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CONGRUENCES OF MODULAR FORMS
AND THE IWASAWA λ-INVARIANTS

by Yuichi Hirano

Abstract. — In this paper, we show how congruences between cusp forms and
Eisenstein series of weight k ≥ 2 give rise to corresponding congruences between the
algebraic parts of the critical values of the associated L-functions. This is a gener-
alization of results of Mazur, Stevens, and Vatsal in the case where k = 2. As an
application, by proving congruences between the p-adic L-function of a certain cusp
form and the product of two Kubota-Leopoldt p-adic L-functions, we prove the Iwa-
sawa main conjecture (up to p-power) for cusp forms at ordinary primes p when the
associated residual Galois representations are reducible. This is a generalization of
Greenberg and Vatsal in the case where k = 2.

Résumé (Congruences de formes modulaires et λ-invariants d’Iwasawa). — Dans
cet article, nous montrons comment les congruences entre formes paraboliques et séries
d’Eisenstein de poids k ≥ 2 donnent lieu à des congruences entre les parties algébriques
des valeurs critiques des fonctions L associées. C’est une généralisation des travaux de
Mazur, Stevens et Vatsal dans le cas où k = 2. Comme application, en prouvant des
congruences entre la fonction p-adique L d’une certaine forme parabolique et le produit
de deux fonctions de Kubota-Leopoldt p-adiques L, nous prouvons la conjecture prin-
cipale d’Iwasawa (à puissance p près) pour les formes paraboliques à nombres premiers
ordinaires p lorsque les représentations de Galois résiduelles associées sont réductibles.
C’est une généralisation des travaux de Greenberg et Vatsal dans le cas où k = 2.
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2 Y. HIRANO

0. Introduction

0.1. Introduction. — The purpose of this paper is to show how congruences
between the Fourier coefficients of Hecke eigenforms give rise to correspond-
ing congruences between the special values of the associated L-functions. The
study of this topic was initiated by Mazur [25] using the arithmetic of the modu-
lar curveX0(l), where l is a prime number, in order to investigate a weak analog
of the Birch and Swinnerton-Dyer conjecture. Mazur’s congruence formula was
generalized to other congruence subgroups by Stevens [33]. Furthermore, by
the theory of higher weight modular symbols, Ash and Stevens [2] have ex-
amined congruences between special values of the L-functions of cusp forms of
higher weight over SL2(Z) and those of the L-functions of cusp forms of weight 2
over Γ0(l). Moreover, Vatsal [39] has proved congruences between special val-
ues of the L-functions of two cusp forms of higher weight over Γ0(N), where
N is a more general positive integer. Also, he obtained congruences between
special values of the L-functions of cusp forms of weight 2 and those of the
L-functions of Eisenstein series of weight 2. Moreover, Greenberg and Vatsal
[16] used Vatsal’s congruences [39] to study the Iwasawa invariants of elliptic
curves in towers of cyclotomic fields. In particular, they provided evidence for
the Iwasawa main conjecture for elliptic curves. Their work was motivated by
Kato’s results on the Iwasawa main conjecture for modular forms [21].

In this paper, we present a way to obtain congruences of the special values of
the L-functions from congruences between cusp forms and Eisenstein series of
weight k ≥ 2. This is a generalization of the works explained above by Mazur
[25], Stevens [33], and Vatsal [39].

Let O be the ring of integers of a finite extension over Qp and $ ∈ O a
uniformizer.

Theorem 0.1 (= Theorem 2.10). — Let p be an odd prime number, r a positive
integer, and k an integer with 2 ≤ k ≤ p − 1. Let f =

∑∞
n=1 a(n, f) e(nz) ∈

Sk(Γ0(N), ε,O) be a p-ordinary normalized Hecke eigenform. Assume that the
residual Galois representation ρ̄f associated to f is reducible and of the form

ρ̄f ∼
(
ξ1 ∗
0 ξ2

)
,

and either ξ1 or ξ2 is unramified at p. Assume also that there exists an Eisen-
stein series G = Ek(ψ1, ψ2) ∈ Mk(Γ0(N), ε,O) (for the definition, see The-
orem 3.18) such that G satisfies the assumptions of Theorem 1.9 and f ≡
G (mod $r) (for the definition, see before Theorem 2.10). Then there exist a
parity α ∈ {±1} (explicitly given by (A.27)), a complex number Ωαf ∈ C×, and
a p-adic unit u ∈ O× such that, for every primitive Dirichlet character χ whose
conductor mχ is prime to N , the following congruence holds:
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(1) if (mχ, p) = 1, then, for each j with 0 ≤ j ≤ k − 2 and α = χ(−1)(−1)j,

τ(χ̄)
L(f, χ, 1 + j)

(2π
√
−1)1+jΩαf

≡ uτ(χ̄)
L(G,χ, 1 + j)

(2π
√
−1)1+j

(mod $r).

(2) if p|mχ, we assume that mχ ∈ $rO, χ is non-exceptional (see Defini-
tion 2.11), and α = χ(−1). Then

τ(χ̄)
L(f, χ, 1)

(2π
√
−1)Ωαf

≡ uτ(χ̄)
L(G,χ, 1)

2π
√
−1

(mod $r).

The organization of this paper is as follows.
In §1, we generalize Stevens’s results [33, 34]. We construct a desired 1-

cocycle πg associated to a modular form g of weight k ≥ 2 (Definition 1.2)
and prove that πg is integral, that is, πg takes values in Lk−2(O) under some
assumption (Theorem 1.9). In terms of Schoenberg’s cocycle, Stevens gave a
generalization of the Mazur’s congruence formula [25] to general congruence
subgroups [33]. Also, he expected that these methods would be generalized
to higher weight modular forms and to Hilbert modular forms [33]. The con-
struction of such cocycles πg associated to modular forms g of weight k has
been accomplished so far only in the case of weight k = 2 mainly because of
certain combinatorial problem arising in the higher weight case k > 2. Indeed,
a discrete subgroup Γ acts on Lk−2(O) trivially only in the case k = 2.

In §2, we generalize Vatsal’s results [39].
If a Hecke eigenform f =

∑∞
n=1 a(n, f)e(nz) of weight k ≥ 2 and an Eisen-

stein series G =
∑∞
n=0 a(n,G)e(nz) of weight k ≥ 2 are related by a congruence

of the Fourier coefficients a(n, f) ≡ a(n,G)(mod $r) for all n ≥ 0, we derive
congruences between the special values of the associated L-functions (Theo-
rem 2.10). One of the key ingredients in Vatsal’s proof [39] is to describe the
special values of the L-functions attached to the modular form G as a linear
combination of 1-cocycles πG due to the work of Stevens [33], which allows
us to prove congruences between the special values by using cohomological
arguments.

In Appendix A, we give a relation between p-adic modular forms and p-adic
parabolic cohomologies of Hecke modules in the case the residual Galois rep-
resentations ρ̄f (= ρf (mod $)) associated to a cusp forms f is reducible by
using integral p-adic Hodge theory. Our problem on the special values of the
L-functions is closely related to a multiplicity-one theorem, which is intro-
duced by Mazur. In the case ρ̄f is irreducible, k < p, and a level N is prime
to p, a multiplicity-one theorem is known to be valid by p-adic Hodge theory for
open varieties with non-constant coefficients [10]. In particular, Theorem A.12,
which may be regarded as p-adic Eichler-Shimura isomorphism, is crucial to de-
fine the canonical periods Ωαf associated to f and prove congruences between
παf /Ω

α
f and παG modulo $r.
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4 Y. HIRANO

In §3, we generalize Greenberg-Vatsal’s results [16]. Using Vatsal’s congru-
ences, it is devoted to an application to the Iwasawa main conjecture for elliptic
curves under certain assumptions. In the same manner, Theorem 0.1 is used
to establish a congruence between a p-adic L-function attached to f and the
product of two Kubota-Leopoldt p-adic L-functions (Theorem 3.19). Then,
following the work of Kato [21], we will prove the following theorem, which has
not been treated by Skinner and Urban [32]:

Theorem 0.2. — Let p be an odd prime number and k an integer such that
2 ≤ k ≤ p − 1. Let f ∈ Sk(Γ0(N), ε,O) be a p-ordinary normalized Hecke
eigenform. We assume that the residual Galois representation ρ̄f : GQ →
GL2(O/$) associated to f is reducible and of the form

ρ̄f ∼
(
ϕ ∗
0 ψ

)

and that

(Assumption) ψ is unramified at p and odd, and
ϕ is ramified at p and even.

Then λalg
f = λanal

f . In particular, the Iwasawa main conjecture for such f is
true up to $-power.

The work of §1, §2, and §3 is based on the author’s master thesis at the
University of Tokyo in 2010. After I had finished writing this paper, I found
a result obtained by Heumann and Vatsal [17], which is almost the same one
as Theorem 0.1 (1) (in the case (mχ, p) = 1) in this paper. We also treat the
case p|mχ (Theorem 0.1 (2)) and apply Theorem 0.1 (2) to the Iwasawa main
conjecture.

0.2. Notation. — In this paper, p and l always denote distinct prime numbers.
We denote by N the set of natural numbers (that is, positive integers), denote

by Z (resp. Zp) the ring of rational integers (resp. p-adic integers), and also
denote by Q (resp. Qp) the rational number field (resp. the p-adic number field).
We fix algebraic closures Q of Q and Qp of Qp, and fix embeddings

Q ↪→ Qp ↪→ C,

where C denotes the complex number field.
We assume that every ring is commutative with unity. For a ring R and

n ∈ N, we use the following notation:

Mn(R) = {(n× n)-matrices with entries in R},
GLn(R) = {M ∈ Mn(R)|M is an invertible matrix},
SLn(R) = {M ∈ GLn(R)|det(M) = 1}.
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Moreover, if R is a subring of R, we put

GL+
n (R) = {M ∈ GLn(R)|det(M) > 0}.

Let H = {z ∈ C|Im(z) > 0} be the upper half plane and H∗ = H ∪Q ∪ {∞}
the extended upper half plane obtained by adding the cusps. Then GL+

2 (Q)
acts on H by

αz =
az + b

cz + d

for α =

(
a b
c d

)
∈ GL+

2 (Q) and z ∈ H. Let σ =

(
0 −1
1 0

)
∈ SL2(Z).

The principal congruence subgroups are the subgroup Γ(N) of SL2(Z) de-
fined by

Γ(N) =

{
α ∈ SL2(Z)

∣∣∣∣ α ≡
(

1 0
0 1

)
mod N

}
,

where N is a positive integer. A congruence subgroup is a subgroup Γ ⊂ SL2(Z)
containing a principal congruence group. The smallest integer N > 0 for which

Γ(N) ⊂ Γ

is called the level of Γ.
We will be mostly interested in the following special congruence subgroups:

Γ0(N) =

{
α =

(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod N

}
,

Γ1(N) =

{
α =

(
a b
c d

)
∈ Γ0(N)

∣∣∣∣ a ≡ d ≡ 1 mod N

}
.

Let k be a positive integer ≥ 2. For any function f on H and γ =

(
a b
c d

)
∈

GL+
2 (R), we define the function f |kγ on H by

f |kγ(z) = det(γ)k−1f(γz)(cz + d)−k.

We simply write f |kγ for f |γ if there is no risk of confusion. Let Γ be a
congruence subgroup of SL2(Z) and N a positive integer such that Γ(N) ⊂ Γ.
Any holomorphic function on H satisfying f |kγ = f for all γ ∈ Γ(N) has the
Fourier expansion of the form:

∞∑

n=0

a (n, f) e
(nz
N

)
,

where e(z) = exp(2π
√
−1z).

We define the space Mk(Γ,C) of modular forms of weight k with respect
to Γ to be the space of holomorphic functions f on H satisfying the following
conditions:
(a) f |kγ = f for all γ ∈ Γ.
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6 Y. HIRANO

(b) a (n, f |kα) = 0 if n < 0 for each α ∈ SL2(Z).
Here we note that the function f |kα is invariant under the action of α−1Γα and
hence f |kα has the Fourier expansion. We define the space Sk(Γ,C) of cusp
forms to be the subspace of Mk(Γ,C) consisting of f ∈Mk(Γ,C) satisfying the
following condition:
(c) a (0, f |kα) = 0 for any α ∈ SL2(Z).
Let ε : (Z/NZ)× → C× be a Dirichlet character modulo N . We put

Mk(Γ0(N), ε,C) =
{
f ∈Mk(Γ1(N),C)

∣∣∣∣ f |kγ = ε(d)f

for any γ =

(
a b
c d

)
∈ Γ0(N)

}
,

Sk(Γ0(N), ε,C) = Mk(Γ0(N), ε,C) ∩ Sk(Γ1(N),C).

We remark that Mk(Γ0(N), ε,C) is trivial if ε(−1) 6= (−1)k.
For a ring R and a non-negative integer n, we denote by Ln(R) the degree

n part Symn
R(RX ⊕ RY ) of the polynomial algebra R[X,Y ]. Thus, Ln(R)

consists of the homogeneous polynomials of degree n in two-variables X and
Y , with coefficients in R. The semigroup Σ = GL2(Q) ∩M2(Z) acts on Ln(R)
by

γ · P (X,Y ) = P ((X,Y )det(γ)tγ−1).

If R is a Q-algebra, we also define the action of Σ on Ln(R) by

γ ? P (X,Y ) = P ((X,Y )tγ−1).

In the similarly way, GL+
2 (Q) acts on Ln(R) for Q-algebra R and it is denoted

by ?. We simply denote det(α)α−1 by αι for any α ∈ GL+
2 (Q). We remark

that these three actions coincide if they are restricted to SL2(Z).
Moreover, for α ∈ GL+

2 (Q) and a function G on H, we have the pull-back
formula

α∗(G(z)(X − zY )k−2dz) = (G|α)(z)α ? (X − zY )k−2dz.

Furthermore, for α, β ∈ GL+
2 (Q),

α∗(G(z)β ? (X − zY )k−2dz) = β ? (α∗(G(z)(X − zY )k−2dz)(0.1)

= (G|α)(z)(βα) ? (X − zY )k−2dz.

0.3. Acknowledgement. — I would like to express my gratitude to Professor
Takeshi Tsuji for providing helpful comments and suggestions, and pointing out
mathematical mistakes during the course of my study. In particular, the work
in Appendix A would have been impossible without his insight and guidance.
I heartily thank the referee for providing helpful comments for improvement.
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1. Integrality of 1-cocycles

1.1. Preliminary. — Let Γ = Γ0(N) or Γ1(N). Then G ∈ Mk(Γ,C) has the
Fourier expansion of the form

G(z) =

∞∑

n=0

a (n,G) e (nz) .

Thus, we may regard Mk(Γ1(N),C) =
⊕

ε:(Z/NZ)×→C
Mk(Γ0(N), ε,C) as a sub-

space of C[[e(z)]]. For a subring A of C, we put

Mk(Γ1(N), A) = Mk(Γ1(N),C) ∩A[[e(z)]],

Sk(Γ1(N), A) = Sk(Γ1(N),C) ∩A[[e(z)]],

Mk(Γ0(N), ε, A) = Mk(Γ0(N), ε,C) ∩A[[e(z)]],

Sk(Γ0(N), ε, A) = Sk(Γ0(N), ε,C) ∩A[[e(z)]].

Let χ be a Dirichlet character whose conductor mχ is prime to N . We put

(G⊗ χ)(z) =

∞∑

n=0

a (n,G)χ(n)e (nz) .

We note that, if G ∈Mk(Γ0(N), ε,C), then G⊗χ ∈Mk(Γ0(M), εχ2,C) where
M = lcm{N,m2

χ,mχmε}. The Dirichlet series
∞∑

n=1

a(n,G)χ(n)n−s

converges absolutely for Re(s) > k and extends to a meromorphic function on
the complex plane with a possible simple pole at s = k. For each G ∈Mk(Γ,C),
let L(G,χ, s) denote this analytic continuation. If χ is the trivial character, we
simply write L(G, s). We define D(G,χ, s) as

D(G,χ, s) =

∫ √−1∞

0

˜(G⊗ χ)(z)(X − zY )k−2Im(z)
s−1

dz

(1.1)

=

k−2∑

j=0

(
k − 2
j

)√
−1

j+1
Γ(s+ j)

(
1

2π

)s+j
L(G,χ, s+ j)Xk−2−j(−Y )j ,

where G̃(z) = G(z)− a(0, G) (see, for example, [33, Proposition 2.1.2] and the
proof of [28, Theorem 4.3.5]). We call D(G,χ, s) the Mellin transform of G
twisted by χ. The integral D(G,χ, s) converges absolutely for Re(s) > k and
extends to a meromorphic function on the complex plane with simple poles
at s = −(k − 2), . . . ,−1, 0 and 2, 3, . . . , k (see Proposition 1.1 (2)). We are
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8 Y. HIRANO

interested in the special values of L(G,χ, s) at s = 1, . . . , k − 1, that is, in the
special value of D(G,χ, s) at s = 1.

Proposition 1.1. — Let G ∈ Mk(Γ,C), and χ a Dirichlet character whose
conductor mχ is prime to N .

(1) If α =

(
a b
0 d

)
∈ GL+

2 (Q), then we have

a(0, G|α) =
ak−1

d
a(0, G),

G̃|α = G̃
∣∣α.

(2) The integral D(G,χ, s) converges absolutely for Re(s) > k and extends to
a meromorphic function on the complex plane with simple poles at s =
−(k − 2), . . . ,−1, 0 and 2, 3, . . . , k.

Proof. — (1) By definition, (G|α)(z) = ak−1

d G(αz). Then we have a(0, G|α) =
ak−1

d a(0, G). Moreover, by definition,

(G̃|α)(z) = (G|α)(z)− a(0, G|α)

=
ak−1

d
(G(αz)− a(0, G))

=
ak−1

d
G̃(αz)

= (G̃
∣∣α)(z).

(2) For Re(s) > k,

D(G,χ, s) =

∫ √−1∞

0

˜(G⊗ χ)(z)(X − zY )k−2Im(z)s−1dz

=

∫ √−1∞

√−1

˜(G⊗ χ)(z)(X − zY )k−2Im(z)s−1dz

+

∫ √−1

0

˜(G⊗ χ)(z)(X − zY )k−2Im(z)s−1dz.

Now we calculate the second term. We put y = Im(z). Then we get
∫ √−1

0

˜(G⊗ χ)(z)(X − zY )k−2Im(z)s−1dz

=

∫ √−1

0

(G⊗ χ)(z)(X − zY )k−2ys−1dz

−
∫ √−1

0

a(0, G)χ(0)(X − zY )k−2ys−1dz
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=

∫ σ−1√−1

σ−10

(G⊗ χ)(σz)(X − σzY )k−2y1−sdσz

−
∫ √−1

0

a(0, G)χ(0)(X − zY )k−2ys−1dz

= −
∫ √−1∞

√−1

((G⊗ χ)|σ)(z)σ · (X − zY )k−2y1−sdz

−
∫ √−1

0

a(0, G)χ(0)(X − zY )k−2ys−1dz

= −
∫ √−1∞

√−1

˜((G⊗ χ)|σ)(z)σ · (X − zY )k−2y1−sdz

−
∫ √−1∞

√−1

a(0, (G⊗ χ)|σ)σ · (X − zY )k−2y1−sdz

−
∫ √−1

0

a(0, G)χ(0)(X − zY )k−2ys−1dz

= −
∫ √−1∞

√−1

˜((G⊗ χ)|σ)(z)σ · (X − zY )k−2y1−sdz

− a(0, (G⊗ χ)|σ)
√
−1

k−2∑

j=0

(
k − 2
j

)
(
√
−1X)jY k−2−j −1

j + 2− s

− a(0, G)χ(0)
√
−1

k−2∑

j=0

(
k − 2
j

)
Xk−2−j(−

√
−1Y )j

1

s+ j
.

Here the third equality follows from (0.1). By setting s = 1, the second term
is equal to

a(0, (G⊗ χ)|σ)

∫ √−1

0

σ · (X − zY )k−2dz.

This proves (2). �

1.2. Construction of 1-cocycles. — In order to define a desired cocycle with
good arithmetic and p-adic properties, we need to choose some special cobound-
ary element as in [33].

Definition 1.2. — For a congruence subgroup Γ, letG ∈Mk(Γ,C). For α, β ∈
GL+

2 (Q) and z0 ∈ H, we define the map

πG,β(z0) : GL+
2 (Q) −→ Lk−2(C)
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by

πG,β(z0)(α) =

∫ αz0

z0

(G|β)(z)β ? (X − zY )k−2dz

+

∫ √−1∞

z0

(G̃|βα)(z)βα ? (X − zY )k−2dz

− a(0, G|βα)

∫ z0

0

βα ? (X − zY )k−2dz

−
∫ √−1∞

z0

(G̃|β)(z)β ? (X − zY )k−2dz

+ a(0, G|β)

∫ z0

0

β ? (X − zY )k−2dz.

We remark that the second and fourth integrals converge absolutely by using
Proposition 1.1 (2). If β = ( 1 0

0 1 ), we simply write πG instead of πG,β . Then
we have

πG,β(z0)(α) = β ? πG|β(z0)(α).(1.2)

Remark 1.3. — If G is a cusp form, then, for any α ∈ GL+
2 (Q), by using

(0.1),

πG(z0)(α) =

∫ α
√−1∞

√−1∞
G(z)(X − zY )k−2dz

is the usual Eichler-Shimura cocycle.

Proposition 1.4. — For each α ∈ GL+
2 (Q), the value πG,β(z0)(α) is indepen-

dent of z0 ∈ H.

Proof. — For any z0, z
′
0 ∈ H and α ∈ GL+

2 (Q), we have

πG,β(z0)(α)− πG,β(z′0)(α) =

∫ αz0

z0

(G|β)(z)β ? (X − zY )k−2dz

−
∫ αz′0

z′0

(G|β)(z)β ? (X − zY )k−2dz

+

∫ √−1∞

z0

(G̃|βα)(z)βα ? (X − zY )k−2dz

−
∫ √−1∞

z′0

(G̃|βα)(z)βα ? (X − zY )k−2dz

−
∫ √−1∞

z0

(G̃|β)(z)β ? (X − zY )k−2dz
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+

∫ √−1∞

z′0

(G̃|β)(z)β ? (X − zY )k−2dz

− a(0, G|βα)

∫ z0

0

βα ? (X − zY )k−2dz

+ a(0, G|βα)

∫ z′0

0

βα ? (X − zY )k−2dz

+ a(0, G|β)

∫ z0

0

β ? (X − zY )k−2dz

− a(0, G|β)

∫ z′0

0

β ? (X − zY )k−2dz.

By using the pullback formula (0.1), we get

πG,β(z0)(α)− πG,β(z′0)(α) =

∫ αz0

αz′0

(G|β)(z)β ? (X − zY )k−2dz

+

∫ z′0

z0

(G|β)(z)β ? (X − zY )k−2dz

+

∫ z′0

z0

(G̃|βα)(z)βα ? (X − zY )k−2dz

−
∫ z′0

z0

(G̃|β)(z)β ? (X − zY )k−2dz

− a(0, G|βα)

∫ z0

z′0

βα ? (X − zY )k−2dz

+ a(0, G|β)

∫ z0

z′0

β ? (X − zY )k−2dz

=

∫ z0

z′0

(G|βα)(z)βα ? (X − zY )k−2dz

−
∫ z0

z′0

(G̃|βα)(z)βα ? (X − zY )k−2dz

− a(0, G|βα)

∫ z0

z′0

βα ? (X − zY )k−2dz

− a(0, G|β)

∫ z′0

z0

β ? (X − zY )k−2dz

+

∫ z′0

z0

(G|β)(z)β ? (X − zY )k−2dz
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−
∫ z′0

z0

(G̃|β)(z)β ? (X − zY )k−2dz

= 0. �

By Proposition 1.4, we simply write πG,β instead of πG,β(z0). This map
πG is important for a cohomological treatment of D(G,χ, s), which we state
in the next section. As a preparation for it, the rest of this section is devoted
to the proof of some properties of πG. The proof is based on the method of
Stevens [33]. We put

Dα(G, s) =

∫ √−1∞

0

(G̃
∣∣α)(z)α ? (X − zY )k−2Im(z)s−1dz

for any α ∈ GL+
2 (Q). If α = ( 1 0

0 1 ), we simply writeD(G, s) instead ofDα(G, s).
We remark that Dα(G, s) = α ? D(G|α, s) and hence this integral converges
absolutely for Re(s) > k by using Proposition 1.1 (2).

Proposition 1.5. — (1) For any β ∈ GL+
2 (Q), we have

Dβ(G, 1) = −πG,β(σ),

where σ =

(
0 −1
1 0

)
.

(2) If τ =

(
u 0
0 v

)
∈ GL+

2 (Q), then we have

πG,α(σ) = πG,ατ (σ).

Proof. — (1) It follows from the proof of Proposition 1.1 (2).
(2) We have

Dατ (G, s) =

∫ √−1∞

0

(G̃
∣∣ατ)(z)ατ ? (X − zY )k−2Im(z)s−1dz

=

∫ √−1∞

0

(G̃
∣∣α
∣∣∣∣τ)(z)ατ ? (X − zY )k−2Im(z)s−1dz (by Prop. 1.1 (1))

=

∫ √−1∞

0

(G̃
∣∣α)(z)α ? (X − zY )k−2Im(τ−1z)s−1dz (by (0.1))

=
( v
u

)s−1
∫ √−1∞

0

(G̃
∣∣α)(z)α ? (X − zY )k−2Im(z)s−1dz

=
( v
u

)s−1

Dα(G, s).

This proves (2) by setting s = 1. �

Proposition 1.6. — The map πG has the following properties :
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(1) (cocycle condition) For any α1, α2 ∈ GL+
2 (Q),

πG(α1α2) = πG,α1(α2) + πG(α1).

More generally, for any β ∈ GL+
2 (Q),

πG,β(α1α2) = πG,βα1
(α2) + πG,β(α1).

(2) For any α =

(
a b
c d

)
∈ GL+

2 (Q) with c ≥ 0,

πG(α) =





a(0, G)

∫ a
c

0

(X − zY )k−2dz

+ a(0, G|α)

∫ 0

− dc
α ? (X − zY )k−2dz + π

G,

(
δ a
0 c

)(σ) if c > 0,

a(0, G)

∫ b
d

0

(X − zY )k−2dz if c = 0,

where σ =

(
0 −1
1 0

)
and δ = det(α).

(3) πG(( 1 1
0 1 )) = a(0, G)

∫ 1

0

(X − zY )k−2dz.

Proof. — (1) For any α1, α2 ∈ GL+
2 (Q),

πG,α1
(α2) + πG(α1)

=

∫ α2z0

z0

(G|α1)(z)α1 ? (X − zY )k−2dz +

∫ α1z0

z0

G(z)(X − zY )k−2dz

+

∫ √−1∞

z0

(G̃|α1α2)(z)α1α2 ? (X − zY )k−2dz

−
∫ √−1∞

z0

(G̃|α1)(z)α1 ? (X − zY )k−2dz +

∫ √−1∞

z0

(G̃|α1)(z)α1 ? (X − zY )k−2dz

− a(0, G|α1α2)

∫ z0

0

α1α2 ? (X − zY )k−2dz −
∫ √−1∞

z0

G̃(z)(X − zY )k−2dz

+a(0, G|α1)

∫ z0

0

α1 ? (X − zY )k−2dz − a(0, G|α1)

∫ z0

0

α1 ? (X − zY )k−2dz

+ a(0, G)

∫ z0

0

(X − zY )k−2dz

= πG(α1α2).
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(2) Let B =

{(
∗ ∗
0 ∗

)
∈ GL+

2 (Q)

}
. We use the Bruhat decomposition

GL+
2 (Q) = BσB tB.

First suppose that c = 0. By definition,

πG(z0)(α) =

∫ αz0

z0

G̃(z)(X − zY )k−2dz +

∫ αz0

z0

a(0, G)(X − zY )k−2dz

+

∫ √−1∞

z0

(G̃|α)(z)α ? (X − zY )k−2dz − a(0, G|α)

∫ z0

0

α ? (X − zY )k−2dz

−
∫ √−1∞

z0

G̃(z)(X − zY )k−2dz + a(0, G)

∫ z0

0

(X − zY )k−2dz.

When z0 tends to
√
−1∞, so does αz0. Then, the first, third and fifth

terms converge to 0. Thus we obtain

πG(α) = lim
z0→
√−1∞

(
a(0, G)

∫ αz0

0

(X − zY )k−2dz − a(0, G|α)

∫ z0

0

α ? (X − zY )k−2dz

)

= lim
z0→
√−1∞

(
a(0, G)

∫ αz0

0

(X − zY )k−2dz − a(0, G)

∫ αz0

α0

(X − zY )k−2dz

)

= a(0, G)

∫ b
d

0

(X − zY )k−2dz.

Next we consider the case c > 0. By Proposition 1.6 (1) and the decompo-
sition

α =

(
c−1 0
0 c−1

)(
δ a
0 c

)
σ

(
c d
0 1

)
,

where δ = det(α), we get

πG(α) = πG(

(
δ a
0 c

)
) + π

G,

(
δ a
0 c

)
σ
(

(
c d
0 1

)
) + π

G,

(
δ a
0 c

)(σ).

Here we note that π
G,

(
c−1 0

0 c−1

) = πG and πG(

(
c−1 0
0 c−1

)
) = 0 by the

above case. We have already obtained formulas about the first and second
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terms by the case
(
∗ ∗
0 ∗

)
considered above. Indeed, we have

π
G,

(
δ a
0 c

)
σ
(( c d0 1 ))

= a

(
0, G

∣∣∣∣
(
δ a
0 c

)
σ

)∫ d

0

(
δ a
0 c

)
σ ? (X − zY )k−2dz

= a

(
0, G

∣∣∣∣α
(
c 0
0 c

)(
c−1 −c−1d
0 1

))∫ d

0

α
(
c 0
0 c

)(
c−1 −c−1d
0 1

)
? (X − zY )k−2dz

= a(0, G|α)

∫ 0

− dc
α ? (X − zY )k−2dz.

Here the final equality follows from that, for β =

(
∗ ∗
0 ∗

)
∈ GL2(Q)+ and

α ∈ GL2(Q)+, by Proposition 1.1 and (0.1),

a
(
0, (G|α)

∣∣β
)
αβ ? (X − zY )k−2dz = β ? (a (0, G|α)α ? (X − zY )k−2dz),

and hence

a
(
0, (G|α)

∣∣β
) ∫ d

0

αβ ? (X − zY )k−2dz = a (0, G|α)

∫ β(d)

β(0)

α ? (X − zY )k−2dz.

Thus, we obtain the formula as claimed.
(3) It follows immediately from (2). �

Remark 1.7. — (1) If Γ = Γ1(N), then, for any β ∈ Γ, we have πG,β =
β ? πG|β = β · πG by (1.2).

(2) The restriction of πG to Γ1(N) is a 1-cocycle on Γ1(N), that is, πG ∈
Z1(Γ1(N), Lk−2(C)) (for the definition, see § 2.1).

1.3. Integrality. — The value of D(G,χ, s) at s = 1 is described in terms of πG
as follows.

Lemma 1.8. — Let G ∈Mk(Γ1(N),C) and χ a Dirichlet character whose con-
ductor mχ is prime to N . Fix b1, . . . , bϕ(mχ) ∈ Z such that {b̄1, . . . , b̄ϕ(mχ)} =

(Z/mχZ)×, where b̄i is the image of bi under the natural map Z→ Z/mχZ and
ϕ is the Euler function. Then,

τ(χ̄)D(G,χ, 1) = −
ϕ(mχ)∑

i=1

χ̄(bi)

(
1 − bi

mχ

0 1

)
? π

G,

(
1 bi
0 mχ

)(σ),

where τ(χ̄) =
∑ϕ(mχ)
i=1 χ̄(bi)e(

bi
mχ

) is the Gauss sum of χ̄.
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Proof. — We put m = mχ. We have

τ(χ̄)(G⊗ χ)(z) =

ϕ(m)∑

i=1

χ̄(bi)G(z +
bi
m

).

Thus,

τ(χ̄)D(G,χ, s)

=

ϕ(m)∑

i=1

χ̄(bi)

∫ √−1∞

0

˜
G(z +

bi
m

)(X − zY )k−2ys−1dz (y = Im(z))

=

ϕ(m)∑

i=1

χ̄(bi)
(

1
bi
m

0 1

)−1

?

∫ √−1∞

0

˜
G(z +

bi
m

)
(

1
bi
m

0 1

)
? (X − zY )k−2ys−1dz

=

ϕ(m)∑

i=1

χ̄(bi)
(

1 − bim
0 1

)
?

∫ √−1∞

0

˜(
G

∣∣∣∣
(

1
bi
m

0 1

))
(z)
(

1
bi
m

0 1

)
? (X − zY )k−2ys−1dz.

We remark that

D(
1
bi
m

0 1

)(G, s) =

∫ √−1∞

0

˜(
G

∣∣∣∣
(

1
bi
m

0 1

))
(z)
(

1
bi
m

0 1

)
? (X − zY )k−2ys−1dz.

By Proposition 1.5 (1), we have

D(
1
bi
m

0 1

)(G, 1) = −π
G,

(
1
bi
m

0 1

)(σ).(1.3)

Therefore, we obtain

τ(χ̄)D(G,χ, 1) = −
ϕ(m)∑

i=1

χ̄(bi)
(

1 − bim
0 1

)
? π

G,

(
1
bi
m

0 1

)(σ).

In addition, by using Proposition 1.5 (2), we have

τ(χ̄)D(G,χ, 1) = −
ϕ(m)∑

i=1

χ̄(bi)
(

1 − bim
0 1

)
? π

G,

(
1
bi
m

0 1

)(
1 0
0 m

)(σ)

= −
ϕ(m)∑

i=1

χ̄(bi)
(

1 − bim
0 1

)
? π

G,

(
1 bi
0 m

)(σ).

We have proved the lemma. �

We fix a rational odd prime number p such that (p,N) = 1. Let S be a set
of rational prime numbers satisfying the following properties:
(1) both (m, pN) = 1 and (ϕ(m), p) = 1 hold for all m ∈ S;
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(2) S has non-empty intersection with every arithmetic progression of the form
{d + cpNe|e ∈ Z} for all pair (c, d) ∈ Z2 such that c > 0, (p, cd) = 1,
d 6≡ 1 (mod p), and (d, cN) = 1

(for example, S = {m|m is a prime number such that (m, pN) = 1 and
m 6≡ 1 (mod p)}).

We remark that p /∈ S. For such a set S, let XS denote the set of Dirich-
let characters χ whose conductor mχ belongs to S. For m ∈ S, we fix
b1, . . . , bϕ(m) ∈ Z such that {b1, . . . , bϕ(m)} = (Z/mZ)×.

Theorem 1.9 (Integrality). — Let O be the ring of integers of a finite ex-
tension over Qp. Suppose that G ∈ Mk(Γ0(N), ε,O) and that the following
conditions hold:
(1) k < p+ 1;
(2) a(0, G|α) ∈ O for each α ∈ SL2(Z);
(3) D(

1
bi
m

0 1

)(G, 1) ∈ Lk−2(O) for each m ∈ S and i;

(4) πG(σ) ∈ Lk−2(O).
Then πG is integral, that is, πG(Γ0(N)) ⊂ Lk−2(O).

Proof. — We put Γ = Γ0(N) and

γ =

(
a b
cN d

)
∈ Γ.

In the case where c = 0, we have πG(γ) ∈ Lk−2(O) by Proposition 1.6 (2) and
the assumptions (1) and (2). In the case where c 6= 0, we may assume that
c > 0. Indeed, we have πG(−γ) = πG(γ) by using Proposition 1.6 (1), (2), and
(1.2). Then, by Proposition 1.6 (2), we have

πG(γ) = a(0, G)

∫ a
cN

0

(X − zY )k−2dz

+ a(0, G|γ)

∫ 0

− d
cN

γ · (X − zY )k−2dz + π
G,

(
1 a
0 cN

)(σ).

We prove that πG(γ) is integral in two cases.

Case 1. — Assume that (p, c) = 1.
It is enough to prove that πG(γ) is integral in the case where (p, d) = 1 and

d 6≡ 1 (mod p). Indeed, if p|d or d ≡ 1 (mod p), then we put

γ′ := γ

(
1 b′

0 1

)
=

(
a ab′ + b
cN cNb′ + d

)
∈ Γ.

Since (p, cN) = 1, note that cNb′+ d 6≡ 0, 1 (mod p) for some b′ ∈ Z. Then, by
applying the cocycle condition (Proposition 1.6 (1)) for πG to the element γ′,
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we get
πG(γ′) = πG(γ) + ε(d)γ · πG(

(
1 b′
0 1

)
).

Now the integrality of πG(γ) follows from the integrality of πG(γ′).
We remark that (cN)−1 ∈ O by assumption. Then, for the proof of the

integrality of πG(γ), by the formula above and the assumptions (1) and (2), it is
enough to show that π

G,

(
1 a
0 cN

)(σ) ∈ Lk−2(O). Therefore, for the proof in this

case, it suffices to show that πG(γ′) is integral by choosing b′, d′ ∈ Z such that

γ′ =

(
a b′

cN d′

)
∈ Γ. Indeed, we have πG(γ′) ≡ π

G,

(
1 a
0 cN

)(σ) (modLk−2(O)).

Since (p, cd) = 1, d 6≡ 1 (mod p), and (d, cN) = 1, there exists e ∈ Z such that
d+ cpNe ∈ S. We put m = d+ cpNe and

γ′ = γ

(
1 ep
0 1

)
=

(
a b′

cN m

)
∈ Γ,

where b′ = aep + b. By applying the cocycle condition (Proposition 1.6 (1))
for πG to the element

γ′σ =

(
a b′

cN m

)(
0 −1
1 0

)
=

(
b′ −a
m −cN

)
,

we get
πG(γ′σ) = πG(γ′) + ε(m)γ′ · πG(σ).

Since γ′ ·πG(σ) is integral by the assumption (4), for the proof of the integrality
of πG(γ′), it suffices to show that πG(γ′σ) is integral. Using Proposition 1.6 (2),
we have

πG(γ′σ) = a(0, G)

∫ b′
m

0

(X − zY )k−2dz

+ a(0, G|γ′σ)

∫ 0

cN
m

γ′σ · (X − zY )k−2dz + π
G,

(
1 b′

0 m

)(σ).

Therefore, by the assumptions (1) and (2), it is enough to show that the final
term is integral. It follows from (1.3) and the assumption (3).

Case 2. — Assume that p|c.
We put

γ′ := γ

(
1 0
N 1

)
=

(
a b
cN d

)(
1 0
N 1

)
=

(
a+ bN b

(c+ d)N d

)
∈ Γ.

Then, by applying the cocycle condition (Proposition 1.6 (1)) for πG to the
element γ′, we get

πG(γ′) = πG(γ) + ε(d)γ · πG(( 1 0
N 1 )).
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Since (p, c+ d) = 1 and (p,N) = 1, we see that both πG(γ′) and πG(( 1 0
N 1 )) are

integral by Case 1, and therefore so is πG(γ). Now this completes the proof of
the theorem. �

Remark 1.10. — Theorem 1.9 is a partial generalization of [34, Theorem 1.3].

2. Congruences for L-functions

2.1. Group cohomology. — To state our theorem, we need to recall some prop-
erties about group cohomology. We define an action of GL2(Q) on the upper
half complex plane H as follows. For α ∈ GL2(Q) with det(α) > 0, α act on H

by the usual linear fractional transformation. For τ =

(
1 0
0 −1

)
, τ act on H

by τz = −z̄. If det(α) < 0, then we define α(z) = (ατ)(τ(z)). This action is
associative and so is well-defined. Let Γ be a congruence subgroup of SL2(Z).

Definition 2.1 (The standard R[Γ]-free resolution of R). — Let R be a com-
mutative ring and M a left R[Γ]-module. We define Fq = (R[Γ])⊗(q+1) and re-
gard it as anR[Γ]-module via the multiplication ofR[Γ] on the first factor. Then
Fq is a free R[Γ]-module with a basis {[γ1, . . . , γq] = 1⊗ γ1 ⊗ · · · ⊗ γq|γi ∈ Γ}.
We define the R[Γ]-linear boundary map ∂q : Fq → Fq−1 by ∂1[γ] = γ − 1 and

∂q[γ1, . . . , γq] = γ1[γ2, . . . , γq]

+

q−1∑

j=1

(−1)j [γ1, . . . , γjγj+1, . . . , γq] + (−1)q[γ1, . . . , γq−1]

for q > 1. It is well known that (F∗, ∂∗) is a R[Γ]-free resolution of R. Let
Ci = Ci(Γ,M) be the space of functions on Γi with values in M for i ≥ 1,
and M for i = 0. Note that HomR[Γ](Fq,M) ∼= Cq. Then the differential map
di : Ci → Ci+1 induced by ∂∗ on F∗ is given by d0u(γ) = (γ − 1)u for u ∈ M
if i = 0, and if i > 0,

diu(γ1, . . . , γi+1) = γ1u(γ2, . . . , γi+1)

+

i∑

j=1

(−1)ju(γ1, . . . , γjγj+1, . . . , γi+1) + (−1)i+1u(γ1, . . . , γi).

The associated i-th cohomology group of Γ with coefficients in M is given by

Hi(Γ,M) = Zi(Γ,M)/Bi(Γ,M),

where

Zi(Γ,M) = ker(di : Ci → Ci+1) and Bi(Γ,M) = im(di−1 : Ci−1 → Ci).
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We fix a base point z0 ∈ H. For G ∈ Mk(Γ1(N),C) and γ ∈ Γ1(N), we
define ωG(z0) ∈ C1(Γ1(N), Lk−2(C)) by

ωG(z0)(γ) =

∫ γz0

z0

G(z)(X − zY )k−2dz.

Then we have ωG(z0) ∈ Z1(Γ1(N), Lk−2(C)).
Also we have πG ∈ Z1(Γ1(N), Lk−2(C)) by Proposition 1.6 (1) and (1.2).

Let ε : (Z/NZ)× → R× be a character and

∆ =

{
α =

(
a b
c d

)
∈ M2(Z)

∣∣∣∣ det(α) 6= 0, c ≡ 0 (modN), (a,N) = 1

}
.

We define an R[∆]-module Lk−2(ε,R) as follows: let Lk−2(ε,R) be the R-mod-
ule Lk−2(R) with left R[∆]-action by

γ • P (X,Y ) = ε(d)γ · P (X,Y )

for γ =

(
a b
c d

)
∈ ∆. For G ∈ Mk(Γ0(N), ε,C) and γ ∈ Γ0(N), we define

ωG(z0) ∈ C1(Γ0(N), Lk−2(ε,C)) by

ωG(z0)(γ) =

∫ γz0

z0

G(z)(X − zY )k−2dz.

Then we have ωG(z0) ∈ Z1(Γ0(N), Lk−2(ε,C)).
Also we have πG ∈ Z1(Γ0(N), Lk−2(ε,C)) by Proposition 1.6 (1) and (1.2).
For each cusp s ∈ P1(Q) = Q ∪ {∞}, let Γs denote the stabilizer of s in Γ,

and let πs be a generator of Γs:

Γs = {α ∈ Γ|αs = s} = {±πms ∈ Γ|m ∈ Z}.

Let Z(Γ) be a representative set for Γ-equivalence classes of cusps, which is a
finite set. Then we note that for each cusp s ∈ P1(Q), we can find γ ∈ Γ and
s0 ∈ Z(Γ) such that γs = s0. We consider the set of all conjugates of πs in Γ
for all s ∈ Z(Γ), which is denoted by P . The parabolic cohomology group of Γ
with coefficients in M is given by

H1
par(Γ,M) = Z1

par(Γ,M)/B1(Γ,M),

where

Z1
par(Γ,M) = {u ∈ Z1(Γ,M)|u(π) ∈ (π − 1)M for all π ∈ P}.

If f ∈ Sk(Γ1(N),C) (resp. f ∈ Sk(Γ0(N), ε,C)), we have ωf (z0), πf ∈
Z1

par(Γ1(N), Lk−2(C)) (resp. ωf (z0), πf ∈ Z1
par(Γ0(N), Lk−2(ε,C))).
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2.2. The Hecke eigenvalues. — We recall the definitions of the Hecke operators
on group cohomology and the space of modular forms. Let Γ,Γ′ < SL2(Z) be
congruence subgroups. For any α ∈ GL2(Q), we have a decomposition ΓαΓ′ =∐
i Γαi as a disjoint union. We denote det(α)α−1 simply by αι for any α ∈

GL2(Q). Let 〈Γ,Γ′, αι〉 be the semi-group in GL2(Q) generated by αι for α ∈
GL2(Q) and two congruences subgroups Γ and Γ′. For any 〈Γ,Γ′, αι〉-module
M , we define the Hecke operator [ΓαΓ′] as follows. For each γ ∈ Γ′, we can
write αiγ = γiαj for a unique j with γi ∈ Γ. For each cocycle u : Γ →
M ∈ Z1(Γ,M), we define v = u

∣∣[ΓαΓ′] by v(γ) =
∑
i α

ι
iu(γi). The operator

[ΓαΓ′] is a well-defined linear operator from H1(Γ,M) into H1(Γ′,M). Also
[ΓαΓ′] sends H1

par(Γ,M) into H1
par(Γ

′,M).

We consider the case Γ = Γ′ = Γ0(N) or Γ1(N). If α =

(
1 0
0 l

)
for a prime

number l, we abbreviate [ΓαΓ] to T (l). We have the following lemma ([28,
Lemma 4.5.6 (1)]):

Lemma 2.2. — An explicit left coset decomposition is given by

Γ0(N)

(
1 0
0 le

)
Γ0(N) =





∐

0≤f≤e,
0≤r<lf with (r, lf , le−f )=1

Γ0(N)

(
le−f r

0 lf

)
if (l, N) = 1,

∐

0≤r<le
Γ0(N)

(
1 r
0 le

)
if l|N,

as a disjoint union.

Let O be the ring of integers of a finite extension over Qp. We define the
Hecke operator T (l) on Mk(Γ0(N), ε,O) for a prime number l. We put the

disjoint decompositions ΓαΓ =
∐
i Γαi, where α =

(
1 0
0 l

)
. Then we define

f |T (l) =
∑

i

ε(αi)f |αi,

where ε(
(
a b
c d

)
) = ε(a). Here we note that it is independent of the choice of {αi}i

and f |T (l) ∈ Mk(Γ0(N), ε,O). Moreover, we define the Hecke operator T (le)
for a prime number l and an integer e ≥ 1 inductively by

T (le+1) =

{
T (l)T (le)− ε(l)lk−1T (le−1) if (l, N) = 1,
T (l)e+1 if l|N,
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where we define T (1) to be the identity map. More generally, we can define
the Hecke operator T (m) by

T (l)T (l′) = T (l′)T (l),

T (m) =
∏

l

T (lel)

for different primes l and l′ and each positive integer m =
∏
l l
el for primes l.

Using Lemma 2.2, for A = O or C, the Hecke operators on H1(Γ0(N), Lk−2(ε,A))
and Mk(Γ0(N), ε, A) can be described explicitly. We prove that the map from
Mk(Γ0(N), ε,C) toH1(Γ0(N), Lk−2(ε,C)) sendingG to the class of πG is Hecke
equivariant (see (2.2) below). In order to do it, we make the following calcu-
lations. We abbreviate Γ0(N) to Γ. We fix G ∈Mk(Γ0(N), ε,C). For a prime

number l, we put α =

(
1 0
0 l

)
, and G′ = G|[ΓαΓ] ∈ Mk(Γ, ε,C). By the pull-

back formula (0.1), for any γ ∈ Γ,

ωG′(z0)(γ) =

∫ γz0

z0

G′(z)(X − zY )k−2dz

=
∑

i

ε(αi)

∫ γz0

z0

(G|αi)(z)(X − zY )k−2dz

=
∑

i

αιi •
∫ αiγz0

αiz0

G(z)(X − zY )k−2dz.

For any γ ∈ Γ, by the definition of πG,

πG(γ) =

∫ γz0

z0

G(z)(X − zY )k−2dz + (γ − 1) • IG(X,Y ),(2.1)

where

IG(X,Y ) =

∫ √−1∞

z0

G̃(z)(X − zY )k−2dz − a(0, G)

∫ z0

0

(X − zY )k−2dz.

We simply write the above equation for

πG(γ) = ωG(z0)(γ) + (γ − 1) • IG(X,Y ).

Further, for any w ∈ H, we define F (z0)(w) =
∫ w
z0
G(z)(X − zY )k−2dz −

IG(X,Y ). For any γ ∈ Γ, we put u(z0)(w)(γ) = F (z0)(γw) − γ • F (z0)(w).
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Then, for any γ ∈ Γ,

u(z0)(w)(γ)

=

∫ γw

z0

G(z)(X − zY )k−2dz − IG(X,Y )

− γ •
∫ w

z0

G(z)(X − zY )k−2dz + γ • IG(X,Y )

=

∫ γw

z0

G(z)(X − zY )k−2dz −
∫ γw

γz0

G(z)(X − zY )k−2dz + (γ − 1) • IG(X,Y )

=

∫ γz0

z0

G(z)(X − zY )k−2dz + (γ − 1) • IG(X,Y )

= ωG(z0)(γ) + (γ − 1) • IG(X,Y )

= πG(z0)(γ).

This value is independent of the choice of w ∈ H and hence we simply write
u(z0)(γ) instead of u(z0)(w)(γ). By the definition of F (z0)(w) and the above
calculations, for any γ ∈ Γ, we get

ωG′(z0)(γ) =
∑

i

αιi • (F (z0)(αiγz0)− F (z0)(αiz0))

=
∑

i

αιi • (F (z0)(γiαjz0)− F (z0)(αiz0))

=
∑

i

αιi • (u(z0)(γi) + γi • F (z0)(αjz0))−
∑

i

αιi • F (z0)(αiz0)

= u(z0)
∣∣[ΓαΓ](γ) + (γ − 1) •

(∑

i

αιi • F (z0)(αiz0)

)
.

Then, by the above calculations, for any γ ∈ Γ, we obtain

πG′(γ) = ωG′(z0)(γ) + (γ − 1) • IG′(X,Y )(2.2)

= πG
∣∣[ΓαΓ](γ) + (γ − 1) •

(
IG′(X,Y ) +

∑

i

αιi • F (z0)(αiz0)

)
.

We now prove the following proposition.

Proposition 2.3. — (1) Suppose G′ = G|[ΓαΓ] = λ(l, G)G for λ(l, G) ∈ C.
Then we have πG′ = λ(l, G)πG.

(2) IG′(X,Y ) +
∑
i α

ι
i • F (z0)(αiz0) =

∑
i α

ι
i • πG(αi).

(3) Let G ∈ Mk(Γ0(N), ε,O) be a Hecke eigenform, λ(m,G) the eigenvalue
of T (m), $ ∈ O a uniformizer, and r a non-negative integer. Assume that
k < p, a(0, G) ≡ 0 (mod $rO), and πG is integral, that is, πG(Γ0(N)) ⊂
Lk−2(ε,O). Then [πG]

∣∣T (m) = λ(m,G)[πG] in H1(Γ0(N), Lk−2(ε,O/$r))
for any positive integer m.
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Proof. — (1) It follows from (2.1).
(2) First we calculate IG′(X,Y ). By the definition of IG′(X,Y ), we have

IG′(X,Y ) =

∫ √−1∞

z0

G̃′(z)(X − zY )k−2dz − a(0, G′)
∫ z0

0

(X − zY )k−2dz

=
∑

i

ε(αi)

∫ √−1∞

z0

(̃G|αi)(z)(X − zY )k−2dz

−
∑

i

ε(αi)a(0, G|αi)
∫ z0

0

(X − zY )k−2dz

=
∑

i

αιi •
∫ √−1∞

z0

(̃G|αi)(z)αi ? (X − zY )k−2dz

−
∑

i

αιi • a(0, G|αi)
∫ z0

0

αi ? (X − zY )k−2dz.

Therefore, by the definition of πG(αi), we have

IG′(X,Y ) +
∑

i

αιi • F (z0)(αiz0)

= IG′(X,Y ) +
∑

i

αιi •
[ ∫ αiz0

z0

G(z)(X − zY )k−2dz

−
∫ √−1∞

z0

G̃(z)(X − zY )k−2dz + a(0, G)

∫ z0

0

(X − zY )k−2dz

]

=
∑

i

αιi • πG(αi),

as required.
(3) We fix a prime number l. Using Lemma 2.2, (2.2) and (2), we obtain

πG′(γ)− πG
∣∣[ΓαΓ](γ) = (γ − 1) •

(
IG′(X,Y ) +

∑

i

αιi • F (z0)(αiz0)

)
(by (2.2))

= (γ − 1) •
(∑

i

αιi • πG(αi)

)
(by (2))

= (γ − 1) •
(∑

i

αιi • a(0, G)

∫ ri

lfi

0

(X − zY )k−2dz

)

≡ 0 (mod$rO)

for any γ ∈ Γ. Here the third equality follows from Proposition 1.6 (2) and the
last congruence follows from an explicit calculation with

∑p−1
r=1 r

j+1 ≡ 0 (mod p)
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for any non-negative integer j such that j + 1 < p − 1 if l = p. Therefore, by
using (1), we prove (3). �

2.3. Canonical periods. — We put Γ0 = Γ0(N) and Γ1 = Γ1(N). Let f ∈
Sk(Γ0, ε,O) be a normalized Hecke eigenform. We assume that if k > 2,
then (p,N) = 1 and k − 2 < p. Let Y denote the modular curve Γ1\H with
Γ1-structure. Let Lk−2(O) be the local system on Y corresponding to the
Γ1-module Lk−2(O). For a prime number l, we simply write Tl = T (l) if
(l, N) = 1 and Ul = T (l) if l|N . We denote by Mf a maximal ideal of the
Hecke algebra generated by $, Tl−a(l, f) (for (l, N) = 1), Ul−a(l, f) (for l|N),

and 〈d〉− ε(d). For τ =

(
1 0
0 −1

)
, we consider the complex conjugation [Γ1τΓ1]

on H1
par(Γ1, Lk−2(O)) defined in §2.2. We note that the complex conjugation

[Γ1τΓ1] commutes with Tl and Ul for any prime number l because Γ1τΓ1 = Γ1τ

and Γ1

(
1 0
0 l

)
Γ1 =

∐
i Γ1αi =

∐
i Γ1τ

−1αiτ .

Proposition 2.4. — For each parity α ∈ {±1},
the α-eigenspace H1

c (Y,Lk−2(O))αMf
is free of rank 1 over O.

Proof. — The Eichler-Shimura isomorphism and the q-expansion principle
over C imply that

H1
c (Y,Lk−2(C))αMf

' H1
par(Y,Lk−2(C))αMf

,(2.3)

whose dimension over C is equal to 1. Then it suffices to show that H1
c (Y,Lk−2(O))

is torsion-free. First suppose that k = 2. By considering the exact sequence
0→ O ×$−−→ O → O/$ → 0 and taking its cohomology, we see that H1

c (Y,O) is
torsion-free. Next suppose that k > 2. We note that, if (p,N) = 1 and k−2 < p,
then

H0(Y,Lk−2(A)) ' H0(Γ1, Lk−2(A)) = 0 for A = O, O/$(2.4)

because
(

1 1
0 1

)
,
(

1 0
N 1

)
∈ Γ1. Thus, by considering the exact sequence 0 →

O ×$−−→ O → O/$ → 0 and taking its cohomology, we see that H1(Y,Lk−2(O))
is torsion-free. In particular, H1

par(Y,Lk−2(O)) is torsion-free. Thus it suffices
to show that the kernel of H1

c (Y,Lk−2(O)) � H1
par(Y,Lk−2(O)) is torsion-

free. The Gysin sequence with the help of (2.4) implies that the kernel is
identified with the boundary cohomology of degree 0 and hence it is torsion-
free as desired. �

Proposition 2.5. — For each parity α ∈ {±1}, the canonical morphism in-
duces an isomorphism

H1
c (Y,Lk−2(O))αMf

' H1
par(Y,Lk−2(O))αMf

.
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Proof. — It suffices to show the injectivity of this morphism. As mentioned
in the proof of Proposition 2.4, both H1

c (Y,Lk−2(O)) and H1
par(Y,Lk−2(O))

are torsion-free. Hence the injectivity follows from the isomorphism (2.3). �

For each parity α ∈ {±1}, we define the canonical period Ωαf . We choose a
generator [δf ]αc (resp. [δf ]α) ofH1

c (Y,Lk−2(O))αMf
(resp. H1

par(Y,Lk−2(O))αMf
).

Let Ω•(Y,C) denote the complex of C-valued C∞-differential Γ1-invariant
forms in H. Moreover, let Ω•c(Y,C) denote the complex of forms in Ω•(Y,C)
which, together with their exterior differentials, are fast decreasing at each cusp
s ∈ Z(Γ1). By [4, Theorem 5.2], we have

H1
dR(Y,Ω•c(Y,C)⊗C Lk−2(C)) ' H1

c (Y,Lk−2(C)).

Let [ωf ]dR ∈ H1
dR(Y,Ω•c(Y,C)⊗C Lk−2(C)) be the de Rham cohomology class

attached to f . Let [ωf ]c ∈ H1
c (Y,Lk−2(C)) (resp. [ωf ] ∈ H1

par(Y,Lk−2(C))) be
the image of [ωf ]dR. We note that, by (2.1), the cocycle πf defines the same
cohomology class as ωf (z0) and also [ωf ] = [ωf (z0)] via the comparison theorem
between Betti cohomology and group cohomology (cf. [3, Proposition 2.5]). By
using the proof of Proposition 2.3, the Hecke eigenvalues of the cohomology
classes [ωf ]c and [ωf ] are the same as those of f . We write [ωf ]αc and [ωf ]α for
the projections to the α-parts. Thus, by Proposition 2.4 and Proposition 2.5,
there exist complex numbers Ωαf,c, Ωαf ∈ C× such that

[ωf ]αc = Ωαf,c[δf ]αc ,(2.5)
[ωf ]α = Ωαf [δf ]α.

We note that, by the definition, Ωαf,c is equal to Ωαf up to O×.

Proposition 2.6. — For each parity α ∈ {±1}, let

παf =
1

2
(πf + απf |[Γ1τΓ1]) .

Then the image of Γ0 under the map παf /Ω
α
f and παf (σ)/Ωαf ∈ Lk−2(C) are

contained in Lk−2(O).

Proof. — By the proof of Theorem 1.9, it suffices to show the integrality of
the coefficients of Xk−2−jY j in D(f, 1)/Ωαf ∈ Lk−2(C) for each j with α =

(−1)j and D(
1
bi
m

0 1

)(f, 1)/Ωαf ∈ Lk−2(C) for each m ∈ S, i, and j with α =

χ(−1)(−1)j . Here we note that πf (σ) = −D(f, 1) by Proposition 1.5 (1). In
order to prove this integrality, we give a cohomological treatment of the special
values of the L-functions.

Let χ be the trivial character or a Dirichlet character with conductor m ∈ S.
We note that m is prime to p. Fix a representative set {bi}i of (Z/mZ)

× in Z.
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For each bi, we consider the following subset Hbi of H:

Hbi =
bi
m

+
√
−1R×+ =

{
bi
m

+
√
−1y

∣∣∣∣ y ∈ R with y > 0

}
.

Then we have Hbi → Y and it induces

H1
c (Y,Lk−2(A))→ H1

c (Hbi ,Lk−2(A))(2.6)

for A = O, K, C. Then, for each j with 0 ≤ j ≤ k−2, we define the evaluation
map

evjbi,A : H1
c (Y,Lk−2(A))→ A(2.7)

by the composition of

H1
c (Y,Lk−2(A))

(2.6)−−−→ H1
c (Hbi ,Lk−2(A))

(
1 − bi

m
0 1

)

−−−−−−→ H1
c (Hbi ,Lk−2(A))(2.8)

and

H1
c (Hbi ,Lk−2(A))

coeff. of Xk−2−jY j−−−−−−−−−−−−→ H1
c (Hbi , A)

trace−−−→ A.(2.9)

Here the second arrow of (2.8) is induced by

Lk−2(A)→ Lk−2(A) ; P (X,Y ) 7→
(

1 − bi
m

0 1

)
? P (X,Y )

because m is prime to p, the first arrow of (2.9) is induced by

Lk−2(A)→ A ;

k−2∑

j=0

ajX
k−2−jY j 7→ aj ,

and the second arrow of (2.9) is the trace map:

ω 7→
∫ bi

m

√−1∞
ω.

.

Proposition 2.7. — Let χ be the trivial character or a character with con-
ductor m ∈ S. Then

−τ(χ̄)D(f, χ, 1) =

k−2∑

j=0

ϕ(m)∑

i=1

χ̄(bi)evjbi,C([ωf ]c).
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Proof. — Direct calculation shows that

τ(χ̄)D(f, χ, 1) =

ϕ(m)∑

i=1

χ̄(bi)
(

1 − bim
0 1

)
?

∫ √−1∞

0

(f

∣∣∣∣
(

1
bi
m

0 1

)
)(z)

(
1
bi
m

0 1

)
? (X − zY )k−2dz

=

ϕ(m)∑

i=1

χ̄(bi)
(

1 − bim
0 1

)
?

∫ √−1∞

bi
m

f(z)(X − zY )k−2dz

= −
k−2∑

j=0

ϕ(m)∑

i=1

χ̄(bi)evjbi,C([ωf ]c).

Here the first equality follows from the proof of Lemma 1.8, the second equality
follows from the pull-back formula (0.1), and the last equality follows from the
definition of the evaluation map evjbi,C. �

We also treat the anti-holomorphic case.

Proposition 2.8. — Under the same notation of Proposition 2.7,

−χ(−1)τ ι • τ(χ̄)D(f, χ, 1) =

k−2∑

j=0

ϕ(m)∑

i=1

χ̄(bi)evjbi,C([ωf ]c|[Γ1τΓ1]).

Proof. — We note that [ωf ]c|[Γ1τΓ1] corresponds to the de Rham cohomology
class

τ ι • f(−z)(X − (−z)Y )k−2d(−z) = −f(−z)(X − zY )k−2dz

via the de Rham theorem (cf. [18, §6.4]). Thus,

k−2∑

j=0

ϕ(m)∑

i=1

χ̄(bi)evjbi,C([ωf ]c|[Γ1τΓ1])

=

ϕ(m)∑

i=1

χ̄(bi)
(

1 − bim
0 1

)
τ ι •

∫ bi
m

√−1∞
f(−z)(X − (−z)Y )k−2d(−z)

=

ϕ(m)∑

i=1

χ̄(bi)
(

1 − bim
0 1

)
τ ι •

∫ − bim
√−1∞

f(z)(X − zY )k−2dz

=

ϕ(m)∑

i=1

χ̄(bi)τ
ι
(

1
bi
m

0 1

)
•
∫ − bim
√−1∞

f(z)(X − zY )k−2dz

= χ(−1)τ ι •
ϕ(m)∑

i=1

χ̄(−bi)
(

1
bi
m

0 1

)
?

∫ − bim
√−1∞

f(z)(X − zY )k−2dz

= −χ(−1)τ ι • τ(χ̄)D(f, χ, 1).

tome 146 – 2018 – no 1



CONGRUENCES OF MODULAR FORMS AND THE IWASAWA λ-INVARIANTS 29

Here the third equality follows from
(

1 − bi
m

0 1

)
τ ι = τ ι

(
1 bi
m

0 1

)

and the last equality follows from the proof of Lemma 1.8. �

Proposition 2.9. — For each α ∈ {±1}, under the same notation of Propo-
sition 2.7,

k−2∑

j=0

ϕ(m)∑

i=1

χ̄(bi)evjbi,C([ωf ]αc ) = τ(χ̄)

k−2∑

j=0

(
1 + αχ(−1)(−1)j

2

)(
k − 2
j

)

· j!
(

1

2π
√
−1

)j+1

L(f, χ, j + 1)Xk−2−jY j .

Proof. — Direct calculation shows that
k−2∑

j=0

ϕ(m)∑

i=1

χ̄(bi)evjbi,C([ωf ]αc ) =
1

2

k−2∑

j=0

ϕ(m)∑

i=1

χ̄(bi)evjbi,C ([ωf ]c + α[ωf ]c|[Γ1τΓ1])

= −1

2
τ(χ̄)D(f, χ, 1)− 1

2
αχ(−1)τ ι • τ(χ̄)D(f, χ, 1).

Here the last equality follows from Proposition 2.7 and Proposition 2.8. Hence,
our proposition follows from (1.1):

D(f, χ, 1) = −
k−2∑

j=0

(
k − 2
j

)
j!

(
1

2π
√
−1

)j+1

L(f, χ, j + 1)Xk−2−jY j . �

Therefore, Proposition 2.6 follows from Proposition 2.9, the functoriality of
the evaluation map evjbi,A for A, the integrality of [ωf ]αc /Ω

α
f ∈ H1

c (Y,Lk−2(O)),
Lemma 1.8, and (1.3). �

2.4. Congruences of special values. — For modular forms f, g ∈Mk(Γ,O) and
a positive integer r ∈ Z, we define a congruence of modular forms f ≡ g (mod
$r) by a(m, f) ≡ a(m, g)(mod $r) for any integer m ∈ Z.

Theorem 2.10. — Let p be an odd prime number, r a positive integer, and k
an integer with 2 ≤ k ≤ p− 1. Let f =

∑∞
n=1 a(n, f) e(nz) ∈ Sk(Γ0(N), ε,O)

be a p-ordinary normalized Hecke eigenform. Assume that the residual Galois
representation ρ̄f associated to f is reducible of the form

ρ̄f ∼
(
ξ1 ∗
0 ξ2

)
,

and either ξ1 or ξ2 is unramified at p. Assume also that there exists an Eisen-
stein series G = Ek(ψ1, ψ2) ∈ Mk(Γ0(N), ε,O) (for the definition, see The-
orem 3.18) such that G satisfies the assumptions of Theorem 1.9 and f ≡
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G (mod $r). Then there exist a parity α ∈ {±1} (explicitly given by (A.27)),
a complex number Ωαf ∈ C×, and a p-adic unit u ∈ O× such that, for ev-
ery primitive Dirichlet character χ whose conductor mχ is prime to N , the
following congruence holds:
(1) if (mχ, p) = 1, then, for each j with 0 ≤ j ≤ k − 2 and α = χ(−1)(−1)j,

τ(χ̄)
L(f, χ, 1 + j)

(2π
√
−1)1+jΩαf

≡ uτ(χ̄)
L(G,χ, 1 + j)

(2π
√
−1)1+j

(mod $r);

(2) if p|mχ, we assume that mχ ∈ $rO, χ is non-exceptional (see Defini-
tion 2.11) and α = χ(−1). Then

τ(χ̄)
L(f, χ, 1)

(2π
√
−1)Ωαf

≡ uτ(χ̄)
L(G,χ, 1)

2π
√
−1

(mod $r).

Proof. — We put Γ = Γ0(N). By Proposition 2.3 (3), we get [πG]α
∣∣T (m) ≡

a(m,G)[πG]α (mod $r) and [δf ]α
∣∣T (m) ≡ a(m, f)[δf ]α (mod $r) for any

positive integerm. We will see that [πG]α is non-trivial inH1
par(Γ, Lk−2(ε,O/$))

by a mod p non-vanishing theorem ([14, Lemma 3, page 430 (cf. the remark at
the end of the proof, page 432)]) and (2.10) represented as below. Therefore,
by Theorem A.12, there exists a p-adic unit u ∈ O× such that [δf ]α = u[πG]α

in H1
par(Γ1(N), Lk−2(O/$r))α[Mf ] ' O/$r. Let δαf = παf /Ω

α
f which is in-

tegral by Proposition 2.6 and represents [δf ]α. Hence, for some Q(X,Y ) ∈
Lk−2(ε,O/$r), we obtain δαf − uπαG = ∂Q(X,Y ) in Z1(Γ, Lk−2(ε,O/$r)).

Let χ be a non-trivial primitive Dirichlet character, whose conductor is
denoted by mχ. We fix b1, . . . , bϕ(mχ) ∈ Z such that {b̄1, . . . , b̄ϕ(mχ)} =

(Z/mχZ)×.
We consider in two cases.
(i) We treat the case (p,mχ) = 1.
We put m = mχ. For each bi, we put

γbi =

(
ai bip

h

cip
h m

)
∈ Γ

for some choice of ai, ci, h ∈ Z with ph ∈ $rO. An explicit calculation with
the cocycle condition (Proposition 1.6 (1)) and Theorem 1.9 shows that

πG(γbiσ) = πG(γbi) + γbi • πG(σ) ∈ Lk−2(ε,O).

Here we recall that πG(σ) = −D(G, 1) ∈ Lk−2(ε,O) by Proposition 1.5 (1).
By the choice of h, the action of γbi on Lk−2(ε,O/$r) is given by

γbi • P (X,Y ) ≡ ε(m)P (mX,m−1Y ) (mod $r).

We remark that the action of γbi on Lk−2(ε,O/$r) is independent of bi. On
the other hand, by using Proposition 1.6 (2) with πG(γbiσ) ∈ Lk−2(ε,O) and
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our assumption, we get

πG(γbiσ) ≡ π
G,

(
1 bip

h

0 m

)(σ) (mod $r).

Here we remark that a(0, G|γbiσ) ∈ O. Therefore, by Lemma 1.8, computing
modulo $r, we obtain

τ(χ̄)D(G,χ, 1) = −
ϕ(m)∑

i=1

χ̄(bip
h)

(
1 − biphm
0 1

)
? π

G,

(
1 bip

h

0 m

)(σ)

≡ −
ϕ(m)∑

i=1

χ̄(bip
h)

(
1 − biphm
0 1

)
? πG(γbiσ)

≡ −
ϕ(m)∑

i=1

χ̄(bip
h)πG(γbiσ)

= −
ϕ(m)∑

i=1

χ̄(bip
h){πG(γbi) + γbi • πG(σ)}

≡ −
ϕ(m)∑

i=1

χ̄(bip
h)πG(γbi) (mod $r).

By definition, we recall that

πG|[ΓτΓ](γbi) = τ ι • πG(γ′bi),

where
γ′bi = τγbiτ

−1 =

(
ai −biph
−ciph m

)
∈ Γ.

In a similar way as above, we get

χ(−1)τ(χ̄)D(G,χ, 1) ≡ −
ϕ(m)∑

i=1

χ̄(bip
h)πG(γ′bi) (mod $r).

Therefore, computing modulo $r, we obtain
ϕ(m)∑

i=1

χ̄(bip
h)παG(γbi) =

1

2

ϕ(m)∑

i=1

χ̄(bip
h)
(
πG(γbi) + ατ ι • πG(γ′bi)

)
(2.10)

≡ −1

2
(1 + αχ(−1)τ ι) • τ(χ̄)D(G,χ, 1)

= τ(χ̄)

k−2∑

j=0

(
k − 2
j

)(
1 + αχ(−1)(−1)j

2

)

· j!
(

1

2π
√
−1

)j+1

L(G,χ, j + 1)Xk−2−jY j .
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Here the last equality follows from (1.1). We put

τ(χ̄)D(G,χ, 1)α = −1

2
(1 + αχ(−1)τ ι) • τ(χ̄)D(G,χ, 1).

By the cocycle condition (Proposition 1.6 (1)), we have

πf (γbiσ) = πf (γbi) + γbi • πf (σ),

(πf |[ΓτΓ])(γbiσ) = τ ι • πf (γ′bi(−σ))

= τ ι •
(
πf (γ′bi) + γ′bi • πf (−σ)

)

= (πf |[ΓτΓ])(γbi) + γbi • (πf |[ΓτΓ])(σ).

Thus we get

δαf (γbiσ) = δαf (γbi) + γbi • δαf (σ) ∈ Lk−2(ε,O),

where the integrality follows from Proposition 2.6. On the other hand, we have

δαf (γbiσ) =
1

2Ωαf
(πf (γbiσ) + α(πf |[ΓτΓ])(γbiσ))

=
1

2Ωαf

(
πf (γbiσ) + ατ ι • πf (γ′bi(−σ))

)

=
1

2Ωαf

(
π
f,

(
1 bip

h

0 m

)(σ) + ατ ι • π
f,

(
1 −biph
0 m

)(σ)

)
.

Here the last equality follows from that πf (γ′bi(−σ)) = πf (γ′biσ) and Proposi-
tion 1.6 (2). Therefore, by Lemma 1.8, computing modulo $r, we obtain
ϕ(m)∑

i=1

χ̄(bip
h)δαf (γbi) =

ϕ(m)∑

i=1

χ̄(bip
h)
(
δαf (γbiσ)− γbi • δαf (σ)

)

≡
ϕ(m)∑

i=1

χ̄(bip
h)δαf (γbiσ) ≡

ϕ(m)∑

i=1

χ̄(bip
h)

(
1 − biphm
0 1

)
? δαf (γbiσ)

= −1

2
(1 + αχ(−1)τ ι) • τ(χ̄)

D(f, χ, 1)

Ωαf

= τ(χ̄)

k−2∑

j=0

(
k − 2
j

)(
1 + αχ(−1)(−1)j

2

)

· j!
(

1

2π
√
−1

)j+1
L(f, χ, j + 1)

Ωαf
Xk−2−jY j .

We put

τ(χ̄)
D(f, χ, 1)

Ωαf

α

= −1

2
(1 + αχ(−1)τ ι) • τ(χ̄)

D(f, χ, 1)

Ωαf
.
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Since δαf − uπαG = ∂Q(X,Y ) for some Q(X,Y ) ∈ Lk−2(ε,O/$r), we have

τ(χ̄)
D(f, χ, 1)

Ωαf

α

− uτ(χ̄)D(G,χ, 1)α (mod $r)

=

ϕ(m)∑

i=1

χ̄(bip
h)(γbi − 1) •Q(X,Y )

=

ϕ(m)∑

i=1

χ̄(bip
h){ε(m)Q(mX,m−1Y )−Q(X,Y )}

= 0

if χ is non-trivial, as required.

(ii) We consider the case p|mχ.
This case is more difficult because the relation πG(γbσ) ≡ π

G,

(
1 b
0 mχ

)(σ) (mod

$r) does not hold, since mχ is not invertible in O. Thus this case is more
delicate. In order to obtain the congruence for special values of L-functions,
we will make the substitution Y = 0.

We put m = mχ. Let p be the maximal ideal of O[χ].

Definition 2.11. — We say that a Dirichlet character χ is non-exceptional
at p if χ satisfies the following three conditions:
(a) p|m;
(b) for each j ∈ {k − 2, k − 1}, χ̄(x) 6≡ xj (mod p) for some x ∈ Z;
(c) χ(x) 6≡ x (mod p) for some x ∈ Z.

Sublemma. — Assume that χ is non-exceptional at p. Then,

A(χ) =

ϕ(m)∑

i=1

χ̄(bi)
bi
m
, Aj(χ) =

ϕ(m)∑

i=1

χ(bi)

(
bi
m

)j
(j ∈ {k − 2, k − 1})

are p-integral.

Proof. — We treat the case Aj(χ) (the case A(χ) is similar). Let x ∈ Z
such that χ̄(x) − xj is a p-unit of O[χ]. If (m,x) = 1, then {bix}i is a set of
representatives of (Z/mZ)× and hence we get

(χ̄(x)− xj)Aj(χ) =

ϕ(m)∑

i=1

χ(bi)χ̄(x)

(
bi

ϕ(m)

)j
−
ϕ(m)∑

i=1

χ(bi)

(
bix

m

)j

≡
ϕ(m)∑

i=1

χ(bi)

(
bix

m

)j
−
ϕ(m)∑

i=1

χ(bi)

(
bix

m

)j
mod O[χ]

≡ 0 mod O[χ].
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Suppose that d = (m,x) 6= 1. We put m = dm′ and x = dx′. Since χ is
primitive, we have

xjAj(χ) =

ϕ(m)∑

i=1

χ(bi)

(
bix
′

m′

)j

≡
ϕ(m′)∑

s=1





∑

bi≡s( mod m′)

χ(bi)





(
sx′

m′

)j
mod O[χ]

≡ 0 mod O[χ]. �

We define

γbi =

(
aip

h bi
ci m

)
∈ Γ

for some choice of ai, ci, h ∈ Z with ph ∈ $rO. By the choice of h and our
assumption that m ∈ $rO, the action of γbi on Lk−2(ε,O/$r) is given by

γbi • P (X,Y ) ≡ ε(m)P (−biY,−ciX) (mod $r).

By the definition of γbi ,

γbiσ =

(
aip

h bi
ci m

)(
0 −1
1 0

)
=

(
bi −aiph
m −ci

)
.

By the cocycle condition (Proposition 1.6 (1)) and Theorem 1.9, we have

πG(γbiσ) = πG(γbi) + γbi • πG(σ) ∈ Lk−2(ε,O).

On the other hand, by using Proposition 1.6 (2), we get

πG(γbiσ) = a(0, G)

∫ bi
m

0

(X − zY )k−2dz

+ ε(m)a(0, G|σ)

∫ 0

ci
m

γbiσ ? (X − zY )k−2dz + π
G,

(
1 bi
0 m

)(σ).

Therefore, by Lemma 1.8, we obtain

τ(χ̄)D(G,χ, 1) = −
ϕ(m)∑

i=1

χ̄(bi)

(
1 − bi

m
0 1

)
? π

G,

(
1 bi
0 m

)(σ)

= −
ϕ(m)∑

i=1

χ̄(bi)

(
1 − bi

m
0 1

)
? πG(γbiσ)

−
ϕ(m)∑

i=1

χ̄(bi)

(
1 − bi

m
0 1

)
?

{
−a(0, G)

∫ bi
m

0

(X − zY )k−2dz

}
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−
ϕ(m)∑

i=1

χ̄(bi)

(
1 − bi

m
0 1

)
?

{
−ε(m)a(0, G|σ)

∫ 0

ci
m

γbiσ ? (X − zY )k−2dz

}
.

Then an explicit calculation shows that the coefficients of Xk−2 in the second
and final terms are

a(0, G)

ϕ(m)∑

i=1

χ̄(bi)
bi
m
, ε(m)a(0, G|σ)

k−2∑

j=0

(
k − 2
j

)
(−1)k−j−1

j + 1

ϕ(m)∑

i=1

χ̄(bi)
ck−1
i

m
,

respectively. Thus they are integral and congruent to 0 modulo $r, since both
A(χ) and Ak−1(χ) are integral by Sublemma and both a(0, G) and a(0, G|σ)
belongs to $rO by our assumptions. Therefore, in the same way as the case
(i), computing modulo $r, we obtain

τ(χ̄)D(G,χ, 1)

∣∣∣∣
Y=0

≡ −
ϕ(m)∑

i=1

χ̄(bi)

(
1 − bi

m
0 1

)
? πG(γbiσ)

∣∣∣∣
Y=0

≡ −
ϕ(m)∑

i=1

χ̄(bi)πG(γbiσ)

∣∣∣∣
Y=0

≡ −
ϕ(m)∑

i=1

χ̄(bi){πG(γbi) + γbi • πG(σ)}
∣∣∣∣
Y=0

≡ −
ϕ(m)∑

i=1

χ̄(bi)πG(γbi)

∣∣∣∣
Y=0

(mod $r).

Here the last equality follows from that, for any P (X,Y ) ∈ Lk−2(O),

ϕ(m)∑

i=1

χ̄(bi)γbi • P (X,Y )

∣∣∣∣
Y=0

≡ 0 (mod $r),(2.11)

which is obtained bym ∈ $rO and Ak−2(χ) is integral by Sublemma. Similarly
as above by substituting −bi and γ′bi for bi and γbi respectively, we have

χ(−1)τ(χ̄)D(G,χ, 1)

∣∣∣∣
Y=0

≡ −
ϕ(m)∑

i=1

χ̄(bi)πG(γ′bi)

∣∣∣∣
Y=0

(mod $r),

where

γ′bi = τγbiτ
−1 =

(
aip

h −bi
−ci m

)
∈ Γ.
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Therefore, computing modulo $r, we obtain
ϕ(m)∑

i=1

χ̄(bi)π
α
G(γbi)

∣∣∣∣
Y=0

=
1

2

ϕ(m)∑

i=1

χ̄(bi)
(
πG(γbi) + ατ ι • πG(γ′bi)

) ∣∣∣∣
Y=0

(2.12)

≡ −1

2
(1 + αχ(−1)τ ι) • τ(χ̄)D(G,χ, 1)

∣∣∣∣
Y=0

= τ(χ̄)

(
1 + αχ(−1)

2

)
L(G,χ, 1)

2π
√
−1

Xk−2.

Here the last equality follows from (1.1). We put

τ(χ̄)D(G,χ, 1)α = −1

2
(1 + αχ(−1)τ ι) • τ(χ̄)D(G,χ, 1)

∣∣∣∣
Y=0

.

In the same way as the case (i) with the help of (2.11), computing modulo
$r, we obtain

ϕ(m)∑

i=1

χ̄(bi)δ
α
f (γbi)

∣∣∣∣
Y=0

≡ −1

2
(1 + αχ(−1)τ ι) • τ(χ̄)

D(f, χ, 1)

Ωαf

∣∣∣∣
Y=0

= τ(χ̄)

(
1 + αχ(−1)

2

)
L(f, χ, 1)

(2π
√
−1)Ωαf

Xk−2

and put

τ(χ̄)
D(f, χ, 1)

Ωαf

α

= −1

2
(1 + αχ(−1)τ ι) • τ(χ̄)

D(f, χ, 1)

Ωαf

∣∣∣∣
Y=0

.

Since δαf − uπαG = ∂Q(X,Y ) for some Q(X,Y ) ∈ Lk−2(ε,O/$r), we have

τ(χ̄)
D(f, χ, 1)

Ωαf

α

− uτ(χ̄)D(G,χ, 1)α ≡
ϕ(m)∑

i=1

χ̄(bi)(γbi − 1) •Q(X,Y )

∣∣∣∣
Y=0

≡
ϕ(m)∑

i=1

χ̄(bi){ε(m)Q(−biY,−ciX)−Q(X,Y )}
∣∣∣∣
Y=0

≡ 0 (mod $r) (by (2.11))

if χ is non-trivial and non-exceptional. We have completed the proof of our
theorem. �

3. Application to the Iwasawa invariants

In this section, we first compare the Iwasawa invariant of non-primitive
Selmer groups associated to modular forms with that of Selmer groups associ-
ated to Dirichlet characters. Next, in order to provide evidence for the Iwasawa
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main conjecture, we prove congruences between the p-adic L-function of a cer-
tain cusp form and a product of two Kubota-Leopoldt p-adic L-functions.

3.1. Iwasawa modules. — In this subsection, we summarize basic results on
Iwasawa modules to define the Iwasawa invariants. We refer the reader to [42]
for proofs. Let O be the ring of integers of a finite extension over Qp, $ a
uniformizer, and Λ = O[[T ]] the power series ring in one variable T over O.

Definition 3.1. — A polynomial P (T ) ∈ O[T ] is said to be distinguished if
P (T ) = Tn + an−1T

n−1 + · · ·+ a0 with ai ∈ $O for 0 ≤ i ≤ n− 1.

Theorem 3.2 (Weierstrass Preparation Theorem). — If f(T ) ∈ Λ is non-zero,
then we may uniquely write

f(T ) = $µP (T )U(T ),

where U(T ) ∈ Λ is a unit, P (T ) is a distinguished polynomial, and µ is a
non-negative integer.

For a non-zero element f(T ) ∈ Λ, we define the Iwasawa λ-invariant and the
Iwasawa µ-invariant of f(T ) by

λ(f(T )) = deg(P (T )), µ(f(T )) = µ,

respectively.

Definition 3.3. — Two Λ-modulesM andM ′ are said to be pseudo-isomorphic
and we write M ∼M ′, if there is a homomorphism M →M ′ with finite kernel
and cokernel.

Theorem 3.4. — Let M be a finitely generated Λ-module. Then

M ∼ Λ⊕r ⊕
(

s⊕

i=1

Λ/($mi)

)
⊕




t⊕

j=1

Λ/(fj(T )nj )




for some non-negative integers r, s, t, mi, nj, and distinguished and irreducible
polynomials fj(T ) for 1 ≤ j ≤ t.

We say that a Λ-module is a torsion Λ-module if every element is annihi-
lated by some power of the maximal ideal ($,T ). If M is a finitely generated
torsion Λ-module, then r = 0. We define the Iwasawa λ-invariant, the Iwasawa
µ-invariant, and the characteristic ideal of M by

λ(M) =

t∑

j=1

deg(fj(T )nj ), µ(M) =

s∑

i=1

mi, CharΛ(M) =




s∏

i=1

$mi

t∏

j=1

fj(T )nj


 ,

respectively.
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For a number field K, let K∞ denote the cyclotomic Zp-extension of K and
Λ = Zp[[T ]] ' lim←−n Zp[Z/p

n]. Then Gal(K∞/K) is a finitely generated torsion
Λ-module.

Theorem 3.5 (Ferrero-Washington [11]). — Let K be a finite abelian extension
of Q and p a prime number. Then µ(Gal(K∞/K)) for K is equal to zero.

3.2. Selmer groups. — We will recall general results on Selmer groups. We
omit details, which can be found in [15], [16]. Let Σ be a finite set of primes of Q
containing p and∞, and let QΣ be the maximal extension of Q which is unram-
ified outside Σ. Let Fp be a finite extension of Qp and Vp a finite dimensional
Fp-vector space endowed with a continuous Fp-linear action of Gal(QΣ/Q).
We put d = dimFp(Vp). Let O denote the ring of integers of Fp. Choose a
Gal(QΣ/Q)-stable O-lattice Tp in Vp. We put A = Vp/Tp. Then A is a dis-
crete Gal(QΣ/Q)-module which is isomorphic to (Fp/O)d as an O-module. We
denote by d± the dimension of the (±1)-eigenspaces of complex conjugation
acting on Vp, respectively. Then we have d = d+ + d−. Since we have fixed
an embedding Q ↪→ Qp, we can identify GQp with a decomposition group for
some prime of Q above p. We will assume that Vp is ordinary at p, that is, Vp
contains an Fp-vector subspace F+Vp of dimension d+ which is stable under the
action of GQp . Let F+A denote the image of F+Vp in A under the canonical
map Vp → A.

0 // F+Vp

��

// Vp

��
0 // F+A // A = Vp/Tp // A/F+A // 0.

For a pair (A,F+A), we define the Selmer group of A in the sense of Green-
berg [15] by

SA(Q∞) = S(Q∞;A,F+A) = ker

(
H1(QΣ/Q∞, A)→

∏

l∈Σ

Hl(Q∞, A)

)
,

where Hl(Q∞, A) is defined as follows: if l 6= p, we let

Hl(Q∞, A) =
∏

η|l
H1((Q∞)η, A),

where the product is taken over the finite set of primes η of Q∞ lying above l.
There is a unique prime ηp of Q∞ lying above p. Let Iηp denote the inertia
subgroup of G(Q∞)ηp

. We define

Hp(Q∞, A) = Hp(Q∞;A,F+A) = im
(
H1((Q∞)ηp , A)→ H1(Iηp , A/F

+A)
)
.
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We define the Iwasawa algebra Λ by Λ = O[[Γ]], where Γ = Gal(Q∞/Q).
We know that the groups H1(QΣ/Q∞, A), H2(QΣ/Q∞, A), Hl(Q∞, A), and
SA(Q∞) are discrete O-modules with a natural continuous action of Γ. Hence
these groups are regarded as Λ-modules and are known to be cofinitely gen-
erated, that is, their Pontryagin duals are finitely generated Λ-modules. The
following corank formulas follow from the results in [15, §3, §4]:

Proposition 3.6. — The following statements hold:
(1) corankΛ(H1(QΣ/Q∞, A)) = d− + corankΛ(H2(QΣ/Q∞, A)).
(2) corankΛ(Hp(Q∞, A)) = d−.
(3) corankΛ(Hl(Q∞, A)) = 0 if l 6= p.

We always assume that SA(Q∞) is Λ-cotorsion in the rest of §3.2. Put
A∗ = Hom(Tp, µp∞). This is also a discrete O-module equipped with a con-
tinuous action of Gal(QΣ/Q). The next proposition, which is proved in [16,
Proposition 2.1], is important in this paper.

Proposition 3.7. — Assume that SA(Q∞) is Λ-cotorsion and H0(Q∞, A∗) is
finite. Then the following sequence is exact:

0→ SA(Q∞)→ H1(QΣ/Q∞, A)→
∏

l∈Σ

Hl(Q∞, A)→ 0.

Next we recall the non-primitive Selmer groups of A in the sense of Green-
berg. Let Σ0 be any finite subset of Σ which does not contain neither p nor∞.
The non-primitive Selmer groups for (A,F+A) and Σ0 is defined by

SΣ0

A (Q∞) = SΣ0(Q∞;A,F+A) = ker


H1(QΣ/Q∞, A)→

∏

l∈Σ\Σ0

Hl(Q∞, A)


 .

We have SA(Q∞) ⊂ SΣ0

A (Q∞) by the definition. We denote by M∨ the
Pontryagin dual of any locally compact Zp-moduleM . We obtain the following
corollary of Proposition 3.6 (3), Proposition 3.7, and [15, Proposition 2], which
is proved in [16, Corollary 2.3].

Corollary 3.8. — Under the assumption as in Proposition 3.7, we have

SΣ0

A (Q∞)/SA(Q∞) ∼=
∏

l∈Σ0

Hl(Q∞, A)

as Λ-modules. In particular, SΣ0

A (Q∞) is Λ-cotorsion, and the following equal-
ities hold:

corankO(SΣ0

A (Q∞)) = corankO(SA(Q∞)) +
∑

l∈Σ0

corankO(Hl(Q∞, A)),

µ(SΣ0

A (Q∞)∨) = µ(SA(Q∞)∨).
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Next, in order to compare corankO(SΣ0

A (Q∞)) with corankO(SA(Q∞)), we
would like to find a generator of Hl(Q∞, A)∨. The following proposition is the
result in [16, Proposition 2.4].

Proposition 3.9. — Let l be a prime number with l 6= p. Put Pl(X) =
det((1 − FroblX)|(Vp)Il

) ∈ O[X] and Pl = Pl(l
−1γl) ∈ Λ = O[[Γ]], where

γl denotes the Frobenius automorphism corresponding to the prime l in Γ =
Gal(Q∞/Q). The characteristic ideal of the Λ-module Hl(Q∞, A)∨ is generated
by Pl.

Let $ be a uniformizer of O. Let A[$] denote the $-torsion of A. We now
define a Selmer group of A[$]. For any subset Σ0 of Σ− {p,∞}, we define

SΣ0

A[$](Q∞) = SΣ0(Q∞;A[$], F+A[$])

= ker


H1(QΣ/Q∞, A[$])→

∏

l∈Σ\Σ0

Hl(Q∞, A[$])


 ,

where Hl(Q∞, A[$]) is defined by

Hl(Q∞, A[$]) =

{∏
η|lH

1(Iη, A[$]) if l 6= p,

H1(Iηp , A[$]/F+A[$]) if l = p.

Under certain hypotheses, the next proposition obtained by [16, Proposi-
tion 2.8] allows us to describe λ(SΣ0

A (Q∞)) in terms of the Galois module A[$].
We put Ram(A) = {l|l 6= p,∞ and the action of GQl on A is ramified}.
Proposition 3.10. — Let p be an odd prime number and Σ0 a subset of Σ−
{p,∞} containing Ram(A). Assume that Iηp acts trivially on A/F+A and
H0(Q∞, A) = 0. Then we have

SΣ0

A (Q∞)[$] ∼= SΣ0

A[$](Q∞).

Consequently, SA(Q∞) is Λ-cotorsion, and has µ-invariant is zero if and only
if SΣ0

A[$](Q∞) is finite. If this is the case,

λ(SΣ0

A (Q∞)∨) = dimO/$O(SΣ0

A[$](Q∞)).

Now we apply the general theory recalled above to the Iwasawa main con-
jecture of modular forms. Let f =

∑∞
n=1 a(n, f)e(nz) ∈ Sk(Γ0(N), ε,O) be a

normalized Hecke eigenform and

ρf : GQ → GL(Tf ) ' GL2(O)

the associated Galois representation, which satisfies
(1) ρf is unramified at all primes l - Np,
(2) Tr(ρf (Frobl)) = a(l, f) for l - Np,
(3) det(ρf (Frobl)) = ε(l)lk−1 for l - Np,
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(4) ρf is odd.
We write κ for the residue field of O. Let Af = Tf ⊗Zp (Qp/Zp) denote the

cofree O-module of corank 2 with GQ-action via ρf . We assume that

(RR) the residual representation ρ̄f : GQ → GL2(κ) is reducible.

Then ρ̄f is of the form

ρ̄f ∼
(
ϕ ∗
0 ψ

)
,

that is, there exists an exact sequence

0→ Φ→ Af [$]→ Ψ→ 0(3.1)

of κ[GQ]-modules, where GQ acts on Ψ via the character ψ : GQ → κ×, and
on Φ via the character ϕ : GQ → κ×.

Hereafter we assume that f is p-ordinary. From the result of [27] and [43,
Theorem 2.1.4], the restriction of ρf to the decomposition group Dp is of the
form

ρf
∣∣
Dp
∼
(
χk−1
p ρ1 ∗

0 ρ2

)
,

where ρ1, ρ2 : GQp → O× are unramified characters such that ρ2 sends the
arithmetic Frobenius to a unit-root of X2 − a(p, f)X + ε(p)pk−1 = 0 and χp is
the p-adic cyclotomic character. Then F+Af is defined by the following exact
sequence of O[GQp ]-modules:

0→ F+Af → Af → Af/F
+Af → 0,(3.2)

where GQp acts on F+Af via the character χk−1
p ρ1 : GQp → O×, and on Af/F+Af

via the character ρ2 : GQp → O×. We can define the Selmer group of (Af , F
+Af )

by
SAf (Q∞) = S(Q∞;Af , F

+Af ).

Let Σ0 = {l ∈ N|l is a prime number such that l|N} and Σ = Σ0 ∪ {p,∞} a
finite set of places of Q. Then the non-primitive Selmer group of Af is defined
by

SΣ0

Af
(Q∞) = SΣ0(Q∞;Af , F

+Af ).

We assume that 2 ≤ k ≤ p− 1 and

(Assumption) ψ is unramified at p and odd, and
ϕ is ramified at p and even.

Hence ψ(Frobp) ≡ a(p, f)(mod $).

Lemma 3.11. — We assume that ϕ and ψ are as above and p is odd. Then we
have

H0(Q, Af [$]) = 0.
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Proof. — Since ϕ is ramified at p, H0(Q,Φ) ⊂ H0(GQp ,Φ) = 0. Since ψ is
odd and p is odd, H0(Q,Ψ) ⊂ H0(〈c〉,Ψ) = 0, where c ∈ GQ is the complex
conjugation. �

Lemma 3.12. — Suppose that ψ is odd and p is odd. Then,

H0(Q∞,Ψ) = 0.

Proof. — Since ψ is odd and p is odd, H0(Q∞,Ψ) ⊂ H0(〈c〉,Ψ) = 0, where
c ∈ GQ∞ is the complex conjugation. �

Lemma 3.13. — Assume that p is odd. Then,

H2(QΣ/Q∞,Φ) = 0.

Proof. — For a Galois module A ∼= Fp/O via the character Gal(QΣ/Q∞)
ϕ−→

κ× ↪→ O×, we have
0→ Φ→ A

$−→ A→ 0.

Therefore, in order to prove the lemma, it is enough to show that

(i) H1(QΣ/Q∞, A) is divisible, and

(ii) H2(QΣ/Q∞, A) = 0.

Indeed, we have an exact sequence

H1(QΣ/Q∞, A)
$−→ H1(QΣ/Q∞, A)→ H2(QΣ/Q∞,Φ)→ H2(QΣ/Q∞, A)

as a part of the cohomology long exact sequence. The proof of (i) and (ii) can
be found in [16, p.46] just after the equation (16) under the assumptions that
ϕ is even and non-trivial. �

Therefore, using Lemma 3.12 and Lemma 3.13, we have an exact sequence

0→ H1(QΣ/Q∞,Φ)
α−→ H1(QΣ/Q∞, Af [$])

β−→ H1(QΣ/Q∞,Ψ)→ 0.

By this exact sequence and the definition of SΣ0

Af [$](Q∞), SΣ0

Ψ (Q∞), and SΣ0

Φ (Q∞), we
have

SΣ0

Af [$](Q∞)/SΣ0

Φ (Q∞) = SΣ0

Ψ (Q∞).

Here, by the definition, SΣ0

Ψ (Q∞) = ker(H1(QΣ/Q∞,Ψ) → H1(Iηp ,Ψ)) and
SΣ0

Φ (Q∞) = H1(QΣ/Q∞,Φ). Hence we have

dimO/$O(SΣ0

Af [$](Q∞)) = dimO/$O(SΣ0

Φ (Q∞)) + dimO/$O(SΣ0

Ψ (Q∞)).

We compute the Selmer groups for one-dimensional representations Vp with
some assumptions. The Galois group Gal(QΣ/Q) acts on Vp via a contin-
uous homomorphism θ : Gal(QΣ/Q) → O×. Then, θ factors through G =
Gal(K∞/Q), where K∞ is a certain finite extension of Q∞ such that K∞ is
an abelian extension over Q. We put ∆ = Gal(K∞/Q∞) and assume that
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(p, ]∆) = 1. We can identify Γ with a subgroup of G such that G = ∆×Γ. This
decomposition is unique for our case (p, ]∆) = 1. We have Zp[[G]] = Zp[∆][[Γ]].

Let X∞ = Gal(M∞/K∞) and Y∞ = Gal(L∞/K∞). Here M∞ denotes the
maximal abelian pro-p extension ofK∞ which is unramified outside {p,∞}, and
L∞ denotes the maximal abelian pro-p extension of K∞ which is unramified
everywhere. Let ξ = θ|∆ be the restriction of θ to ∆ and Σ0 = Σ− {p,∞}. If
θ is even (resp. odd), then d+ = 1 (resp. d+ = 0) and we have F+Vp = Vp
(resp. F+Vp = 0).

Proposition 3.14 ([16], p.45, 46). — The Selmer groups for one-dimen-
sional representations have the following properties.

(1)

SA(Q∞) '
{

HomO((X∞ ⊗Zp O)ξ, A) if θ is even,

HomO((Y∞ ⊗Zp O)ξ, A) if θ is odd.

(2) The Λ-modules SA(Q∞) and SΣ0

A (Q∞) are cotorsion, and we have

µ(SA(Q∞)∨) = µ(SΣ0

A (Q∞)∨) = 0.

.
(3) Assume that ξ is non-trivial if θ is even, and ξ 6= ω if θ is odd. Then we

have

dimO/$O(SΣ0

A[$](Q∞)) = corankO(SΣ0

A (Q∞))

= corankO(SA(Q∞)) +
∑

l∈Σ0

corankO(Hl(Q∞, A)).

In particular, SΣ0

A[$](Q∞) is finite.

We can apply these results to (A, θ) = (Aϕ, ϕ̃) (resp. (Aψ, ψ̃)) for a Galois
module Aϕ ∼= Fp/O (resp. Aψ ∼= Fp/O) via the character ϕ̃ = χk−1

p εψ̃−1 :

GQ → κ× ↪→ O× (resp. ψ̃ : GQ → κ× ↪→ O×). We remark that Aϕ[$] = Φ
and Aψ[$] = Ψ.

(i) We consider SΣ0

Φ (Q∞) = SΣ0(Q∞; Φ,Φ).
Since ϕ is even and ramified at p by our assumption, it is non-trivial. Therefore
we have µ(SΣ0

Aϕ
(Q∞)∨) = 0 and

dimO/$O(SΣ0

Φ (Q∞)) = corankO(SΣ0

Aϕ
(Q∞)).

(ii) We consider SΣ0

Ψ (Q∞) = SΣ0(Q∞; Ψ, 0).
Since ψ is odd and unramified at p, we have ψ 6= ω. Therefore, we have
µ(SΣ0

Aψ
(Q∞)∨) = 0 and

dimO/$O(SΣ0

Ψ (Q∞)) = corankO(SΣ0

Aψ
(Q∞)).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



44 Y. HIRANO

We define the Iwasawa λ-invariants by

λϕ,Σ0 = corankO(SΣ0

Aϕ
(Q∞)), λψ,Σ0 = corankO(SΣ0

Aψ
(Q∞)).

By Proposition 3.14 (3), using the exact sequence

0→ SΣ0

Aϕ
(Q∞)→ SΣ0

Af [$](Q∞)→ SΣ0

Aψ
(Q∞)→ 0,

SΣ0

Af [$](Q∞) is finite. Therefore, by combining these results, Proposition 3.10
and Lemma 3.11, we see that SAf (Q∞) and SΣ0

Af
(Q∞) are Λ-cotorsion. Thus

we can define the algebraic Iwasawa invariants by

λalg
f = λ(SAf (Q∞)∨) = λ(S(Q∞;Af , F

+Af )∨) = deg(falg(T )),

µalg
f = µ(SAf (Q∞)∨) = µ(S(Q∞;Af , F

+Af )∨),

λalg
f,Σ0

= λ(SΣ0

Af
(Q∞)∨) = λ(SΣ0(Q∞;Af , F

+Af )∨) = deg(falgΣ0
(T )),

µalg
f,Σ0

= µ(SΣ0

Af
(Q∞)∨) = µ(SΣ0(Q∞;Af , F

+Af )∨),

where falg(T ) (resp. falgΣ0
(T )) is the distinguished polynomial corresponding

to SAf (Q∞)∨ (resp. SΣ0

Af
(Q∞)∨) via the Weierstrass preparation theorem.

Again by using Proposition 3.10 and Lemma 3.11, we obtain

µalg
f = µalg

f,Σ0
= 0(3.3)

and

λalg
f,Σ0

= dimO/$O(SΣ0

Af [$](Q∞))(3.4)

= dimO/$O(SΣ0

Φ (Q∞)) + dimO/$O(SΣ0

Ψ (Q∞))

= λϕ,Σ0 + λψ,Σ0 .

3.3. p-adic L-functions. — We recall p-adic L-functions of modular forms.
These functions have been constructed by Amice-Vélu [1], Vishik [40], Mazur,
Tate, and Teitelbaum [26]. Also, we recall non-primitive p-adic L-functions
of modular forms in the sense of Greenberg. Let K be an abelian number
field, 2 ≤ k ≤ p − 1, and f(z) =

∑∞
n=1 a(n, f)e(nz) ∈ Sk(Γ0(N), ε,O) a

p-ordinary normalized Hecke eigenform which satisfies (RR), (3.1), and (As-
sumption). We assume that K is unramified at all primes dividing the level
N , and tamely ramified at p. Put G = Gal(K/Q), and fix a character χ
of G. We write Γ = Gal(K∞/K), where K∞ denotes the cyclotomic Zp-ex-
tension of K. We can identify Γ with the Galois group of the cyclotomic
Zp-extension of Q. Let γ denote a fixed topological generator of Γ. Put
Λ = O[χ][[Γ]] ∼= O[χ][[T ]] ; γ 7→ 1 + T . For a finite order character ρ : Γ→ C×,
we define ζ ∈ µp∞ by ζ = ρ(γ). The p-adic L-function Lp(f, χ, T ) ∈ Λ is the
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power series characterized by the following interpolation property: for every
non-trivial p-adic character ρ : Γ→ Q×p of finite order with conductor pνρ ,

Lp(f, χ, ζ − 1) = τ(χ−1ρ−1)α(p, f)−νρ
L(f, χρ, 1)

(−2π
√
−1)Ωαf

∈ O[χ, ρ],

where τ(χ−1ρ−1) is the Gauss sum of χ−1ρ−1, α(p, f) is a unit root of X2 −
a(p, f)X + ε(p)pk−1 = 0, Ωαf is the canonical period defined by (2.5), and α =

χ(−1). By the Weierstrass preparation theorem, this interpolation property
characterizes Lp(f, χ, T ). Also, for any finite set of primes Σ0 with p /∈ Σ0,
the non-primitive p-adic L-function L Σ0

p (f, χ, T ) ∈ Λ is characterized by the
interpolation property

L Σ0
p (f, χ, ζ − 1) = τ(χ−1ρ−1)α(p, f)−νρ

LΣ0(f, χρ, 1)

(−2π
√
−1)Ωαf

∈ O[χ, ρ],

where L(f, χ, s)
∏
l∈Σ0

El(f, χ, s) = LΣ0
(f, χ, s). Here, El(f, χ, s) is the Euler

factor of L(f, χ, s) at l. Then, putting χ = trivial character, we have

L Σ0
p (f, T ) = Lp(f, T )

∏

l∈Σ0

Pl(T ),

where Pl(T ) is defined by Proposition 3.9. We define the analytic Iwasawa
invariants by

λanal
f = λ(Lp(f, T )) = deg(fanal(T )),

µanal
f = µ(Lp(f, T )),

λanal
f,Σ0

= λ(L Σ0
p (f, T )) = deg(fanalΣ0

(T )),

µanal
f,Σ0

= µ(L Σ0
p (f, T )),

where fanal(T ) (resp. fanalΣ0
(T )) is the distinguished polynomial corresponding

to Lp (resp. L Σ0
p ) via the Weierstrass preparation theorem.

3.4. The Iwasawa main conjecture. — In this subsection, we assume that 2 ≤
k ≤ p − 1 and a normalized Hecke eigenform f ∈ Sk(Γ0(N), ε,O) is p-or-
dinary and satisfies (RR), (3.1), and (Assumption). Let CharΛ(SAf (Q∞)∨)
be the characteristic ideal of the Pontryagin dual of the Selmer group SAf (Q∞).
The following main conjecture for ρf is formulated by Greenberg.

Conjecture 3.15. — We have

CharΛ(SAf (Q∞)∨) = (Lp(f, T )) in Λ.

Kato has proven the following deep theorem in [21].

Theorem 3.16. — We have

CharΛ(SAf (Q∞)∨) ⊃ (Lp(f, T )) in Λ⊗Zp Qp.
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Therefore, in order to confirm the Iwasawa main conjecture, we will show
that

λalg
f = λanal

f .

Non-primitive objects SΣ0

Af
(Q∞) and L Σ0

p (f, T ) will behave well under con-
gruences, where Σ0 = {l is a prime number|l|N}. Then the following theorem
obtained by [16, Theorem 1.5] is crucial for our proof.

Theorem 3.17. — The following statements hold:

(1) µalg
f = µanal

f if and only if µalg
f,Σ0

= µanal
f,Σ0

.
(2) λalg

f = λanal
f if and only if λalg

f,Σ0
= λanal

f,Σ0
.

(3) falg(T ) = fanal(T ) if and only if falg
Σ0

(T ) = fanal
Σ0

(T ).

Now, we analogously define the p-adic L-functions for the Galois represen-
tations Aϕ and Aψ appearing in the previous subsection.

(i) The p-adic L-function Lp(Aϕ, T ) ∈ Λ is defined by the interpolation
property

Lp(Aϕ, ζ − 1) = L(εψ−1ρ, 2− k) = L(χk−1
p εψ−1ρ, 1)

for every non-trivial p-adic character ρ : Γ→ Q×p of finite order and ζ = ρ(γ).
Here we remark that, by (Assumption), ωk−1εψ−1 is non-trivial character and
hence L(χk−1

p εψ−1ρ, s) is holomorphic for s ∈ C. Then, Lp(Aϕ, T ) is related
to the Kubota-Leopoldt p-adic L-function by

Lp(εχ
k−2
p ωψ−1, s) = Lp(Aϕ, κ(γ)−s − 1)

for any s ∈ Zp. Here, κ(γ) is the element of 1+pZp which induces the action of γ
on µp∞ when we identify Γ with Gal(Q(µp∞)/Q(µp)). The Ferrero-Washington
theorem (Theorem 3.5) and the Mazur-Wiles theorem assert that Lp(Aϕ, T ) /∈
$Λ and the λ-invariant of Lp(Aϕ, T ) is equal to corankO(SAϕ(Q∞)), which is
denoted by λεωk−1ψ−1 = λϕ. In addition, the non-primitive p-adic L-function
L Σ0
p (Aϕ, T ) is defined by

L Σ0
p (Aϕ, T ) = Lp(Aϕ, T )

∏

l∈Σ0

(1− εψ−1(l)lk−2(1 + T )fl).

Here fl ∈ Zp is determined by γl = γfl , where γl is the Frobenius element
corresponding to the prime l in Γ.

(ii) The p-adic L-function Lp(Aψ, T ) ∈ Λ is defined by the interpolation
property

Lp(Aψ, ζ − 1) = τ(ψ−1ρ−1)
L(ψρ, 1)

2π
√
−1

=
1

2
L(ψ−1ρ−1, 0)
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for every non-trivial p-adic character ρ : Γ→ Q×p of finite order and ζ = ρ(γ).
Here we remark that, by (Assumption), ωψ−1 is non-trivial character. Then
Lp(Aψ, T ) is related to the Kubota-Leopoldt p-adic L-function by

Lp(ωψ
−1, s) =

1

2
Lp(Aψ, κ(γ)s − 1)

for any s ∈ Zp. The µ-invariant of Lp(Aψ, T ) is again zero and its λ-invariant
is λωψ−1 = λψ, which is equal to corankO(SAψ (Q∞)) by the Mazur-Wiles the-
orem. In addition, the non-primitive p-adic L-function L Σ0

p (Aψ, T ) is defined
by

L Σ0
p (Aψ, T ) = Lp(Aψ, T )

∏

l∈Σ0

(1− ψ(l)l−1(1 + T )fl).

To state our theorem, we need to recall some facts about Eisenstein series.
The following theorem is obtained from the results in [28, Theorem 4.7.1].

Theorem 3.18 (Lifting). — Let εi be a primitive Dirichlet character modulo
Mi for i = 1, 2. We put M = M1M2 and ε = ε1ε2. If ε(−1) = (−1)k, there
exists an Eisenstein series G = Ek(ε1, ε2) ∈Mk(Γ0(M), ε,C) such that

L(G, s) = L(ε1, s)L(ε2, s− k + 1).

Moreover, a(0, G) = 0 if k 6= 1 and ε1 is non-trivial.

Let G =
∑∞
n=0 a(n,G)e(nz) ∈ Mk(Γ0(M), ε,O) be the Eisenstein series of

weight k determined by

L(G, s) = LΣ0
(ψ, s)LΣ0

(εψ−1, s− k + 1).

Note that Theorem 3.18 assures the existence of such G.

We define the p-adic L-function Lp(G,T ) by the interpolation property

Lp(G, ζ − 1) = τ(ψ−1ρ−1)
L(G, ρ, 1)

2π
√
−1

= LΣ0
(εψ−1ρ, 2− k)τ(ψ−1ρ−1)

LΣ0
(ψρ, 1)

2π
√
−1

for every non-trivial p-adic character ρ : Γ→ Q×p of finite order and ζ = ρ(γ).
Then clearly we have

Lp(G,T ) = L Σ0
p (Aϕ, T )L Σ0

p (Aψ, T ).

Therefore, the µ-invariant of Lp(G,T ) is zero and the λ-invariant of Lp(G,T )
is equal to λϕ,Σ0 + λψ,Σ0 .

We define an eigenform g(z) ∈ Sk(Γ0(M), ε,O) by

(f ⊗ 1N )(z) =
∑

(n,N)=1

a(n, f)e(nz),
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where 1N denotes the trivial character on (Z/NZ)×.

Theorem 3.19. — With the notation and the assumptions above, we have the
congruence

Ω+
f

Ω+
g

L Σ0
p (f, T ) ≡ u(1 + T )−nψLp(G,T ) mod $Λ,

where u is a unit in O and (1 + T )nψ ∈ Λ× is the image of the conductor mψ

under Zp � 1 + pZp ' Γ ↪→ Λ. Here α (explicitly given by (A.27)) is equal
to +1 by our assumption of ϕ and ψ.

Proof. — We remark that

L(f, s) =
∏

l-N
(1− a(l, f)l−s + ε(l)lk−1−2s)−1 ×

∑

(n,N)6=1

a(n, f)n−s,

L(g, s) =
∏

l-N
(1− a(l, f)l−s + ε(l)lk−1−2s)−1.

Thus, we have Lp(g, ζ − 1) =
Ω+
f

Ω+
g

L Σ0
p (f, ζ − 1) for every ζ 6= 1 and hence

Lp(g, T ) =
Ω+
f

Ω+
g

L Σ0
p (f, T ).

For any l with l - Np,
a(l, g) = a(l, f) = Tr(ρf (Frobl))

≡ ψ(Frobl) + ϕ(Frobl)

≡ ψ(Frobl) + det(ρf )ψ−1(Frobl)

= ψ(Frobl) + εχk−1
p ψ−1(Frobl)

= ψ(l) + ε(l)lk−1ψ−1(l)

= a(l, G) (mod $).

Also, by (3.1), (3.2), and (Assumption), we obtain

a(p, g) = a(p, f) ≡ ψ(Frobp) ≡ a(p,G) (mod $).

Therefore we have
g ≡ G (mod $).

We have a(0, G) = 0 since ψ is non-trivial. Since (p,M) = 1, the assumption
(2) of Theorem 1.9 follows immediately from the q-expansion principle. Next
we will check the assumptions (3) and (4) of Theorem 1.9. We claim that,
under the assumption k < p,

τ(χ̄)D(G,χ, 1) =

ϕ(m)∑

i=1

χ̄(bi)Pi(3.5)
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for some Pi ∈ Lk−2(O) depending only on the parity χ(−1).
For the moment, we admit the claim (3.5). For δ ∈ {0, 1}, note that

∑

χ∈ ̂(Z/mZ)×

χ(−1)=(−1)δ

χ(c) =




ϕ(m)/2 if c ≡ 1 (modm),
(−1)δϕ(m)/2 if c ≡ −1 (modm),
0 otherwise.

By (3.5), we have
∑

χ∈ ̂(Z/mZ)×

χ(bi)τ(χ̄)D(G,χ, 1) =
∑

χ∈ ̂(Z/mZ)×

χ(−1)=1

χ(bi)τ(χ̄)D(G,χ, 1)

+
∑

χ∈ ̂(Z/mZ)×

χ(−1)=−1

χ(bi)τ(χ̄)D(G,χ, 1)

= ϕ(m)Pi ∈ Lk−2(O).

On the other hand, by Lemma 1.8, we have
∑

χ∈ ̂(Z/mZ)×

χ(bi)τ(χ̄)D(G,χ, 1) = ϕ(m)

(
1 − bi

m
0 1

)
? D(

1
bi
m

0 1

)(G, 1).

Therefore, the assumptions (3) and (4) of Theorem 1.9 are satisfied.
Thus it remains to prove the claim (3.5). The coefficient of Xk−2−jY j

in τ(χ̄)D(G,χ, 1) is equal to

− τ(χ̄)

(
k − 2
j

)
j!

(
1

2π
√
−1

)j+1

L(G,χ, j + 1)

= −
(
k − 2
j

)
τ(χ̄)

j!LΣ0
(ψχ, j + 1)

(2π
√
−1)j+1

· LΣ0(εχψ−1, 1− (k − j − 1)).

Then the existence of such polynomials Pi in Lk−2(Fp) follows from the func-
tional equation for LΣ0(ψχ, s) (see, for example, [28, Theorem 3.3.1, page 93]
or [18, Theorem 2, page 47]) and the Siegel-Klingen theorem. We prove that
Pi belongs to Lk−2(O). In order to do it, we show that τ(χ)D(G,χ, 1) ∈
Lk−2(O[XS ]). For any Dirichlet character χ and any positive integer n, we
have

L(χ, 1− n) = − 1

n

mχ∑

a=1

χ(a)mn−1
χ Bn

(
a

mχ

)
.

Here recall that the n-th Bernoulli polynomial Bn(X) is characterized by

Bn(X) =

n∑

j=0

(
n
j

)
BjX

n−j ,
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where Bj is the j-th Bernoulli number. The von Staudt-Clausen theorem im-
plies that, for a positive integer j,

Bj +
∑

(l−1)|j

1

l
∈ Z.

Here the sum runs over prime numbers l such that l − 1 divides j. Hence, for
each 1 ≤ n < p− 1 and Dirichlet character χ with (p,mχ) = 1,

L(χ, 1− n) ∈ Zp[χ].(3.6)

Hence the integrality τ(χ)D(G,χ, 1) ∈ Lk−2(O[XS ]) follows from (3.6) and
the functional equation for LΣ0

(ψχ, s), where we use the assumption that the
conductor of ψχ is prime to p. Therefore, the integrality Pi ∈ Lk−2(O) fol-
lows from ϕ(m)Pi ∈ Lk−2(O[XS ]), which is obtained by the same argument
mentioned after (3.5), and (ϕ(m), p) = 1.

Therefore, by applying the proof of Theorem 2.10 to the triple (g,G, ρ)
instead of (f,G, χ), there exists a p-adic unit u′ in O× such that [δg]

+ =
u′[πG]+ in H1

par(Γ1(M), Lk−2(O/$)) (by the same argument mentioned at the
beginning of the proof), and it gives the congruence for L-functions.

τ(ρ̄)
L(g, ρ, 1)

(2π
√
−1)Ω+

g
≡ u′τ(ρ̄)

L(G, ρ, 1)

2π
√
−1

(mod $)

for every non-trivial, and non-exceptional p-adic character ρ : Γ→ Q×p of finite
order whose conductor mρ = pνρ . An explicit calculation with (mρ,mψ) = 1
shows that

τ(ψ̄)τ(ρ̄) = ψ̄(mρ)
−1ρ̄(mψ)−1τ(ψ̄ρ̄).

We remark that ψ̄(mρ) ≡ α(p, g)−νρ (mod $). Therefore we obtain

Lp(g, ζ − 1) = τ(ρ̄)α(p, g)−νρ
L(g, ρ, 1)

(2π
√
−1)Ω+

g

≡ u′τ(ρ̄)α(p, g)−νρ
L(G, ρ, 1)

2π
√
−1

≡ u′τ(ψ̄)−1ρ̄(mψ)−1τ(ψ̄ρ̄)
L(G, ρ, 1)

2π
√
−1

≡ u′τ(ψ̄)−1(1 + T )−nψLp(G, ζ − 1) (mod $),

for every ζ = ρ(γ) 6= 1. This proves the theorem. �

Finally, we prove Theorem 0.2. By Theorem 3.19 and µ(Lp(G,T )) = 0, we
obtain

λanalf,Σ0
= λ(Lp(G,T )) = λ(L Σ0

p (Aϕ, T )) + λ(L Σ0
p (Aψ, T )).
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By the definition,

λ(L Σ0
p (ϕ̃, T )) = λ(Lp(Aϕ, T )) +

∑

l∈Σ0

λ(1− ϕ̃(l)l−1(1 + T )fl),

λ(L Σ0
p (ψ̃, T )) = λ(Lp(Aψ, T )) +

∑

l∈Σ0

λ(1− ψ̃(l)l−1(1 + T )fl).

On the other hand, by Proposition 3.14 (3), we have

λ(SΣ0

Aϕ
(Q∞)∨) = λ(SAϕ(Q∞)∨) +

∑

l∈Σ0

λ(Hl(Q∞, Aϕ)),

λ(SΣ0

Aψ
(Q∞)∨) = λ(SAψ (Q∞)∨) +

∑

l∈Σ0

λ(Hl(Q∞, Aψ)).

Moreover, by Proposition 3.9, for l ∈ Σ0,

λ(Hl(Q∞, Aϕ)) = λ(1− ϕ̃(l)l−1(1 + T )fl),

λ(Hl(Q∞, Aψ)) = λ(1− ψ̃(l)l−1(1 + T )fl).

Thus, by the Mazur-Wiles theorem, we get

λ(L Σ0
p (Aϕ, T )) = λ(SΣ0

Aϕ
(Q∞)∨), λ(L Σ0

p (Aψ, T )) = λ(SΣ0

Aψ
(Q∞)∨).

Combining these results with Theorem 3.19, we obtain

λanalf,Σ0
= λ(Lp(G,T )) = λ(L Σ0

p (Aϕ, T )) + λ(L Σ0
p (Aψ, T )) = λϕ,Σ0

+ λψ,Σ0
.

Thus, by (3.4), λalgf,Σ0
= λanalf,Σ0

, which by Theorem 3.17 implies that λalgf = λanalf .
We have completed the proof of Theorem 0.2.

Appendix A. Comparison theorem for torsion cohomology in the GL2(Q) case

In this section, we retain the notation as before. Let p be an odd prime
number and N ≥ 4 a positive integer with (p,N) = 1. Let C = X1(N) be
the modular curve over Z[1/N ] parametrizing generarized elliptic curves with
Γ1(N)-structure. The cuspidal subscheme Z = ZN is étale over Z[1/N ] and set
C◦ = C − Z. We write π : E → C for the universal generalized elliptic curve
with Γ1(N)-structure. The map π is smooth away from Z and the fibers of π
over Z are the standard Neron N ′-gon, where N ′ divides N . Let f : X → C be
the k-fold fiber product of E over C. If k ≥ 2, X is singular and proper.
Let f̃ : X̃ → C denote the desingularization of X constructed by Deligne [7],
and explained by Scholl [31], [29], Ulmer [37], and Subsection A.2 in this paper.
Put X◦ = f̃∗(C◦). Then X◦ is smooth and not proper. Note that f◦ : X◦ →
C◦ is smooth.

Let Gk = (Z/NZ o µ2)k o Sk and Hk = µk2 o Sk, where Sk is the
symmetric group and the action of µ2 = {±1} on Z/NZ is by the multi-
plication and the action of Sk is by permutation. Moreover, Z/NZ acts
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on X◦ by translation by points of order N , µ2 acts on X◦ by inversion in
the fibers and Sk acts on X◦ by permuting the factors of the fiber prod-
uct. Then both Gk and Hk act on X◦. This action extends to X and X̃
by definition. Let ε : Gk → {±1} be the homomorphism which is trivial on
each factor Z/NZ, the identity on each factor µ2 and the sign character sgnk

on Sk. Let Π := 1
|Gk|

∑
g∈Gk ε(g)g−1 ∈ Z[ 1

2N ·k! ][Gk] be the projector at-
tached to ε. Also we denote by εk = ε|Hk the restriction of the character
ε to the subgroup Hk, and Πk := 1

|Hk|
∑
g∈Hk εk(g)g−1 ∈ Z[ 1

2N ·k! ][Hk] the
projector associated to εk. If p ≥ 3, k < p, and p is prime to N , then
Π ∈ O[Gk] and Πk ∈ O[Hk]. We denote by V (ε) the ε-eigenspace for any
Z[ 1

2N ·k! ][Gk]-module V , andW (εk) the εk-eigenspace for any Z[ 1
2N ·k! ][Hk]-mod-

ule W . Note that V (ε) = im[Π: V → V ] for any Z[ 1
2N ·k! ][Gk]-module V and

W (εk) = im[Πk : W →W ] for any Z[ 1
2N ·k! ][Hk]-module W .

A.1. The Hecke correspondence and the Atkin correspondence. — We define
the Hecke correspondence Tl and the Atkin correspondence Ul on the curves
X1(N) and Y1(N) over Z[1/N ].

First, we assume that l is prime to N . Let Y1(N, l) be the fine moduli scheme
over Z[1/N ] which represents the functor of triples (E,P,C), where E → S is
an elliptic curves over a Z[1/N ]-scheme S, P a point of exact order N on E,
and C a finite locally free subgroup scheme of order l in E[l]. The morphism
p1 : Y1(N, l)→ Y1(N) defined by

p1 : (E,P,C) 7−→ (E,P )

is finite flat. Since (l, N) = 1, we can define a morphism p2 : Y1(N, l)→ Y1(N)
of schemes over Z[1/N ] by

p2 : (E,P,C) 7−→ (E/C,P (mod C)).

We define a morphism ψ : Y1(N, l)→ Y1(N, l) of schemes over Z[1/N ] by

ψ : (E,P,C) 7−→ (E/C,P (mod C), E[l]/C).

Since ψ2(E,P,C) = (E, lP,C), ψ is an automorphism of Y1(N, l). Hence p2 =
p1 ◦ ψ implies that p2 is also finite flat.

Then we have a commutative diagram

Ek

��
�

p∗1Ek
φk1oo

��

ψk //

�

p∗2Ek

��

φk2 //

�

Ek

��
Y1(N) Y1(N, l)

p1
oo Y1(N, l)

p2
// Y1(N),

where the first and third squares are cartesian. Thus we define the Hecke
correspondence Tl on X◦ by scheme-theoretic image of the morphism

(φk1 , φ
k
2 ◦ ψk) : p∗1Ek → Ek × Ek,
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which induces an endomorphism of H∗? (X◦) for ? = ét or dR (see §A.2 and
§A.3). We also define the Hecke correspondence T ′l on Y1(N) by

(p1, p2) : Y1(N, l)→ Y1(N)× Y1(N).

Then T ′l and ψk induce an endomorphism of H∗? (Y1(N)) for ? = ét or dR (see
§A.2 and §A.3). If (E,P ) is a Q-valued point of Y1(N), then

T ′l (E,P ) =
∑

ϕ

(ϕE,ϕP ),

where the sum runs over the l-isogenies ϕ with source E.
Similarly, we define the Hecke correspondence T ′l on X1(N) and it induces

an endomorphism of compact support cohomologies H∗?,c(Y1(N)) for ? = ét or
dR (see §A.2 and §A.3).

Next we assume that l divides N . Let X1(N, l) be the fine moduli scheme
over Z[1/N ] which represents the functor of triples (E,P,C), where E → S is
a generalized elliptic curves over a Z[1/N ]-scheme S, P a point of exact order
N on E, and C a finite locally free subgroup scheme of order l in E[l] which is
not contained in the subgroup generated by P . The morphism p1 : X1(N, l)→
X1(N) defined by

p1 : (E,P,C) 7−→ (E,P )

is finite. Since C is not contained in the subgroup generated by P , we can
define a finite morphism p2 : X1(N, l)→ X1(N) of schemes over Z[1/N ] by

p2 : (E,P,C) 7−→ (E/C,P (mod C)).

Then, we define the Atkin correspondence Ul on X by scheme-theoretic image
of the map

(φk1 , φ
k
2 ◦ ψk) : p∗1Ek → Ek × Ek,

which induces an endomorphism of Hk+1
? (X◦), and U ′l on X1(N) by

(p1, p2) : Y1(N, l)→ Y1(N)× Y1(N),

which induces an endomorphism of H∗? (Y1(N)) for ? = ét or dR (see §A.2 and
§A.3). If (E,P ) is a Q-valued point of Y1(N), then

U ′l (E,P ) =
∑

ϕ

(ϕE,ϕP ),

where the sum runs over the l-isogenies ϕ with source E such that ker(ϕ) is
not contained in the subgroup generated by P .

Similarly, we define the Hecke correspondence U ′l on X1(N) and it induces
an endomorphism of compact support cohomologies H∗?,c(Y1(N)) for ? = ét or
dR (see §A.2 and §A.3).

We now define the Hecke correspondence T̃l on X̃ as the closure of Tl in X̃×X̃
and the Atkin correspondence Ũl on X̃ as the closure of Ul in X̃ × X̃. These
induce an endomorphism of H∗? (X̃) for ? = ét or dR (see §A.2 and §A.3).
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A.2. Comparison with p-adic étale cohomology. — In this subsection, we as-
sume that 2 ≤ k < p. Let O be the ring of integers of a finite extension over Qp
and $ ∈ O a uniformizer. Let A = O or O/$n. For any scheme T over O,
we denote by TQp = T ×O Qp its base change to Spec(Qp). The aim of this
subsection is to prove the following proposition which gives an isomorphism be-
tween p-adic torsion étale cohomology for the modular curve with non-constant
coefficients and for the Kuga-Sato variety with constant coefficients.

Proposition A.1. — Assume that k < p. Then there exists the canonical
exact sequence

0→ Hk+1
ét (X̃Qp , A)(ε)→ Hk+1

ét (X◦Qp
, A)(εk)→ H0

ét(ZQp , A)(−k − 1)(A.1)

→ Hk+2
ét (X̃Qp , A)(ε)→ Hk+2

ét (X◦Qp
, A)(εk)→ 0

and canonical isomorphisms

H1
ét(C

◦
Qp
,Symk R1π∗A) ' Hk+1

ét (X◦Qp
, A)(εk),(A.2)

H1
ét,par(C

◦
Qp
,Symk R1π∗A) ' Hk+1

ét (X̃Qp , A)(ε),(A.3)

Hn
ét(X̃Qp , A)(ε) = 0 if n 6= k + 1, k + 2 and k > 0,(A.4)

as Hecke modules endowed with a continuous Qp-linear action of GQp . Here
the parabolic cohomology group in p-adic theories was defined by Deligne as

H1
ét,par(C

◦
Qp
,Symk R1π∗A)

= im
(
H1

ét(CQp , j! Symk R1π∗A)→ H1
ét(C

◦
Qp
,Symk R1π∗A)

)
,

where j denotes the open immersion j : C◦ ↪→ C.

In order to prove this proposition, we strictly follow the arguments in [29].
First we construct the isomorphism (A.2). There exists the Leray spectral

sequence for f◦ : X◦ → C◦:

Ei,j2 = Hi
ét(C

◦
Qp
, Rjf◦∗A)⇒ Hi+j

ét (X◦Qp
, A).

Since C◦ is affine, we have Ei,j2 = 0 for i ≥ 2. By using the Künneth formula,
we have

Rjf◦∗A '
⊕

r1+···+rk=j

Rr1π∗A⊗ · · · ⊗Rrkπ∗A.

Note that −1 ∈ µ2 acts as (−1)r on Rrπ∗A. Hence, if k < p, then we have

Rrf◦∗A(εk) =

{
Symk R1π∗A if r = k,

0 if r 6= k.
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Therefore we get

Hi
ét(C

◦
Qp
,Symk R1π∗A) ' Hi+k

ét (X◦Qp
, A)(εk)(A.5)

for i = 0, 1. This proves (A.2).
Secondly we prove (A.1). We begin by considering the cuspidal fibers of X̃.
We remark that, for any smooth scheme of finite type S overQp, the Künneth

map induces an isomorphism

H∗ét(Gkm ×Q̄p S,A)(k) ' H∗ét(S,A)⊗
∧

(At1 + · · ·+Atk),(A.6)

where ti = pr∗i (t) ∈ H1(Gm, A)(1) and
∧

(At1+· · ·+Atk) is the exterior algebra
on At1 + · · ·+Atk.

The symmetric group Sk acts on Gkm by permuting the coordinates and µk2
acts on Gkm by (xi) 7→ (xaii ) for any (ai)i ∈ µk2 . Then the group Hk acts on Gkm.

Proposition A.2. — Cup product with t1 ∪ · · · ∪ tk defines isomorphisms

H∗ét(S,A)(−k) ' H∗+két (Gkm ×Q̄p S,A)(εk)

for any smooth scheme of finite type S over Qp.

Proof. — We denote by Πk the projector associated to εk. Then, by (A.6),
it is enough to show that Πk(t1 ∪ · · · ∪ tr) = 0 for each r < k. Since µ2 acts
on k-th component of Gkm by xk 7→ xakk , it acts trivially on t1 ∪ · · · ∪ tr and
εk|µ2

is non-trivial. Hence we obtain the assertion as required. �

Let Pk = Proj O[x1, y1, . . . , xk, yk]/(x1y1 = x2y2 = · · · = xkyk) be the
closed subscheme of the projective space P2k−1

O over O defined by the equations
x1y1 = x2y2 = · · · = xkyk. Note that Hk acts on Pk. We define a subscheme
P reg
k as

P reg
k = {(xi, yi) ∈ Pk|there are no two pairs (xi, yi) simultaneously vanish}.

As in the proof of [31, Proposition 2.4.1] or [29, Proposition 7.2.3.1], we obtain
the following result.

Proposition A.3. — Assume that k < p. Then H∗ét(P
reg

k,Qp
×Q̄p S,A)(εk) = 0

for any smooth scheme of finite type S over Qp.

Let Xreg be the regular locus of X and X∗ = X◦ ∪ (Z × Gkm) the open
variety whose fiber over x ∈ C is the connected component of the Néron model
of X◦ → C◦.

Proposition A.4. — (1) Hj
ét(X̃Qp , A)(ε) ' Hj

ét(X
reg

Qp
, A)(ε).

(2) Hj
ét(X

reg

Qp
, A)(ε) ' Hj

ét(X
∗
Qp
, A)(εk).
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Proof. — (1). We define V = X ×C Z = X − X◦ and a filtration of V by
closed subschemes

V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V0 ⊃ V−1 = ∅,

where Vi is the set of (x1, x2, . . . , xk) such that at least (k − i) of the com-
ponents xi are singular points of corresponding Néron polygon. We define a
desingularization X̃ = X〈k − 1〉 of X and a filtration on Ṽ = X̃ ×C Z. We
put X〈0〉 = X and P 〈0〉 = V0. We define inductively X〈j〉 and P 〈j〉 as fol-
lows: Let φj : X〈j〉 → X〈j − 1〉 be the blowing-up with center P 〈j − 1〉 and
let P 〈j〉 ⊂ X〈j〉 be the strict transform of Vj . We write X̃ = X〈k − 1〉 and

ψj : X̃ = X〈k − 1〉 φk−1−−−→ X〈k − 2〉 φk−2−−−→ · · · φj+1−−−→ X〈j〉
for the composition φj+1 ◦ · · · ◦ φk−2 ◦ φk−1. We will show that

H∗(ṼQp , A)(ε) = 0.

We define a filtration on Ṽ by

Ṽ ⊃W0 ⊃W1 ⊃ · · · ⊃Wk−2 ⊃Wk−1 = ∅
given by

Wj = ψ−1
j (X〈j〉sing).

Here X〈j〉sing is the singular locus of X〈j〉.
We claim that

H∗((Wj −Wj+1)Qp , A)(ε) = 0

for all 0 ≤ j ≤ k−2. The proof of this claim is same as [31, Theorem 3.1.0,(ii)]
using Proposition A.3 instead of [31, Proposition 2.4.1]. Thus we have, for j ≥ 0,

H∗ét(Wj,Qp , A)(ε) ' H∗ét(Wj+1,Qp , A)(ε).

Since Ṽ −W0 ' V reg,

H∗ét(ṼQp , A)(ε) ' H∗ét(W0,Qp , A)(ε).

Therefore we get

H∗ét(ṼQp , A)(ε) ' H∗ét(W0,Qp , A)(ε) ' · · · ' H∗ét(Wk−1,Qp , A)(ε) = 0.

Since X̃ − Ṽ ' Xreg, we obtain

H∗ét(X̃Qp , A)(ε) ' H∗ét(X
reg

Qp
, A)(ε),

as required.
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(2). Fix a cusp x ∈ Z. Then we have, on f−1(x),

Vk−1 − Vk−2 = {(x1, . . . , xk) ∈ V |there exists one pair such that xi is singular}
=
⋃

σ∈Gk
σ{(x1, . . . , xk) ∈ V |x1 is singular, xi is non-singular for any i 6= 1}

=
∐

σ∈Gk/µ2×(µk−1
2 oSk−1)

σT.

Here T is the component

T := {(x1, . . . , xk) ∈ V |x1 is singular and xi is non-singular for any i 6= 1}

and µ2 × (µk−1
2 o Sk−1) is the stabilizer of T under Gk. Note that the first

factor µ2 acts on T trivially. Therefore

H∗ét((Vk−1 − Vk−2)Qp , A)(ε) = IndGk
µ2×(µk−1

2 oSk−1)
H∗ét(TQp , A)(ε) = 0

by Frobenius reciprocity. Then by using the Gysin sequence for X − Vk−1 ↪→
Xreg = X − Vk−2, we have

H∗ét(X
reg

Qp
, A)(ε) ' H∗ét((X − Vk−1)Qp , A)(ε).

Note that

(X − Vk−1)× Z ' (Gm × Z/NZ)k × Z and X∗ − (X − V ) = X∗ × Z = Gkm × Z.
Then by using the Gysin sequence for X◦ = X−V ↪→ Xreg and X◦ = X−V ↪→
X∗, we see that

H∗ét(X
reg

Qp
, A)(ε) ' H∗ét(X

∗
Qp
, A)(εk). �

By the Gysin sequence for X◦ ↪→ X∗, we have the exact sequence

· · · → Hj−2
ét (ZQp ×Gkm, A)(−1)(εk)→ Hj

ét(X
∗
Qp
, A)(εk)→ Hj

ét(X
◦
Qp
, A)(εk)

(A.7)

→ Hj−1
ét (ZQp ×Gkm, A)(−1)(εk)→ Hj+1

ét (X∗Qp
, A)(εk)→ · · · .

Therefore (A.1) follows from (A.7), Proposition A.2, and Proposition A.4. Also
(A.4) follows from (A.7), Proposition A.2, (A.5), and H0

ét(C
◦
Qp
,Symk R1π∗A) =

0 if (p,N) = 1 and k > 0 (by (2.4)).
Thirdly, we construct the isomorphism (A.3). Let j (resp. j̃) denote the

open immersion C◦ ↪→ C (resp. X◦ ↪→ X̃). There exists the Leray spectral
sequence

Ea,b2 = Ha
ét(CQp , R

bf̃∗j̃!A)⇒ Ha+b
ét (X̃Qp , j̃!A).
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As before in the proof of (A.5), by using the proper base change theorem and
the Künneth formula, we see that

Rbf̃∗j̃!A(ε) ' j!Rbf◦∗A(ε) '
{
j! Symk R1π∗A if b = k,

0 if b 6= k.

Therefore we have a commutative diagram

H1
ét(CQp , j! Symk R1π∗A)

��

' //

�

Hk+1
ét (X̃Qp , j̃!A)(ε)

��
Hk+1

ét (X̃Qp , A)(ε)

��
H1

ét(C
◦
Qp
,Symk R1π∗A)

' // Hk+1
ét (X◦Qp

, A)(εk)

(A.8)

from the functoriality of the Leray spectral sequence and (A.2). By Poincaré
duality, we see that

Hk+1
ét,c (X◦Qp

, A)(εk)×Hk+1
ét (X◦Qp

, A)(ε−1
k )

trace−−−→ Q/Z,

Hk+1
ét (X̃Qp , A)(ε)×Hk+1

ét (X̃Qp , A)(ε−1)
trace−−−→ Q/Z

are perfect pairings. Note that ε = ε−1 and

Hk+1
ét (X̃Qp , A)(ε)→ Hk+1

ét (X◦Qp
, A)(εk)

is an injection by (A.1). Thus we see that

Hk+1
ét,c (X◦Qp

, A)(εk)→ Hk+1
ét (X̃Qp , A)(ε)

is a surjection by duality. Therefore we have

H1
ét,par(C

◦
Qp
,Symk R1π∗A) ' Hk+1

ét (X̃Qp , A)(ε).

This proves (A.3).
We prove that the isomorphisms (A.2) and (A.3) are compatible with the

Hecke operator and the Atkin operator. From the Leray spectral sequence
and its functoriality for A → p1∗p1

∗A, A → ψ∗ψ∗A, and the trace map trp2 :
p2∗p2

∗A→ A, the diagram

Ek

��
�

p∗1Ek
φk1oo

��

ψk //

�

p∗2Ek

��

φk2 //

�

Ek

��
Y1(N) Y1(N, l)

p1
oo Y1(N, l)

p2
// Y1(N)
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implies that the isomorphism (A.2) is an isomorphism of Hecke modules as
desired.

In order to prove that the isomorphism (A.3) is compatible with the Hecke
operator and the Atkin operator, from the diagram (A.8) it suffices to show
that the commutative diagram

T̃l

�

// X̃ × X̃ pri //

�

X̃

Tl

OO

// X◦ ×X◦
j̃×j̃

OO

pri
// X◦

j̃

OO

induces the following commutative diagram

Hk+1
ét (X̃Qp , A) //

�pr∗1

��

Hk+1
ét (X◦Qp

, A)

pr∗1

��
Hk+1

ét (X̃Qp × X̃Qp , A) //

∪cl(T̃l)

��
�

Hk+1
ét (X◦Qp

×X◦Qp , A)

∪cl(Tl)

��
Hk+1

ét (X̃Qp × X̃Qp , A)(k + 1) //

pr2∗

��
�

Hk+1
ét (X◦Qp

×X◦Qp , A)(k + 1)

pr2∗

��
Hk+1

ét (X̃Qp , A) // Hk+1
ét (X◦Qp

, A).

Here cl is the cycle map. The first square is compatible by the smooth base
change theorem and the second square is compatible by the semi-purity theo-
rem. The compatibility of third square follows from the fact that trace maps
are compatible with base change. This completes the proof of Proposition A.1.

A.3. Comparison with algebraic de Rham cohomology. — The aim of this sub-
section is to prove Proposition A.8, which gives an isomorphism between mod
p de Rham cohomology for the modular curve with non-constant coefficients
and for the Kuga-Sato variety with constant coefficients. In order to do it, we
use the terminology of logarithmic structures in Kato [19].

Let Y be a regular scheme and D a reduced divisor with normal crossings
on Y. Then the subsheaf L of monoids on Yét defind by

L(U)={g ∈ OY(U)|g is invertible outside D ×Y U}(A.9)

for each étale Y-scheme U is a fine log structure ([19, (2.5)]).
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We fix an algebra A0 = Z[1/N ]. We define a log scheme C× over A0 to
be the scheme C over A0 endowed with the log structure L={g ∈ OC |g is
invertible outside Z}, and E× the scheme E over A0 endowed with the log
structure M={g ∈ OE |g is invertible outside π−1(Z)}. Then the morphism of
log schemes E× → C× over A0 is log smooth ([19, Theorem 3.5]) and hence
the OC-module ΩiE×/C× = ΩiE/C(log(M/L)) is locally free of finite type ([19,
Theorem 3.10]).

For any A0-algebra A and A0-scheme Y, we denote by YA its base change
to Spec(A). Moreover, for any A0-algebra A and A0-log scheme Y× = (Y, L),
we denote by Y×A = (Y, L)A its base change to (Spec(A), triv) with the trivial
log structure.

In this subsection, let O be the ring of integers of a finite extension over Qp
and κ the residue field of O.

We define the de Rham cohomology sheaf on Cκ by

Lκ = R1π∗Ω
•
E×κ /C×κ .

We have the invertible sheaf

ωκ = π∗Ω
1
E×κ /C×κ

([8, II.1.6], [24, §10.13]). The exact sequence

0→ Ω1
E×κ /C×κ [−1]→ Ω•E×κ /C×κ → OE×κ → 0

induces an exact sequence

0→ ωκ → Lκ → ω−1
κ → 0(A.10)

(cf. [23, A1.2.1, page 163]). This sequence (A.10) defines the Hodge filtration

Lκ = F 0(Lκ) ⊃ F 1(Lκ) = ωκ ⊃ F 2(Lκ) = 0.

We have the canonical integrable Gauss-Manin connection

∇κ : Lκ → Lκ ⊗OCκ Ω1
C×κ /κ

.

For a non-negative integer k, we denote by Lκ,k the k-th symmetric tensor
Symk Lκ of Lκ and by ∇κ,k : Lκ,k → Lκ,k ⊗OCκ Ω1

C×κ /κ
the k-th symmetric

power of ∇κ. Explicitly, it is given by

∇κ,k(x1, . . . , xk) =

k∑

r=1

x1 · · ·xr−1xr+1 · · ·xk∇κ(xr).(A.11)

We define a complex of sheaves Ω•(Lκ,k) by

Ω0(Lκ,k) = Lκ,k, Ω1(Lκ,k) = Lκ,k ⊗OCκ Ω1
C×κ /κ

and the cohomology Hm(Cκ,Lκ,k,∇κ,k) by

Hm(Cκ,Lκ,k,∇κ,k) = Hm(Cκ,Ω
•(Lκ,k)).
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Let Rκ denote the canonical residue map in the sense of Deligne, which gives
an exact sequence

0→ Ω1
Cκ/κ

→ Ω1
C×κ /κ

Rκ−−→ OZκ → 0.

Since Rκ(∇κ,k(ax)) = Rκ(a∇κ,k(x))+Rκ(x⊗da) = Rκ(a∇κ,k(x)) on Lκ,k⊗OCκ
OZκ for any a ∈ OCκ and x ∈ Lκ,k, the morphism Rκ induces an OCκ-linear
morphism

Lκ,k
∇κ,k−−−→ Lκ,k ⊗OCκ Ω1

C×κ /κ
Rκ−−→ Lκ,k ⊗OCκ OZκ .

We define a complex of sheaves Ω•par(Lκ,k) by

Ω0
par(Lκ,k) = Lκ,k, Ω1

par(Lκ,k) = ∇κ,k(Lκ,k) + Lκ,k ⊗OCκ Ω1
Cκ/κ

and the parabolic cohomology Hm
par(Cκ,Lκ,k,∇κ,k) in the sense of Scholl [30]

by
Hm

par(Cκ,Lκ,k,∇κ,k) = Hm(Cκ,Ω
•
par(Lκ,k)).

Proposition A.5. — Assume that k < p. Then, the morphism Rκ induces an
exact sequence

0→ H1
par(Cκ,Lκ,k,∇κ,k)→ H1(Cκ,Lκ,k,∇κ,k)

Rκ−−→ H0(Cκ,ω
k
κ ⊗OZκ).

Proof. — Fix a cusp s. The level structure on TateN ′(q) = Gm/(q1/N ′)Z

defines a morphism

ψ : SpecA0[[q1/N ′ ]]→ C

identifying AN ′ = A0[[q1/N ′ ]] with the formal completion of C along the cusp
s, where N ′|N . Then ψ∗(ωA0

) has the nowhere vanishing section dt/t on the
formal completion of C along the cusp s, where t is the parameter on Gm
(cf. [8, VII,1.16.2], [23, A1.3.18]). Let ω be the canonical generator. Since
(p,N) = 1, ∇A0 induces

∇A0
: ψ∗LA0

→ ψ∗LA0
· dlog(q1/N ′) = ψ∗LA0

· dq
q
,

and we have
ψ∗LA0

= AN ′ · ω ⊕AN ′ · ξ,
where ∇A0

(ω) = ξ · dqq and ∇A0
(ξ) = 0 (cf. [23, A.1.3]). Then we get

ψ∗LA0,k =

k⊕

r=0

AN ′ · ωk−rξr(A.12)
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and, by (A.11),

∇A0,k(ωk−rξr) =

k−r∑

i=1

ωk−r−1ξr∇A0
(ω) +

k∑

j=k−r+1

ωk−rξr−1∇A0
(ξ)

=

{
(k − r)ωk−r−1ξr+1 dq

q if r 6= k,

0 if r = k.

Since k < p, we obtain the exact sequence

0→ Ω•par(Lκ,k)→ Ω•(Lκ,k)
Rκ−−→ ωk

κ ⊗OCκ OZκ [−1]→ 0.(A.13)

This proves the theorem. �

We denote by X× the k-fold fiber product of E× over C×.

Proposition A.6. — Assume that k < p. Then there exists a canonical iso-
morphism

Hm(Cκ,Lκ,k,∇κ,k) ' Hm+k(Xκ,Ω
•
X×κ /κ

)(ε) for all m.

Proof. — Similarly as in the proof of (A.2), by using the Künneth formula,
we see that

Rjf∗Ω
•
X×κ /C

×
κ

(ε) '
{
Lκ,k if j = k,

0 if j 6= k.

Thus, the Leray spectral sequence ([22, Remark 3.3]) implies the assertion as
required. �

We define X̃× to be the scheme X̃ endowed with the log structure defined
by the subsheaf of functions invertible on the cuspidal fibers as (A.9).

Proposition A.7. — The morphism g : X̃× → X× induces isomorphisms

Rg∗Ω
•
X̃×κ /κ

' Ω•
X×κ /κ

and Rg∗Ω
•
X̃×κ /C

×
κ
' Ω•

X×κ /C
×
κ
.

Proof. — In virtue of [20, Theorem 11.3], Rg∗OX̃κ ' OXκ . Since g is log
étale, applying [19, (3.12)] to X̃×κ

g−→ X×κ → (κ, triv) (resp. X̃×κ
g−→ X×κ → C×κ ),

we obtain
g∗Ωi

X×κ /κ
= Ωi

X̃×κ /κ
(resp. g∗Ωi

X×κ /C
×
κ

= Ωi
X̃×κ /C

×
κ
)

for all i. Hence the projection formula implies that

Rg∗Ω
j

X̃×κ /κ
' Ωj

X×κ /κ
and Rg∗Ω

j

X̃×κ /C
×
κ
' Ωj

X×κ /C
×
κ
. �
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Proposition A.8. — Assume that k < p. Then there exist canonical isomor-
phisms

H1(Cκ,Lκ,k,∇κ,k) ' Hk+1(X̃κ,Ω
•
X̃×κ /κ

)(ε),(A.14)

H1
par(Cκ,Lκ,k,∇κ,k) ' Hk+1(X̃κ,Ω

•
X̃κ/κ

)(ε),(A.15)

as filtered Hecke modules. Here the filtration on H1(Cκ,Lκ,k,∇κ,k) (resp.
H1

par(Cκ,Lκ,k,∇κ,k)) is induced by the filtration (A.21) (resp. (A.23)) and
the filtration on Hk+1(X̃κ,Ω

•
X̃×κ /κ

)(ε) and Hk+1(X̃κ,Ω
•
X̃κ/κ

)(ε) are defined by
the Hodge filtration.

Proof. — First, the isomorphism (A.14) is obtained by Proposition A.6 and
Proposition A.7.

Secondly, we construct the isomorphism (A.15) by using the Leray spectral
sequence [22]. In order to do it, we make a general observation on logarithmic
differential. Let Y be a regular scheme and suppose that D, D′, and D + D′
are reduced divisors with normal crossings on Y. Let M be the log structure
associated to D as (A.9). Étale locally on Y, we can write D =

∑r
i=1 Ci,

where Ci is a regular closed subsheme of Y defined by πi = 0 for a non-zero
divisor πi ∈ Γ(Y,OY) and M is isomorphic to the log structure associated
to (Nr)Y → OY : (ni) 7→ Ππnii . The residue map Res from Ω•Y(log(D + D′))
to Ω•−1

Ci (log(Ci ∩ D′)) is defined by the formula

Res(dlog(πi) ∧ ω) = ω|Ci .

Summing over all components, we get the morphism

Res: Ω•Y(log(D +D′))→ α∗(Ω
•−1

D̃ (log(α∗D ∩D′)))

for the normalization α : D̃ → D of D.
We define Dj as the strict transform of the exceptional divisor φ−1

j+1(P 〈j〉)
in X̃κ for j = 0, 1, . . . , k−2 and Dk as the strict transform in X̃κ of the cuspidal
fibers of f : Xκ → Cκ over the cusps. We write D̃j for the normalization of Dj

for all j. PutD = D0+· · ·+Dk−2+Dk and Ej = D0+· · ·+Dj for 0 ≤ j ≤ k−2.
Let D̃×k be the scheme D̃k endowed with the log structure associated to the
normal crossing divisor

∑k−2
j=0 (D̃k ∩Dj).

Filtrations on Ω•
X̃×κ /κ

and Ω•
D̃×k /κ

are defined by

Ω•
X̃×κ /κ

= F 0(Ω•
X×κ /κ

) ⊃ F 1(Ω•
X̃×κ /κ

) ⊃ F 2(Ω•
X̃×κ /κ

) = 0 and(A.16)

Ω•
D̃×k /κ

= F 0(Ω•
D̃×k /κ

) = F 1(Ω•
D̃×k /κ

) ⊃ F 2(Ω•
D̃×k /κ

) = 0,

respectively, where

F 1(Ωq
X̃×κ /κ

) = im
[
Ωq−1

X̃×κ /κ
⊗OX̃κ f̃

∗Ω1
C×κ /κ

→ Ωq
X̃×κ /κ

]
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(see, for example, [22, (3.2)]). The residue map Res: Ω•
X̃×κ /κ

→ α∗Ω
•−1

D̃×k /κ
for

the canonical morphism α : D̃×k → X̃×κ and the exact sequence 0 → Gr1
F →

F 0 → Gr0
F → 0 induce a commutative diagram

Lκ,k
∇κ,k //

Res

��

Lκ,k ⊗OCκ Ω1
C×κ /κ

Res

��
0

d // Rkf̃∗Ω•D̃×k /κ
(ε)

(A.17)

obtained by the projection formula and cutting out by ε. Here we note that
Rkf̃∗Ω•X̃×κ /C×κ

' Rkf∗Ω•X×κ /C×κ by Proposition A.7 and henceRkf̃∗Ω•X̃×κ /C×κ (ε) '
Rkf∗Ω•X×κ /C×κ

(ε) ' Lκ,k by the proof of Proposition A.6. Thus the Leray
spectral sequence [22, Remark 3.3] and its functoriality induce a commutative
diagram

0

��

0

��
ker(Res)

��

' // Hk+1(X̃κ,Ω
•
X̃κ/κ

)(ε)

��
H1(Cκ,Lκ,k,∇κ,k)

Res

��

' // Hk+1(X̃κ,Ω
•
X̃×κ /κ

)(ε)

Res

��
H1(Cκ, 0

d−→ Rkf̃∗Ω•D̃×k /κ
(ε))

' // Hk(D̃k,Ω
•
D̃×k /κ

)(ε).

Here, using

Hk+1(X̃κ,Ω
•
X̃κ/κ

(log(Ek−2)))(ε) ' Hk+1(X̃κ,Ω
•
X̃κ/κ

(log(Ek−3)))(ε)

' · · · ' Hk+1(X̃κ,Ω
•
X̃κ/κ

)(ε),

obtained by an inductive argument with the help of the vanishing results [37,
p.146] and Rif̃∗Ω•D̃×k /κ

(ε) = 0 if i 6= k by [37, p.145], we see that the second
arrow in the right vertical sequence is an injection and the bottom horizontal
morphism is an isomorphism. Since the image of Ω•

X̃×κ /κ
⊗OX̃κ f̃

∗Ω1
Cκ/κ

[−1]

under Gr1
F Res : Gr1

F Ω•
X̃×κ /κ

= Ω•
X̃×κ /κ

⊗OX̃κ f̃
∗Ω1

C×κ /κ
[−1]→ Gr1

F Ω•
D̃×k /κ

[−1] is

equal to 0, we have Res(Lκ,k⊗OCκ Ω1
Cκ/κ

) = 0. Combining with (A.17), we get
Res(Ω1

par(Lκ,k)) = 0. Thus, by the exact sequence (A.13), the map Res factors
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through Ω1(Lκ,k)/Ω1
par(Lκ,k) ' ωk

κ ⊗OCκ OZκ . Then Res induces ωk
κ ⊗OCκ

OZκ → Rkf̃∗Ω•D̃×k /κ
(ε) and we have a commutative diagram

Lκ,k ⊗OCκ Ω1
C×κ /κ

Rκ

��

Lκ,k ⊗OCκ Ω1
C×κ /κ

Res

��
ωk
κ ⊗OCκ OZκ // Rkf̃∗Ω•D̃×k /κ

(ε).

(A.18)

Therefore, we have a commutative diagram

0

��

0

��
H1

par(Cκ,Lκ,k,∇κ,k)

��

// ker(Res)

��
H1(Cκ,Lκ,k,∇κ,k)

Rκ

��

H1(Cκ,Lκ,k,∇κ,k)

Res
��

H0(Cκ,ω
k
κ ⊗OCκ OZκ) // H1(Cκ, 0

d−→ Rkf̃∗Ω•D̃×k /κ
(ε)).

Here the left vertical sequence is exact by Proposition A.5.
We claim that ωk

κ ⊗OCκ OZκ → Rkf̃∗Ω•D̃×k /κ
(ε) is an injective morphism.

Recall that from (A.12),

ψ∗Lκ,k =

k⊕

r=0

κ
N′ω

k−rξr,

where κ
N′ = AN ′⊗A0

κ. Since the claim is local on Zκ, it is enough to show that
ψ∗(ωk

κ ⊗OCκ OZκ) → ψ∗(Rkf̃∗Ω•D̃×k /κ
(ε)) is injective. Hereafter we drop the

notation ψ∗ and write Lκ,k for ψ∗Lκ,k and so on. For any a =
∑
r brω

k−rξr ∈
Lκ,k, Rκ(adlog(q)) = b0ω

k⊗1, where br ∈ κN′ and b0 ∈ κN′/(q1/N ′). Therefore,
by (A.18), it suffices to show that Res(ωk ⊗ dlog(q)) is non-zero. Recall that
Res is the composition of the following morphisms (A.19) and (A.20):

(A.19) Lκ,k ⊗OCκ Ω1
Cκ/κ

Künneth−−−−−→ Rkf̃∗Ω
•
X̃×κ /C

×
κ
⊗OCκ Ω1

C×κ /κ

' Rkf̃∗
(

Ω•
X̃×κ /C

×
κ
⊗f̃∗OCκ f̃

∗Ω1
C×κ /κ

)
;

Rkf̃∗
(

Ω•
X̃×κ /C

×
κ
⊗f̃∗OCκ f̃

∗Ω1
C×κ /κ

)
Res−−→ Rkf̃∗Ω

•
D̃×k /κ

.(A.20)
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Here the morphism (A.20) is induced by Res : Ω•
X̃×κ /C

×
κ
⊗f̃∗OCκ f̃

∗Ω1
C×κ /κ

→
Ω•
D̃×k /κ

.

We shall compute the image of ωk ⊗ dlog(q) under (A.19). We denote
pi by the i-th projection X× → E× and p̃i : X̃× → E× by pi ◦ g for any
i. Note that the image of ωk ⊗ dlog(q) under the map Lκ,k ⊗OCκ Ω1

C×κ /κ
→

(R1π∗Ω•E×κ /C×κ
)⊗k ⊗OCκ Ω1

C×κ /κ
is ω⊗k ⊗ dlog(q) and the image of this element

under the map (R1π∗Ω•E×κ /C×κ
)⊗k ⊗OCκ Ω1

C×κ /κ

Künneth−−−−−→ Rkf∗Ω•X×κ /C×κ
⊗OCκ

Ω1
C×κ /κ

is p∗1(ω) ∪ · · · ∪ p∗k(ω)⊗ dlog(q). The commutative diagram

p−1
i Ω1

E×κ /C×κ
[−1]

��

// σ≥1Ω•
X×κ /C

×
κ

��
p−1
i Ω•E×κ /C×κ

// Ω•
X×κ /C

×
κ

induces a commutative diagram

π∗Ω1
E×κ /C×κ

��

hi // R1f∗(σ≥1Ω•
X×κ /C

×
κ

)

��
R1π∗Ω•E×κ /C×κ

p∗i // R1f∗Ω•X×κ /C×κ
.

Here we denote by hi the upper horizontal morphism. We have hi(ω) ∈
R1f∗(σ≥1Ω•

X×κ /C
×
κ

) = ker[f∗Ω1
X×κ /C

×
κ
→ f∗Ω2

X×κ /C
×
κ

]. Similarly, we have

g∗hi(ω) ∈ ker[f̃∗Ω1
X̃×κ /C

×
κ
→ f̃∗Ω2

X̃×κ /C
×
κ

]. By putting h̃i(ω) = g∗hi(ω), we

have h̃1(ω) ∧ · · · ∧ h̃k(ω) ∈ f̃∗ΩkX̃×κ /C×κ
= Rkf̃∗(σ≥kΩ•

X̃×κ /C
×
κ

). The image

of ωk ⊗ dlog(q) under (A.19) is p̃∗1(ω) ∧ · · · ∧ p̃∗k(ω) ⊗ dlog(q). Thus our claim
follows from f̃∗ΩkD̃×k /κ

(ε) ' Rkf̃∗Ω•D̃×k /κ(ε) obtained by [37, p.145] and h̃1(ω)∧
· · · ∧ h̃k(ω) = dt1/t1 ∧ · · · ∧ dtk/tk 6= 0 on the smooth locus for the parameter
ti on Gm.

Next, we prove that the isomorphisms (A.14) and (A.15) are filtered isomor-
phisms.

Case (A.14). — We construct the filtration of H1(Cκ,Lκ,k,∇κ,k). The Hodge
filtration (A.10) on Lκ defines a decreasing filtration

F r(L⊗kκ ) =
∑

σ∈Sk
σ · [F 1(Lκ)⊗r ⊗OCκ L⊗(k−r)

κ ]

on L⊗kκ and
F r(Lκ,k) = im(F r(L⊗kκ )

pr−→ Lκ,k)
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on Lκ,k, where pr: L⊗kκ → Lκ,k is the canonical projection map. We can define
a filtration on the complex Ω•(Lκ,k) by

F r(Ω0(Lκ,k)) = F r(Lκ,k),(A.21)

F r(Ω1(Lκ,k)) = Ω1(Lκ,k) ∩
(
F r−1(Lκ,k)⊗OCκ Ω1

C×κ /κ

)
.

In order to use the Hodge to de Rham spectral sequence

Ei,j1 = Hi+j(Cκ,Gri(Ω•(Lκ,k)))⇒ Hi+j(Cκ,Ω
•(Lκ,k)),

we compute the E1-terms.

Proposition A.9. — There is the canonical isomorphism

Gri(Lκ,k) ' ω2i−k
κ = ωi

κ(ω−1
κ )

k−i
.

Proof. — The canonical morphism

h : ω⊗iκ ⊗OCκ L⊗(k−i)
κ → Gri(Lκ,k) = F i(Lκ,k)/F i+1(Lκ,k)

is surjective, since any element
∑
σ σ ·mσ ∈ F i(Lκ,k) with σ ∈ Sk and mσ ∈

ω⊗iκ ⊗OCκ L
⊗(k−i)
κ is equal to

∑
σmσ in F i(Lκ,k)/F i+1(Lκ,k). The kernel

of pr: ω⊗iκ ⊗OCκ L
⊗(k−i)
κ → ω2i−k

κ is equal to

K := ω⊗iκ ⊗OCκ ωκ ⊗OCκ L⊗(k−i−1)
κ + · · ·+ ω⊗iκ ⊗OCκ L⊗(k−i−1)

κ ⊗OCκ ωκ.

Indeed, over some open subset, if we fix a splitting of the exact sequence (A.10)
and write e1 and e2 for a basis of ωκ and ω−1

κ respectively, then we can identify
{e1, e2} with a basis of Lκ and we see that e1

⊗i⊗e2
⊗(k−i) is a basis of ω⊗iκ ⊗OCκ

L⊗(k−i)
κ /K. Since K ⊂ ker(h), we obtain a surjective morphism

ω2i−k
κ → Gri(Lκ,k),

and hence it is an isomorphism since Gri(Lκ,k) is free of rank 1 by the definition
of F r(Lκ,k). �

The Kodaira-Spencer map

θ : ωκ ↪→ Lκ ∇κ−−→ Lκ ⊗OCκ Ω1
C×κ /κ

→ ω−1
κ ⊗OCκ Ω1

C×κ /κ
,

which is OCκ -linear, induces an isomorphism

ω2
κ ' Ω1

C×κ /κ

([23, A1.3.17], [8, VI §4.5], [24, Theorem 10.13.11]). Then θ induces

Gr0(Ω•(Lκ,k)) = [ω−kκ → 0],

Grr(Ω•(Lκ,k)) =
[
ω(2r−k)
κ

θ⊗id−−−→ ω(2r−k−2)
κ ⊗OCκ Ω1

C×κ /κ

]
(for 1 ≤ r ≤ k),

Grk+1(Ω•(Lκ,k)) =
[
0→ ωk

κ ⊗OCκ Ω1
C×κ /κ

]
.
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We claim that Grr(Lκ,k ⊗OCκ Ω•
C×κ /κ

) = 0 for 1 ≤ r ≤ k, that is, θ ⊗ id is
an isomorphism. Over some open set, if we write ω and η for a basis of ω
and Ω1

C×κ /κ
, respectively, then there is a basis ξ of ω−1 such that θ(ω) =

ξ ⊗ η. Let ξ̄ ∈ Lκ such that ∇κ(ω) = ξ̄ ⊗ η. Since ∇κ,k(ax) = a∇κ,k(x)

in Grr−1(Lκ,k)⊗OCκ Ω1
C×κ /κ

for any a ∈ OCκ and x ∈ Grr(Lκ,k),

∇κ,k(ωr ξ̄k−r) =

r∑

j=1

ωr−1ξ̄k−r+1 ⊗ η +

k∑

j=r+1

ωr ξ̄k−r−1∇κ(ξ̄).

Since the second term of the right hand side belongs to F r(Lκ,k), we have
(θ ⊗ id)(ωr ξ̄k−r) = rωrξk−r+1 ⊗ η. Thus we have Ei,j∞ = 0, Ek+2,j

∞ = 0 if
1 ≤ i ≤ k and any j ∈ Z. Therefore we obtain

H1(Cκ,Lκ,k,∇κ,k) = F 0
κ ⊃ F 1

κ = · · · = F k+1
κ

= H0(Cκ,ω
k
κ ⊗OCκ Ω1

C×κ /κ
) ⊃ F k+2

κ = 0.

Here F k+1
κ = H0(Cκ,ω

k
κ ⊗OCκ Ω1

C×κ /κ
) follows from the following long exact

sequence induced by the exact sequence 0 → F 1 → F 0 → Gr0
F → 0, the

quasi-isomorphism F k → · · · → F 1, and Grk+1
F = F k:

0→ H0(Cκ,Lκ,k,∇κ,k)→ H0(Cκ,ω
−k
κ )

→ H0(Cκ,ω
k
κ ⊗OCκ Ω1

C×κ /κ
)→ H1(Cκ,Lκ,k,∇κ,k)→ · · · .

Hence it suffices to show that the isomorphism (A.14) induces an isomorphism

F k+1
κ ' F k+1

κ,Hdg(ε),

where F k+1
κ,Hdg = H0(X̃κ,Ω

k+1

X̃×κ /κ
). Recall that the filtration F •(Ω•

X̃×κ /κ
) on Ω•

X̃×κ /κ

is defined by (A.16).
We define the filtration F •(Ωk+1

X̃×κ /κ
[−(k + 1)]) on Ωk+1

X̃×κ /κ
[−(k + 1)] by

Ωk+1

X̃×κ /κ
[−(k + 1)] = F 0(Ωk+1

X̃×κ /κ
[−(k + 1)])

= F 1(Ωk+1

X̃×κ /κ
[−(k + 1)]) ⊃ F 2(Ωk+1

X̃×κ /κ
[−(k + 1)]) = 0.

Similarly as the construction of (A.17), the canonical map Ωk+1

X̃×κ /κ
[−(k+ 1)]→

Ω•
X̃×κ /κ

and the exact sequence 0 → Gr1
F → F 0 → Gr0

F → 0 induce a commu-
tative diagram

0
d //

��

Rk+1f̃∗Ω
k+1

X̃×κ /κ
[−(k + 1)](ε)

��
Lκ,k

∇κ,k // Lκ,k ⊗OCκ Ω1
C×κ /κ

.
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The Leray spectral sequence [22, Remark 3.3] and its functoriality induce a
commutative diagram

H1(Cκ, 0
d−→ Rk+1f̃∗Ω

k+1

X̃×κ /κ
[−(k + 1)](ε))

��

' // Hk+1(X̃κ,Ω
k+1

X̃×κ /κ
[−(k + 1)])(ε)

��
H1(Cκ,Lκ,k,∇κ,k)

' // Hk+1(X̃κ,Ω
•
X̃×κ /κ

)(ε).

Hence, in order to prove that (A.14) is a filtered isomorphism, it suffices to
show that

H0(Cκ,ω
k
κ ⊗OCκ Ω1

C×κ /κ
)

Künneth//

**

H0(Cκ, R
0f̃∗Ω

k+1

X̃×κ /κ
)(ε)

��
H1(Cκ,Lκ,k,∇κ,k)

is commutative and the horizontal morphism is an isomorphism. Since f̃ : X̃ →
C is a log-smooth morphism, we have the exact sequence

0→ f̃∗Ω1
C×κ /κ

⊗OX̃κ Ωk
X̃×κ /C

×
κ
→ Ωk+1

X̃×κ /κ
→ Ωk+1

X̃×κ /C
×
κ
→ 0(A.22)

([19, (3.12)]).
The filtration F •(f̃∗Ω1

C×κ /C
×
κ
⊗OX̃κ Ωk

X̃×κ /C
×
κ

[−(k + 1)]) on f̃∗Ω1
C×κ /κ

⊗OX̃κ Ωk
X̃×κ /C

×
κ

[−(k + 1)]

is defined by

f̃∗Ω1
C×κ /κ

⊗OX̃κ Ωk
X̃×κ /C

×
κ

[−(k + 1)] = F 0(f̃∗Ω1
C×κ /κ

⊗OX̃κ Ωk
X̃×κ /C

×
κ

[−(k + 1)])

= F 1(f̃∗Ω1
C×κ /κ

⊗OX̃κ Ωk
X̃×κ /C

×
κ

[−(k + 1)])

⊃ F 2(f̃∗Ω1
C×κ /κ

⊗OX̃κ Ωk
X̃×κ /C

×
κ

[−(k + 1)]) = 0.

Then, similarly as in the proof of (A.17), the canonical diagram

f̃∗Ω1
C×κ /κ

⊗OX̃κ Ωk
X̃×κ /C

×
κ

[−(k + 1)] //

**

Ωk+1

X̃×κ /κ
[−(k + 1)]

��
Ω•
X̃×κ /κ
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and the exact sequence 0 → Gr1
F → F 0 → Gr0

F → 0 induce a commutative
diagram

ωk
κ ⊗OCκ Ω1

C×κ /κ

,,

Künneth// R0f̃∗ΩkX̃×κ /C×κ
(ε)⊗OCκ Ω1

C×κ /κ
//

**

R0f̃∗Ω
k+1

X̃×κ /κ
(ε)

��
Lκ,k ⊗OCκ Ω1

C×κ /κ
.

It remains to check that the composition of the horizontal arrows ωk
κ ⊗OCκ

Ω1
C×κ /κ

→ R0f̃∗Ω
k+1

X̃×κ /κ
(ε) is an isomorphism.

Lemma A.10. — There are canonical isomorphisms

Rjf∗Ω
i
X×κ /C

×
κ

(ε) '
{

ωi−j
κ if i+ j = k,

0 otherwise.

Proof. — We define complexes on E×κ and X×κ as

C•E×κ /C×κ = Ω0
E×κ /C×κ ⊕ Ω1

E×κ /C×κ [−1] and C•
X×κ /C

×
κ

=

k⊕

i=0

Ωi
X×κ /C

×
κ

[−i],

respectively. Then we have

C•
X×κ /C

×
κ
' ⊕kj=1p

∗
jC•E×κ /C×κ .

By using the Künneth formula, we obtain

Rnf∗C•X×κ /C×κ '
⊕

n1+···+nk=n

Rn1π∗C•E×κ /C×κ ⊗OCκ · · · ⊗OCκ R
nkπ∗C•E×κ /C×κ

'
⊕

n1+···+nk=n

(Rn1π∗OEκ ⊕Rn1−1π∗Ω
1
E×κ /C×κ )

⊗OCκ · · · ⊗OCκ (Rnkπ∗OEκ ⊕Rnk−1π∗Ω
1
E×κ /C×κ ).

As in the proof of (A.2) or Proposition A.6, we obtain

Rnf∗C•X×κ /C×κ (ε) '
{

Symk R1π∗C•E×κ /C×κ if n = k,

0 otherwise. �

By Lemma A.10, the long exact sequence of R•f̃∗ coming from (A.22), and
g∗ΩiX̃×κ /C×κ

= Ωi
X×κ /C

×
κ

mentioned in the proof of Proposition A.7, we obtain
an isomorphism

ωk
κ ⊗OCκ Ω1

C×κ /κ
' R0f̃∗Ω

k+1

X̃×κ /κ
(ε).

Hence the isomorphism (A.14) is a filtered isomorphism.
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Case (A.15). — We can define a filtration on the complex Ω•par(Lκ,k) by

F rpar(Ω
0
par(Lκ,k)) = F r(Lκ,k),(A.23)

F rpar(Ω
1
par(Lκ,k)) = Ω1

par(Lκ,k) ∩
(
F r−1(Lκ,k)⊗OCκ Ω1

C×κ /κ

)
.

Then we have

Gr0(Ω•par(Lκ,k)) = [ω−kκ → 0],

Grr(Ω•par(Lκ,k)) =
[
ω(2r−k)
κ

θ⊗id−−−→ ω(2r−k−2)
κ ⊗OCκ Ω1

C×κ /κ

]
(for 1 ≤ r ≤ k),

Grk+1(Ω•par(Lκ,k)) =
[
0→ ωk

κ ⊗OCκ Ω1
Cκ/κ

]
.

Thus we have Ei,j∞ = 0, Ek+2,j
∞ = 0 if 1 ≤ i ≤ k and any j ∈ Z. Therefore we

obtain

H1
par(Cκ,Lκ,k,∇κ,k) = F 0

κ,par ⊃ F 1
κ,par = · · · = F k+1

κ,par

= H0(Cκ,ω
k
κ ⊗OCκ Ω1

Cκ/κ
) ⊃ F k+2

κ,par = 0.

Here F k+1
κ,par = H0(Cκ,ω

k
κ ⊗OCκ Ω1

Cκ/κ
) follows from the same argument as

(A.14). Moreover we have the commutative diagram

0 // H0(X̃κ,Ω
k+1

X̃κ/κ
)(ε) // H0(X̃κ,Ω

k+1

X̃×κ /κ
)(ε)

'

Res // H0(D̃k,Ω
k
D̃×k /κ

)(ε)

F '

H0(Cκ,ω
k
κ ⊗OCκ Ω1

C×κ /κ
)

Rκ // H0(Zκ,OZκ)

(cf. [37, p.150]). Here the isomorphism F is obtained by [37, p.145]. Then
ker(Res) = H0(X̃κ,Ω

k+1

X̃κ/κ
)(ε) ' ker(Rκ) = H0(Cκ,ω

k
κ ⊗OCκ Ω1

Cκ/κ
). Thus we

obtain a commutative diagram

H0(Cκ,ω
k
κ ⊗OCκ Ω1

Cκ/κ
)

��

' // H0(X̃κ,Ω
k+1

X̃κ/κ
)(ε)

��
H0(Cκ,ω

k
κ ⊗OCκ Ω1

C×κ /κ
)

��

' // H0(X̃κ,Ω
k+1

X̃×κ /κ
)(ε)

��
H1(Cκ,Lκ,k,∇κ,k)

' // Hk+1(X̃κ,Ω
•
X̃×κ /κ

)(ε).

In the same manner as in the proof of Proposition A.1, we see that the
isomorphisms (A.14) and (A.15) are compatible with the Hecke operators and
the Atkin operators. This completes the proof of Proposition A.8. �
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In the next subsection, we will use the following lemma obtained by [37,
Theorem 5.5] or [38, p.391].

Lemma A.11. — Assume that k < p. Then

Hm(X̃κ,Ω
n
X̃κ/κ

)(ε) ' 0 if m+ n 6= k + 1.

A.4. Rank of parabolic cohomology. — We retain the notation as before. Let
O be the ring of integers of a finite extension K over Qp, $ a uniformizer, and
κ the residue field. We will use the results in §A.1, A.2, and A.3 by substituting
k − 2 for k.

Let Γ = Γ1(N), k ≥ 2, Sk = Sk(Γ,O), and S̄k = H0(Cκ,ω
k−2
κ ⊗OCκ

Ω1
Cκ/κ

). We denote by f ∈ Sk a normalized Hecke eigenform with char-
acter ε, and by Mf a maximal ideal of the Hecke algebra generated by $,
Tl − a(l, f) (for (l, N) = 1), Ul − a(l, f) (for l|N), and 〈d〉 − ε(d) over O. The
goal of this subsection is to understand the eigenspaces of the complex conjuga-
tion acting on the Mf -part H1

ét,par(C
◦
Qp
,Symk−2R1π∗(O/$n))[Mf ]. We will

prove the following theorem in this subsection. The author would like to ex-
press his deep gratitude to Professor Takeshi Tsuji whose guidance was crucial
in proving the following theorem.

Theorem A.12. — Assume that 2 ≤ k ≤ p− 1 and the residual Galois repre-
sentation ρ̄f : GQ → GL2(κ) associated to f is reducible of the form

ρ̄f ∼
(
ξ1 ∗
0 ξ2

)

satisfying that either ξ1 or ξ2 is unramified at p. Then, for any positive integer
n and a parity α ∈ {±1} as (A.27),

H1
ét,par(C

◦
Q,Symk−2R1π∗(O/$n))α[Mf ] ' O/$n,

H1
ét,par(C

◦
Q,Symk−2R1π∗O)α[Mf ] ' O.

In order to prove this theorem, we need the following proposition. For each
n, we write

Ṽ (n) = H1
ét,par(C

◦
Q,Symk−2R1π∗(O/$n))[Mf ],

Ṽ (∞) = H1
ét,par(C

◦
Q,Symk−2R1π∗O)[Mf ].

We put Ṽ = Ṽ (1).

Proposition A.13. — All of the constituents of Ṽ are isomorphic to κ(ξ1) or
κ(ξ2).
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Proof. — We denote by ρ the Galois representation Ṽ of GQ = Gal(Q/Q).
Put d = dimκ Ṽ . Fix a rational prime number l with (l, pN) = 1. The Eichler-
Shimura relations impose the relation ρ(Frobl)

2−a(l, f)ρ(Frobl)+ε(l)lk−1 = 0.
We denote by α(l) and β(l) the solutions of X2 − a(l, f)X + ε(l)lk−1 = 0. Let

Ṽ ∗ = Hom(Ṽ , κ(εωk−1))

and
W = Ṽ ⊕ Ṽ ∗

the direct sum of Ṽ and Ṽ ∗. We consider the characteristic polynomial of Frobl
acting on W . Let G denote a finite quotient of GQ through which the actions
on W , κ(ξ1), and κ(ξ2) factor. We denote by Nα(l) and Nβ(l) the general-
ized eigenspaces of ρ(Frobl) with respect to α(l) and β(l) respectively. Then
Ṽ = Nα(l) ⊕ Nβ(l). Since the operation Hom(∗, κ(εωk−1)) interchanges the
eigenvalues of the action of Frobl, the characteristic polynomial of Frobl acting
on W is (T − α(l))d(T − β(l))d. On the other hand, the characteristic polyno-
mial of Frobl acting on κ(ξ1)⊕d⊕κ(ξ2)⊕d, which is regarded as a G-module, is
also (T − α(l))d(T − β(l))d. By the Chebotarev density theorem, any element
of G is the image of some Frobl with l - pN . Thus, by the Brauer-Nesbitt
theorem,

W ss ' κ(ξ1)⊕d ⊕ κ(ξ2)⊕d,

where W ss is the semi-simplification of W . Hence there exists a Jordan-Hölder
filtration

0 ( V1 ( V2 ( · · · ( Vd = Ṽ(A.24)

of Ṽ satisfying
Vi/Vi−1 ' κ(αi),

where αi is equal to ξ1 or ξ2 for each i. �

Using integral p-adic Hodge theory, we shall prove Theorem A.12 by deter-
mining a character such that the number of constituents of Ṽ isomorphic to
it is equal to one. The key ingredients in our proof are to restrict the action
of GQ on Ṽ to GQp and to use that the Hodge-Tate weights of ξ1 and ξ2 are
distinct.

First we will briefly review the fully faithful functor from the category
of finitely generated filtered ϕ-module to the category of O-representations
of GQp = Gal(Qp/Qp) of finite length, and state the comparison theorem be-
tween the parabolic étale cohomology and the parabolic log-crystalline coho-
mology, which we will use in this subsection.

For a non-negative integer r, let MFrO denote the category whose objects are
the following triples (M, (FiliM)i∈Z, (ϕiM )i∈Z):
(1) M is a finitely generated O-module;
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(2) (FiliM)i∈Z is a decreasing filtration on M by O-submodules such that
Fil0M = M and Filr+1M = 0;

(3) ϕiM : FiliM → M is an O-linear homomorphism such that ϕiM |Fili+1M =

pϕi+1
M and

∑r
i=0 ϕ

i
M (FiliM) = M .

A morphism in MFrO is a homomorphism of filtered O-modules compatible
with ϕ•. It is known that any morphism η : M → M ′ in MFrO is strict with
respect to the filtrations, that is, η(FiliM) = FiliM ′ ∩ η(M) for each i ∈ Z
([12, 1.10 (b)]). This implies that MFrO is an abelian category as follows.
Let η : M → M ′ be a morphism in MFrO , and let η denote η regarded as
a homomorphism of underlying O-modules. Then the O-module N := ker(η)

with FiliN and ϕiN defined by FiliN = N∩FiliM and ϕiN = ϕiM |N , respectively,
belongs to MFrO and gives the kernel of η in MFrO . Let N ′ denote coker(η).
We define a filtration FiliN ′ and an O-linear homomorphism ϕiN ′ by FiliN ′ =

FiliM ′/η(FiliM) and the homomorphism induced by ϕiM and ϕiM ′ , respectively.
Note that FiliN ′ → N ′ is injective because η is strict, and hence FiliN ′ may
be regarded as an O-submodule of N ′. The triple (N ′, (FiliN ′)i∈Z, (ϕiN ′)i∈Z)
belongs to MFrO and gives the cokernel of η in MFrO . The strictness of η further
shows that we have Fili(im(η)) = η(M) ∩ FiliM ′ = η(FiliM) ' Fili(coim(η))
and hence im(η) = coim(η) in MFrO .

Let MFrκ denote the full subcategory of MFrO consisting of objects M satis-
fying $M = 0. Let RepO(GQp) denote the category of representations of GQp
on O-modules of finite length. For an integer r such that 0 ≤ r ≤ p− 2, there
exists a fully faithful functor

Tcris : MFrO → RepO(GQp)

given by J.-M. Fontaine and G. Laffaille ([12], [6], [41]). Let ReprO,cris(GQp)
denote the essential image of MFrO by Tcris. For an object T of ReprO,cris(GQp),
the Hodge-Tate weights of T mean s ∈ Z for which GrsM 6= 0, where M is an
object of MFrO such that Tcris(M) ' T .

By (A.15), we have a filtered isomorphism

H1
par(Cκ,Lκ,k−2,∇κ,k−2) ' Hk−1(X̃κ,Ω

•
X̃κ/κ

)(ε).

Here a filtration is given by

0 ⊂ S̄k = F k−1
κ,par = · · · = F 1

κ,par ⊂ F 0
κ,par = H1

par(Cκ,Lκ,k−2,∇κ,k−2).

Theorem A.14. — Assume that k− 1 ≤ p− 2. Then there is an isomorphism
of Hecke modules

Tcris(H
1
par(Cκ,Lκ,k−2,∇κ,k−2)) ' Tcris(H

k−1(X̃κ,Ω
•
X̃κ/κ

)(ε))

' Hk−1
ét (X̃Qp , κ)(ε) ' H1

ét,par(C
◦
Qp
,Symk−2R1π∗κ).
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Proof. — The first and last isomorphisms follow from Proposition A.8 (A.15)
and Proposition A.1 (A.3) respectively. The second isomorphism is obtained by
the comparison theorem for proper smooth varieties with constant coefficients
(proved by Fontaine-Messing ([13, III 6.4]) and Faltings ([9, Theorem 5.3])
and improved by Breuil-Tsuji ([5, Theorem 3.2.4.6]=[35, Theorem 5.1] and
[5, Theorem 3.2.4.7])). It remains to check that these morphisms are Hecke
equivariant. By the Hodge to de Rham spectral sequence and Lemma A.11, we
have

Hk(X̃κ,Ω
•
X̃κ/κ

)(ε) = 0,(A.25)

Hk−2(X̃κ,Ω
•
X̃κ/κ

)(ε) = 0.(A.26)

By the long exact sequence of cohomology for an exact sequence 0 → O ×$−−→
O → κ→ 0, (A.25), and Nakayama’s lemma, we obtain

Hk(X̃O ,Ω
•
X̃O/O)(ε) = 0.

Therefore, for any integer n ≥ 1, by the long exact sequence of cohomology for
an exact sequence 0→ O ×$n−−−→ O → O/$n → 0, we obtain

H1
ét,par(C

◦
Qp
,Symk−2R1π∗O)/$nH1

ét,par(C
◦
Qp
,Symk−2R1π∗O)

' H1
ét,par(C

◦
Qp
,Symk−2R1π∗ (O/$n)).

Moreover, (A.26) implies that H1
ét,par(C

◦
Qp
,Symk−2R1π∗O) is torsion-free.

Therefore the proof reduces to showing that the comparison isomorphism be-
tween Hk−1

ét (X̃Qp ,Qp) and Hk−1(X̃Qp ,Ω
•
X̃Qp/Qp

) is compatible with the Hecke
correspondences and Atkin correspondences. This follows from the de Rham
conjecture for proper smooth varieties with constant Qp-coefficients [36, The-
orem A1]. �

Since (p,N) = 1, Ṽ (n) is a crystalline representation of GQp .
Next we construct a filtration of Hk−1(X̃κ,Ω

•
X̃κ/κ

)(ε)[Mf ] by using the fil-

tration (A.24) of Ṽ . We put M̃ = Hk−1(X̃κ,Ω
•
X̃κ/κ

)(ε)[Mf ].

Case 1. — ξ1 is unramified at p.
Then there exists M(ξ1) ∈ MFk−1

κ satisfying Tcris(M(ξ1)) = κ(ξ1) and F 1 =

0 ⊂ F 0 = M(ξ1). Similarly, there is M(ξ2) ∈ MFk−1
κ satisfying Tcris(M(ξ2)) =

κ(ξ2) and F k = 0 ⊂ F k−1 = M(ξ2).
Thus we obtain M(α1) ∈ MFk−1

κ satisfying Tcris(M(α1)) = V1. Since the
length of module is preserved under Tcris, we have dimκM(α1) = 1. Since
Tcris is fully faithful, the image of M(α1) in M̃ is non-trivial. We write M1 =

im(M(α1)→ M̃).
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Similarly, by replacing V1 by V2/V1, there exists M(α2) ∈ MFk−1
κ satisfying

Tcris(M(α2)) = V2/V1. Let M1 = M̃/M1, M2 = im(M(α2)→M1), and

M2 = ker(M̃ →M1/M2).

Then we have
Tcris(M2) = V2.

Repeating this arguments, we obtain a Jordan-Hölder filtration

0 (M1 (M2 ( · · · (Md = M̃

of M̃ satisfying
Tcris(Mi/Mi−1) = Vi/Vi−1 = κ(αi)

where αi is equal to ξ1 or ξ2. By noting that, for any integer r,

dimκ GrrF (M̃) =

d∑

j=1

dimκ GrrF (Mj/Mj−1),

we have the following proposition.

Proposition A.15. — We have

dimκ GrrF (M̃) =





0 if r 6= 0, k − 1,

]{j|αj = ξ1} if r = 0,
]{j|αj = ξ2} if r = k − 1.

Case 2. — ξ2 is unramified at p.
Similarly as in Case 1, we have the following proposition.

Proposition A.16. — We have

dimκ GrrF (M̃) =





0 if r 6= 0, k − 1,

]{j|αj = ξ2} if r = 0,
]{j|αj = ξ1} if r = k − 1.

Now we can prove Theorem A.12. By the q-expansion principle [23, § 1.6],

Grk−1
F (M̃) = S̄k[Mf ] ' κ.

Then, by the above propositions, we have ]{j|αj = ξ2} = 1 in Case 1, and
]{j|αj = ξ1} = 1 in Case 2. This proves Theorem A.12 in the case n = 1,∞.
In particular,

α = ξ2(−1) in Case 1 and α = ξ1(−1) in Case 2.(A.27)

Next, we prove Theorem A.12 for any n > 1. As noted in the proof of Theo-
rem A.14, H1

ét,par(C
◦
Qp
,Symk−2R1π∗O) is torsion free. Then the exact sequence

0→ O ×$n−−−→ O → O/$n → 0 on X̃Qp,ét with Proposition A.1 (A.3) and (A.4)
induces an exact sequence

0→ Ṽ (∞)
×$n−−−→ Ṽ (∞)→ Ṽ (n).
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Similarly, using the exact sequence 0 → $n−1/$n → O/$n → O/$n−1 → 0

on X̃Qp,ét, we obtain an exact sequence

0→ Ṽ (1)→ Ṽ (n)→ Ṽ (n− 1).

Thus an inductive argument proves Theorem A.12.
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