
bands with respect to an annulus O of twist length `. Suppose that n > `+ 1.
We may assume that n is the maximal number of consecutively traversed bands
with respect to O. In these bands as well as the adjacent disks, isotope α such
that it stays on one side of the graph, keeping it in normal position. In O, we
will see a subarc α′ ⊂ α that has exactly its endpoints x, y in common with the
graph and travels near the graph boundary for a distance of n consecutive edges
(Note that α′ cannot have any endpoint on ∂S. This would contradict part (c)
of Definition 3. We also have that n cannot exceed the length of the graph
boundary of O, since α does not intersect itself). Let C be the disk bounded
by α′ and the graph. Since n > ` + 1, the disks C and ϕ(C) have to overlap,
and either one or both of the endpoints of ϕ(α′) lie in C. Accordingly, the four
endpoints of α′ and ϕ(α′) either appear in the cyclic order x, ϕ(x), y, ϕ(y) or
x, ϕ(y), ϕ(x), y for a suitable choice of orientation of the graph boundary of O.

p

L

C

DE

∆ α′

φ(α′)

φ(y)

y φ(x)
x

graph

O
φ(x) φ(y) x y

p p′

∆

D′
D E

1

Figure 6.5. A normal arc passing through more than ` con-
secutive bands has to intersect its image under the monodromy
(here ` = 2). This can happen in two possible ways. Part of
an a priori possible bigon ∆ in gray.
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Now bring ϕ(α) in normal position transverse to α as described in the Re-
marks 2. LetD,D′, E be the disks (Ai orBj) containing the points ϕ(x), ϕ(y), y,
respectively. Note that D,D′ coincide if n equals the graph boundary length.
Nonetheless, the part of E shown in Figure 6.5 is disjoint from D,D′ since
n > ` > 1. In the first case, where x, ϕ(x), y, ϕ(y) appear in this order, we may
assume that α′, ϕ(α′) intersect in exactly one point p ∈ D (compare Figure 6.5,
left). In the second case, where the order is x, ϕ(y), ϕ(x), y, we can arrange that
α′, ϕ(α′) intersect in exactly two points p ∈ D, p′ ∈ D′, as shown in Figure 6.5,
right. However, α is clean, so there must be a bigon in S whose sides consist of
a subarc of α and a subarc of ϕ(α), in both cases. After possibly removing a
certain number of such bigons, we will be left with a bigon ∆ starting at p. Our
goal is now to prove that ∆ must be attached to the point p in the way shown
in Figure 6.5. We will then see that this forces α to pass through one more
consecutive band, contradicting the assumption on n being maximal. Firstly,

p

ϕ(x)

β

α′

ϕ(α′)

︸ ︷︷ ︸

K+

︸ ︷︷ ︸

K−

︸ ︷︷ ︸

D

∂S

graph

Figure 6.6. Part of the annulus O, where the arcs α′ and
ϕ(α′) intersect in a point p ∈ D.

we know from the Remarks 3 that ∆ has to leave D and consists of a sequence
of rectangles. Let R be the first rectangle in this sequence, i.e., R is contained
in a band adjacent to D. Let K−,K+ be the two bands adjacent to D that
contain segments of α′, K+ being the one that also contains a segment of ϕ(α′)
(see Figure 6.6). Let β be the component of ϕ(α) \ {p} that contains ϕ(x). We
claim that β cannot leave D through K− nor K+. Indeed, if β would leave D
throughK−, ϕ(α) would traverse n+1 consecutive bands, contradicting the as-
sumption on n being maximal. On the other hand, if β would leave D through
K+, we could reduce the number of segments in ϕ(α) ∩K+, contradicting the
normal position of ϕ(α), i.e., part (c) of Definition 3. In contrast, α leaves D,
starting from p in both directions, through K− and K+. Consider now the
subarcs of α and ϕ(α) that constitute two opposite sides of the rectangle R.
Since R is contained in a band adjacent to D, these two subarcs arrive at ∂D
through the same band, and they connect directly to p ∈ D. Therefore, we
must have R ⊂ K+, since K+ is the only band containing two subarcs of α
and ϕ(α) that directly connect to p ∈ D. Furthermore, R has to be the region
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enclosed by α′ ∩ K+ and ϕ(α′) ∩ K+. Following ϕ(α′) in the direction from
ϕ(x) to p, we see that it leaves D through K+ as one of the sides of R and con-
tinues staying on the same side of the graph for exactly n− 1 more edges. By
assumption, α′ and ϕ(α′) intersect at most in p and p′. In addition, no inter-
section between α′ and ϕ(α) (or between α and ϕ(α′)) can occur in any of the
n− ` disks visited by ϕ(α′) on its way after leaving D and until it arrives in E.
Indeed, the first such intersection would necessarily be the ending vertex of ∆,
implying that it were an intersection between α′ and ϕ(α′). However, none of
the points p, p′ lies in any of these disks. Therefore, the bigon ∆ has to pass
through at least n− `+ 1 rectangles through consecutive bands starting at p.
Similarly, the sides of these rectangles that are subarcs of α have to traverse at
least n − ` + 1 consecutive bands starting at p. We obtain a contradiction to
the maximality of n, because α′ ends after n − ` bands starting from p, since
ϕ rotates the graph boundary by ` edges. This finishes the proof. �

Proof of Proposition 1. — We will concentrate on the most complicated case
of the torus knot T (3, 5). It contains all difficulties appearing in the proofs
for T (3, 3) and T (3, 4) which go along the same lines with fewer cases to con-
sider. For each link appearing in Table 4.1 of Section 4, we will indicate one
(but not every) possible choice of a cutting arc that yields the link in question.
Let hence S be the fibre surface of T (3, 5) and let α ⊂ S be any arc that
preserves fibredness, i.e., a clean arc. Bring α into normal position using an
isotopy (not fixing the boundary), cf. Remarks 2. Since ϕ permutes the vertices
{ai} cyclically as well as the vertices {bj}, it suffices to show that there are
only finitely many clean arcs starting at a point of ∂A1 or at a point of ∂B1,
up to isotopy. We may further assume that α starts either at a point of ∂A1

between k11 and k15 or at a point of ∂B1 between k21 and k31.

Case A. — α starts at ∂A1, between k11 and k15. Then, α cannot continue
through either of the bands K11 nor K15 by the last item of Remarks 2. So,
either α stays in A1 (and there are only four such arcs up to isotopy), or it
continues through K12,K13 or K14. If α stays in A1, the links obtained by
cutting are E7 (e.g., if α ends between k11 and k12) and D7 (e.g., if α ends
between k12 and k13).

Case A.1. — α continues through K12. Arriving in B2, there are three pos-
sibilities: either α ends at a point of ∂B2 between k22 and k32 (and cutting
along α yields T (3, 4)#T (2, 2)), or it continues through K22 or K32 (ending at
other points of ∂B2 is impossible by the last item of Remark 2).

Case A.1.1. — α continues through K22. Arriving in A2, α can end at a
point of ∂A2 (cutting yields T (2, 7)#T (2, 2) if α ends between k24 and k25, and
T (2, 3) summed with the unknot component of D5 if α ends between k23 and
k24), or it can continue through K23 or K24. It cannot continue through K21,
since K12,K22,K21 is a sequence of three consecutive bands, so α would not
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A1 A2 A3

B1 B2 B3 B4 B5

Case A.1.1.

A1 A2 A3

B1 B2 B3 B4 B5

Case A.1.2.

A1 A2 A3

B1 B2 B3 B4 B5

Case A.1.1.1.

A1 A2 A3

B1 B2 B3 B4 B5

Case A.1.1.2.2.1.

A1 A2 A3

B1 B2 B3 B4 B5

Case A.1.1.2.1.

A1 A2 A3

B1 B2 B3 B4 B5

Case A.1.1.2.1.

A1 A2 A3

B1 B2 B3 B4 B5

Case A.1.1.2.2.2.

A1 A2 A3

B1 B2 B3 B4 B5

Case A.1.1.2.2.2.

1

Figure 6.7. Schematic illustration for a selection of the cases
in the proof of Proposition 1. The arc α is drawn as solid line,
whereas ϕ(α) is shown as a dotted line.
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be clean by Lemma 3. Finally, α cannot continue through K25. If it did, α
and ϕ(α) would intersect in a point of A1, and Lemma 1 would imply that α
cannot be clean (see Figure 6.7, top left). Note that we do not know whether
the mentioned intersection is the only one since we do not know how α ends.

Case A.1.1.1. — α continues through K23. From B3, it cannot continue
through K13, for K22,K23,K13 are consecutive (Lemma 3). If it continues
through K33 it cannot continue through any band adjacent to A3. Indeed,
K23,K33,K32 are consecutive, so α cannot continue through K32. If it would
continue through K34 or K35 or K31, we could apply Lemma 2 to the band
K33 to show that α is not clean (see Figure 6.7).

Case A.1.1.2. — α continues through K24. If it ends in B4 between k14 and
k34, we obtain T (2, 5)#T (2, 4) after cutting. Otherwise, it can continue from
B4 through K14 or through K34.

Case A.1.1.2.1. — If it continues through K14, it cannot go further. Firstly,
K24,K14,K15 are consecutive, so K15 is no option (Lemma 3). Neither can it
proceed through K11 (this would produce a self-intersection of α) nor K12

(for otherwise we could apply Lemma 1 to an intersection between α and
ϕ(α) in A1). If it continues through K13, it cannot go on through K23 since
K14,K13,K23 are consecutive (Lemma 3). Suppose it continues through K33.
From A3, it cannot proceed through any of K31,K35,K34, for otherwise we
could apply Lemma 2 to the bands K13 and K33, with an intersection between
α and ϕ(α) occuring in A3 (see Figure 6.7 left). However, α cannot continue
through K32 either, because we could again apply Lemma 2, this time for the
band K24 and an intersection in A2 (see Figure 6.7 right).

Case A.1.1.2.2. — α continues from B4 through K34. If it ends in A3 between
k35 and k31, cutting yields T (2, 5)#T (2, 2)#T (2, 3). Otherwise, it cannot con-
tinue from A3 through K33 since K24,K34,K33 are consecutive. Neither can it
proceed through K32 (apply Lemma 1 to A3). So α can only continue through
K35 or K31.

Case A.1.1.2.2.1. — If it continues through K35, the only option to go further
is through K15, since K34,K35,K25 are consecutive. From A1 (compare Fig-
ure 6.7), it cannot continue through K11 nor K12 (apply Lemma 2 to K15 with
an intersection occuring in A1). Neither can it continue through K14, since
K35,K15,K14 are consecutive. So it has to go through K13. Arriving in B3,
it cannot continue through K23 (apply Lemma 2 to K34 with an intersection
occuring in B4). Therefore α has to continue through K33. From A3, it cannot
proceed further. Firstly, K32 is not an option (otherwise apply Lemma 2 toK34

and K24 with an intersection in A2). Neither can it go through K34 or K35

(apply Lemma 2 to K15,K13,K33 with an intersection occuring in A3). Finally,
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it cannot pass through K31 either (apply Lemma 2 to the bands K15,K13,K33

with an intersection occuring in A3).

Case A.1.1.2.2.2. — If it continues through K31 and arrives in B1, it cannot
proceed through K11 (apply Lemma 2 to K22 with an intersection occuring
in B2, see Figure 6.7 left). So it has to go through K21. From A2, it cannot
proceed through K22, for K31,K21,K22 are consecutive. Neither can it go
through either of K23 nor K24 (apply Lemma 1 to an intersection occuring
in A2, see Figure 6.7 right). Finally, K25 can be ruled out by Lemma 2, applied
to the bands K22 and K12, with an intersection occuring in A1.

Case A.1.2. — α continues through K32 (see Figure 6.7). Arriving in A3, it
cannot continue through any band. Firstly, K12,K32,K33 are consecutive, so
α cannot continue through K33. If it would continue through any of the other
bands adjacent to A3, α would intersect ϕ(α) in a point of A3 such that we
could apply Lemma 1 to obtain a contradiction to α being clean.

Case A.2. — α proceeds throughK13. If it ends in B3 between k23 and k33, we
obtain T (2, 8) after cutting. From B3, it can continue through K23 or through
K33.

Case A.2.1. — α continues throughK23. It cannot go on viaK22, forK13,K23,
K22 are consecutive. Neither can it continue through K21 or K25 by Lemma 1
applied to an intersection in A1. If it next passes through K24, it cannot go on
through K14, because K23,K24,K14 are consecutive. Proceeding through K34,
it can end in A3 between k31 and k32 (this yields T (2, 5)#T (2, 3)#T (2, 2)).
However, the only possibility for α to go further is via K32, for K24,K34,K33

are consecutive (so K33 is no option), and α cannot continue through K35 nor
K31 by applying Lemma 2 to the band K34 with an intersection of α,ϕ(α)
in A3. So α continues through K32 and arrives in B2. From there, it can-
not continue through K12 (apply Lemma 2 to K22 and an intersection in B3).
If it continues through K22, it cannot go further: K23 is impossible because
K32,K22,K23 are consecutive, K24 can be excluded by Lemma 1, applied to A2,
and K21 as well as K25 can be ruled out by Lemma 2, applied to K23 and K13

with an intersection occuring in A1.

Case A.2.2. — α continues through K33. This is similar to Case A.2.1. Again
there is always a single option to go on, until there is no possibility left after
four more steps.

Case A.3. — α continues through K14. This is analogous to Case A.1.

Case B. — α starts at ∂B1 between k21 and k31. Then, it can only continue
through K11 by the last item of Remarks 2. From A1, it can proceed through
four distinct bands.
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Case B.1. — α continues through K15. Since K11,K15,K25 are consecutive,
it can a priori only continue through K35. But this is impossible as well by
Lemma 1, applied to the intersection between α and ϕ(α) occuring in B1.

Case B.2. — α continues through K12. This is analogous to Case B.1.

Case B.3. — α continues through K14. Arriving in B4, it can end between
k24 and k34 (this results in T (2, 3) summed with the trefoil component of D5).

Case B.3.1. — α continues throughK24. From A2, it cannot continue through
K23 because K14,K24,K23 are consecutive (Lemma 3). Neither can it go on
through K22 nor K21 (apply Lemma 1 to A1). Suppose α continues through
K25. From B5, it cannot go on viaK35 sinceK24,K25,K15 are consecutive. If it
proceeds via K35, we can apply Lemma 2 to the band K11 with an intersection
in B1 to obtain a contradiction.

Case B.3.2. — α continues through K34. From A3, there are only two options
for α to proceed further. Indeed, K14,K34,K35 are consecutive, so K35 is out
of the question. K31 can be ruled out by Lemma 1 for A3. The remaining
possibilities are K32 and K33.

Case B.3.2.1. — α continues through K32. From there, it cannot continue
through K22 (apply Lemma 2 to K32). So it has to branch off via K12 to A1.
From there, it cannot continue through K15 since otherwise α would self inter-
sect in A1. K11 is impossible as well, for K32,K12,K11 are consecutive. K15

can be ruled out using Lemma 1 for A3. So α can only continue through K13,
and from there only through K23 (K12,K13,K33 are consecutive). From A2,
it cannot go on through any band except K25. Indeed, K22 is impossible be-
cause K13,K23,K22 are consecutive. K21 and K24 can be ruled out by applying
Lemma 2 to (K34,K14) and K23 respectively. After passing through K25, α
cannot go further: K15 is impossible by Lemma 2 (applied to K23,K25) and
K35 can be ruled out by applying Lemma 2 to K34,K14,K11.

Case B.3.2.2. — α continues through K33. Then, K13 cannot be next since
K34,K32,K13 are consecutive. Thus α passes through K23. From A2, it cannot
go on via K24, for K33,K23,K24 are consecutive. K21 and K22 are impossible
as well (apply Lemma 2 to K14). So α has to go through K25. Then, it cannot
proceed through K15 (apply Lemma 2 to K25). It cannot go via K35 either
(apply Lemma 2 to K14,K11), so α cannot continue at all.

Case B.4. — α continues through K13. This is analogous to Case B.3 and
finishes the proof. �

Proof of Proposition 2. — We will present a case by case analysis for the pos-
sible clean arcs α in the fibre surface S of each of E7 and Dn. The reader
interested in studying the proof is advised to follow the arguments along with
a pencil and copies of Figures 3.6 and 3.9, top and bottom. As in the proof of
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Proposition 1 above, we will make extensive use of Lemma 3 to exclude further
polygon edges that α might cross on its way from its starting point to its end.
In order to keep the proof short, we will usually refer to such situations by just
saying “α is trapped,” or by saying that an edge “is a trap,” meaning that α
would traverse too many consecutive bands to be clean.

(E7) First, let S be the fibre surface of E7, denote its monodromy ϕ and
let α ⊂ S be a clean arc. Bring α into normal position with respect to k1, . . . , k9.
Note that the set of vertices of the hexagons A1, A2, A3 decompose into two
orbits under ϕ, namely the orbit of the vertex of A1 between k1 and k2, and
the orbit of the vertex of A1 between k2 and k7. We may therefore assume by
Remark 1 that α starts at one of these two vertices.

Case 1. — α starts at the vertex of A1 between k1 and k2. Define an involution
τ : S → S as follows: τ interchanges hexagons A1 and A2 and then reflects
A1, A2, A3 along the diagonals parallel to k7, k8, k1 respectively, whereby it
induces the permutation (13)(49)(58)(67) on the edges (k1, . . . , k9). We have
ϕ ◦ τ ◦ ϕ = τ , τ ◦ ϕ fixes the vertex of A1 between k1 and k2 and swaps the
edges k4, k8 as well as the edges k5, k7. By Remark 1, we may therefore assume
that α continues through k4 or through k5.

Case 1.1. — α continues through k4. From A3, it can only choose k9. Indeed,
k7, k6 and k1 would imply an intersection in A1 (Lemma 1, compare Figure 6.8,
left), and k3 is consecutive to k4 (Lemma 3, applied to the component with
twist length one). Arriving in A2, k2 and k6 would imply an intersection in A2,
so continuation is possible through k3, k5, k8 only. But if α continues through
k5 or k8, it will be trapped (compare Figure 6.8, right). Therefore it goes
through k3. Arriving in A3, it has to go through k4 (k9 implies an intersection
in A3 and k1, k6, k7 imply intersections in A1). However, passing through k4,
α is trapped.
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Figure 6.8. Illustration of two of the steps in Case 1.1. The
arc α is drawn as solid line, whereas ϕ(α) is shown as a dotted
line.
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Case 1.2. — α continues through k5. From A2, it can continue through k3,
k6, k8 or k9 (k2 implies an intersection in A2). If it passes through k6 or k9, it
is trapped. So k8 and k3 are the only possiblities left.

Case 1.2.1. — α continues through k8. Upon arrival in A1, it cannot con-
tinue through k2, k5 (intersection in A2) nor through k1 (this would imply an
intersection in A1). But if it continues through either of k7 or k4, it is trapped.

Case 1.2.2. — α continues through k3. From A3, α cannot go on through k9,
k1 (this would imply an intersection inA3). If it passes through k4, it is trapped.
Suppose it continues through k6. Arriving in A2, it cannot continue through k9,
k8, k3 (this would produce an intersection in A3), nor through k2 (intersection
in A2). Finally, continuing through k5, it will be trapped. Therefore α has to
continue from A3 through k7. Arriving in A1, it can continue through k2, k8

or k4 (k1 implies an intersection in A1 and k5 implies an intersection in A2).
But all of these are traps.

Case 2. — α starts at the vertex of A1 between k2 and k7. Define an involution
σ : S → S as follows: σ interchanges A1 and A2 and then reflects A1, A2, A3

along the diagonals parallel to k1, k2, k4 respectively, inducing the permutation
(19)(28)(37)(46) on the edges. As in Case 1, we have ϕ ◦ σ ◦ ϕ = σ, and σ ◦ ϕ
fixes the vertex of A1 between k2 and k7, swapping k4 and k5 as well as k1 and
k8. By Remark 1, we may therefore assume that α continues through either k1

or k5. However, if α continues through k1, it is trapped. Therefore it continues
through k5. From A2, it can continue through k8 or k9 (k6 is a trap and k2, k3

imply intersections in A2).

Case 2.1. — α continues through k8. From A1, it cannot continue through
any of k2, k1, k5, because this would produce an intersection in A2, and k7 is
a trap. Therefore, it continues through k4 and arrives in A3. Continuation
through k1 produces an intersection in A3, and k6, k7, k3 imply intersections
in A1. Finally, k9 is a trap.

Case 2.2. — α continues through k9. Arriving in A3, it can only continue
through k1 or k4 (any other continuation produces an intersection in A1). How-
ever, both k1 and k4 are traps, ending the proof for E7.

(Dn, n even). — Now, suppose n is even and let α be a clean arc in the fibre
surface S of Dn in normal position with respect to k1, . . . , kn−1, k

′
1, . . . , k

′
n−1.

Define an involution τ : S → S as follows: τ permutes the disks Ai according
to the rule τ(Ai) = An−i+2 for i = 1, . . . , n − 1 and then reflects every Ai on
the diagonal that contains the vertex between ki and ki+2 (all indices are to be
taken modulo n). Again ϕ ◦ τ ◦ϕ = τ , and τ ◦ϕ fixes the vertex of A1 between
k′1 and k′2 as well as the vertex between k1 and k3, and swaps the other two
vertices. We may therefore assume that α starts at a vertex of A1 which is not
the vertex between k′2 and k3.
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Case 1. — α starts at the vertex of A1 between k1 and k′1. If it continues
through k′2, it is already trapped. So it has to continue through k3. Arriving
in A3, it can continue through k′3, k′4 or k5.

Case 1.1. — α continues from A3 through k′3. From A2, it cannot continue
through k2 (otherwise it would intersect with ϕ(α)), so it can only proceed
through k′2 or k4. However, both are traps.

Case 1.2. — α continues from A3 through k′4. This is similar to Case 1.1:
arriving in A4, α can only continue through k′5 (which is a trap) or k4. If
it goes through k4, it has to continue from A2 through k′3 (k2 produces an
intersection in A2 and k′2 produces an intersection in A3). Then however, it is
trapped again.

Case 1.3. — α can therefore continue from A3 through k5 only. In A5, the
same situation reproduces, except that all indices in consideration are now
shifted by +2. Therefore the only way for α to continue from A5 is by pass-
ing through the edges k7, k9, k11, . . . After at most n/2 more steps, α will be
trapped.

Case 2. — α starts at the vertex of A1 between k′1 and k′2. Using τ again,
we may assume that it continues through k1 to An−2. If it goes through
k′n−1 next, it is trapped since it is forced to follow the sequence of edges
kn−1, k

′
n−2, kn−2, k

′
n−3, . . . If it goes through k′n−2 to An−3 instead, it can only

continue from there through k′n−3 or kn−1, and these are traps again. So it
has to continue from An−2 through kn−2. In An−4, the same situation as
one step earlier (where α arrived through k1 in An−2) reproduces, except that
all indices appearing in the consideration are now shifted by −2. Hence the
only way α can continue from An−4 is by going through the sequence of edges
kn−4, kn−6, kn−8, . . . After at most n/2 steps, α will be trapped.

Case 3. — α starts at the vertex of A1 between k1 and k3. Using the involution
τ from above, we may assume that it continues through k′2. From A2, it cannot
go on through k4, for this would imply an intersection in A2. However, the two
possibilities that remain (k′3 and k2) are traps, which ends the proof for Dn, n
even.

(Dn, n odd). — Finally, let n be odd and let S be the fibre surface of Dn.
Suppose again we have a clean arc α ⊂ S in normal position with respect
to k1, . . . , k2n−2. Since the monodromy permutes the Ai cyclically and since
there are only two orbits of vertices of the Ai, we may assume that α starts
in A1, at the vertex between k1 and k2, or at the vertex between k2 and kn. As
before, we then make use of Remark 1 with the help of the involution τ : S → S
defined as follows: τ(Ai) = An−i+2 by translations followed by a reflection on
the diagonal of Ai that contains the vertex between kn+i−1 and kn+i for i = 1, 2
and reflection on the diagonal of Ai that contains the vertex between ki and
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ki+1 for i = 3, . . . , n− 1. Applying Remark 1 as before, we may assume that α
either starts at the vertex of A1 between k1, k2 and continues through kn (say),
or that it starts at the vertex of A1 between k2 and kn, continuing through
k1 (say). So there are two cases to consider, one being very similar to Case 1
above and the other similar to Case 3. No new arguments are needed. �
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