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A PARADIFFERENTIAL REDUCTION
FOR THE GRAVITY-CAPILLARY WAVES SYSTEM
AT LOW REGULARITY AND APPLICATIONS

BY THIBAULT DE POYFERRE & QUANG-HUY NGUYEN

ABsTRACT. — We consider in this article the system of gravity-capillary waves in
all dimensions and under the Zakharov/Craig-Sulem formulation. Using a paradiffer-
ential approach introduced by Alazard-Burg-Zuily, we symmetrize this system into a
quasilinear dispersive equation whose principal part is of order % The main novelty,
compared to earlier studies, is that this reduction is performed at the Sobolev regu-
larity of quasilinear pdes: Hs(Rd) with s > % + %, d being the dimension of the free
surface.

From this reduction, we deduce a blow-up criterion involving solely the Lipschitz
norm of the velocity trace and the C%J“-norm of the free surface. Moreover, we obtain
an a priori estimate in the H®-norm and the contraction of the solution map in the
HS_%—norm using the control of a Strichartz norm. These results have been applied
in establishing a local well-posedness theory for non-Lipschitz initial velocity in our
companion paper [24].

RESUME (Une réduction paradifférentielle du systéme des vagues de gravité-capillarité
& basse régularité et applications). — Dans cet article, nous étudions le systéme des
vagues de gravité-capillarité en toutes dimensions, dans la formulation de Zakharov,
Craig et Sulem. A l’aide d’une approche paradifférentielle introduite par Alazard, Burq
et Zuily, nous symétrisons ce systéme en une équation dispersive quasilinéaire dont
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644 T. DE POYFERRE & Q. NGUYEN

le terme principal est d’ordre % La principale nouveauté par rapport aux études
précédentes est que cette réduction est effectuée au niveau de régularité des EDPs
quasilinéaires : H5(R%) avec s > % + g, d étant la dimension de la surface libre. A
partir de cette réduction, nous déduisons un critére d’explosion n’impliquant que la

5
norme Lipschitz de la trace de la vitesse et la norme C'2 1 de la surface libre. En outre,
nous obtenons une estimation a priori de la norme H® et la contraction de ’application

3
solution dans la norme H®~ 2, en utilisant le contréle d’une norme de Strichartz. Ces
résultats ont été utilisés pour développer une théorie de Cauchy locale pour des vitesses
initiales non Lipschitz, dans le papier compagnon [24].

1. Introduction

We consider the system of gravity-capillary waves describing the motion of
a fluid interface under the effect of both gravity and surface tension. From the
well-posedness result in Sobolev spaces of Yosihara [33] (see also Wu [31, 32] for
pure gravity waves) it is known that the system is quasilinear in nature. In the
more recent work [2], Alazard-Burg-Zuily showed explicitly this quasilinearity
by using a paradifferential approach (see Appendix 6) to symmetrize the system
into the following paradifferential equation

(1.1) (3t + Ty () - V+ iTv(t’m’g))u(t, z) = f(t,x)

where V is the horizontal component of the trace of the velocity field on the free
surface, v is an elliptic symbol of order 3/2, depending only on the free surface.
In other words, the transport part comes from the fluid and the dispersive part
comes from the free boundary. The reduction (1.1) was implemented for

d
(1.2) we LPH, s>2+ g,

d being the dimension of the free surface. It has many consequences, among
them are the local well-posedness and smoothing effect in [2]|, Strichartz esti-
mates in [3]. As remarked in [2], s > 2 4 d/2 is the minimal Sobolev index (in
term of Sobolev’s embedding) to ensure that the velocity filed is Lipschitz up
to the boundary, without taking into account the dispersive property. From
the works of Alazard-Burqg-Zuily [4, 1], Hunter-Ifrim-Tataru [14] for pure grav-
ity waves, it seems natural to require that the velocity is Lipschitz so that the
particles flow is well-defined, in view of the Cauchy-Lipschitz theorem. On the
other hand, from the standard theory of quasilinear pdes, it is natural to ask
if the reduction (1.1) holds at the Sobolev threshold s > 3/2 4+ d/2 and then,
if a local-wellposedness theory holds at the same level of regularity? The two
observations above motivate us to study the gravity-capillary system at the
following regularity level:

3 d
(1.3) we X :=LPH;NLIW2™  with s > §+§,
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which exhibits a gap of 1/2 derivative that may be filled up by Strichartz
estimates. (1.13) means that on the one hand, the Sobolev regularity is that
of quasilinear equations of order 3/2; on the other hand, the LYW2°-norm
ensures that the velocity is still Lipschitz for a.e. ¢ € [0,T] (which is the
threshold (1.2) after applying Sobolev’s embedding).

By sharpening the analysis in [2], we shall perform the reduction (1.1) as-
suming merely the regularity X of the solution. In order to do so, the main
difficulty, compared to [2], is that further studies of the Dirichlet-Neumann
operator in Besov spaces are demanded. Moreover, we have to keep all the
estimates in the analysis to be tame, i.e., linear with respect to the highest
norm which is the Hélder norm in this case.

From this reduction, we deduce several consequences. The first one will
be an a priori estimate for the Sobolev norm L{°HS using in addition the
Strichartz norm LYW2°° (see Theorem 1.1 below for an exact statement). This
is an expected result, which follows the pattern established for other quasilin-
ear equations. However, for water waves, it requires much more care due to
the fact that the system is nonlocal and highly nonlinear. This problem has
been addressed by Alazard-Burg-Zuily [1] for pure gravity water waves. In the
case with surface tension, though the regularity level is higher, it requires a
more precise analysis of the Dirichlet-Neumann operator in that lower order
terms in the expansion of this operator need to be taken into consideration (se
Proposition 3.6 below).

Another consequence will be a blow-up criterion (see Theorem 1.3), which
implies that the solution can be continued as long as the X-norm of u remained
bounded (at least in the infinite depth case) with p = 1, i.e., merely integrable
in time. It also implies that, starting from a smooth datum, the solution
remains smooth provided its C?*-norm is bounded in time.

For more precise discussions, let us recall the Zakharov/Craig-Sulem formu-
lation of water waves.

1.1. The Zakharov/Craig-Sulem formulation. — We consider an incompress-
ible, irrotational, inviscid fluid with unit density moving in a time-dependent
domain

Q={(t,z,9) € [0,T] x R x R : (z,y) € U}
where each €2, is a domain located underneath a free surface
Y ={(z,9) e REx R:y=n(t,z)}

and above a fixed bottom I' = 99, \ X;. We make the following separation
assumption (H;) on the domain at time ¢:
Q. is the intersection of the half space

Qi ={(z,y) eR xRy < n(t,2)}

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



646 T. DE POYFERRE & Q. NGUYEN

and an open connected set O containing a fixed strip around X4, i.e., there
ezists h > 0 such that

(1.4) {(z,y) eR"xR:y(z) —h <y <n(t,z)} C O.

The velocity field v admits a harmonic potential ¢ : @ — R, i.e., v = V¢
and A¢ = 0. Using the idea of Zakharov, we introduce the trace of ¢ on the
free surface

Y(t,z) = ¢(t, z,n(t, z)).
Then ¢(t,z,y) is the unique variational solution to the problem
(1.5) Ap=0in Q, o, z,n(t,z)) =9, x), Onéd(t)|lr=0.
The Dirichlet-Neumann operator is then defined by

2( 99
(1.6) G = V1+ |V (%b)
= (8y¢)(t,1‘,77(t,17)) - Vﬂ’](t,l’) . (Vx¢)(t,l’777(t,$))'

The gravity-capillary water waves problem with surface tension consists in solv-
ing the following so-called Zakharov-Craig-Sulem system of (7, ¢)

3t77 = G(n)w7

1.7
(L7 8tw=—gn—H(n)—%|Vm¢l2+%

1+ |Van|?

Here, H(n) denotes the mean curvature of the free surface:

H(n) = —div (\/1—Y7|77V77|2)

The vertical and horizontal components of the velocity on 3 can be expressed
in terms of  and ¢ as
Van - Vet + G(n)tp
1.8 B = = , V= = V¥ — BV,n.
(1.8) (Uy)|2 1+ |Vz"7|2 (vz)|s ¥ =T
As observed by Zakharov (see [34] and the references therein), (1.7) has a
Hamiltonian canonical Hamiltonian structure

o M 9y M

ot o’ 8t o’
where the Hamiltonian H is the total energy given by

1

(1.9) H== PYG(n)y dx + g/ n*dx + / (V1+|Vn|? —1)dz.
2 Rd 2 Rd Rd

TOME 145 — 2017 — N° 4



A PARADIFFERENTIAL REDUCTION FOR THE GRAVITY-CAPILLARY WAVES 647

1.2. Main results. — The Cauchy problem has been extensively studied, for
example in Nalimov [22], Yosihara [33], Coutand- Shkoller [10], Craig [11],
Shatah-Zeng [25, 26, 27|, Ming-Zhang [21], Lannes [18]: for sufficiently smooth
solutions and Alazard-Burqg-Zuily [2] for solutions at the energy threshold. See
also Craig [11], Wu [31, 32|, Lannes [17] for the studies on gravity waves.
Observe that the linearized system of (1.7) about the rest state (n = 0,9 = 0)
(modulo a lower order term, taking g = 0) reads

8t77_ |Dw|'¢) = 0’

Put ® = |Dw|%n + 71p, this becomes

(1.10) 8;® +i|Dy|?® = 0.

Therefore, it is natural to study (1.7) at the following algebraic scaling
(n,9) € H*"5(R?) x H(RY).

From the Formula (1.8) for the velocity trace, we have that the Lipschitz
threshold in [2] corresponds to s > 2 + d/2. On the other hand, the thresh-
old s > 3/2 + d/2 suggested by the quasilinear nature (1.1) is also the minimal
Sobolev index to ensure that the mean curvature H(n) is bounded. The question
we are concerned with is the following:

(Q) Is the Cauchy problem for (1.7) solvable for initial data

1 3 d
(1.11) (n0,%o) € H*V2 x H*, s> 5T 5?

Assume now that
(1.12)  (n,9) € L™ ([0,T];HS+% x H) nrr ([O,T];W”%"X’ X W"‘X’)

with
3

d
1.1 -+ = 2
(1.13) s>2+2, r >

is a solution with prescribed data as in (1.11). We shall prove in Proposition 4.1
that the quasilinear reduction (1.1) of system (1.7) still holds with the right-
hand-side term f(¢,x) satisfying a tame estimate, meaning that it is linear
with respect to the Holder norm. To be concise in the following statements,
let us define the quantities that control the system (see Definition 6.1 for the
definitions of functional spaces):

Sobolev norms : M, 1 = ”(7]’¢)||L°°([O,T];H"+%><H")’

Moo = 000, %0)| st s

“Strichartz norm” s Nor = 00, V), 0 oo s -
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648 T. DE POYFERRE & Q. NGUYEN

Our first result concerns an a priori estimate for the Sobolev norm M 7 in
terms of itself and the Strichartz norm N, .

THEOREM 1.1. — Letd>1, h>0,r>2 and s > %—i— %. Then there exists a
nondecreasing function F : R — R™T, depending only on (d,s,r, h), such that:
for all T € (0,1] and all (n,v¢) solution to (1.7) on [0,T] with

(n, V) € L' ([0, T W™ 5> x BL ),
inf dist(n(t),T) > h,
,anf dis (n(),T)

there holds
My < F(Moo + TF(My7) + Nyp).

REMARK 1.2. — Some comments are in order with respect to the preceding a
priori estimate.

1. We require only Vi € B})O’l instead of ¢ € W™,

2. The function F above can be highly nonlinear. It is not simply a
straightforward outcome of a Grénwall inequality but also comes from es-
timates of the Dirichlet-Neumann operator in Sobolev spaces and Besov
spaces (see the proof of Theorem 4.5).

3. When s > 2 + d/2 one can take 7 = s — ¢ and retrieves by Sobolev

2
embeddings the a priori estimate of [2] (see Proposition 5.2 there).

Our second result provides a blow-up criterion for solutions at the energy
threshold constructed in [2]. Let CT denote the Zymund space of order r
(see Definition 6.1). Note that C7 = W™ if r € (0,00) \ {1,2,3,...} while
wnee C Crifre{0,1,2,...}.

THEOREM 1.3. — Letd>1, h>0ando >2+ 4. Let

(0, %0) € H*T2 x H®, dist(no,T) > h > 0.
Let T* = T*(no, 0,0, h) be the mazimal time of existence defined by (4.17)

and
(n,9) € L= ((0,T7); H*3 x H")

be the mazximal solution of (1.7) with prescribed data (ng,o). If T* is finite,
then for all e > 0,

(1.14) P.(T%) +/O Q- (t)dt + ﬁ = 400,

TOME 145 — 2017 — N° 4



A PARADIFFERENTIAL REDUCTION FOR THE GRAVITY-CAPILLARY WAVES 649

where

Pe(T") = sup IIn(t) +IVe@lisg, ,»
tel0, T ’

Qc(t) = [In(t )IIC§+E +IVY@ller,

RT*) = inf dist(n(t),T).
(T*) st dis (n(t),T)

Consequently, if T* is finite then for all e > 0,

(1.15) PY(T™) +/ Q2(t)dt + —x = +00,

(T*)

where

PAT™) = S @)l cz+e + 11V, B) (Bl g2,
€[o,

Q2(t) = [Int Moz NV B)Bey-

REMARK 1.4. — 1. We shall prove in Proposition 4. 7 below that the
Sobolev norm ”(n’¢)||L°°([O,T];H"+%><H")’ o > 2+ £, is bounded by
a double exponential

exp (€7@ Io Qe (1))

where C(T') depends only on the lower norm P.(T). In the preceding
estimate, Q. can be replaced by QY by virtue of (4.23). These bounds
are reminiscent of the well-known result due to Beale-Kato-Majda [8]
for the incompressible Euler equations in the whole space, where the
Cl-norm of the velocity was sharpened to the L>°-norm of the vorticity.
An analogous result in bounded, simply connected domains was obtained
by Ferrari [12].

2. If in Q. the Zygmund norm [[V%|[c: is replaced by the stronger norm
[V¥[ g1, then one obtains the following exponential bound (see Re-

mark 4.8)

1) ozt ey < CONRO) GO oy, ex0 (C(T) / Q- (t)dt),

where C(T') depends only on the lower norm P.(T) and o > 2 + . The
same remarks applies to Q% and (V, B).

In the survey paper [16] Craig-Wayne posed (see Problem 3 there) the fol-
lowing questions on How do solutions break down?

(Q1) For which « is it true that, knowing a priori that sup;_r 7y [|(n,¥)[lc= <
+oo then C* data (no,vo) implies that the solution is C*° over the time in-
terval [-T,T]?

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



650 T. DE POYFERRE & Q. NGUYEN

(Q2) It would be more satisfying to say that the solution fails to exist be-
cause the “curvature of the surface has diverged at some point,” or a related
geometrical and/or physical statement.

With regard to question (Q1), we deduce from Theorem 1.3 (more precisely,
from (1.14)) the following persistence of Sobolev regularity.

COROLLARY 1.5. — Let T € (0,+00) and (n,%) be a distributional solution
to (1.7) on the time interval [0, T] such that inf 1) dist(n(t),T') > 0. Then the
following property holds: if one knows a priori that for some g9 > 0

(116) oup 000 VEO) g, < 00

then (n(0),(0)) € H*®(R*)? implies that (n,+) € L=([0,T]; H®(R%))2.

Theorem 1.3 gives a partial answer to (Q2). Indeed, the criterion (1.15)
implies that the solution fails to exist if

e the Lipschitz norm of the velocity trace explodes, i.e.,
suppo,7+) [|(V; B)|[w1.0 = +00, or
e the bottom rises to the surface, i.e., h(T™*) = 0.
Some results are known about blow-up criteria for pure gravity water waves
(without surface tension). Wang-Zhang [28] obtained a result stated in terms
of the curvature H(n) and the gradient of the velocity trace

o

(1.17) / [(VV,VB) (@)l dt + sup [H(n(t))llz2nLs = +00, p > 2d.
0 te[0,T*)

Thibault [23] showed, for highest regularities,

T
/0 (||77||C%+ +[1(V, B)||Cl+)dt = +o0;

the temporal integrability was thus improved. In two space dimensions, us-
ing holomorphic coordinates, Hunter-Ifrim-Tataru [14] obtained a sharpened
criterion with ||(V, B)||c1+ replaced by ||[(VV,VB)|gmo. Also in two space
dimensions, Wu [30] proved a blow-up criterion using the energy constructed
by Kinsey-Wu [15], which concerns water waves with angled crests, hence the
surface is even not Lipschitz. Remark that all the above results but [23] con-
sider the bottomless case. In a more recent paper, [29] considered rotational
fluids and obtained
sup ([lv(®)llwree + [Hn()ll2n20) = +00  p > 2d,
te[0,7*)

v being the Eulerian velocity. In order to obtain the sharp regularity for Vi
and (V, B) in Theorem 1.3, we shall use a technical idea from [29]: deriving
elliptic estimates in Chemin-Lerner type spaces.
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Finally, we observe that the relation (1.13) exhibits a gap of 1/2 derivative
from H® to W2 in terms of Sobolev’s embedding. To fill up this gap we
need to take into account the dispersive property of water waves to prove a
Strichartz estimate with a gain of 1/2 derivative. As remarked in [24] this gain
can be achieved for the 3D linearized system (i.e., d = 2) and corresponds
to the so called semiclassical Strichartz estimate. The proof of Theorem 5.9
on the Lipschitz continuity of the solution map shows that if the semiclassical
Strichartz estimate were proved, this theorem would hold with the gain p = %
in (5.31) (see Remark 5.10). Then, applying Theorems 1.1, 1.3 one would end
up with an affirmative answer for (Q) by implementing the standard method
of regularizing initial data. Therefore, the problem boils down to studying
Strichartz estimates for (1.7). As a first effort in this direction, we prove
in the companion paper [24] Strichartz estimates with an intermediate gain
0 < p < 1/2 which yields a Cauchy theory (see Theorem 1.6, [24]) in which
the initial velocity may fail to be Lipschitz (up to the boundary) but becomes
Lipschitz at almost all later time; this is an analog of the result in [1] for pure
gravity waves.

The article is organized as follows. Section 2 is devoted to the study of
the Dirichlet-Neumann operator in Sobolev spaces, Besov spaces and Zygmund
spaces. Next, in Section 3 we adapt the method in [2] to paralinearize and then
symmetrize system (1.7) at our level of regularity (1.13). With this reduction,
we use the standard energy method to derive an a priori estimate and a blow-
up criterion in Section 4. Section 5 is devoted to contraction estimates; more
precisely, we establish the Lipschitz continuity of the solution map in weaker
norms. Finally, we gather some basic features of the paradifferential calculus
and some technical results in Appendix 6.

2. Elliptic estimates and the Dirichlet-Neumann operator

2.1. Construction of the Dirichlet-Neumann operator. — Let n € W5 (R4)
and f € Hz(R%). In order to define the Dirichlet-Neumann operator G(7)f,
we consider the boundary value problem

(2.1) Agy¢=0in Q, ¢ =1, a”¢|r =0.
For any h' € (0, h], define the curved strip of width h’ below the free surface
(2.2) Q= {(z,y) :x € R, m(x) — W <y <n(z)}.

We recall here the construction of the variational solution to (2.1) in [4].

NOTATION 2.1. — Denote by D the space of functions v € C*(Q2) such that
Vayu € L2(Q). We then define Dy as the subspace of functions u € D such
that v is equal to 0 in a neighborhood of the top boundary X.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



652 T. DE POYFERRE & Q. NGUYEN

PROPOSITION 2.2 (see [2, Proposition 2.2]). — There exists a positive weight g €
Lo (2), locally bounded from below, equal to 1 near the top boundary of Q, say

loc

in Qp, and a constant C > 0 such that for all u € Dy,
(2:3) //Qg(ﬂc,y)lu(aﬂ,y)l2 dady < C//Q Ve yu(z,y)|? dedy.

DEFINITION 2.3. — Denote by H'°(Q) the completion of Dy under the norm

Nlulls := [JullL2(,g(2,y)dedy) T | Vayull 2 (Q,dzdy) -
Owing to the Poincaré inequality (2.3), H°(Q) endowed with the norm |lu| =
IVeyullL2(q) is a Hilbert space, see Definition 2.6 [2].
Now, let xo € C®(R) be such that xo(z) = 1if 2 > —1, xo(2) = 0 if
z < —%. Then with f € H?, define

file,2) = xo(2)e* P f(z), =eRY, z<0.

Next, define
y—n(z
(2.4 Ja) = i, L1 gy en
This “lifting” function satisfies i|y:n(m) = f(z), f =0in Q\ Q4 and
(2.5) I£lmsc0y < K1+ Ballws )ALy 4 e
The map

Q- —/ Vaeyf Vaypdrdy
Q

is thus a bounded linear form on H°(2). The Riesz theorem then provides a
unique v € H*9(Q) such that

(2.6) Yo € H-O(Q), //Q Vgt Vg ypdedy = — //Q Veyf Vayedrdy.

DEFINITION 2.4. — With f and u constructed as above, the function ¢ :=
u+f is defined to be the variational solution of the problem (2.1). The Dirichlet-
Neumann operator is defined formally by

@7 G =V1+[ViPoue| _ = [0,6-Vn-Ve]|,_ ..
As a consequence of (2.5) and (2.6), the variational solution ¢ satisfies

(2.8) IVaydllzzi) < KA+ nllwre)lfll ;1 gy

Moreover, it was proved in [23] the following maximum principle.

PROPOSITION 2.5 (see [23, Proposition 2.7]). — Let n € WH°(R?) and f €
H%(Rd). There exists a constant C > 0 independent of n, v such that

[¢llL=() < Cllfllzemay-
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The continuity of G(7) in Sobolev spaces is given in the next theorem.
THEOREM 2.6 (see [4, Theorem 3.12]). — Letd >1,s> 2+ % and 1 <o <
s+ 3. Forallne H5*2(R%), the operator

G(n): H° — H°!

is continuous. Moreover, there exists a nondecreasing function F: Ry — Ry
such that, for all n € H* 2 (R?) and all f € H°(R?), there holds

(2.9) IG) fllze-r < FUnll or IS 2o

2.2. Elliptic estimates. — The Dirichlet-Neumann requires the regularity of
V.4 at the free surface. We follow [17] and [4] straightening out €2}, using the

map
10 plw,2) = (1+ 2)e™PIn(z) — 2 { = 1+D5P(z) — p
(z,2) € § := R% x (—1,0).

According to Lemma 3.6, [4], there exists an absolute constant K > 0 such
that if 6||n||w1r. < K then

h
(2.11) 0.p > 3
and the map (z,2) — (z,p(x, 2)) is thus a Lipschitz diffeomorphism from S
to Qj,. Then if we call

(2.12) v(z, z) = p(z, p(z,2)) Y(x,2) €S
the image of ¢ via this diffeomorphism, it solves
(2.13) Lv:= (83 +alA,+ 5V, 0,—v0,)v=0 in S
where
2
= %, = —2%, 5= 81p(8§p+aAmp+,8-Vzazp).
2.2.1. Sobolev estimates. — Define the following interpolation spaces

-~ XH(J) = Co(I; H*(RY)) n L2(J; H*+3 (RY)),
' Y#(J) = LL(I; H*(RY) + L2(J; H*~ 3 (RY)).

Remark that |||y« (s) < ||-[|xu-1¢s) for any p € R. We get started by providing
estimates for the coefficients «, 3,y. We refer the reader to Appendix 6 for a
review of the paradifferential calculus and notations of functional spaces.

NOTATION 2.7. — We will denote F any nondecreasing function from R*
to RT. F may change from line to line but is independent of relevant param-
eters.
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LEMMA 2.8. — Denote I = [-1,0].
1. For any o > l + é and € > 0, there holds

(215) llo = 0%l o g o + 180 o oy + Il 3 ) < Fllmllczs)lall oy
2. If p> % then

2.16 1 _1

(216) ol g+ 180y ot 0y sy < F N )

(2.17) ||04||Ez(1;cf) + ||B||E2(1;cgj) + ||'V||E2(1;cf—1) > (Hn”cw% + ||77||L2)~

Proof. — These estimates stem from estimates for derivatives of p. For the
proof of (2.15) we refer the reader to Lemmas 3.7 and 3.19 in [4]. Concerning
(2.16) we remark that o and § involve merely derivatives up to order 1 of 7
while v involves second order derivatives of 7. Finally, for (2.17) we use the
following smoothing property of the Poison kernel in the high frequency regime
(see Lemma 2.4, [7] and Lemma 3.2, [28]): for all kK > 0 and p € [1, 00|, there
exists C' > 0 such that for all j > 1,

||6_”(Dz)AjU||LP(Rd) < Ce % 1A ull Lo rea),

where, we recall the dyadic partition of unity in Definition 6.1: Id = Z;io Aj.
The low frequency part Ay can be trivially bounded by the L?-norm using
Bernstein’s inequalities. O

We first use the variational estimate (2.8) to derive a regularity for V, ,v.

LEMMA 2.9. — Let f € Hz. Set
(2.18) E®, f) = [Va.yollL2@n)-

1. Ifne C*%+6 with & > 0 then V, v € C([-1,0; H2) and
(219) Vet < Fllnless ) B, £)
(220) Va0l y g < Fllmllor) (L4l o) B ).

2. Ifn € H"3 with s > 1 + ¢ then V, ,v € C([~1,0; H~%) and
(2.21) Vvl -3 (1o S FUnllgery ) E f)-
REMARK 2.10. — 1. By (2.8), we have

E(n, f) < K(1+ [Inllwre)IFIl 3 -

However, we keep in the estimates (2.19)-(2.20) the quantity E(n, f) instead
of | f ||H 1 because E(n, f) is controlled by the Hamiltonian, which is conserved
under the flow. Moreover, as we shall derive blow-up criteria involving only
Holder norms of the solution, we avoid using || f||H 1
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2. The estimates (2.19), (2.20), (2.21) were proved in Proposition 4.3, [28]
as a priori estimates (see the proof there). It is worth noting that we establish
here a real regularity result.

Proof. — Denote I = [-1,0].
1. Observe first that by changing variables,

(222) |Vavllzre) < Fllnllwre)Vaydlirz i) = Flnllw<)E, f).
Applying the interpolation Lemma 6.22, we obtain Vyv € X2 (I) and
IVovll 3 ) S IVavllzzzz) + 10:Vavllrarm-1)

S IVavllerezy < Flnllwre)E®, f).

We are left with (2.20). Again, by virtue of Lemma 6.22 and (2.22), it suffices
to prove

(2.23)

1020l 2 rir-1) < FllInllgzee) (1 + lInll g ) B(n, £)
A natural way is to compute 8%v using (2.13)
851) =—alA,v—F-V,0,v+~0,v

and then estimate the right-hand side. However, this will lead to a loss of %
derivative of . To remedy this, further cancelations coming from the structure
of the equation need to be invoked. We have

(0y9)(x; p(,2)) = 6 5 0:0(z,2) = (M)(2, 2),

(Vo) (z, p(z, 2) ( Z:/’)oaz)v(m,z) =: (Aqv)(z, 2).

Set U := Ajv—V pAsv, whose trace at z = 0 is actually equal to G(n)f. Then,
using the equation A, ,¢ = 0, it was proved in [4] (see the formula (3.19) there)
that 0,U has the divergence form

0,U=V,- (3sz2v).

Then, by the interpolation Lemma 6.22, it is readily seen that U € C(I; H_%)
and

1Vl g4, S Fllall oo E G, £)-
Now, from the definition of A; 2 one can compute

0,v = =:Ua+Vzv-b
1+ |Vapl?
with
__Op . 0:pVap
1+ [Vapl?’ C 14 [Vepr
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We write Ua = T,U + Tya + R(a,U). By Theorem 6.5 (i),

[T || S llallea) Ul g3y S Fnllgre) B, £)-

c(;H™ %) C(L;H 2

The term Tya can be estimated by means of Lemma 6.14 as

I Tvall, S Uil lallewscsy S Flnllgire) B, f)-

Finally, for the remainder R(a,U) we use (6.12), which leads to a loss of 1
derivative for 7, to get

IR0}l g3 S Nl

IH2 IH2

1Vl gty S

53 YL+l 3 ) ECn, )

1
owe2™)
where, we have used

lall S Flnllgze=) L+ lImll g+ )-

Finally, the term bV, v can be treated using the same argument as we have
shown that V,v € C(I; H=2). The proof of (2.20) is complete.
2. We turn to prove (2.21). Observe that by the embedding

(2.24) [nllcree < Clinl

1
ez’

H 3

with 0 <& <s— % — £, (2.19) implies the estimate of V,v in (2.21). For 0,v,
we follow the above proof of (2.20). It suffices to prove all € C(I; H™2)
with norm bounded by the right-hand side of (2.21). To this end, we write
aU = hU 4+ T(q—n)U +Ty(a — h) + R(a — h,U). The proof of (2.20), combined
with (2.24), shows that

1Ty (a — + | Ta-m U]l

et E(. £).

Finally, by applying (6.11) (notice that g > %) nd using the estimate

DI ooty S Fllal
6l g ey S Nlggemty S F ey
we conclude that

IR, )| Il gy gy ey Pl o) B, £ OO

According to the preceding lemma, the trace Vm,zv|z_0 is well-defined and

C(H 3~ ”U”c(z H™7)

belongs to H ~2. Estimates in higher order Sobolev spaces are given in the
next proposition.

PROPOSITION 2.11 (see [4, Proposition 3.16]). — Let s > % + g, —% <o <
s— 3. Assume that n € H*2 and f € H! and for some z € (—1,0)
||V$7Z,U||X_%([Z0,0]) < +o00.

Then for any z1 € (—1,0), z1 > 29, we have V, v € X7([21,0]) and
”Vw,zvnxv([zl,o]) < }—(”n”H”%) {”f”HaJrl + [ Va, ZUHX 3 (20 0])}
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where F depends only on o and zg, 21 -
A combination of (2.21) and Remark 2.10 implies
[71’0]) S f(||77||Hs+% )”'f”H%

provided s > % + %. With the aid of Proposition 2.11, we prove the following
identity, which will be used later in the proof of blow-up criteria.

”vz,zU”X—%(

PROPOSITION 2.12. — Lets > 1 + g. Assume that n € H*V2 and f € H?.
Then ¢ € H2(Q3h/4) and the following identity holds

/ SO = IVaydla -
Rd

Proof. — We first recall from the construction in Subsection 2.1 that ¢ =
u + f, where f is defined by (2.4) and v € H'°(Q) is the unique solution of
(2.6). By the Poincaré inequality of Lemma 2.2 and (2.6), (2.5)

lullz2n) < ClVayullz@) < KA+ [nllwe=)IfIl 3 -

Therefore, ¢ € L?(Q4) and thus, by (2.8), ¢ € H(Q4). Now, applying Propo-
sition 2.11 we have that v = ¢(z, p(z, z)) satisfies for any z; € (—1,0)

I|Vm,zv||L2([Z1,0];H1) < ‘7:(||77||Hs+%)||f”H%~
Then using Equation (2.13) together with the product rules one can prove that
1020l 22 (e o2y < FCll o)A 5.
By a change of variables we obtain V, ,¢ € H'(Q3),/4) and thus ¢ € H*(Qs3p,/4).
Now, taking ¢ = u € H9(Q) in the variational Equation (2.6) gives

/ vz,z¢vz,zu =0.
Q
Consequently

/ IVayo|* = / |Veyo|® — / ViV u = / Vay®Vayf.
Q Q Q Q
Since f =0 in Q\ Qy,/5, this implies

/ |vx,y¢|2 :/ vm,y¢vz,yi
Q Q3n/a

We have proved that in 3,4, the harmonic function ¢ is H 2. Notice in
addition that ¢ = 0 near {y = 7—3h/4}. As 8Qgy,,4 is Lipschitz (n € H'*5+ C
W) an integration by parts then yields

J Vet = [ o= [ rcr

which is the desired identity. ]
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The next proposition is an impovement of Proposition 2.11 in the sense
that it gives tame estimates with respect to the highest derivatives of n and f,
provided V, ;v € LPLY.

PROPOSITION 2.13 (see [23, Proposition 2.12]). — Let s > % + %, —% <0<
s — % Assume that n € HS+%, fe HH and
vz,zv € LOO([ZO,O],LOO)

for some zy € (—1,0). Then for any z1 € (2,0) and € € (0,5 — 3 — 2), there
exists an increasing function F depending only on s, 0, zg,€ such that

(2.25)
19220l o oy oy < Fllllgrs) {F N soss + Il ooy 1V 20l 2o 020
HIzetll 4 0}
2.2.2. Besov estimates. — Our goal is to establish regularity results for V, v

in Besov spaces. In particular, we shall need such results in the Zygmund space

with negative index C, %, which is one of the new technical issues compared to
[5, 2, 4, 1, 28]. To this end, we follow the general strategy in [5] by first paralin-
earizing Equation (2.13) and then factorizing this second order elliptic operator
into the product of a forward and a backward parabolic operator. The study

1
of Vv in C, * will make use of the maximum principle in Proposition 2.5.
The proof of the next lemma is straightforward.

LEMMA 2.14. — Set
(2.26) Riv=(a—To)Azv+ (B8—Tp)-VO,v— (y—T,)0,v, Rov=7T,0,v.

Consider two symbols

oV = %( —if-€—\/dal¢ - (8- £)?),
(2.27)

AV = L(—ipgt \1aleP - (8- ),
which satisfy a + A = —if3 - £, aA = —a|€|?. Neat, set
(2.28) Ry = —(T,00Tac) — Tal) + Ty 40).
Then we have

Lv= (8z — Tau))(@z — TA(1))U + Riv + Ryv + R3v.

The next proposition provides a regularity bootstrap for V. .v in By, ; with
r > 0. Its proof is inspired by that of Proposition 4.9 in [28].
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PROPOSITION 2.15. — Let g > 0 and r € [0,1 + &¢). Assume that n €
C2teonL2, fe H:, Vfe B, and for some z € (—1,0)

(2.29) Va.v € L% ([20,00; BLo 2) N L ([20,00; B, ;)

Then, for any z1 € (20,0), we have V, .v € C([21,0]; B, ;) and

(2.30) IVazvllee 0Bz ) Sk IVl + EM, f),

where, K, ., is a constant of the form
(2.31) Flnllgzseo + lnlzz)

with F : RT — RT nondecreasing.

REMARK 2.16. — It is important for later applications that our estimate in-
volves only the Besov norm of V f and not f itself.

Proposition 2.15 is a conditional regularity result. It assumes weaker regu-
larities of Vv to derive the regularity in C([21,0]; BS, ;). The later will allow
us to estimate the trace Vm,zv|220 in the same space.

Proof. — Recall the definitions of R; j = 1,2,3 in Lemma 2.14. Pick € > 0
such that 2e < min {%, 1+¢e9 —r}. We shall frequently use the following fact:
for all s € R and for all § > 0, there exists C' > 0 such that

c: < lullss, , < Cllul

00,1 —

(2.32) Sl

Ci+5 .

1
Step 1. — In this step, we estimate R;v in L?(J; B;f) for any J C [-1,0].
For R; we write using the Bony decomposition

(@ = To)Azv =Ta v+ R(ALv, ).
Applying (6.28) and the assumption (2.29) (i) gives

”TAmva”EQBT—% S ”a” r+%+s||AzU||Zooc;1*5 N Kn,ao”VmU“EooB;flv
00,1 ’

0,1

2B
where we have used the facts that 7+ § +2e < 3 4+ ¢ and (by (2.17))

||0‘||E2Br+1%+e S ||a||ZZC:+%+2e S Kieo-
o,

Next, noticing that (3 +&) + (-1 —¢)>0and 3+ —1—c>r— 3, we
obtain by using (6.29)

IR0l ooy S ol g 1Az e S Koo Vel s,
- *

L2c
The term (8 —Tg) - V40,v can be treated in the same way. Lastly, it holds that

1To.l, o3 S, s l00l e S Ko 1920l o e,
0,1 oco,1 s
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and

1RO, 3 ST, yseo 1920 e e, S Ko 1901 e e,
00,1 * ’ ’

Gathering the above estimates leads to

||R1U||Z2(J-BT—% gKn’so||Vz,zv||Zoo(J;B°_oEl)'
iBoo,1 7

On the other hand, Rov satisfies (using (6.28))

[Rovll, o1 = [ITy0:0]|

Y
L2(1;B 2 L2(J1;B. 2

00,1

< Ilzay. gy I0:0] ,

S anso”az”HEw(J

ol o1
L (5B, ¢ iBoo 1)

which is finite due to the assumption (2.29).
Next, noticing that (see Notation 6.9)

Mi(@V) + Mi(AD) + M5 (0:4W) S K,
we can apply Lemma 6.18 to deduce that Rj3 is of order 1 and
[ Rsvl < |[Rsv| S Kneoll Vvl

1 < Y 1 .
L2(J;BL 2 L (J;B 2 = (J;B., 2
In view of Lemma 2.14, we have proved that

(62 — Ta(1))(8z — TA(U)U =F

with
F|_ 1 < V|- 1 .
| ”L“’(J;B;,,lé ey Vs ”L°°(J:Bw,§ NB)
Step 2. — Fix —1 < zg < 21 < 0 and introduce k a cut-off function satisfying
K| =0, K| = 1. Setting w = k(2)(0, — T4y )v, then
2<z0 2>z

(0, — T,o))w =G := k(2)F + £'(2)(0, — Ta))v.
As w| = 0, applying Theorem 6.21 yields for sufficiently large § > 0 to be
Z=Z0
chosen, that w € C([20,0]; BS, ;) and

N F
lwlle(z,0az 1) S [16(2) ||Z2([Z070];B:;1%

!
|x"(2)(9. — TA(I))v”ZZ([zo,O];B;_I%) + ||w||Lw([ZO’O];C;TO),

Choosing ro > ¢ and using (2.32) we deduce

g ) < v .
lwllezo.0:Bz, 1) Sk | ”’“’”Zm([zo,o];B;‘me;fn

Now, on [z1, 0], v satisfies

(0: = Ta)Vav = Vw + Ty, a0, vﬂﬂv|z=0 =V
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After changing z — —z, Theorem 6.21 gives for sufficiently large § > 0
(2.33)
IVavlloweossz, ) Skaeo IVFlBL , + IVOlzo0 2y 00821

+ Ty, A(l)U”ZOO([zl,O]-BT’}) + I Vel goo (121 01507

Vflsr Vi v 5 .
L\ P | A S T
Then, from the equation 0,v = w + Ty v we see that d,v € C([21,0]; B, ;)
with norm bounded by the right-hand side of (2.33). We split

V2201l o
> ([z0,01;BL, ZNB",)
into two norms, one is over [zg,z;] and the other is over [z1,0]. The one
over [zg, z1] can be bounded by ||f||H% using the estimate (2.8). Indeed, the
fluid domain corresponding to [z, z1] belongs to the interior of €, where ¢ is
analytic, and thus the result follows from the standard elliptic theory (see for
instance the proof of Lemma 2.9, [2]) On the other hand, by choosing a large
0 > 0 and interpolating between Boo 1 and B7_ ;, the term

0,1

||vxz ||Z 2 e
2 ([21,0]; B NB_ 1)

appearing on the right-hand side of (2.33), can be absorbed by ||Vm,zv||zm([z1 0iBr. )
on the left-hand side leaving a term bounded by ||Vx7zv||zoo([z1’0];3751). Fi-

nally, choosing § > ¢ + 5, we conclude by (2.32), Sobolev’s embedding and
(2.19)-(2.20) that

”v‘r Zv”l,oo(zl, ] ~ ||vz z ||L°°([z 0] Hﬁf) ~ KT]uEOE(n’f)' D

COROLLARY 2.17. — Lets > 3+ 4, g5 € (0,s— 3 — £) and r € [0, 1—1—50)
Assume that n € H*% and fe HS Vf € B, 1. Then for any z € (=1,0), w
have Vv € C([z,0]; BL, ;) and

IVa,vlleqoibr, ) Skye VB, + E@, £)-

Proof. — Under the assumptions on the Sobolev regularity of  and f, we can
apply Proposition 2.11 in conjunction with (2.21) to get for any z € (—1,0),

Vo0 € C([2, 01 H*Y) < C([2,01; C2T°) < C([2,0]; B2 ).

1
Notice that n € H5"2 < €2+ and Vf € H*"! — B2, ;. Then the bootstrap
provided by Proposition 2.15 concludes the proof. (]

—1 we first establish an a priori estimate.

Considering the case r = —3,
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PROPOSITION 2.18 — Assume that n € C?T¢0 N L? for some g9 > 0, and
1
feL>® vfel, 3 L IfV, v e C([2,0);C 2) for some z € (—1,0) then

(2.34) ||Vz,zvllc([ et SKae ||Vf|| -1 T EM,f).

Proof. — We follow the proof of Proposition 2.17. The first step consists in
estimating R;v in L2C;'. Fix 0 < ¢ < min{,&0}. For Ryv, a typical term
can be treated as

(@ = To)Asvlgarerny Slall L, gven 1A g
S Kpe Vvl ) ger
On the other hand, Rov satisfies
||R2v||L2(J oy N ||’Y||~2(JC’2+E)” % ||~Oo(JC 2+s) S Ko 02 v||~ (ch—fs)

Since R3 is of order 1 with norm bounded by K, ., it holds that
||R3U||L2(J oY N K, eOHVzUHEoo(J;C;ly
Consequently, we obtain
(0: = To)(0: = Tam)v=F
with
1Pz S KneollVazvl_

e .

> (J;Cy ¥ )
Now, arguing as in the proof of Proposition 2.17, one concludes the proof
by applying twice Theorem 6.21, then interpolating ||V zv||~ ot between

IV, zv||~ o} and ||V 20| With large 6 > 0, Where the later can be
controlled by E(n; f) via Sobolev’s embedding. O

Next, we prove a regularity result, assuming 1/2 more derivative of 7.
5
PROPOSITION 2.19. — Assume that n € Cf+£0 N L? for some g9 > 0, and

feL®nNH: Vf € C;%. Then, for any z € (—1,0) we have V, v €
_1
C([2,0];Cx 2) and

(235) [ Va0l < Koy {19y (@ ) T |-

C([2,01;C

Proof. — We still follow the proof of Proposition 2.17. The first step consists
in estimating R;v in L2C; 1. For Ryv, a typical term can be treated as

[[(e — Ta)AwU”ZnJ;o;l S ||a||z2(J;Cf+EO)||A$’U||Z°°(J;C:2)
=3 SRR T AT —
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On the other hand, Ryv satisfies

||R2U||Z2(J;c;1) S ||’Y||Z2(J;Loo)||6zv||ioo(J;c;1) S KT]aEOHaZU”ZOO(J;C*_I)'
Since R3 is of order 1 with norm bounded by K, ., it holds that

||R3'U||Z2(J;c;1) S Kn,so”Vzv”Zoo(J;c;l)'

Consequently, we obtain
(0: = To)(0: = Tam)v=F
with
||F||Z2(J;c;1) S Ky e (1 + ||77||C*g+so)”Vx,zU”Zoo(J;c;l)-

Then, arguing as in the proof of Proposition 2.17, one concludes the proof by
applying twice Theorem 6.21: once with ¢ = 2, § > 1 and once with ¢ = 1 and
6 = 1 so that Proposition 2.5 can be invoked to have

IV a0l ity Sty 1. =

2.3. Estimates for the Dirichlet-Neumann operator. — We now apply the ellip-
tic estimates in the previous subsection to study the continuity of the Dirichlet-
Neumann operator. Put

_ 14 |Vep/”
0.p
By the Definition (2.7), the Dirichlet-Neumann operator is given by
Gn)f=¢dv—C- Ve
=h7'0v + (G —h7)0v = G Vay|__,

Cl , G = pr-

(2.36)

where v is the solution to (2.1).

PRrROPOSITION 2.20. — Let s > % + %, RS H"2 and f € H°. Then we have

(237) GOl ges Satyey Wl + sy {I9F s, + B, )}

Proof — Notice first that by the Sobolev embedding, n € C2*¢0. Using the
Formula (2.36) and the tame estimate (6.21) we obtain

ICO)Flare1  Keol V]l + Il

Under the hypotheses, Corollary 2.17 is applicable with r = 0. Hence, in view
of (2.32), it holds that

Vze (-1,0), [Vanvloogsopne ) Sk VS50, + B, ):

Noticing embedding ngl — L°°, we deduce

IGO s Sy g Wl + Wl oy {19 Fllse, + B, D}

Valc,z'U|Z:O||L°°~
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which is the desired estimate. O

PROPOSITION 2.21. — We have the following estimates for the Dirichlet-Neu-
mann operator in Zygmund spaces.

1. Let s > 2 +2,Eo€(0s s
77€HS+2 and f € H°, Vf e Bl .
(2.38) IG B, , Sy IVFliBz,, + E(0, f),
where recall that K, ., is defined by (2.31).

5 _1
2. Let g > 0. Assume that n € C*2+€°, feL® NH? and Vfedl?,
then

(2.39) NG -3 Sirey IVl -3 + (1+ ||U||C§+so)||f||Lm-
3. Let eg > 0. Assume that n € C2t5o N H*5+ and f € Hit:, Vf €
C, 2, then
(2.40) G -y Sreg IVF -4 + E 0, f).

— %) and r € (0,1 +¢eg). Assume that
Then we have

Proof. — We first notice that ||Cj| ||Cl+sg S Ky eo-

1. Using the Bony decomposition | for the right-hand side of (2.36), we see
that (2.38) is a consequence of Corollary 2.17, (6.25), (6.26) and the embedding
B, — L™.

2. For (2.39) one applies the product rule (6.22) and Proposition 2.19.

3. For (2.40) we first remark that owing to Proposition 2.11, the assumptions
neHYet, fe Hits imply

€ (_130), vz,z'UGC([Z,O],H_%—F%)c_)c([z’o],cgé)

Therefore, the a priori estimate of Proposition 2.18 yields

Vvl oty S0y 113 + G5
which, combined with (6.22), concludes the proof. |

To conclude this section, let us recall the following result on the shape de-
rivative of the Dirichlet-Neumann operator.

THEOREM 2.22 (see [18, Theorem 3.21]). — Lets > 2 +%, d > 1 and< € H3.
Then the map

G()p: H'2 — H?
is differentiable and for any fe Hs'*'%,
nGn)Y - f = lim — ( (n+ef)y —Gm)f) = —Gn)(Bf) — div(V f)
where B and V' are functwns of (n,v) as in (1.8).
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3. Paralinearization and symmetrization of the system

Throughout this section, we assume that (n,) is a solution to (1.7) on a
time interval I = [0,7] and

n € L®(I; HV ) n LN(I; 0275,
¢ € L™®(I;H%), V1 € LY (I; BL, 1)
(3.1)

>3+d >0
S> =4 -6
2 "¢

inf dist(n(¢),T") > h .
inf dist(y(t),I') > h > 0
We fix from now on
. 1
0 < & < min{e,, 5}
and define the quantities

A= |Inllgzees + Il + IVatllpe, , + E,9),

3.2
32 B=lall e, +Vatllm, +1.
Our goal is to derive estimates for (7, ) in L°(I; H*tz x H®) by means of A
and B and keep them linear in B.

3.1. Paralinearization of the Dirichlet-Neumann operator. — Our goal is to ob-
tain error estimates for G(n)1 when expanding it in paradifferential operators.
More precisely, as in Proposition 3.14, [2], we will need such expansion in terms
of the first two symbols defined by

AV = /(1 + (VP [ — (V- )2,

(3.3) 2

1+ |Vn| ) )

A0 = ECOR [dlv(a(l)Vn) + 285)\(1) Vo
with
1
(1) . (O 4+ vy
o’ iVn - §).
L+|vnl* :

Set A := A1) 4+ X,
To study G(n)y, we reconsider the elliptic problem (2.1), i.e.,
(3.4) Apyd=0mQ, ¢|_ =v, 00|, =0.
Let
v(z,2) = ¢(z,p(z,2) (2,2) € S =R x (~1,0)

as in Section 2.2. Then, by (2.13), v satisfies Lv = 0 in S. Applying Propo-
sition 2.13 with ¢ = s — 1 and Corollary 2.17 with » = 0 we obtain for any
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z € (—1,0)

IVae0ll s gy S 10l + Il sy {1V %150, + B )}

Sallollas + inl
On the other hand, Corollary 2.17 with r = 1 yields for any z € (—1,0)
(3.6) IVazvlleqsos ) SallVYlle , + EM, f) SaB.

LEMMA 3.1. — We have

(3.5)

HS

821; +ToAyv +T3-V,0,v —T,0,v —Tp vy = Fi,
where, for all I € (—1,0], Fy satisfies

1Flyory gy St BN vy + bl |-

Proof. — From Equation (2.13) and the Bony decomposition, we see that
Fi = —Riv=—(a—Ty)Ayw— (8—T5) - VOv+ R(v,0,v).

Writing (@ — Tp)Azv = (@ — h? — Ty_p2)Azv + (h? — Ty2)A,v, we estimate
using (3.6)

(e = B = Ta_p2) Aol p2ps S |1 Ta,o( — 1)\ p2pr + |R(Ta, 0, — B?) | L2
S 1Azl e Lo | (@ = 1) L2 s
Sa Blln|
Since (h? — T},2) is a smoothing operator, there holds by Remark 2.10

I(h? = Th2)Agvll e S IVavllrzrz S (L4 lInlwre)ll9ll, 3 Sa 9

HFS

He
The other terms of F; can be treated similarly. O
The next step consists in studying the paradifferential equation satisfied by
the good-unknown (see [5] and the reference therein)
0,v

0:p

Notice that b|2:O = B. Estimates for b is now provided.

u:=v—Typ withb:=

LEMMA 3.2. — For any I € (—1,0], we have

(3.7) 16| oo (15200 Sa 1,
(38) ||Vz’zb||Loo(I;Loo) 5A B,
(3.9) ”Vi,zb”Lw(I;C:l) Sa B.
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Proof. — We first recall the lower bound (2.11)

(3.10) B.p > g

Observe that with respect to the L*°-norm in z, p and n have the same Zygmund
regularity, hence

(3.11) IV2 ol iz + 192 ool e ricmtreny S 1
Next, applying Corollary 2.17 with r = 0 yields

(3.12) IVa2vlleuse, ) Sal.

On the other hand, recall from (3.6) that

(3.13) ”vI,ZUHC(I;BéQ,I) Sa B.

Using Equation (2.13), 02v can be expressed in terms of (a,f3,v) and
(Apv,V30,v,0,v). It then follows from (3.13), (3.11) and Lemma 6.16 that

(3.14) l020lleqrmn ) Sa B
Let us now consider

v = —al,0,v — 0,0l v — B - V020 — 3,8 - V0,0 + v02v + 0,70, v.
We notice the following bounds

”820‘” 1) + ||8zﬂ||

o} 100y Sal,

1 _1
C(I;02) C(I;Cy ?)

which can be proved along the same lines as the proof of (2.17).
Then using the above estimates and (6.22) one can derive

(3.15) 1820l ¢r,071y Sa B-

The estimates (3.7), (3.8), (3.9) are consequences of the above estimates and
the Leibniz rule. g

LEMMA 3.3. — We have

Pu := 8§u + T Azu+Tg-Vy0,u —T,0,u = Fs,

)

REMARK 3.4. — Compared with the equation satisfied by v in Lemma 3.1,
the introduction of the good-unknown u helps eliminate the bad term Tj_,7,
which is not controlled in L2H®.

where, for all I € (—1,0], F» satisfies

1Pl qrsmsy Sa B{Inll ey + 9]
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Proof. — We will write A ~ B if

1A = Bllzaqmy Sa B{lInl
From Lemma 3.1, we see that
(3.16) Pu=Pv—PLyp=Ts,y— Plp+ F,

and Fy ~ 0. Therefore, it suffices to prove that PTyp ~ T,0,v.
In the expression of PTyp, we observe that owing to Lemma 3.2, all the
terms containing p and V, ,p are ~ 0, hence

(3.17) PTyp ~ Ty02p + ToTyAp + T - TyV O, p.

Next, we find an elliptic equation satisfied by p. Remark that w(z,y) :=
y is a harmonic function in Q. Then, under the change of variables (z,z) —
(z,p(z,2)), (z,2) € S = R% x (—1,0),

w(x,z) = w(z,p(x, 2)) = p(, 2)

ey + Il )

satisfies
Lp= 02+ al, + B V30, —79.)p=0.
Then, by paralinearizing as in Lemma 3.1 we obtain
02p + Talop +Tp - Vadap — To.py ~ 0,
where we have used the fact that 7),0,p ~ 0. Consequently,
Ty02p + TyToDyp + ToTp - Vi0.p — TyTo. v ~ 0.
Comparing with (3.17) leads to
PTyp ~ [To, Ts) Ap + [T, Ty|VO.p + ToTs. .
By Lemma 3.2, it is easy to check that [T}, T3] is of order —1 and
[T T8l 21t St Bl Aaplzzss Sa Bllnl

In other words, [Ty, Tp]Ap ~ 0.
By the same argument, we get [Tz, T3|V0,p ~ 0. Finally, since

H S

TvTo, 07 ~ Tvo, oy = To,0Y
we conclude that PTyp ~ T,0,v. O

Next, in the spirit of Lemma 2.14, we factorize P into two parabolic opera-
tors.

LEMMA 3.5. — Define
1
©_— = (i8ea® @) _ ~q
= . (z@ga 0 A va ),
1

o_- -
AT = al) — A1)

(i0caM o, AW — 7aM)
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so that

(3.18) a4+ AD = —ig.e, aWAW = _g|¢2

Seta=a® +a® A=A 4 A gnd R =T,T4 — To,A. Then we have
=(0: —Ta)(0: —Ta) + R

and for any I € (—1,0],

| Rull ey Sa Bl ey + 10l }
Proof. — From the definitions of a, A, we can check that

1
VAW + =0ca™ - 9, AW + oA + a0 AW = —a ¢ %,
a+A=—if-E+n.

(3.19)

A direct computation shows that
R=(T,Ta—T,A)+ ((To+Ta)+(Tp-V—-T,))0. =T,Ta — T, A
by the second equation of (3.19). Now, we write
T.Ta =T,y Ta + Toy Tao) + Too Tac) + Too Th -
We have the following bounds

My(@) + MY(AD) S F(Inllgze) 0+ ] g),
M3 (@) + MY (AD) < F(nlcz-),
MG (@) + MY(A®) S F(lnllze )L+ ll]_g),
M(09) + MY(A®) S F(lnllgz-).

Then, applying Theorem 6.5 (ii) we obtain

1To0 Taor = To a0 | yu-3 o S5

(3.20) 1T Tacy = Ta 4 ||H}L+%_)HH SE,
||Ta<1>TA(0> - Ta(1>A(0) ||Hu+%_>HH 5 =,

ITew Tac) = Taw a0 = Trpam.o, a0l yusy  yu S5

where Z denotes any constant of the form
Flnll gz+<) (1 + ||77||C*g)-

Therefore, the first equation of (3.19) implies

| Rull s S BVl oy
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where, we have replaced ||ul| by [|Vzull 1 according to Remark 6.8.

L2HS L2H* %
Finally, writing V,u = Vv — Ty, pp — TpVp we conclude by means of (3.5)
and (3.7) that

(3.:21) IVaull ey Sa BN + 1l ey } - 0

PROPOSITION 3.6. — It holds that

Gy =Tr(¢ —Tpn) +Tv - Vn+ F

with F' satisfying

I1E|

ey Sa BLIw e + Il ey}

Proof. — A combination of Lemma 3.3 and Lemma 3.5 yields
(0, —Tu)(0, — Ta)u = Fy,

where, F; satisfies for all T € (—1,0],

(3.22) 1Pl qrsnsy Sa B Il + Il vy } -
The proof proceeds in two steps.

Step 1. — As in the proof of Proposition 2.30, we fix —1 < 29 < 23 < 0
and introduce k a cut-off function satisfying Kl = 0, K| = 1. Setting
0

2>z
w = k(2)(0; — Ta)u, then '
(0, — To)w = G := k(2)Fou + £/'(2) (0, — Ta)u.
We now bound G in L?([29,0]; H®). First, it follows directly from (3.22) that

(3.23)
H”é} =:1I.

15(2) Foul
Next, notice that p := x’(2)(0,—T4)u is non vanishing only for z € I := [z, #1].
In the light of Lemma 3.2,

et oy S R RUllLa i) Sa B{ 1l + ]

IVazullL2@ms) Sa Blnll ey + 1Va,z0llL2(1m9)-
Hence

1002 — Ta)ullp2(r;m5) Sa Va2l L2 ;m5 Sa Bllnll + IV 20l L2 (1,115 -

H S
The fluid domain corresponds to [z, z1] is a strip lying in the interior of Q,

where the harmonic function ¢ is smooth by the standard elliptic theory. In
particular, there holds (see for instance the proof of Lemma 2.9, [2])

||vm,zU||L2(I;HS) SA ||¢||H% .
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Therefore, we can estimate

Il 22 (120,005 15) S (02 — Ta)ull L2 (20,211 1)
SaBlnll ey + IVa 20l L2 (20,0019

Sa Bl oy + 110l } -

This, combined with (3.23) , yields

(3:24) 1G ety oy o S BN + 1l oy J = TL
Consequently, as w| = 0, we can apply Theorem 6.20 to have
z=2z¢
. < =R
||1U||Xs+§([20’0]) < I, which implies
_ . <
(3.25) 10-u TAU”XS*E([zl,O]) ~

Step 2. — We will write f; ~ fy provided |f1 _f2||XS+%([z ol <

paralinearizing (using the Bony decomposition and Theorem 6.12) we have

By

1+ Vol
8|’f)|azv = Vp- Vo~ T o2 0,v + 2Tpr -Vp - Tb1+|Vp\2 0.p— TVp Vv =Ty, - Vp.
z 0zp 9,p

Then replacing v with u + T,p we obtain, after some computations, that

1+|Vpf?
——0,v=Vp - Vo~T v,20,u — Ty, - Vu+Tyy,—ve - Vp.
0.p 9zp

Now, using (3.25) allows us to replace the normal derivative 0,v with the
“tangential derivative” T4v, leaving a remainder which is ~ 0. Therefore,

Tiyvp20:u— Ty, - Vu~Tpau+Tyv,—vy - Vp

dzp
with
14|V

A 9.,

A—iVp-¢&.

One can check that A|z70 = A= A1 4+ X as announced. On the other hand,
at z =0, B

bVp—-Vuv=BVn-Vy=V, u=v¢—Tgn.
In conclusion, we have proved that
Gy ~Ta(y —Tpn) +Tv - Vn. U
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3.2. Paralinearization of the full system

LEMMA 3.7. — There exists a nondecreasing function F such that
H(n)=Tm+ f,

where £ = £ 4+ ¢ with

1 2 .

V- §) )

3.26) (@ = (14 |Vyf*) ° .52—(7 ;D = (8, 9,
(3.26) (1+1907) 7 (Iel g 50, - 3)
and f € H® satisfying

1 s < Z Cllnllyr.co) nll g V720 ey

Proof. — We first apply Theorem 6.12 with u = Vn, u=s— % and p = % to
have

Vn 1 Vn® Vn

Nt AR I-

(L+Vnl2)z (1+|Vn?)3
with f; satisfying

£l oy vy < FUVAllLe) V]

IVl e-s -

Hence,
H(n) = —div(T,Vn + f1) = Tpe.c—idivpen — div fi1.
This gives the conclusion with [® = p¢ - ¢, IV = —idivpe, f=—divf,. O

We next paralinearize the other nonlinear terms. Recall the notations

g V- Vo+ Gy

, V=V¢— BV
1+ |Vn|?
For later estimates on B, we write
Vn 1
B=—1 5. V§+ —— Gy
(3.27) 1+ |Vn)? 1+ |V

=: K(Vn) -V + L(Vn)G(n)y + Gn)y,

where K and L are smooth function in L>°(R?) and satisfy K(0) = L(0) = 0.
From this expression and the Bony decomposition, one can easily prove the
following.

LEMMA 3.8. — We have
(3.28) I(V,B)llpy,, Sa B,
(3.29) [(V,B)||lL Sal.
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LEMMA 3.9. — We have

1(Vn- Vi + Gn)y)?
2 1+ |V

with f € H® and

1
5|v¢|2— =Ty -V —TyTs - Vg — TeG(n)Y + f,

£l e Sa BLUInllers + 190z} -
Proof. — Consider

1 (ab 2
F(a,b,c)zfu, (a,b,¢) € R x R? x R.
2 1+a
We compute
aaF:(ab+c2) b—(ab+c2)a , 8bF:(ab+c2)a, CF:(“HCQ).
1+ |a] 1+ |a] 1+ |a] 1+ |al

Taking a = Vn, b = Vi), and ¢ = G(n)y gives
8.,F = BV, 8,F =BVn, 8.F=B.
The estimate (2.38) with r = 0 gives
l[(@,b,¢)llLoe Sa 1.

Next, Proposition 2.20 implies

1(a; b, )l -1 SalInll ory + 191
On the other hand, the estimate (2.38) with » = 1 implies
I(a,b,¢)[[c: <a B.
Using the above estimates, we can apply Theorem 6.12 with p = 1 to have
1(Vn-Vy - Gmy)® _
2 1+ |Vl

Hs-

Tvp-Vn+Tpvy -V +TeGn)Y + f1,
with
1l Sa B{ Il

).
By the same theorem, there holds

1
5 VoI = Ty - Vi + fo, | foll oo Sa B9 . -

At last, we deduce from Theorem 6.5 (ii) (with m =m’ =0, p = 3) and the
estimates for (B,V) in Lemma 3.8 that

s+l

(Tev —TvTp) - Vil o1y Sa BVl .-y
A combination of the above paralinearizations concludes the proof. |
LEMMA 3.10. — We have
1To, 50l g Sa Bllnl .o -
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Proof. — Applying the paraproduct rule (6.16) gives
ITocmnl g < 10:BIl - 17l

The proof thus boils down to showing ||8tB|| ~1 Sa B. By Theorem 2.22 for
the shape derivative of the Dirichlet- Neumann we have
0y [G()Y] = G(n)(0ep — BOyn) — div(Vym).

From the formulas of V, B and the definition of G(n), the water waves system
(1.7) can be rewritten as

on=B-V-Vn,

T2

3.30 1 1
(3:0) O ==V -V —gn+  V?+  B*+ H(n).

We first estimate using Lemma 3.8 and (6.21

)
ldiv(Vom)ll -y SIVE=VV-Vn) 3 SIVB-VV-Vn)lley SaB.

* ol

c
Similarly, we get

||3t1/1 - Bat77||L°° Sa, ||3t’¢ - BathC} Sa B.
Consequently, the estimate (2.39) yields

1G(n) (0 — Bc?m)llc_% Sa B,

from which we conclude the proof. Remark that the estimate (2.40) is not
applicable to G(n)(0;y — Bdyn) since under the assumption (3.1) we only have
Ay — Boyn € Het (due to the bad term H(n)) and not Hz T2+, O

We now have all the ingredients needed to paralinearize (1.7).

PROPOSITION 3.11. — There ezists a nondecreasing function F such that with
U := 1 — Tpn there holds

{am+TV -Vn—ThU =1,

3.31
(3.31) OU + Ty - VU + Top =fo,

with (f1, f2) satisfying
1 )l gy s g 54 BN s + 1l sy -

Proof. — The first equation is an immediate consequence of the equation
O = G(n)Y and Proposition 3.6. For the second one, we use the second
equation of (1.7) and Lemmas 3.7, 3.9 to get

Oy — TGy +Tv(VY —Tp - Vn) +Tin =R
with
1Rl e Sa B{ 1l + Il ey } -
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Next, differentiating U with respect to t yields
U = 0pp — Tpdyn — To,pn = Oyp — TpG () — To, BN,

where the H*-norm of Ty, gn is controlled by means of Lemma 3.10.
On the other hand,

V’l/) - TBVU =VU + TVBT]
and by (3.28)

ITvTBnll g SallTvsnllgs Sa IVBIl g 0l g: Sa Blinlla:-
The proof is complete. O

3.3. Symmetrization of the system. — As in [2| we shall deal with a class of
symbols having a special structure that we recall here .

DEFINITION 3.12. — Given m € R, ¥™ denotes the class of symbols a of the
form a = a™ + a(™=1D with

o™ (z,€) = F(Vn(z),£), o™ (z,&) = Y Fu(Vn(x),§)0n(z)
|a|=2
such that

1. T, maps real-valued functions to real-valued functions;
2. F is a C™ real-valued function of (¢,€) € RY x R%\ {0}, homogeneous
of order m in &, and there exists a function K = K({) > 0 such that

F((,9) > KQE™, V(¢ eR xR\ {0}

3. the Fys are complez-valued functions of (¢,€) € R? x R\ {0}, homo-
geneous of order m — 1 in €.

In what follows, we often need an estimate for v from 7T,u. For this purpose,
we prove the next proposition.

PrOPOSITION 3.13. — Let m, u, M € R. Then, for all a € ¥™, there exists
a nondecreasing function F such that

(3.32) lullgoer < F(lnlles) (Tl e + el r-2e)
(3.33) ullgzem < Flnlics) (| ).

here F depends only on m, u, M and the functions F, F, given in Defini-
tion 8.12 of the class ¥X™.

REMARK 3.14. — The same result was proved in Proposition 4.6 of [2] where
the constant in the right hand side reads F(||[n(t)| g=—1), s > 2+ &.
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Proof. — We give the proof for (3.32), the proof for (3.33) follows similarly.
We write a = a™) + a(™~1. Set b = ﬁ Applying Theorem 6.5 (ii) with
p = € gives Ty T, (m) = I + r where r is of order —e and

(3.34) rull zruve < F(IVnllee) lullae < F ([Inllore) [lull g
Then, setting R = —r — 1T, (m-1) we have
(3.35) (I — R)u = TpTyu.

Let us consider the symbol a(™~1) having the structure given by Definition 3.12.
Applying (6.22) and (6.24) yields for |a| = 2 and uniformly for || = 1,

1Fa(Vn, )05l cmr+e < 1Fa(Vn, Oller07nllcorve < Flnllc2)-

Similar estimates also hold when taking &-derivatives of F,(Vn,£)05%n. Conse-

quently, a(™~1 ¢ f’ff_:s and thus by Proposition 6.7,

[Tocn-v ull gu-m+e < F(||n|

1
*

c2)llull e
Because b € I';™ with semi-norm bounded by F(||n[|s1+) we get
(3.36) 1Ty Ty m—vull gute < F(lInlle2)lull -
Combining (3.34) with (3.36) yields

| Rul| gru+= < F(|In]

In other words, R is a smoothing operator of order —e. Now, multiplying both
sides of (3.35) by 1+ R+ --- + R" leads to

u— RNy = (1+R+--~+RN)TbTau.
On the one hand, using the fact that R is of order 0, we get
11+ R+ + RN Ty Taul grusm < F(|In]
< F(|nl

On the other hand, that R is of order —e implies
IRN || gru+m < F (|||
Therefore, by choosing N sufficiently large we conclude the proof. O

o2)|ul e

)| ToTaul| grusm

c2)|[Taulln-

c2)|ull gusm-ne.

For the sake of conciseness, we give the following definition.

DEFINITION 3.15. — Let m € R and consider two families of operators of
order m,

{A(t):t€[0,T)}, {B(t):te]0,T]}.
We write A ~ B (in ™) if A— B is of order m—% and the following condition
is fulfilled: for all u € R, there exists a nondecreasing function F such that for
a.e. t€1[0,T],

IA®) = BO,,_ emry < FIn®llc2) (1 + @)1 45 )-
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PROPOSITION 3.16. — For any a € ™ and b € £™, it holds that
T,T, ~ T,
(in S ) with
¢ = amMpm) L qm=1)p(m") 4 (m=1)p(m") 4 laéa(m)axb(m').
i

Proof. — 1. Since the principal symbol a("™ (t) contains only the first order
derivatives of i, applying the nonlinear estimate (6.23) we obtain

$12(a™ (1)) < F(lIn(2) )X+ )l 3 )-
On the other hand,

1a(a™ ) < F(In@)]_y)

*

and
M (a™ (t)) < F(In(®)llr+- ).

2. The subprincipal symbol a(™~1)(t) depends linearly on 0%n ,|a| = 2 and
nonlinearly on V7. Hence a(™~1) € F1/2 and by (6.21) and (6.23) we have

uniformly for |¢] =1,

[1Fa(Vn(t, 2),£)07n(t, m)llc*%

< [Fa(Vn(t, ), ) = Fal0,9105n( )l g + [Fa0, O] 1020 ) 3

< F(In(e)l ) In(e)l 5 -
The same estimates hold when taking &-derivatives, consequently

My D @) < F (Il ) Il g
On the other hand,
Mg (a0 (1) < F(In()llee)-

3. We now write

T,Ty, =T,

a

() Tymry + Tym-1)Tymry + Tyom) Tym—1y + Tym-1)Tyimr -1y
Using 1. and 2., we deduce by virtue of Theorem 6.5 (ii) with p = 3/2 that
||Ta(m)Tb(m/) - Ta('m)b(m’)-i-%aga(m)azb(m’) ||HH_,HM—(m+m'>+%
< Fllln@®llga+e ) (L + In@®)ll 5 )-
The same theorem, applied with p = 1/2, yields
T~ Ty = Toim-1pm) |y pru—cmsmnrs s < F(In)llgz ) (1 + [In(t)
1Ty Ty -1y = Tytm—1p0n) | g iz < Flln)llcz ) (1 + ()
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678 T. DE POYFERRE & Q. NGUYEN

Finally, applying Theorem 6.5 (i) leads to
||Ta(m—1>Tb<m’—1) ”HM_)H;L—(WH—M’)-%—? < ]:(Hﬂ(t)ncg )

Putting the above estimates together we conclude that T,T;, ~ T, in ymtm’
a

Using the preceding Proposition, one can easily verify that Proposition 4.8
in [2] is still valid:

PROPOSITION 3.17. — Letqe X9, p e E%, v € i defined by
a=(1+0:n) 2,
p=(1+10:0") "5 VA 4 p-1/2),

@ ReA©®
N = VEIOND + — S (e - 8,) V@AW,

A2 2
where

1
(-1/2) = = [, 0p1) _ (1/2),,(1/2) 4 ;9.~(3/2) g ,(1/2)
D = 67 {q 4 v p + 90y ¥ 0p } .

Then, it holds that
T,T\ ~T,T,, TyTy~T,T,, (Ty)" ~T,.

We are now in position to perform the symmetrization.

PRrROPOSITION 3.18. — Introduce two new unknowns
O =Tpn, P =T,U.

Then &1, &5 € L>([0,T], H®) and

0;®1 + 1Ty - VO — T, 09 = Fy,
{8,:<I>2 +Ty - VO + T, 0y = Fy,

where, there exists a nondecreasing function F independent of n,v such that
for a.e. t €10,T], there holds

(3.38) 1L F2)ll o prs Sa Bl o s + 1ol s g -
H

Proof. — It follows directly from system (3.31) that ®;, ®. satisfy
(3.39) {atcbl + Ty - V&1 — T, %3 = Ty f1 + Topn + [Tv - V, Tpln + Ra,

(3.37)

8Py + Ty - V®y + Ty ®y = Ty fo + To,qU + [Ty - V, T,]U + Ra,

where
Ry = (T,T\ —T,Ty), Ro=—(TqTe—T,T,)n.
Let IT denote the right-hand side of (3.38). According to Proposition 3.17,
[Rallas + |1 Rellms S 1L
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On the other hand, Proposition 3.11 implies
1Tp frllms + |1 Tg foll e < IL

Owing to Lemma 3.8 and the norm estimates for symbols in Proposition 3.16,
the composition rule of Theorem 6.5 (ii) (with p = 1) yields

1T -V, Tolnll e + ITv - V, To)U | g S TL

It remains to prove

”TBWHHH—%_,HS + ||T3eq| Hs—Hs SA B.

To this end, we first recall from the first equation of (3.30) that 9;n = B—V-Vn.
Hence ||0;7]|w1.~ <a B and

ME(0p ) + M3(Big) Sa B,
which, combined with Theorem 6.5 (i), yields
H"'Jr%_,Hs + ||Tatq||Hs_)Hs S_A B

We are thus left with the estimate of || T, ,—1/2 ||
sition 6.7, it suffices to show

(3.40) MZ*(0:0YP) S4B
Recall that p(—1/2) is of the form
p(—1/2) = Z Fa(vnag)agna

lor|=2

1T5, pc1/2 |

R According to Propo-

where the F,, are smooth functions in £ # 0 and homogeneous of order —1/2.
Hence,

oY) = 3 (B Fa(V, 01050+ > FulVi,£)0:08n.

|a|=2 |a]=2
It is easy to see that
1
Mg ? ([0:Fa(Vn, €)]05m) Sal.
For the main term F,,(Vn,&£)0:0%n we use the first equation of (3.30) to have
0109 = 05 (B —VVyn).
Hence
10:0gnll -2 < 1B =V Vanllc: Sa B.
The product rule (6.22) then implies
1
M} (Fa(Vn,€)8:05m) Sa B,
which concludes the proof of (3.40) and hence of the proposition. O
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4. A priori estimates and blow-up criteria

4.1. A priori estimates. — First of all, it follows straightforwardly from Propo-
sition 3.18 that the water waves system can be reduced to a single equation of
a complex-valued unknown as follows.

PROPOSITION 4.1. — Assume that (n,v¢) is a solution to (1.7) and satisfies
(3.1). Let &1, P2 be as in Proposition 3.18, then

& =By + iy = Ty + iT,U

satisfies
(4.1) (0 + Ty -V+iT,)® =F,
(42) 1B S Bl ey + 100}

In order to obtain H? estimate for ®, we shall commute Equation (4.1) with
an elliptic operator p of order s and then perform an L?-energy estimate. Since
73/2) is of order 3/2 > 1, we need to choose p as a function of 4(3/?) as in [2]:

(4.3) p = (/)73

and take ¢ = T,®. To obtain energy estimates in terms of the original vari-
ables 17 and v, it is necessary to link them with this new unknown .

LEMMA 4.2. — We have

(4.4) ol Sallnll ey + 1905
(4.5) il or g + 1l e Sa lloll gz + lInllzz + Il 22
Proof — Recall that p € X%, ¢ € X°, and p € X° since *y(%) € %3. The

estimate (4.4) is then a direct consequence of Theorem 6.5 (i). To prove (4.5)
we apply Proposition 3.13 twice to get

170l vz Sa 1T Tpnll 2 + lInll 22
1Pl e Sa lTeTowll g2 + 1912 -
Clearly, || ToTpn|lL2 < |l¢l 2 , hence
Inll oy Sallellzz + lInllze-
On the other hand,
ITeTall 2 < NTeTyUll > + 1T Ty Tl -
< llellz + 1T T Tanll 2
Sallelle + Il ooy
Sallellpz + lIml 2
This completes the proof of (4.5). a
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PROPOSITION 4.3. — There exists a nondecreasing function F : Rt — Rt
depending only on s,e., h such that for any t € [0,T],
d o
(4.6) 3 1lze < FAB(Inllz + 1912 +llell =) lell 2 -
Proof. — We see from (4.1) that ¢ solves the equation
(4.7) O+ Ty -V+iT)p =T, F+G
where

G =Ts,,® + [Ty - V,T,|® + i[T, T, ] ®.

First, remark that since 0¢ p-9,7®/? = 0¢7v/?.9, 0 we can apply Lemma 3.16
twice: once with m =s, m/ = %, p= % and once with m = %, m =s, p= %
to find

1T, T\ )l o2 Sa B.
On the other hand, Theorem 6.5 (ii) applied with p = 1 gives
I[Tv -V, Tl sz Sa B

Next, we write 0y = L(Vn,£)9;Vn for some smooth function L homogeneous
of order s in £, where by the first equation of (3.30) ||0: V7| L=~ <4 B. Hence

|To,0llms—12 S B.
Putting the above estimates together leads to
1Gll Lz Sa BlI®l g -
On the other hand, Proposition 3.13 applied to u = ®, a = p € X° yields
1]

e Sallellpe +llnllze + 1922

Therefore,
Gl L2 <a Bllell Lz + [1nllz2 + (9] 22)-
On the other hand, (4.2) together with (4.5) implies

(4.8) IToFll e Sa Blllell gz + lInllz2 + llelz2)-
Now, using Theorem 6.5 (iii) and he proof of Lemma 3.16 we easily find that
(4.9) Ty - V) 4+ (Tv - V)*|lL2—12 Sa B.

On the other hand, according to Proposition 3.17, (T;,)* ~ T, so
(4.10) 1(T5) = (T)*lz2—r> Sa B.
Therefore, by an L2-energy estimate for (4.7) we end up with (4.6). O
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PROPOSITION 4.4. — Set W = (n,v), H" = H™ % x H". Then, there ezists a
nondecreasing function F : R™ — R* depending only on s, e, h such that for
a.e. t€[0,T],

W ()3 < F(PHX)[W(0)]

2, + F(P\(1)) / B(r)[W ()2, dr

with
P(t) := sup A(r).
r€[0,t]
Proof. — Integrating (4.6) over [0,¢] and using (4.4)-(4.5), we obtain
(4.11)

2
W @) Sa W@z + el

Sa WOz + 1W(0)] b dr.

2.+ / FAGF)BE)W ()|

Recall the system (3.30) satisfied by W:
on=DB-V-Vn,

1 1
Op ==V -V —gn+ V> + DB+ H(n).
A standard L? estimate for each equation gives

2
Hs -

d
EIIW(t)IIQLsz Sa B|[W(t)]
Hence
t
W (@)Z2xz2 < IW(0)]Z2x 2 +/0 F(A)B(r) W (r) |13 dr.
Plugging this into (4.11) we conclude the proof. a

Let us denote the Sobolev norm and the “Strichartz norm” of the solution
by
Mo’,T = ||(777 ¢)||L°°([O,T];HU+% XH")’
(4.12) Moo = 1 9)|,_ ol yos 3 o o

Ny.r = ”("77v¢)||L1([07T];WT+%><Bl D

We next derive from Proposition 4.3 an a priori estimate for tM, r using the
control of N, r.s
THEOREM 4.5. — Letd > 1, h > 0 and
> 5 + d > 2
s>—+—-, T .
2 2
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Then there emists a nondecreasing function F : RT — R¥ depending only
on (s,r, h,d) such that for all T € [0,1) and all (n,v) solution to (1.7) with

(n,v) € L= ([0, 7} B x ),

(n, V) € L' (10, T, W4 x BL ),

inf dist(n(¢),I") > h,
nf_dist(n(t).T)

there holds
(413) MST<]:( SO+T~F( ST)+N’I‘T)
Proof. — Pick
1 . 1 3 d
0<5<§m1n{§,r—1,s—§—§}.

By Remark 2.10, E(n,¢) < ‘7:(||77”Ci+5)||¢||H%' Therefore, by applying Propo-
sition 4.4 we obtain

T
M.ir < MoK () exp (K(T) | (o voon ..., +1)dt>

with

K(T) := f(tifé% (o) Ollgzrec: + 1019 gy)):

Therefore, it suffices to show for all t < T
1) Ol ez s + MDD,y < F(Mag+TM,r).
By Sobolev’s embeddings, this reduces to
I, DO sy e e S F (Moo +TMyr) VET.

Using the Sobolev estimate for the Dirichlet-Neumann in Proposition 2.20 in
conjunction with Remark 2.10 we get

(4.14)
In(t) - ()]s < / 10 g = / 1G]

Consequently, it follows by interpolation that
(4.15)
NI yer 13—« < MO vy + [In(@) = n(O)] oz

< Mo+ [In(t) — n(0) 1% [In(t) — n(0)] L‘sf% 0 € (0,1)
< Mo + T F(M,(T)).

The estimate for |[1(t)| zs—- follows along the same lines using the second
equation of (1.7) (or (3.30)) and interpolation. O

Hs— 1dT<T]:( )
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4.2. Blow-up criteria. — Taking o > 2 + g and
(4.16) (no,%0) € HT2 x H?, dist(no,T) > h > 0,

we know from Theorem 1.1 in [2] that there exists a time T € (0, c0) such that
the Cauchy problem for system (1.7) with initial data (ng,%o) has a unique
solution

() € C (0,7 H"F < 1)

satisfying
h
sup dist(n(¢),I') > —.
+€[0,T] 2
The maximal time of existence T* > 0 then can be defined as
(4.17)

T =T*(ng,v%o,0,h) := sup{T' > 0: the Cauchy problem for (1.7) with
data (1o, o) satisfying (4.16) has a solution (n,) € C([0,T']; H°% x H?)
satisfying [ér%f/]dist(n(t),l“) > 0}.

It should be emphasized that T depends not only on (19, %0) and o but also
on the initial depth h. By the uniqueness statement of Proposition 6.4, [2] (it
is because of this Proposition that we require the separation condition in the
Definition (4.17)) the solution (7, ) is defined for all ¢ < T* and

() € O (0.7 BT x HT)

which will be called the mazimal solution.
We recall the following lemma from [29] (see Lemma 9.20 there).

LEMMA 4.6. — Let p> 1+ g. Then, there exists a constant C' > 0 such that
lullgr, , < C(L+ luller) In (e + [lullFn)
provided the right-hand side is finite.

Proof. — For the sake of completeness, we present the proof of this lemma,
taken from [29]. Given an integer N, we have by the Berstein inequality

N
lellps , = > 2Azulle + Y 2| Ajul

7=0 j>N
<(N+Dullor + Y 270FE=m 201 A .
>N

As1+ % —u < 0, it follows by Holder’s inequality for sequence that there exists
C > independent of N such that

lull g | < (N +Dlluller + 027N E1=8)(|fuf g + e).
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Choosing N ~ In(e + ||ul|g«) so that 2= NV@=1=2)(||lu||gs + €) ~ 1, we obtain
the desired inequality. O

PROPOSITION 4.7. — Letd > 1,h>0,0>2+ %, T >0. Let

(n.4) € C(0, T H* % x H), dnf dist(n(t),T) > h >0

be a solution to (1.7). Fize, € (0,0—3—%). Then there ezists a nondecreasing

function F : Rt — R depending only on (0,4, h,d) such that

M2 < F(P2(t) (M2 + 2¢)e” “7" — 2¢

with
Q(r) :==1+[Vi(r)lcr + [n(r)llgz+e-
P(t) := sup ([In(r)llgz+e- +1IVH(r)llpo, | + H(0)).

rel0,t
Proof. — Recall the definition of A(t):

A) = lInllgz+e- + IV¥llge | + lInllL2 + E(n,9).

Proposition 2.12 tells us

B v®) < [ G,

hence
Inllz> + E(n, ¢) < H(t) = H(0),
‘H(t) being the total energy (1.9) at time ¢. Here, we remark that the conserva-

tion of H follows by proving %H(t) = 0, which can be justified under our the
regularity H®. Therefore, Proposition 4.4 applied with s = o > % + % yields
t
(4.18) W3- < F(P*E)IW(0)ll3- Jrf(Pz(t))/O B(r)|W (r)|[3 dr
with
P2(t) == sup, (In()llgz+e- + 1V ()l ge, | +H(0)).
Next, as Vip € H! with s — 1> 1+ %, we can apply Lemma 4.6 to have

IVl 5, c1)In (e+[[¥)lm-) < C(1+]VYllcr) In (2e+ [l )-
Consequently,

B(r) < C(1+[|Vy(r)]

< C(14|Vy|

,1

cr + ()l gz+e. ) In (2e + [[W (r)[I3-)-
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In view of (4.18), this implies
W (6) 2 < FP2(0)[W(0)]Z0 +
F@%»AMMM%HWMMMWMMAT

with Q(r) := 1+ [|[V¥(7)llc1 + [[n(7)]|o2+<.. Finally, using a Gronwall type
argument as in [8] we conclude that

W (®)I[3- < F(P0)(IW(0) 13 + 2€) exp (eI Jo @dry _9e - [

REMARK 4.8. — Using (4.18) and Grénwall’s lemma we obtain the exponential
bound

t
W (0|3 < F(P())[W(0)13x exp (9”(P2(t))/0 B(r)dr)
provided o > % + % only.
THEOREM 4.9. — Letd >1,h >0, and o > 2+ 4. Let

(0, %0) € H°2 x H, dist(no,T) > h > 0.

Let T* = T*(no,%o,0,h) be the mazimal time of existence defined by (4.17)
and

(4.19) (n,4) € L™ ([o,T*);H<f+% X H")

be the mazimal solution of (1.7) with prescribed data (no, o). If T* is finite,
then for all € > 0, it holds that
) 1
4.20 P.(T* t)dt + —— =
(420) A1)+ [ Qutdt+ s = oo,

where

P.(T*) = sup |[[n()llgz+ + IVY(O)llBo, >
te[0,T*) '

Q:(t) = In®) 3+ + Ve @llcs,
h(T*) = inf dist(n(¢),T).
(T7) soinf | dis (n(?),T)
Consequently, if T* is finite then for alle > 0

(4.21) PY(T™) +/0 QY(t)dt + ﬁ = 400,

where

PX(T) = sup |In(t)llcz+ + I(V, B)(®)ll 5o, ,,

t€[0,T]

Q:(t) = In@®ll 5+ + IV, B)YBlcy-
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Proof. — Suppose that T* < +00 and for some ¢ > 0

K :=P.(T") +/ Q:(t)dt + < +o00.
0

1
h(T*)
Let T € [0,T*) be arbitrary then h(T) > h(T*) > 1/K > 0. Aso >2+ %, it
follows from Proposition 4.7 that

(4.22) Mor < F <Mg,o + H(0) + P.(T) + /T Qa(t)dt> =L
0

for some increasing function F : Rt — R* depending on 1/K. On the other
hand, from the a priori estimate in Proposition 5.2, [2] we deduce that the
existence time for local solutions can be chosen uniformly for data lying in a
bounded subset of H°t2 x H” and satisfy uniformly the separation condition
(Hp). In particular, call T} be the time of existence for data in the ball B(0, L)
of Ht2 x H° whose surface is away from the bottom a distance (at least)
1/K. Choosing n(T* — %) as such a datum we can prolong the solution up to
the time T 4 % This contradicts the maximality of 7% and thus the blow-up
criterion (4.20) is proved.
Finally, (4.21) is a consequence of (4.20) and the facts that

IVellge , < ClIVIgs , +ClBllse I¥nllc-,

(4.23)
IVl , < ClIVIIg , +ClIBllps IVallgse.. O

Now we give the proof of Corollary 1.5 which is stated again for the reader’s
convenience.

COROLLARY 4.10. — Let T € (0,400) and (n,) be a distributional solution
to system (1.7) on the time interval [0,T] such that infjo 1) dist(n(t),T') > 0.
Then the following property holds: if one knows a priori that for some g9 > 0

(4.24) sup [[(n(t), VYOl 54, <400
(0,7 C xC}

)

then (n(0),1(0)) € H>®(R%)? implies that (n,v) € L=(]0,T]; H*(R%))2.

Proof. — Take o > 2—}-% be arbitrary, it suffices to prove that if (n(0),(0)) €
H°*t2 x H? then (n,v) € L>®([0,T]; H°*2 x H?). Since o > 2 + 4. according
to the Cauchy theory in [2] one has a maximal solution

(n,%) € L=(]0,T,); H°*3 x H).

By the uniqueness statement of this Cauchy theory, we only need to show that
T, > T. Suppose that T, < T < 400 we get by applying (4.21) that for all
e>0

su ,VYO)()]| 5. + = 400.
te[o,%,)”(" VO 5+ cor TR
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On the other hand, by our assumption, h(T”) > h(T,) > h(T) > 0 (by the
assumption) for all 7" < T, hence for all ¢ > 0,

sup [|(n, V)OIl g+ =00,
te[0,Ty) o2 xer
which contradicts (4.24). O

5. Contraction of the solution map

Our goal in this section is to prove a contraction estimate for two solutions
to (1.7) in weaker norms. This will be used in the proof of the convergence of
the approximate scheme and in establishing uniqueness for the Cauchy theory
in our companion paper [24]. On the other hand, the proof will make use
of the Strichartz estimate in the same paper. To get started, we have by
straightforward computations the following assertion: (n,%) is a solution to
system (1.7) if and only if

@+7y v +0) (1) = f.0)

with

on e (L)@ (4D mo-(LY(E)

where

) = Gn)y — (Ta(y — Tn) — Ty - Vn),
_ 1 1(Vn- VY + G(n)y)?
+ Ty -V =TTy - Vn — TG(n)y — H(n) + Tyn — gn.

Assume that (91,11) and (72,12) are two solutions of system (1.7) on [0, T
and satisfy

(nss ) € L= ([0, T 3 B*) 0 L7 ([0, T W4 x wree) | j = 1,2

with
3 d
s> 3 + 2 r> 2.
Assume in addition that there exists A > 0 such that
sup dist(n;(t),I) >h j=1,2.
te[0,T]
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Denote for j = 1,2

M}z—,T = (nja Q/Jj)”lloo([o’T];H“Jr% xH)’
(5.3) Mo =107, 8] gl o3 s gy

e AR .
Set
m=m —m2, OYp=11 -1, OdB=B;—By, V=V—-V,
Define the following quantities
Ps(t) = 160l gro—s + 169 @Ol -z »

Py (t) = [|6on®)ll gz + 6% @) -3,
(5.4) c
PS,T = ”PSHLOO([(),T]) » PH,T = ||PS||L}7([O7T]) ,

P(t) = Ps(t) + Py(t), Pr=Psr+ Pur.

NoTATION 5.1. — Throughout this section, we write A < B if there exists a
non-decreasing function F : R* — R such that A < (M}, M?;)B.

5.1. Contraction estimate for f2. — Recall that we consider B, V as functions
of (n,1) defined by (1.8).

LEMMA 5.2. — We have for a.e. t € [0,T)

OB -3 + 10V -5 < P().

1
2

Proof. — Assume the estimate for §B. We have
0V =Véyp — 6BV — BaVn.
Obviously,

IVov@ll -3 < 10v@ll 3 < 0¥ @®)ll,r-g < Pr(t).

*

On the other hand,

1B2Von()ll -3 < 1B2Vont)lpe S 00l S Pr(?)-
From the product rule (6.22) for negative Holder indices , we deduce

1 < 1 1 <
1OBVm®Il -3 S NOBOI -3 IVm®Il 3+ < P)

*

«—1 . There-
H ™2

fore, we are left with the estimate for 0B, for which we use again the For-
mula (3.27)

with ¢ > 0 sufficiently small so that |V, (t)||C%+E < C ||V (b)]

B = K(Vn) - V¢ + L(V)G(n)y + G(n)y
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where K and L are smooth functions, vanishing at 0. Observe that G(n) has
order 1, hence these three terms have the same regularity structure. We give
the proof for the second one since it is a product with the Dirichlet-Neumann
operator

L(Vn)G(m)v1 — L(Vn2)G(n2)b2 = [L(Vm) — L(Vn2)]G(m)¢1
+ L(Vn2)[G(m1)1 — G(n2)v2]-

Let us consider the more difficult term L(Vn2)[G(n1)¥1 — G(n2)12. By means
1
of the product rule (6.22) it suffices to estimate the C, > norm of

G(m)yr — G(n2)v2 = G(m)dy — [G(m) — G(n2)]¢e.
The Holder estimate (2.40) together with Remark 2.10 implies that

1G)oYll -3 S NI g+ 110%ll 5 S 0% g + 1091 g

where we have used the fact that s > 2.
For the second term on the right-hand side, we apply Proposition 2.22 to
have

(5:5) (6= Glmlva = | {GGm) (Bon(t) + div (V(m)an(v) }dm

where 7i(m) = 1 +mdy, B(m) = B(ii(m),¢2), V(m) = V(ii(m),vs). Theo-
rem 2.6 applied with 0 = s — 2 then yields

(5.6) G (m) = G(n2)]¢2]

1
The embedding H572 — C, ? then concludes the proof. O

Hs—2 5 ||(5r]| Hs—1.
We introduce the following notation.

NOTATION 5.3. — Let f: R — C¢ be a function of u, we set

duf ()i = lin{fu + i) — f(w)}.

PROPOSITION 5.4. — With f? defined in (5.2), it holds for a.e. t € [0,T] that
(|2 (1, 1)(2) — f2(7727¢2)(t)||Hs_g S P(t).

Proof. — It suffices to prove that
(5.7)

|2+ auf2wi]| < Nl

as=1 illgp-1 Il g HIDI g
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VVe have fQ(T],’(/}) = Il —+ IQ + 13 Wlth
Il = H(n) + Tan

1(Vn- Vi + Gn)y)?
2 14 |Vn)?

1
I, = _§|V¢|2+ + Ty 'v¢—TBTV 'VU—TBG(ﬁW,

I3 := —gn.
Observe that dyf; = dyl3 = 0. The estimate for d, I3 = —g1 is obvious. Ob-
serve that I; and I are the remainder of the paralinearization of nonlinear func-
tions in Lemmas 3.7 and 3.9, respectively. Putting f(z) = (14 |z|?)"'/2, z €
R?, we have —H (n) = div f(Vn). Since

—dpf (V)i = £ (V) Vi,
it follows that

—dpH () = div(f' (V) V)i + f/(Vn)V - V).

Using the Bony decomposition we get
—dpHm)1 = Tiai(r (vnen + T-popeen + R=T_m+ R
with [|R|| gs-a/2 < |19l ge—1 + 9]l gr—1. The Leibnitz rule then implies
dyLi(n)n =Tm+ R, £:=d,n,
so we only need to show that || Tn|| gs—s/> < |7l ge—1 + |7l or—1- Indeed, observe
that £ is of the form
3

€= Fy(Vn,&) Vi + Fa(Vn, &) V2 + F5(Vn, Vivin = Y G;(x,8),

j=1

where Fj, j = 1,2, 3 are smooth in R? x R?\ {0}, F} is homogeneous of order 2
in £ and F», F3 are homogeneous of order 1 in £. By virtue of Theorem 6.5 (7)
and Proposition 6.7 we see that to obtain the desired bound for ||T;n|| gs-s/2 it
suffices to prove for j =1,2,3
sup G, E)l + o 192G,z 5 Calillor-+ Ve € N
=1 =1

This is true because (assuming without loss of generality that F;(0,&) = 0,

for all £) uniformly in [£] =1,

IEL (V) Vil oo S Ml S llgr-r s

1Eo (V) V20l s S IF2(Vm)llgaee (V2] o
. 3 d
Slillgr- e €(0s=5-3),

B (V) VavPnl o S 1BV Viv2l| . S lIillwie S 9]

C:—l .
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We have shown the desired estimate for I;. By inspecting the proof of Lemma 3.9,
the estimate for the H53/2-norm of d,I»n + dyJo1) can be obtained by the
same method. ]

5.2. Contraction estimate for f1. — Our goal in this subsection is to derive
the following estimate.

PROPOSITION 5.5. — With f! defined as in (5.2), it holds for a.e. t € [0,T]
that

Hfl(mﬂﬁl)(t) — fH(m2,2) (1|

o1 ~ Pr(t) + Ps(t)Q(t)
with

(55) Q) =1+ 3 (Ol g + D2 95Ol -

The key point is that the preceding estimate is tame with respect to the
highest Holder norms. Proposition 5.5 will be a consequence of

(5.9 ldyf (m¥)illa—r S Ml (1 + 7]l ey + 1Ml ) + lill oz

for all 7 € H*3 N C77 7, and
(5.10) I dy £ (m, )| re—r S NI

for all ¢y € HS N CT.

et (Ul ey )+ 19

LEMMA 5.6. — The estimate (5.9) holds.

Proof. — From the definition of f! and Proposition 2.22 we have
dyf* (n, )i = —G(B1) — div(Vn)
—{T5(¥ = Tn) = TaTgn — ThTpn — Ty Vi = Ty Vip}
= Z I,
j=1
where B := d,B(n,%)7 (similarly for V, \) and
I :=TyVn, Ip:=-VVn+TyVi, I3:=-T5( —Tpn),
Iy :==T\Tgn, Is:=—-G(Bn) — (divV)i+ TaTp).
1. For I, we write Iy = —Ty,;,V—R(Vn,V) and use (6.11), (6.18) to estimate
2l gror S WV gromr IVl 2o < 0]
2. Let us study B and V. For the former, the only nontrivial point is
(5.11) 4,[G ()0 = —Gn) (Bif) — div(Vi),
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It holds that

[ oG]l ez < Il o + 1V

Therefore, ||B|
BV, implies

a1 S 0l s -

-2 S ||M|lgs-1- This, together with the relation V = V¢ —

IB]
A a consequence, the paraproduct rule (6.14) gives (keep in mind that s > %—{—g)

Il gor S WV IE=2 V0 oy S 0l Eo-2-

w2+ Vg2 S 1l

Hs—1-

Similarly,

allgrer S I Tgmllzze S 1B —lIn]

ey S Dl

3. For I5 one estimates A exactly as for [ in the proof of Proposition 5.4.
4. For I5 we follow [2] using the following cancelation in Lemma 2.12, [2]
whose proof applies equally at our regularity level:

Gn)B = —divV + R, |R|| g < 1.

On the other hand, applying Proposition 3.13 in [4] with € =
obtain the following paralinearizations

G(n)(B7) = Thowy B+ F(n, Bi), G(n)(B) = Thw B+ F(n, B)

we

N[

1 — q —
50’—5

with
IEm, Bl gs—r S Wil ggs-1 s 1F (s Bl -2 S 1-

Then plugging these paralinearizations into the expression of I5 gives (see [2]
pages 482 — 483 for details) I5 = J; + Jo with

J1 =Ty (Bn—Tpn—T,B),
Jo = Ty Tt + [Ty, Taey | B + Ty F(n, B) + (77 — Ty) div V — F(n, Bi)) — T;R.

Using (6.12) we estimate

1l S IR, e S il 1By S lillems (14l ey + 9l )-

For J, we only need to take care of the commutator [T};, T\«)|B.

Since || B||gs-1 S 1 it suffices to prove that [Ty, Ty)] has order 0 and map
H5~! — H*~! with norm bounded by the right hand side of (5.9). This is in
turn a consequence of Theorem 6.5 (ii) and the fact that r — 1 > 1. O

Finally, we prove

LEMMA 5.7. — The estimate (5.10) holds.
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Write B = B(n,v), V = V(n,v). Since G(n) is linear with respect to
we get

dy ' (n, )¢ = Gm) = T — T iy — Ty (.0 - V1 =2 R(1, ).
Estimate (5.10) means that R has order —1/2 with respect to ¢ and map
H5=3/2 to0 H5~!. In fact, Proposition 3.6 shows that R maps H® to H51/2.
Here, we will follow the proof of Proposition 3.6 except that the good unknown
will not be invoked. Lemma 5.7 is a consequence of the following.

LEMMA 5.8. — Letd > 1, h >0 and
>§+é > 2
S 2 2, T .

Then there exists a nondecreasing function F : R™ x RT — R™ such that for
any n € H 2 satisfying dist(n,I') > h > 0 and v» € H* N C", there holds
(5.12)

Gy —Tx(b = Tpn) — Ty - Vnll g

S F sy o) {IWJI

Proof. — We first apply Theorem 6.5 (i) to have

et @ Dl oy + ) + 01y }-

1T Tl s 1T - Fnll s < FCOU ) s ) {IIBIIC:; + ||V||C:;} .

On the other hand, as in Lemma 5.2 it holds that

1Bl 3 + V13 < D g, ) {90y + 10013 |-

Therefore, the proof of (5.12) reduces to showing
(5.13)
Gy — Totp|l s

< F O gy ) {160y (4l oy + Wl + 91 |

To this end, let ¢ be the solution to (3.4). Let v be as in (2.12), which satisfies
Equation (2.13).

Let zp € (—1,0) and denote J = [zg,0]. Let II denote the right-hand side of
(5.13). Again, to alleviate notations, we will write A < B provided

A< F(ll(n, )l )B.
3

According to Proposition 2.18 and Remark 2.10 (notice that s — 5 > %), there
holds

<
(5.14) 1920l ooty S Welemg + 110

a1
H" 2 x Hs

3.
3
c, ?
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On the other hand, applying Proposition 2.11 with ¢ = s — % > —% gives
(5.15) V0l gy S 190
We will write g7 ~g g2 if the E-norm of g; — go is bounded by II. As in
Proposition 3.3, we set
P =024+ Ty, +T5- V.0, — T,0..
In view of Equation (2.13), we have
0= (024 al, + B V0. —70.)v=Pv+Qu
with
Qu := [Tay (o — h?) + R(Av, o0 — h?)] + [(h? — Th2)Agv]
+ [Tvo.06 + R(V0.v, )] — [To.vy + R(0v,7)].
For the first bracket, we use (6.16), (6.12) and (5.14) to have
||TAv(a—h2)|| 3 + ||R(Av,a—h2)|| < ||AU||LOOC:% Ha—h2H

L2H* "2 L2H?
<IIL

L2H %

The other terms can be estimated along the same lines. Consequently,

Pu ~ 3.0
L2(J;H™ 3)

Next, with two symbols a, A defined in Lemma 3.5, the proof of Lemma 3.5
shows that

Pv=(0,—T,)(0, —Ta)v+ (ToTa — ToAy)v.
According to the symbolic estimate (3.20) and Theorem 6.5 (ii), (ToT4 —
T,A;) has order % and
[T Ta=Taa)oll ) S Al )90l mmms S (I3
owing to (5.15). We have proved that

(8, — Tu) (0, — Ta)v 0,

YrL2E )
which implies
((9Z — Ta)(BZ — TA)’U Nysfl(’]) O.

With this result, one can follow exactly Step 1. of the proof of Proposition 3.6
and obtain for some I = [21,0), 21 € (20,0) that

(5.16) 1020 = Tav|| xsmr(ry ST

This allow us to replace the normal derivative d,v with the “tangential deriva-
tive” T'av, leaving a term ~ xs-1(y 0. Therefore, we deduce by using the Bony
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decomposition and the estimates (5.14)-(5.15) that

14 |Vp|?
%(’Lv —Vp-Vu e~y Tigv,2 0.0 — Ty, Vo
P .

~ Xs—1(I) T1+‘vp|2 TA’U - TvpV’U
Bzp

NXsfl(I)N T1+E|9Vp‘2 A'U — TVPV'U
zp
~Xs—1(1) TAU

with A = %A — iVn - £ satisfying A|Z:0 = X. The proof of (5.13) is
complete. O

5.3. Contraction estimate for the solution map. — In views of the notations
(5.2), (5.4) and (5.8) , we have proved in subsections 5.1, 5.2 the following
result for a.e. t € [0,T],

1 s 0)(8) = s 02) D)l ey < F (Mg, M22) (Pr(t) + Ps(HQ(2))

Consequently, this together with Lemma 5.2 implies that the difference of two
solutions satisfies

(5:17) (9 + Ty, -V + L1) (f;’;) - (ﬁl)

s <F (M, M2p) (PH(t) - Ps(t)Q(t)).

(518) ||(91(t)792(t))| Hs—1xH " 2

5.3.1. Symmetrization. — Now, as in Section 3.3 we symmetrize (5.17) using

the symmetrizer
S, = Tp, O I 0
0 Tg, —Tp, I}

The dispersive part L. Recall the Definition 3.15 on the equivalence of two
families of operators A(t) and B(t), t € [0,T]: A ~ B if

IA®) = BNy, ymet < F (IO vz ) (14 0@l vy

By virtue of Proposition 3.17 we obtain
Ty, 0 I 0 I 0 0 -1,
0 Tq, —TIp, I)\Ip, I) \Ty, O
_ (Tm 0 ) ( 0 —T,\l) _ ( 0 —TplTM)
0 Ty, ) \Ty, O T0, Ty, 0

(0 —T, T\ _ (0 -1\ (T O
T, 7, 0 - \7, O 0 T, /)"
Consequently (see (5.1) for the definition of £)
0 -T

T, 0 I 0
~ 71 p1
ik (T’Yl 0 ) < 0 T‘h) <_TBl I) .
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Therefore, if we set

P, = Tpléna Dy = TQl (5w —Ts, 577)’
then &1, @, satisfy
T, &y
S.L "%, |
1~ ( 1/)) ( T’chbl )
meaning that

T, @, 1 2
s (30) - (o) |, @ <7 0t baze) (14 Im@l ) P50

The convection part 0; + Ty, V: one proceeds as in the proof Proposition 3.18
and obtain

S1 (0 + Ty, - V) <§Z}> = (0t +Tv, - V) 51 <gZ) +R= (0 + Ty, - V) <$;) +R
where the remainder R verifies
IR ey g < F (Map, M20) (14 mill ey + 1l ) Po(2).
A combination of two parts yields
0:®1 + Ty, - VO —T,, 9 = F; + Gy,
{@Cbg + Ty, - V& + 71(132 =Fy+ Gy

where for a.e. t € [0,7],
(5.20)

| (F1, Fo)|

(5.19)

< F (Mg, M2r) (14 il ooy + 1l ) Ps(®)
< F (Mgp, M21) Q(t)Ps(t),

-,
G To, (92 —Trg1)/)

It follows from (5.18) that (G1,G2) also satisfy

(5:21)  N(G1, Gl ey, ey < F (Mig, M21) (Pu(t) + Ps()Q())
5.3.2. Contraction estimates. — Put ® := &, + i®P,, then

(5.22) 0P+ Ty, - VO +iT,,® = F + G := (Fy +iF) + (G1 +iG>).

We are now back to the situation of Proposition 4.1: we shall conjugate (5.22)
with an operator of order s — 3/2 and then perform an L?-energy estimate. As
n (4.3), we choose

H =3 xH% =

and from (5.17)

3/2)\2(s— 2
pr = (W/)2EDB o =T 0.
After conjugating with T),,, one obtains

(5.23) B+ Ty, -V +iTy,) o =T, (F+G) + H
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with
H = Tat@1q) + [TV1 ' V’ TSM]‘:D + Z.[T’Yl ’ Tp1]¢)
It is easy to see as in the proof of Proposition 4.3 that

3

e < F (Mlp, M) QW) 2(1)] ey
< F (Mlp, M22) Q@) (le(®)l 2 + 1@(1) 12,

where we have applied Lemma 3.13 in the second line.
On the other hand, from the estimates (5.20), (5.21) for F, G we get

I1H ()]

(5.24)

(5.25) 1Ty, (F + G)ll o < F (Mdr, M27) (Pu(t) + Ps(Q())-

Now, multiplying both sides of (5.23) by ¢ and using (5.24), (5.25), (4.9), (4.10)
lead to

Sl < F (M, M) x
{[Pa® +QW)Ps®) + QW) IRM1I = | lle(®)] 2 + Q) Io(®)I}: }
Notice that

T
1
120, < F (Mip, M) Po(t), [ QU <T+T7 (21, + 22y),
0

with i =1— 1> 0 (recall the notation Zﬁ’T in (5.3)). Gronwall’s lemma then
implies (see Notation 5.4) for allt <T <1

el < 7o) (Ila + [ ' [QUm)Ps(m) + Par(m) i)
(5.26) < F() (leOll g + T [(L+ ZLp + Z21)Psr + Pr] )
< F(...) (Ps(0) + T Pr)
where

F(.)=F My, M2y, 2}, 22 1) .

We want to show that ||(d7, 6¢)| oot go- 3 15 also controlled by the right-hand

side of (5.26). To this end, one uses again Proposition 3.13 to have
1991 s S N T Tpdnll L2 + 1071l - »
16911 -3 S NTTad%ll L2 + 109 -3 -

3
H°" 32
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Then, in view of (5.26) it remains to estimate ||6n||H 1 and ||5'L/J||H_%. Indeed,

we write

169l -3 < 11600l -3 + lI6n(t) = dn(O)]] -

1
2

< lon ), H/ @ sm(m de 1
H 2
d
< 6nO)ll -y + T sup ||—on(®)f
t€[0,T] H™ 2

The last term can be written as

%577(1?) = G(m(8)91(t)=G(n2(t))a2(t) = G(m)§9+[G (m (1)) =G (n2(t))] 92 (t)-

The Sobolev estimate for the Ditichlet-Neumann operator in Theorem 2.6 ap-
plied with o = % gives

IGmovll,, y S I8¢l 5 < 16wl s -
On the other hand, according to (5.6)
IG(m) = Gm2)lal2 < [G(m) = G(n2)ldallo—2 S 169l o

Therefore,
16ml -1 < 10n(O)l -3 + TPs7.

Using the second equation of (3.30) and arguing as above, we find that
691l -3 < 169 (0) -3 + T Ps.r.

Putting the above estimates together, we end up with
[1(0n(t), 5(2))]

which implies (recall that we are assuming s > 3 + 4, r > 2)

1 2 1 2 5
3 S F (MS,T7MS,T7ZT,T7ZT,T) <PS(0) + T P(t)) ’

Hs=1xH™ 2

(5.27) Psy < F (MAp, M2y, Z) o, Z21) (PS(O) + TﬁPT) .

Observe that (5.27) is an a priori estimate for the Sobolev norm of the difference
of two solutions. To close this estimate, we seek a similar estimate for the Hélder
norm, i.e., for Py 7. This is achieved by applying the Strichartz estimates in
our companion paper [24] to the dispersive Equation (5.22). According to
Theorem 1.1 of [24], if w is a solution to the problem

(8t +Tv, -V + iT’Yl)u =f
with f € L*°([0,T]; H?), o € R, then it holds that
(5.28) lull o tew < F(Zrr) I llpo e + Nl poo o)
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where,

(5.29) {,u:zf‘o,p:4 when d =1,

,u:%, p=2 whend > 2.
Applying this result to u = ® with 0 = s — % leads to

+ 2|

”(I)”LPWS_%_%‘H‘ LeH™ 3

< F(Zl) (IF + Gl B

This, combined with (5.20) and (5.21), implies for any 2 <r <7’ <s— % +

1@l py-g < F (Mg, M27, Z}p, Z27) (Pr+ 1191, oot

Lew"' "3
< F(Mlp, M2y, Z) 1, Z2 1) Pr.
By interpolating between r’ and some lower index, we gain a multiplication

factor of the form 7%, § > 0 on the right-hand side. Then using the symbolic
calculus in Theorem 6.5 to go back from ® to dn, §1 we obtain

(5.30) Pgr < F (Msl,T’Msz,T’ Zrl,Tv Zﬁ,T) T°Pr.

Combining (5.27) and (5.30) we end up with a closed a priori estimate for the
difference of two solutions of (1.7) in terms of Sobolev norm and Strichartz
norm: for any 7' < 1, there holds

Pr < F(M}!p, M2y, Z) 1, Z2 1) (Ps(0) + T°Pr) .

This implies Pr, < F(...)Ps(0) for some 77 > 0 sufficiently small, depending
only on F(...). Then iterating this estimate between [T, 2T4],...,[T — T1,T]
we obtain the following result.

THEOREM 5.9. — Let (n;,%;), 7 = 1,2 be two solutions to (1.7) on I =
[0,T], 0 <T <1 such that
(ny5) € L(I HST 2 (RY) x H*(RY) 0 LP (I, W73 (RY) x W (R))
with
3 d d
31 242 ~ Yy
(5.31) s>2—|—2, <r<s 2+,u,

where p, p are given by (5.29) and such that inf,cpo ) dist(n;(t),I') > h > 0.
Set
M2 o= N0 9 oy sy 2o = N0 0 15 oy

Consider the differences dn = n1 — 12, 6Y = 1 — s and their norms in
Sobolev space and Hdélder space:

PT = ”(6,’776¢)HL°°(I;HS’1 XHS*%) + H((sn?(sw)”Lp(I;Wr—l,ooXWT*%vw) :
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Then there exists a non-decreasing function F : Rt x RT™ — R™* depending
only ond, r, s, p, pu, h such that

Pr < Fi (Mir, M2r, 27, Z20) || Gn.00)) |,y

REMARK 5.10. — If the Strichartz estimate (5.28) had been proved with a gain
of ' derivative, u' € (0, %], then Theorem 5.9 would have held with p = u in
(5.31).

6. Appendix: Paradifferential calculus and technical results

6.1. Paradifferential operators

DEFINITION 6.1. — 1. (Littlewood-Paley decomposition) Let k € C§°(R?) be
such that

k(@) =1 for |0 < 1.1, k(0) =0 for |0 > 1.9.
Define
ki(6) = H(Z_kﬁ) forke€eZ, ¢o=kKo, and =K —kg—1 fork>1.
Given a temperate distribution u, we introduce

Sku = ki(Dg)u  for k € Z,
Aou = Squ, Apu= Sgu— Sg_1u fork >1.

Then we have the formal dyadic partition of unity

0
k=0

2. (Zygmund spaces) Let s € R and p, q € [1,00]. The Besov space B;’q(Rd)
is defined as the space of all the tempered distributions u satisfying

y o0
lull gy . = 1 1Al gy ) g lles < +oo.

When p = q = o0, By , becomes the Zygumd space denoted by C%.

3. (Hoélder spaces) For k € N, we denote by W5 (R9) the usual Sobolev
spaces. For p = k+ o with k € N and o € (0,1), WP (R?) denotes the
space of all function u € W5 (R?) such that all the k*" derivatives of u are
o-Hélder continuous on RY.

Let us review notations and results about Bony’s paradifferential calculus
(see [9, 13, 20]). Here we follow the presentation of Métivier in [20] (se also [4],

[1])-
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DEFINITION 6.2. — 1. (Symbols) Given p € [0,00) and m € R, I'?'(RY)
denotes the space of locally bounded functions a(z,€) on RY x (R?\ 0), which
are C™ with respect to € for & # 0 and such that, for all o € N? and all € # 0,
the function x — Oga(x,§) belongs to We>°(R?) and there erists a constant
C,, such that,

1 [e% m—|x
VIE> 5o 108al 6]l me ray < Call+ D™,
Let a € T7(R?), we define the semi-norm

61 M= sw  sup [l0+lg)mogal o)

lal<d/2+1+p |€]21/2

We.se (RA)

2. (Paradifferential operators) Given a symbol a, we define the paradifferential
operator T, by

(6.2) Tou(€) = (2m)~° / X(E = 0, m)(E — m, ) (m)aln) dn,

where @(0,€) = [ e~ (x,€)dx is the Fourier transform of a with respect to
the first variable; x and ¥ are two fizred C*° functions such that:

63) =0 forlil<s,  Ym=1 for >,

and x(0,n) is defined by x(0,1) = 3725 kr—3(0)pr(n).

REMARK 6.3. — We make the following remarks on the preceding definition.
1. The cut-off x satisfies the following localization property (see [20], page 73)
forsome 0 <e; <eg <1

x(6,m) =1 for [0] <e1(1+ [n])
x(6,m) =0 for [0] > e2(1 + [n]).
Therefore, in the definition of T,u, on the Fourier side, T,u keeps only the
regime where u has higher frequency then a. In particular, when a = 1, we
have Thu = ¥ (D,)u, hence
(Th—-1): H*® - H>®, C;* - CZ.
2. As usual, the paraproduct T,u is defined by

400

fau = Z Sk_gaAku.
k=0

On the Fourier side, T,u is thus given by the Formula (6.2) with ¢ = 1.
Consequently N B

(To — To)u = To((1 — ¥(Dy))u)
and thus using the fact that for any m > 0 (see Theorem 2.82, [7]),

[Tav]| s < Cllaf gom 0]l rsm
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we obtain

(T,-T,): H* —-H>, C;*°->CF
provided a € C7*°. For this reason, we do not distinguish T,u and Tau in this
paper.

DEFINITION 6.4. — Let m € R. An operator T is said to be of order m if, for
all p € R, it is bounded from H" to H*~™.

Symbolic calculus for paradifferential operators is summarized in the follow-
ing theorem.

THEOREM 6.5 (Symbolic calculus). — Let m € R and p € [0,00).
(i) If a € T (R?), then T, is of order m. Moreover, for all p € R there
exists a constant K such that

(6.4) I1Tall g — pru-—m < KMg"(a).

(i) Ifa € T™(R?),b € T (R?) with p > 0. Then T,Ty—Tay, is of order m+
m' — p where

(_i)a a [e%
afb:= Z ol Oga(z,£)0;b(z,§).
lal<p
Moreover, for all p € R there exists a constant K such that

(6.5) NTaTy — Tags |l o, pru—m—mr+o < KM (a)Mg" (b) + K Mg" (a) M" (b).

(iii) Let a € F;”(Rd) with p > 0. Denote by (T,)* the adjoint operator of Ty,
and by @ the complex conjugate of a. Then (Ty)* — Ty~ is of order m — p where

* 1 @ o~
lal<p
Moreover, for all p there exists a constant K such that
(6.6) 1(T0)* = Tarll g pgnmsn < KM (a).

We also need the following definition for symbols with negative regularity.

DEFINITION 6.6. — For m € R and p € (—00,0), I'7'(R?) denotes the space
of distributions a(z,€) on R x (R4 \ 0), which are C™ with respect to & and
such that, for all o € N and all &€ # 0, the function x — Oga(x,§) belongs
to CZ(R?) and there exists a constant C, such that,

1 (67 m—|x
(6.7) VI =5 [19gaC,8)lle, < Call+lg)™ .
For a € I']?, we define

(68) MP@= sw  swp |1+le)moga(6)|
la|<2(d+2)+|p| 1€]121/2

LR
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PROPOSITION 6.7 (see [4, Proposition 2.12]). — Letp <0, m € R anda € f‘;".
Then the operator Ty is of order m — p:

(6.9) | Tallgsmpsm-o <CMy"(a),  ||To]

Ci_}(/yif(mfp) S CM;“((I)

REMARK 6.8. — In the Definition (6.2) of paradifferential operators, the cut-off
1) removes the low frequency part of u. Therefore, estimates pertaining to T,u
can be relaxed, for example, when a € T'J* and u € S’ such that Vu € Ho+m~!

we have
IToul|ge < CMG (a)||Vu| getm-1.

NOTATION 6.9. — Let I C R and a(z,z,¢) : I x R% x R? — C be a family of
symbols parametrized by z € I. We denote

M(a) = sup M™(p)(a(z,,"))-

zel
The set of such a with M(a) < oo is denoted by I'}! (R4 x I).

6.2. Paraproducts. — Given two functions a,b defined on R¢ we define the
remainder
(6.10) R(a,u) = au — Tyu — Tya.

We shall use frequently various estimates about paraproducts (see Chapter 2
in [7], [6] and [4]) which are recalled here.

THEOREM 6.10. — 1. Let a,B€R. If a+ 3> 0 then
(6.11) 1R 0) s gy < K Nl sy 00 ey
(6.12) ||R(a7u)||Ha+B(Rd) <K ||a||cg(Rd) ||u||H6(Rd) )
(6.13) IR, u)l oo gy < K lallga o Tellos o -
2. Let sy, 81,82 be such that so < sy and sy < s1 + s3 — g, then
(6.14) 1Tl 0 < K Nl 1l -
If in addition to the conditions above, s; + so > 0 then
(6.15) law — Tuall ey < K llall o lul e -
3. Let m >0 and s € R. Then
(6.16) IToull grom < K lallg-m lull g,
(6.17) | Toul cim S K ||a||c;m ||“||Cg )
(6.18) I Taull: < K llal o llulle
PROPOSITION 6.11. — 1. If sp,s1,82 € R satisfying s; + so > 0, 59 < s1,
So < S and sg < 81 + Sg — %, then
(6.19) lurtal gy < K luall g Nzl -
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2. If s > 0 then

(6.20) luiuz |l gs < K([Jutllgs luall oo + luzllge luallpe)-
3. If s > 0 then
(6.21) [uruzlles < K([lutlles uzllpe + [luzlles lJutllp)-

4. Let 8 > a > 0. Then
(6.22) [urusllg-e < K l|luallgp [luzll oo -

5. Let s > 0 and F € C®(CY) satisfying F(0) = 0. Then there exists a
nondecreasing function F: Ry — R such that, for allU € H3(R%)N N
Loo(Rd)N7

(6.23) IF@) e < F>U N poo) 1T gy -

6. Let F € C(CY) satisfying F(0) = 0, s > 0, and p,r € [1,00]. Then
there exists a mnondecreasing function F: Ry — Ry such that for all

u € B;r(Rd)N N L®(RHN,
(6.24) | F o ull s

p,T

< F(llullp=)lullz,,,-

THEOREM 6.12 (see [7, Theorem 2.92]). — (Paralinearization) Let v, p be
positive real numbers and F be a C* function on R such that F(0) = 0.
Assume that p is not an integer. For any u € H*(R?) N CZ(R?) we have

||F(u) - TF’(u)uHH;H-p(Rd) < C(HUHLOO(R”’)) ”u' CL(R9) ||u||Hu(Rd) :

REMARK 6.13. — In Theorem 2.92, [7], there is a restriction that p is not an
integer. In fact, by following the proof of the same result (but qualitative) in
Theorem 5.2.4, [20] one can check that this restriction can be dropped.
LEMMA 6.14. — Let s,r,a € R satisfy
either r<0, s<a+r or >0, s<a.
Then there exists C' > 0 such that
[ Taulls < Cllal|Lrllullce -

Proof. — We have by the definition of paraproducts (see Definition 6.1 and
Remark 6.3),

ITaulf: S D 2% ISk-salpull2 S D 2% Sk—sall 7z Axuf
k>0 E>0
For small k, we have the easy estimate

3
Y2 Si—salia | Arulie S llalfe lull-
k=0
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Consider the case r < 0 and s < a+r. Picke € (0, +r—s). For k > 4, using
Sk_3a = Zf;g’ Aja we can apply the Hélder inequality to estimate (notice that
r <0)

k—3
S 22 Sy aall3a Akl < lulle 2220 (3 1 Asals )

k>4 k>4 =0
— k—3
S lluflfe 37 226 Z 2279|| A a3 3 272
k>4 = =0
k—3
< Jlullfe 32 226+ 3" 9209 A a2,
k>4 =0

< lullEs llall--

Now, if » > 0 and s < @, in the second line of the preceding estimate we observe

that the series
Z 9-2rj Z 92(s—a)k

§>0 k>4
converge. This concludes the proof in the second case. O
6.3. Paradifferential calculus in Besov spaces. — Concerning the symbolic cal-

culus in Besov spaces, we have the following results.

LEMMA 6.15 (see |28, Lemma 2.6]). — Let s,m,m' € R, ¢ € [1,00] and p €
[0, 1].
(i) If a € TP (R?) then

1T

B, By < CMg*(a).
(i) Ifa € TP(RY), b e T7 (RY) then

I1TaTs = Tabll 5, B S CM (@) MG (b) + C MG (a) M (b).

LEMMA 6.16 (see [29, Lemma 2.10]). — 1. Let s € R and p,q € [1,00]. Then
for any o > 0 we have

(6.25) | Teull s, , < K min (|la]| e [[ulls ,, lallc--llul

Btz )-
2. Let s >0 and p,q € [1,00]. The for any o € R, we have
(6.26) [ R(a,u)l

5y, < Kllallez llull g

p,q

To deal with time-dependent distributions, we use the Chemin-Lerner spaces
defined as follows (see Chapter 2, [7]).
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DEFINITION 6.17. — ForT >0, s € R, and p,q,r € [1,00], we set
(6.27) 1wl 2o o285 ) = 17 1Al Lo, 7710 Ry ) j—oller-
Again, when p = r = oo, we denote Eq([O,T];B;,T) = L9([0,T); C5). Notice
that ”u”Zoo(];ci) = ||u||L°°(I;Ci)'
The next lemma then follows easily from the proof Lemma 6.15.

LEMMA 6.18 (see [28, Lemma 2.6]). — Lets,m,m’ € R, p,q € [1,00], p € [0,1]
and I =1[0,T].
(i) Ifa € T (I x R?) then
||Ta||Ep(1;Bsoo,q)_>zp(1;Bg’gl) < CMg'(a).
(i) Ifa € TP(I x RY), b e T8 (I x RY) then

ITaTs = Tl gy 1o rorery S CME@ME' () + CMP @M (8).

Finally, the following lemma is a direct consequence of Lemma 6.25.

LEMMA 6.19 (see [29, Lemmas 2.17, 218|). — Let I = [0,T].
1. Let s € R and ¢,q1,q2,7 € [1,00] with % = q% + q%. Then for any o > 0

we have
(6.28)

HT@UHE‘?(I;BZOYT) S Kmln(

||a||Ztn(I;Loo)||u||fqz(1;Bswm)v ”aHZtn(I;c;”)HMquz([;BQf’T))'

2. Let s > 0 and ¢,q1, 92,7 € [1,00] with % = q% + q%' Then for any o € R
we have
629)  IR@Wzarme s < Kllalzo omn ullzo g
6.4. Parabolic regularity. — Define the following interpolation spaces
(6.30) XH(J) = C2(I; H*(RY) N L2(J; H* 5 (RY)),
Y¥(J) = LL(I; H*(RY) + L3(J; H' " (RY)).

THEOREM 6.20 (see [4, Proposition 2.18]). — Let p € (0,1), J = [20,21] C
R, pc I‘;(Rd x J), ¢ € TY(R? x J) with the assumption that

Rep(z;z,€) > cl¢],
for some constant ¢ > 0. Assume that w solves

o, w+ Trw =Tew + f, w) = wy.
Z=Z0
Then for anyr € R, if f € Y"(J) and wo € H", we have w € X" (J) and

ol iy < K {Ilwoll e + 1 llye sy}
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for some constant K = K(M,(p), M{(q),c™") nondecreasing in each argu-
ment.

THEOREM 6.21 (see [28, Proposition 3.1]). — Let r € R,¢ € [1,00] and 1 <
g <p<oo. Letpe (0,1), J=]z,21] CR, ac€ F},(Rd x J) with the
assumption that

Rea(z;x,&) > cl¢|,

for some constant ¢ > 0. Assume that w solves

O,w+ Tow = F, w| = wp.
2=z
If
~ r—1+1
wo € BL, ,, F€LUJ, B, )

~ ~ 1
and there exists § > 0 such that w € LP(J,C;?), then we have w € LP(J, BS_;’)
and
y < K{ . H|F il Fo(ron b
”w”ZP(J,B::g') > ||'w0||Boo’1Z + ” ||E<1(J,B;;+é) + “w“LP(J,C* 5

for some constant K = K (M}(a),c™") nondecreasing in each argument. When
p = 00, the left-hand side can be replaced by ||w||g (s pr L

Finally, we recall a classical interpolation lemma.

LEMMA 6.22 (see [19, th 3.1]). — Let I = (—1,0) and s € R. Let u €
L2(I, H5 2 (R%)) such that 8,u € L2(I, H~2 (RY)).

Then u € C°([—1,0], H*(R?)) and there ezists an absolute constant C > 0
such that

zes[l_llj:[))(]] ||U(Z, )HH:'(Rd)) S C(||u||L2(I’H5+%(Rd)) + ||8Zu||L2(I’HS*%(Rd)))‘
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