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A NEW APPROACH TO KAZHDAN-LUSZTIG
THEORY OF TYPE B VIA QUANTUM

SYMMETRIC PAIRS

Huanchen BAO, Weiqiang WANG

Abstract. — We show that Hecke algebra of type B and a coideal subalgebra of
the type A quantum group satisfy a double centralizer property, generalizing
the Schur-Jimbo duality in type A. The quantum group of type A and its
coideal subalgebra form a quantum symmetric pair. A new theory of canonical
bases arising from quantum symmetric pairs is initiated. It is then applied
to formulate and establish for the first time a Kazhdan-Lusztig theory for
the BGG category O of the ortho-symplectic Lie superalgebras osp(2m+1 | 2n).
In particular, our approach provides a new formulation of the Kazhdan-Lusztig
theory for Lie algebras of type B/C.

Résumé (Une nouvelle approche à la théorie de Kazhdan-Lusztig de type B via les
paires symétriques)

On démontre que les algèbres de Hecke de type B et des coidéaux du groupes
quantiques de type A satisfont une propriété de double centralisateur qui géné-
ralise la dualité de Schur-Jimbo en type A. Le groupe quantique de type A et
son coidéal forment une paire symétrique quantique. Une nouvelle théorie des
bases canoniques associées aux paires symétriques quantiques est développée.
Elle est appliquée pour formuler et établir une théorie à la Kazhdan-Lusztig
pour la catégorie O de BGG de la super-algèbre de Lie ortho-symplectique
osp(2m + 1 | 2n). Notre approche donne en particulier une nouvelle formulation
de la théorie de Kazhdan-Lusztig pour les algèbres de Lie de type B/C.

© Astérisque 402, SMF 2018
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INTRODUCTION

1. Background

Amilestone in representation theorywas the Kazhdan-Lusztig (KL) theory
initiated in [KL] (and completed in [BB], [BK]), which offered a powerful
solution to the difficult problem of determining the irreducible characters in
the BGG category O of a semisimple Lie algebra g. The Hecke algebra HW

associated to theWeyl groupW of g plays a central role in the KL formulation,
which can be paraphrased as follows: the simple modules of the principal
block in O correspond to the Kazhdan-Lusztig basis of HW while the Verma
modules correspond to the standard basis ofHW . The characters of the simple
modules in singular blocks are then determined from those in the principal
block via translation functors [So1], and the characters of tiltingmoduleswere
subsequently determined in [So2].

Though the classification of finite-dimensional simple Lie superalgebras
overCwasachieved in 1970’s by [Kac], the studyof representation theory such
as the BGG category O for a Lie superalgebra turns out to be very challenging
and the progress has beenmade only in recent years. One fundamental reason
is that the Weyl group (of the even part) of a Lie superalgebra alone is not
sufficient to control the linkage principle in O, and hence the corresponding
Hecke algebra cannot play the same crucial role as in the classical Kazhdan-
Lusztig theory. Among all basic Lie superalgebras, the infinite series gl(m |n)
and osp(m |2n) are arguably the most fundamental ones. Since these Lie
superalgebras specialize to Lie algebras when one of the parametersm or n is
zero, any possible (conjectural) approach on the irreducible character problem
in the BGG category of such a Lie superalgebra has to first provide a new
formulation for a classical Lie algebra in which the Hecke algebra does not
feature directly.

Brundan [Br1] formulated in 2003 a conjecture on the irreducible and
tilting characters for the BGG category O for the general linear Lie super-
algebra gl(m |n), using Lusztig’s canonical basis. In this case, fortunately



2 INTRODUCTION

Schur-Jimbo duality [Jim] between a Drinfeld-Jimbo quantum groupU and a
Hecke algebra of typeA enables one to reformulate the KL theory of typeA in
terms of Lusztig’s canonical basis on some Fock spaceV⊗m , whereV is the nat-
ural representation of U. Brundan’s formulation for gl(m |n) makes a crucial
use of the Fock space V⊗m ⊗W⊗n , whereW denotes the restricted dual to V.
The longstanding conjecture of Brundanwas settled in [CLW2], where a super
duality approach developed earlier [CW1], [CL] (cf. [CW2, Chap. 6]) plays a
key role. (For a more recent and different proof of Brundan’s conjecture see
Brundan, Losev, and Webster [BLW].)

Finding a general formulation for a Kazhdan-Lusztig theory for the BGG
categoryOof the ortho-symplectic Lie superalgebras is one of themost intrigu-
ing open problems in super representation theory. There was no conjecture
available in the literature, and the reason should have become clear as we
explain above: no alternative approach to KL theory of type BCD had been
discovered without using Hecke algebras directly.

A super duality approach was developed in [CLW1] which solves the irre-
ducible character problem for some distinguished parabolic BGG categories of
the osp Lie superalgebras. This approachwas not sufficient to attack the prob-
lem in the full BGG category for osp, and a Brundan-type formulationwas not
available. There has been a completely different approach developed by Gru-
son and Seganova [GS] toward the finite-dimensional irreducible characters
for the osp Lie superalgebras. One of the implications of the super duality
which is important to us though is that the linkage for the distinguished
parabolic categories of osp(2m+1 |2n)-modules is controlled by Hecke algebra
of type B∞, and so one hopes that it remains to be so for the full BGG category
of osp(2m + 1 |2n)-modules.

2. The goal

The goal of this book is to give a complete and conceptual solution to prob-
lem on irreducible characters in the BGG category Oofmodules of integer and
half-integerweights for the ortho-symplectic Lie superalgebras osp(2m + 1 |2n)
of type B(m,n). The case of Lie superalgebra osp(2m |2n) is treated in [Bao].
In particular, the non-super specialization of our work amounts to a new for-
mulation to Kazhdan-Lusztig theory of Lie algebras of classical type in which
Hecke algebras are not used directly.

To achieve the goal, we are led to initiate in Part 1 a new theory of quasi-R-
matrix and new canonical basis (called ı-canonical basis) arising from quantum
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3. AN OVERVIEW OF PART I 3

symmetric pairs (U,Uı ). We show that the coideal subalgebra U
ı of U and the

Hecke algebra of type Bm form double centralizers on V⊗m , generalizing the
Schur-Jimbo duality. A new formulation of the KL theory for Lie algebras of
type B is then made possible by such a new duality. Part 1 (which consists of
Chapters 1 and 6) has nothing to do with Lie superalgebras and should be of
independent interest.

We develop in Part 2 an infinite-rank version of the constructions in Part 1,
and then relate the ı-canonical basis to the BGG category Ob of osp(2m+1 |2n)-
modules of (half-)integer weights relative to a Borel subalgebra whose type is
specified by a 0m1n-sequenceb. In this approach, the role of Kazhdan-Lusztig
basis is played by the (dual) ı-canonical basis for a suitable completion of
the Uı -module Tb associated to b; Here Tb is a tensor space which is a variant
of V⊗m ⊗W⊗n .

3. An overview of Part I

Our starting point is actually natural and simple. The generalization of
Schur duality beyond type A in the literature is not suitable to our goal, since
it replaces the Lie algebra/group of type A by its classical counterpart and
modifies the symmetric group to become a Brauer algebra (or a quantum
version of such). For our purpose, as we look for a substitute for KL theory
where the Hecke algebras have played a key role, we ask for some quantum
group like object with a coproduct (not Schur type algebra) which centralizes
the Hecke algebra of type Bn when acting on V⊗n . We recognized such a
quantum group like object as a coideal subalgebra of the quantum group U,
a quantum version of the enveloping algebra of the subalgebra of sl(V) fixed
by some involution, which forms a quantum symmetric pair with U.

Note that the formulation of Part 1 is in the setting that V is finite-
dimensional, while it is most natural to set V to be infinite-dimensional when
making connection with category O in Part 2.

The structure theory of quantum symmetric pairs was systematically de-
veloped by Letzter and then Kolb (see [Le], [Ko] and the references therein).
Though our coideal subalgebra can be identified with some particular exam-
ples in literature by an explicit (anti-)isomorphism, the particular form of our
presentation and its embedding into U are different and new. The coideal
subalgebra in our presentation manifestly admits a bar involution, and the
specialization atq = 1 of our presentation has a natural interpretation in terms
of translation functors in category O. Depending on whether the dimension

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



4 INTRODUCTION

of V is even or odd, we denote the (right) coideal subalgebra by U
ı or U

 ,
respectively. The two cases are similar but also have quite some differences,
and the case ofUı is more challenging as it contains an unconventional gener-
ator which we denote by t (besides the Chevalley-like generators eαi and fαi ).
We mainly restrict our discussion to U

ı (and so dimV is even) below.
Recall that the coproduct

∆ : U −→ U ⊗ U

is not compatible with the bar involution ψ on U and ψ ⊗ ψ on U ⊗ U, and
Lusztig’s quasi-R-matrix Θ is designed to intertwine ∆ and ∆, where

∆(u) := (ψ ⊗ψ )∆
(
ψ (u)

)
,

for u ∈ U. Lusztig’s construction of Θ is a variant of Drinfeld’s construction
of universal R-matrix [Dr], and it takes great advantage of the triangular de-
composition and a natural bilinear form ofU. The bar involution on V⊗m was
then constructed by means of the quasi-R-matrix Θ. Inspired by the type A
reformulation of KL theory (cf., e.g., [VV], [Br1], [CLW2]), as an alternative
of the Kazhdan-Lusztig theory without using Hecke algebras we ask for a
canonical basis theory arising from quantum symmetric pairs.

The embedding ı : U
ı → U which makes U

ı a coideal subalgebra of U
does not commute with the bar involution ψ ı on U

ı and ψ on U. We have a
coproduct of the coideal form

∆ : Uı −→ U
ı ⊗ U.Define

∆ : Uı → U
ı ⊗ U, ∆(u) = (ψ ı ⊗ψ )∆

(
ψ ı (u)

)
, for all u ∈ Uı .

Note that the ∆ here is not a restriction of Lusztig’s ∆. Toward our goal, in
place of Lusztig’s quasi-R-matrix for U one would need a quasi-R-matrix Θı

which intertwines ∆ and ∆ for Uı . The problem here is that Uı does not have
any obvious triangular decomposition or bilinear form as for U.

Our key strategy is to ask first for some suitable intertwiner ϒ which inter-
twines ı and ı : Uı → U, where

ı(u) := ψ
(
ı
(
ψ ı (u)

) )
, for u ∈ Uı ;

note the remarkable analogywith a keyproperty of Lusztig’sΘ. We succeed in
constructing such an intertwiner ϒ in some completion of the negative halfU−
of U and show that it is unique up to a scalar multiple (see Theorem 2.10).
Then by combining ϒ with Lusztig’s Θ we are able to construct the quasi-R-
matrix Θı , which lies in some completion of Uı ⊗ U

−. The crucial properties

ϒ ϒ = 1 and Θı Θı = 1
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4. AN OVERVIEW OF PART II 5

hold. The intertwiner ϒ can also be applied to turn an involutive U-module
into an ı-involutive Uı -module (see Proposition 3.10, Definitions 1.7 and 3.9).

It turns out to be a subtle problem to show that ϒ lies in (a completion of)
the integral A-form U

−
A, where

A= Z[q,q −1].

We are led to study the simple lowest weight U-modules ωL(λ) for λ ∈ Λ+
regarded as Uı -modules. By a detailed study on the behavior of the genera-
tor t in U

ı in the rank one case, we show that ϒ preserves the A-form ωLA(λ)

for all λ ∈ Λ+, and this eventually allows us to establish the integrality of ϒ
(see Theorem 4.18). We then construct the ı-canonical basis of ωL(λ) which is
ψ ı -invariant and admits a triangular decomposition with respect to Lusztig’s
canonical basis on ωL(λ) with coefficients in Z[q] (see Theorem 4.20). Con-
sequently, we construct in Theorem 4.26 an ı-canonical basis for any tensor
product of several finite-dimensional simple U-modules, which differs from
and is related to Lusztig’s canonical basis on the same tensor product.

Generalizing the Schur-Jimbo duality in type A, we show that the action of
the coideal algebra U

ı and Hecke algebra HBm on V⊗m form double central-
izers, where V is the natural representation of U (see Theorem 5.4). With ϒ

and Θı at hand, we are able to construct a bar involution ψ ı on the (Uı ,HBm )-
bimodule V⊗m which is compatible with the bar involutions on U

ı and HBm
(see Theorem 5.8). In particular, the ı-canonical basis on the involutive U

ı -
module (V⊗m ,ψ ı ) alone is sufficient to reformulate the KL theory of type B.

4. An overview of Part II

Part 2 is very close to [CLW2] in spirit, where the category O of gl(m |n)-
modules was addressed. In this part, we take the Q(q)-space V to be the
direct limit as r → ∞ of the 2r -dimensional ones considered in Part 1. Also
let U and U

ı be the corresponding infinite-rank limits of their finite-rank
counterparts in Part 1.

For an 0m1n-sequence b (which consists ofm zeros and n ones), we define a
tensor space Tb usingm copies of V and n copies ofW with the tensor order
prescribed by b (with 0 corresponds to V); for instance, associated to

bst = (0, . . . , 0, 1, . . . , 1),

we have
Tb

st
= V⊗m ⊗W⊗n .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



6 INTRODUCTION

Such a tensor space (called Fock space) was an essential ingredient in the
formulation of Kazhdan-Lusztig-type conjecture for gl(m |n) and its general-
izations [Br1], [Ku], [CLW2]. In this approach, Tb at q = 1 (denoted by TbZ )
is identified with the Grothendieck group of the BGG category of gl(m |n)-
modules (relative to a Borel subalgebra of type b), and the (dual) canonical
bases of theU-moduleTb play the role of Kazhdan-Lusztig basis which solves
the irreducible and tilting character problem in the BGG category for gl(m |n).

Now with the intertwiner ϒ and the quasi-R-matrix Θı for the quantum
symmetric pair (U,Uı ) at disposal, we are able to construct the ı-canonical
and dual ı-canonical bases for Tb (or rather in its suitable completion with
respective to a Bruhat ordering); see Theorem 9.9. In the finite-rank setting,
this was already proved in Part 1. Nevertheless, the infinite-rank setting
requires much care and extra work to deal with suitable completions, similar
to [CLW2] (see also [Br1]). A simple but crucial fact is that the partial ordering
forTb used in [CLW2] is coarser than the one used in this book and this allows
various constructions in loc. cit. to carry over to the current setting. We will
ignore the completion issue completely in the remainder of the Introduction.

Ourmain theorem (Theorem11.13), whichwill be referred to as (b-KL) here,
states that there exists an isomorphism between the Grothendieck group of
the BGG category Ob of osp(2m + 1 |2n)-modules of integer weights (relative
to a Borel subalgebra of type b) and TbZ , which sends the Verma, simple, and
tilting modules to the standard monomial, dual ı-canonical, and ı-canonical
bases (at q = 1), respectively. In other words, the entries of the transition
matrix between (dual) ı-canonical basis and monomial basis play the role of
Kazhdan-Lusztig polynomials in our category Ob .

Granting the existence of the (dual) ı-canonical bases of Tb , the overall
strategy of a proof of (b-KL) follows the one employed in [CLW2] in establish-
ing Brundan’s Kazhdan-Lusztig-type conjecture, which is done by induction
on n with the base case solved by the classical Kazhdan-Lusztig theory of
type B [KL], [BB], [BK] (as reformulated above in terms of the ı-involutive
U
ı -module V⊗m). There are two main steps in the proof. First, we need

(an easy generalization of) the super duality developed in [CLW1] for osp,
which is an equivalence of parabolic categories of osp(2m+1 |2n+∞)-modules
and osp(2m + 1 |2n |∞)-modules. We establish the corresponding combina-
torial super duality which states that there is an U

ı -isomorphism between
Tb ⊗ ∧∞V and Tb ⊗ ∧∞W, which matches the corresponding standard mono-
mial, ı-canonical, and dual ı-canonical bases. The super duality is used to
establish the b-KL for one distinguished 0m1n-sequence.
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5. SOME FUTURE WORKS 7

The second step is a comparison of (b-KL) and (b ′-KL) for adjacent se-
quences b and b ′ (here “adjacent” means differing exactly by an adjacent
pair 01). Let us assume for simplicity that the first entries of b and b ′ are
both 0 here (see Remarks 10.4 and 11.15 for the removal of this assumption),
as this is sufficient in solving the irreducible and tilting character problems
for osp(2m+1 |2n)-modules. Thanks to the coideal property ofUı , the iterated
coproduct for Uı has images in U

ı ⊗ U ⊗ · · · ⊗ U. Therefore the comparison
of (b-KL) and (b ′-KL) for adjacent b and b ′ can be carried out exactly as in
the type A setting [CLW2] since the exchange of the adjacent 0 and 1 does not
affect the first tensor factor and hence will not use Uı . The upshot is that the
validity of the statement (b-KL) for one 0m1n-sequence implies the validity
for an arbitrary 0m1n-sequence.

The infinite-rank version of the other quantum symmetric pairs (U,U  ) and
its -canonical basis theory is used to solve a variant of the BGG category O

of osp(2m + 1 |2n)-modules, now of half-integer weights; see Chapter 12.

5. Some future works

This work will serve as a new starting point in several (closely related)
directions.

The constructions of this book is adapted in [Bao] to provide the irreducible
character formula in the BGG category O for Lie superalgebras osp(2m |2n),
settling another longstanding open problem in Lie superalgebras since 1970s.

Recall the Schur-Jimbo duality has a natural geometric realization in terms
of partial flag varieties of type A due to Grojnowski and Lusztig. It is natural
to ask for a geometric interpretation of the type B duality aswell as ı-canonical
basis developed algebraically and categorically in this book. This turns out to
have a classical answer in [BKLW], which settles another old open problem
of understanding the quantum algebra arising from partial flag varieties of
classical type. (This generalizes the classic work of Beilinson, Lusztig, and
MacPherson [BLM] for type A.)

While we have developed adequately a theory for ı-canonical basis for
quantum symmetric pairs to solve the irreducible character problem in the
category Ob , a full fledged theory of canonical basis for quantum symmetric
pairs remains to be developed. The quantum symmetric pairs (U,Uı ) and
(U,U  ) are just two examples of general quantum symmetric pairs of finite or
more generally Kac-Moody type (see [Le], [Ko]). The general quantum sym-
metric pairs afford presentations similar to the ones given in this book which
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admit a natural bar involution. A theory of ı-canonical bases for the general
quantum symmetric pairs will be pursued in a separate publication [BW].
While several key steps developed in this book will be generalized suitably,
further new ideas are also needed.

One influential and persuasive philosophy in the last two decades, sup-
ported by the quiver variety construction of Nakajima and reinforced by the
categorification program of Chuang, Rouquier, Khovanov and Lauda, is that
various constructions in general settings are of “type A” locally. A general
philosophical message of this book and [BKLW] is that there exists a whole
range of newyet classical ı-constructions, algebraic, geometric and categorical,
which are of “type Awith involution”.

The most significant quantum symmetric pairs beyond U
ı and U

 in our
view would be the ones associated to the quantum group of affine type A,
whose ı-canonical basis theory is expected to be closely related to the ir-
reducible character problem in modular representation theory of algebraic
groups or quantum groups of classical types.

The geometric aspects of the finite or affine coideal algebras and ı-icanonical
bases will be developed by Yiqiang Li and his collaborators. A KLR type ı-
categorification will be addressed elsewhere.

6. Organization

The book is divided into two parts.
Part 1, which consists of Chapters 1–6, provides various foundational con-

structions on quantum symmetric pairs, where dimV is assumed to be finite.
Part 2, which consists of Chapters 7-12, extends the ı-canonical basis and dual
ı-canonical basis to the setting where V is infinite-dimensional and uses this
to solve the irreducible and tilting character problems of category O for Lie
superalgebra osp(2m + 1 |2n).

In the preliminary Chapter 1, we review various basic constructions for
quantum groupU. We also introduce the involution θ on the root system and
integral weight lattice of U and a “weight lattice” Λθ which will be used in
quantum symmetric pairs.

In Chapter 2, we introduce the right coideal subalgebra U
ı of U and an

algebra embedding ı : Uı → U. The algebra U
ı is endowed with a natural

bar involution. Then we construct an intertwiner ϒ =
∑
µ ϒµ , which lies in a
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completion Û

−
, for the two bar involutions on U

ı and U under ı, and show it
is unique once we fix the normalization ϒ0 = 1. We prove that ϒϒ = 1. Note
the remarkable similarity of ϒ with Lusztig’s quasi-R-matrix for quantum
groups. The intertwiner ϒ is used to construct a U

ı -module isomorphism T

on any finite-dimensionalU-module, which should be viewed as an analogue
of R-matrix on the tensor product of U-modules.

In Chapter 3, we define Θı for U
ı , which will play an analogous role as

Lusztig’s quasi-R-matrix for U on tensor product modules. Our first defini-
tion of Θı is simply obtained by combining the intertwiner ϒ and Θ. More
detailed analysis is required to show that (a normalized version of)Θı lies in a
completion ofUı ⊗U−. We prove thatΘıΘı = 1. Thenwe use ϒ to construct an
ı-involutive module structure on an involutive U-module, and then use Θı to
construct an involution on a tensor product of aUı -module with aU-module.

In Chapter 4, we first study the rank one case of U and U
ı in detail, which

turns out to be nontrivial. In the rank one setting, we easily show that ϒ is
integral and then construct the ı-canonical bases for simple U-modules ωL(s)
for s ≥ 0. We formulate a U

ı -homomorphism from ωL(s + 2) to ωL(s) and
use it to study the relation of ı-canonical bases on ωL(s + 2) and ωL(s), which
surprisingly depends on the parity of s. This allows us to establish the ı-
canonical basis forUı in two parities, which is shown to afford integrality and
should be regarded as “divided powers” of the generator t .

Then we apply the rank one results to study the general higher rank case.
We show that the intertwiner ϒ is integral and hence the bar involution ψ ı
on the simple U-module ωL(λ) preserves its A-form. Then we construct the
ı-canonical basis for ωL(λ) for λ ∈ Λ+.

In Chapter 5, we recall Schur-Jimbo duality between quantum group U

and Hecke algebra of type A. Then we establish a commuting action of Uı

and Hecke algebra HBm of type B on V⊗m , and show that they form dou-
ble centralizers. Just as Jimbo showed that the generators of Hecke algebra
of type A are realized by R-matrices, we show that the extra generator of
Hecke algebra of type B is realized via the U

ı -homomorphism T introduced
in Chapter 2. We then show the existence of a bar involution on V⊗m which is
compatible with the bar involutions on U

ı and HBm . This allows a reformula-
tion of Kazhdan-Lusztig theory for Lie algebras of type B/C via the involutive
U
ı -module V⊗m (without referring directly to the Hecke algebra).
In Chapter 6, we consider the other quantum symmetric pair (U,U  )withU

of type A2r , so its natural representation V is odd-dimensional. We formu-
late the counterparts of the main results from Chapter 2 through Chapter 5
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where U was of type A2r+1 and dimV was even. The proofs are similar and
often simpler for U  since it does not contain a generator t as U

ı does, and
hence will be omitted almost entirely.

In Part 2, which consists of Chapters 7–12, we switch to infinite-
dimensional V and infinite-rank quantum symmetric pair (U,Uı ).

In the preliminary Chapter 7, we set up variants of BGG categories of the
ortho-symplectic Lie superalgebras, allowing possibly infinite-rank and/or
parabolic versions.

In Chapter 8, we formulate precisely the infinite-rank limit of various con-
structions in Part 1, such asV,U,Uı , ϒ,ψ ı , and so on. We transport the Bruhat
ordering from the BGG category Ob for osp(2m+1 |2n) to the Fock space Tb by
noting a canonical bĳection of the indexing sets. We formulate the q-wedge
versions of the Fock spaces, which correspond to parabolic versions of the
BGG categories.

In Chapter 9, we construct the ı-canonical bases and dual ı-canonical bases
in various completed Fock spaces, where the earlier detailed work on com-
pletion of Fock spaces in [CLW2] plays a fundamental role.

In Chapter 10, we are able to compare (dual) ı-canonical bases in three
different settings: a tensor space versus its (partially) wedge subspace, a Fock
space versus an adjacent one, and a Fock space with a tensoring factor ∧∞V
versus another with ∧∞W.

In Chapter 11, we show that the coideal subalgebra U
ı at q = 1 is realized

by translation functors in the BGG categories. This underlies the importance
of the coideal subalgebra Uı . Then we put all the results in earlier chapters of
Part 2 together to prove the main theorem which solves the irreducible and
tilting character problem for osp(2m + 1 |2n)-modules of integer weights.

The Chapter 12 deals with a variant of the BGG category of osp(2m + 1 |2n)-
modules with half-integer weights. The Kazhdan-Lusztig theory of this
half-integer variant is formulated and solved by the quantum symmetric
pair (U,U  ), an infinite-rank version of the ones formulated in the last
chapter of Part 1.

Convention and notation. — We shall denote by N the set of nonnegative
integers, and by Z>0 the set of positive integers.

. In Part 1, where dimV = 2r+2 (except inChapter 6where dimV = 2r + 1),
the integer r is fixed and so will not show up in most of the notations
(such as V, U,Uı , ϒ,ψ ı and so on).
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6. ORGANIZATION 11

. In Part 2 (more precisely in Chapters 8–9), subscripts and superscripts
are added to the notation used in Part 1 to indicate the dependence
on r (e.g., Vr , U2r+1, Uı

r , ϒ(r ),ψ
(r )
ı and so on). In this way we shall con-

sider V as a direct limit lim
−−→
Vr , and various constructions including the

intertwiner ϒ as well as the bar involutionψ ı arise as limits of their coun-
terparts in Part 1.

Acknowledgement. — This research is partially supported by WW’s NSF
grants DMS-1101268 and DMS-1405131. We are indebted to Shun-Jen Cheng
for his generous helps in many ways and thank Institute of Mathematics,
Academia Sinica, Taipei for providing an excellent working environment and
support, where part of this project was carried out.

Notes added. — This final version of our book is not much different from
the version originally posted in arXiv:1310.0103.

In the preprint [ES] Ehrig and Stroppel simultaneously and indepen-
dently discovered connections between the coideal algebras and category O

of type D. They also independently obtained the bar-invariant presentations
of the coideal algebras.

In the preprint [BaKo] Balagovic and Kolb have generalized our construc-
tion of the intertwiner in this book for general quantum symmetric pairs
(this generalization has overlap with our forthcoming paper [BW], where it
is used toward a general construction of ı-canonical bases). Balagovic and
Kolb have showed that the notion of intertwiner leads to solutions to the
reflection equation, just as Drinfeld’s universal R-matrix provides solutions
to Yang-Baxter equation.
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PART I

QUANTUM SYMMETRIC PAIRS





1. PRELIMINARIES ON QUANTUM GROUPS

In this preliminary chapter, we review some basic definitions and construc-
tions on quantum groups from Lusztig’s book, including the braid group ac-
tion, canonical basis and quasi-R-matrix. We also introduce the involution θ
and the lattice Λθ which will be used in quantum symmetric pairs.

1. The involution θ and the lattice Λθ

Let q be an indeterminate. For r ∈ N, we define the index sets{ I2r+1 = {i ∈ Z ; −r ≤ i ≤ r },

I2r =
{
i ∈ Z + 1

2 ; −r < i < r
}
.

(1.1)

Set k = 2r + 1 or 2r , and we use the shorthand notation I = Ik in the
remainder of Chapter 1. Let

Π =
{
αi = εi−1/2 − εi+1/2 ; i ∈ I

}
be the simple system of type Ak , and let Φ be the associated root system.
Denote by

Λ =
∑
i ∈I

(
Zεi−1/2 + Zεi+1/2

)
the integral weight lattice, and denote by ( . , . ) the standard bilinear pairing
on Λ such that (εa , εb ) = δab for all a,b. For any µ =

∑
i ciαi ∈ NΠ, set

ht(µ) =
∑
i

ci .

Let θ be the involution of the weight lattice Λ such that

θ (εi−1/2) = −ε−i+1/2 , for all i ∈ I.

We shall also write λθ = θ (λ), for λ ∈ Λ. The involution θ preserves the bilinear
form ( . , . ) on the weight lattice Λ and induces an automorphism on the root
system Φ such that αθi = α−i for all i ∈ I. Denote by

Λθ =
{
µ ∈ Λ ; µθ = µ

}
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the subgroup of θ -fixed points in Λ. It is easy to see that the quotient group
(1.2) Λθ := Λ/Λθ

is a lattice. For µ ∈ Λ, denote by µ the image of µ under the quotient map.
There is a well-defined bilinear pairing Z[αi − α−i ]i ∈I × Λθ → Z, such that(∑

i>0
ai (αi − α−i ), µ

)
:=

∑
i>0

ai (αi − α−i , µ)

for any µ ∈ Λθ with any preimage µ ∈ Λ.

2. The algebras
′
f, f and U

Consider a freeQ(q)-algebra ′f generated by Fαi for i ∈ I associatedwith the
Cartan datum of type (I, ( . , . )) [Lu2]. As a Q(q)-vector space, ′f has a direct
sum decomposition as

′
f =

⊕
µ ∈NΠ

′
fµ ,

where Fαi has weight αi for all i ∈ I. For any x ∈ ′fµ , we set
|x | = µ .

For each i ∈ I, we define ri , and ir to be the unique Q(q)-linear maps on ′f
such that, for all x ∈ ′fµ and x ′ ∈ ′fµ′,{

ri (1) = 0, ri (Fα j ) = δi j , ri (xx
′) = xri (x

′) + q(αi ,µ
′)ri (x)x

′;

ir (1) = 0, ir (Fα j ) = δi j , ir (xx
′) = q(αi ,µ)x ir (x

′) + ir (x)x
′.

(1.3)

The following lemma is well known (see [Lu2] and [Jan, Section 10.1]).

Lemma 1.1. — The Q(q)-linear map r j and ir commute; that is, r j ◦ ir = ir ◦ r j
for all i, j ∈ I.

Proposition 1.2 (see [Lu2]). — There is a unique symmetric bilinear form ( . , . )
on ′f which satisfies that, for all x ,x ′ ∈ ′f,
(1) (Fαi , Fα j ) = δi j (1 − q−2)−1,
(2) (Fαix ,x ′) = (Fαi , Fαi )

(
x , ir (x

′)
)
,

(3) (xFαi ,x ′) = (Fαi , Fαi )
(
x , ri (x

′)
)
.

Let I be the radical of the bilinear form ( . , . ) on ′f. It is known in [Lu2]
that I is generated by the quantum Serre relators Si j , for i , j ∈ I, where

(1.4) Si j =

{
F 2
αi Fα j + Fα j F

2
αi − (q + q

−1)Fαi Fα j Fαi if |i − j | = 1;
Fαi Fα j − Fα j Fαi if |i − j | > 1.
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Let f = ′f/I. By [Lu2], we have

(1.5) r`(Si j ) = `r (Si j ) = 0, ∀`, i, j ∈ I (i , j).

Hence r` and `r descend to well-defined Q(q)-linear maps on f.
We introduce the divided power

F (a)αi = Faαi /[a]! ,

where a ≥ 0 and

[a] = (qa − q−a)/(q − q −1), [a]! = [1] · [2] · · · [a].

Let A = Z[q,q −1] and fA be the A-subalgebra of f generated by F (a)αi for
various a ≥ 0 and i ∈ I.

The quantum group U = Uq (sl(k + 1)) is defined to be the associativeQ(q)-
algebra generated by Eαi , Fαi , Kαi , K −1

αi , i ∈ I, subject to the following relations
for i, j ∈ I:

KαiK
−1
αi = K −1

αi Kαi = 1 , KαiKα j = Kα jKαi ,

KαiEα jK
−1
αi = q

(αi ,α j )Eα j , Kαi Fα jK
−1
αi = q

−(αi ,α j )Fα j ,

Eαi Fα j − Fα jEαi = δi, j (Kαi − K
−1
αi )/(q − q

−1) ,

E2
αiEα j + Eα jE

2
αi = (q + q

−1)EαiEα jEαi if |i − j | = 1 ,
EαiEα j = Eα jEαi if |i − j | > 1 ,

F 2
αi Fα j + Fα j F

2
αi = (q + q

−1)Fαi Fα j Fαi if |i − j | = 1 ,
Fαi Fα j = Fα j Fαi if |i − j | > 1 .

Let U+, U0 and U
− be the Q(q)-subalgebra of U generated by Eαi , K±1

αi ,
and Fαi respectively, for i ∈ I. Following [Lu2], we can identify f � U

− by
matching the generators in the same notation. This identification induces a
bilinear form ( . , . ) on U

− and Q(q)-linear maps ri , ir (i ∈ I) on U
−. Under this

identification, we let U−−µ be the image of fµ , and let U−A be the image of fA.
The following Serre relation holds in U

−:

(1.6) Si j = 0, ∀i, j ∈ I, (i , j).

Similarly we have f � U
+ by identifying each generator Fαi with Eαi . Similarly

we letU+Adenote the image of fAunder this isomorphism, which is generated
by all divided powers E(a)αi = Eaαi /[a]! .
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Proposition 1.3

(1) There is an involution ω on the Q(q)-algebra U such that, for all i ∈ I,

ω(Eαi ) = Fαi , ω(Fαi ) = Eαi , ω(Kαi ) = K −1
αi .

(2) There is an anti-linear (q 7→ q −1) bar involution of the Q-algebra U such that

Eαi = Eαi , Fαi = Fαi , Kαi = K −1
αi

for all i ∈ I. (Sometimes we denote the bar involution on U byψ .)

Recall that U is a Hopf algebra with a coproduct ∆ : U→ U ⊗ U such that
∆(Eαi ) = 1 ⊗ Eαi + Eαi ⊗ K −1

αi ,

∆(Fαi ) = Fαi ⊗ 1 + Kαi ⊗ Fαi ,

∆(Kαi ) = Kαi ⊗ Kαi .

(1.7)

The coproduct ∆ here (which is chosen to be convenient for the connection
with category O) differs from the one used in [Lu2]; this results to a switching
between positive and negative parts of U for quasi-R-matrix, and between
highest and lowest weight modules.

There is a uniqueQ(q)-algebra homomorphism ϵ : U→ Q(q), called counit,
such that

ϵ(Eαi ) = 0, ϵ(Fαi ) = 0, ϵ(Kαi ) = 1.

3. Braid group action and canonical basis

Let W := WAk = Sk+1 be the Weyl group of type Ak . Recall [Lu2] for
each αi and each finite-dimensional U-module M , a linear operator Tαi on M

is defined by, for λ ∈ Λ andm ∈ Mλ ,

Tαi (m) =
∑

a,b,c≥0
−a+b−c=(λ,αi )

(−1)bqb−ac E(a)αi F
(b)
αi E

(c)
αi m.

These Tαi ’s induce automorphisms of U, denoted by Tαi as well, such that

Tαi (um) = Tαi (u)Tαi (m), for all u ∈ U,m ∈ M .

As automorphisms on U and as Q(q)-linear isomorphisms on M , the Tαi ’s
satisfy the braid group relation (see [Lu2, Thm 39.4.3]):

TαiTα j = Tα jTαi if |i − j | > 1,
TαiTα jTαi = Tα jTαiTα j if |i − j | = 1.
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Hence for each w ∈ W , Tw can be defined independent of the choices of
reduced expressions of w . (The Tαi here is consistent with Tαi in [Jan], and
it is T ′′i,+ in [Lu2].)

Denote by `( . ) the length function ofW , and let w0 be the longest element
ofW .

Lemma 1.4. — The following identities hold for i ∈ I:

Tw0(Kαi ) = K −1
α−i , Tw0(Eαi ) = −Fα−iKα−i , Tw0(Fα−i ) = −K

−1
αi Eαi .

Proof. — The identity Tw0(Kαi ) = K −1
α−i is clear (see [Lu2] or [Jan]).

Let us show that Tw0(Eαi ) = −Fα−iKα−i , for any given i ∈ I. Indeed, we can
always writew0 = wsi with `(w) = `(w0) − 1. Then we have Tw0 = TwTsi , and

Tw0(Eαi ) = Tw
(
Tsi (Eαi )

)
= Tw (−FαiKαi ) = −Tw (Fαi )Kα−i = −Fα−iKα−i ,

where the last identity usedw(−αi ) = w0(αi ) = −α−i and [Jan, Prop. 8.20].
The identity Tw0(Fα−i ) = −K

−1
αi Eαi can be similarly proved. �

Consider the set of dominant weights

Λ+ =
{
λ ∈ Λ ; 2(αi , λ)/(αi ,αi ) ∈ N, ∀i ∈ I

}
.

Note that µ ∈ Λ+ if and only if µθ ∈ Λ+, since the bilinear pairing ( . , . ) on Λ is
invariant under θ : Λ→ Λ.

Let M(λ) be the Verma module of U with highest weight λ ∈ Λ and with a
highest weight vector denoted by η or ηλ . We define aU-module ωM(λ), which
has the same underlying vector space as M(λ) but with the action twisted by
the involution ω given in Proposition 1.3. When considering η as a vector
in ωM(λ), we shall denote it by ξ or ξ−λ .

The VermamoduleM(λ) associated to dominant λ ∈ Λ+ has a unique finite-
dimensional simple quotient U-module, denoted by L(λ).

Similarly we define the U-module ωL(λ).
For λ ∈ Λ+, we let

LA(λ) = U
−
Aη and ωLA(λ) = U

+
Aξ

be the A-submodules of L(λ) and ωL(λ), respectively.
In [Lu1], [Lu2] and [Ka], the canonical basis B of fA is constructed. Re-

call that we can identify f with both U
− and U

+. For any element b ∈ B,
when considered as an element in U

− or U+, we shall denote it by b− or b+,
respectively.

In [Lu2], subsets B(λ) of B is also constructed for each λ ∈ Λ+, such that
{b−ηλ ; b ∈ B(λ)} gives the canonical basis of LA(λ).
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20 CHAPTER 1. PRELIMINARIES ON QUANTUM GROUPS

Similarly {b+ξ−λ ; b ∈ B(λ)} gives the canonical basis of ωL(λ).
By [Lu2, Prop. 21.1.2], we can identify ωL(λ)with L(λθ ) = L(−w0λ) such that

the set {b+ξ−λ ; b ∈ B(λ)
}
is identified with the set{

b−ηλθ ; b ∈ B(λθ )
}
=

{
b−η−w0λ ; b ∈ B(−w0λ)

}
.

We shall identify ωL(λ)with L(λθ ) in this way throughout this book.

4. Quasi-R-matrix Θ

Proposition 1.5 (see [Lu2, Thm. 4.1.2]). — There exists a unique family of ele-
mentsΘµ inU

+
µ ⊗U

−
−µ with µ ∈ NΠ, such thatΘ0 = 1⊗1 and the following identities

hold for all µ and all i:

(1 ⊗ Eαi )Θµ + (Eαi ⊗ K
−1
αi )Θµ−αi = Θµ (1 ⊗ Eαi ) + Θµ−αi (Eαi ⊗ Kαi ),

(Fαi ⊗ 1)Θµ + (Kαi ⊗ Fαi )Θµ−αi = Θµ (Fαi ⊗ 1) + Θµ−αi (K
−1
αi ⊗ Fαi ),

(Kαi ⊗ Kαi )Θµ = Θµ (Kαi ⊗ Kαi ).

Remark 1.6. — We adopt in this book the convention that Θµ lies inU
+ ⊗U−

due to our different choice of the coproduct ∆ from [Lu2]. (In contrast the Θµ

in [Lu2] lies in U
− ⊗ U

+.) The convention here is adopted in order to be more
compatible with the application to category O in Part 2.

Lusztig’s quasi-R-matrix for U is defined to be

Θ :=
∑
µ ∈NΠ

Θµ .(1.8)

For any finite-dimensionalU-modulesM andM ′, the action of Θ onM ⊗M ′ is
well defined. Proposition 1.5 implies that

∆(u)Θ(m ⊗m′) = Θ∆(u)(m ⊗m′),(1.9)

for allm ∈ M ,m′ ∈ M ′ and u ∈ U. By [Lu2, Cor. 4.1.3], we have

(1.10) ΘΘ(m ⊗m′) =m ⊗m′, for allm ∈ M andm′ ∈ M ′.

In [Lu2, 32.1.5], a U-module isomorphism

R = RM,M ′ : M ′ ⊗ M −→ M ⊗ M ′

is constructed. As an operator, R can be written as

R = Θ ◦ д̃ ◦ P

where:
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. д̃ : M ⊗ M ′ → M ⊗ M ′ is the map д̃ (m ⊗m′) = q(λ,µ)m ⊗m′ for allm ∈ Mλ

andm′ ∈ M ′µ ,
. P : M ′ ⊗ M → M ⊗ M ′ is a Q(q)-linear isomorphism such that
P(m ⊗m′) =m′ ⊗m.

Definition 1.7. — AU-moduleM equipped with an anti-linear involutionψ
is called involutive if

ψ (um) = ψ (u)ψ (m), for all u ∈ U andm ∈ M .

Given two involutive U-modules (M,ψ1) and (M2,ψ2), following Lusztig we
define a mapψ onM1 ⊗ M2 by
(1.11) ψ (m ⊗m′) := Θ

(
ψ1(m) ⊗ψ2(m

′)
)
.

By Proposition 1.5, we have ψ (u(m ⊗m′)) = ψ (u)ψ (m ⊗m′) for all u ∈ U, and
the identity (1.10) implies that the mapψ onM1 ⊗M2 is an anti-linear involu-
tion. This proves the following result of Lusztig (though the terminology of
involutive modules is new here).

Proposition 1.8 (see [Lu2, 27.3.1]). — Given two involutive U-modules (M,ψ1)

and (M2,ψ2), (M1 ⊗ M2,ψ ) is an involutive U-module withψ given in (1.11).

It follows by induction thatM1⊗· · ·⊗Ms is naturally an involutiveU-module
for given involutive U-modulesM1, . . . ,Ms ; see [Lu2, 27.3.6].

As in [Lu2], there is a unique anti-linear involutionψ on ωL(λ) such that
ψ (uξ ) = ψ (u)ξ

for all u ∈ U. Similarly there is a unique anti-linear involution ψ on L(λ) such
that

ψ (uη) = ψ (u)η

for all u ∈ U. Therefore ωL(λ) and L(λ) are both involutive U-modules.
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2. INTERTWINER FOR A QUANTUM SYMMETRIC PAIR

In Chapters 2–5, we will formulate and study in depth the quantum sym-
metric pair (U,Uı ) for U of type Ak with k = 2r + 1 being an odd integer.
We shall use the shorthand notation I = I2r+1 = {−r , . . . ,−1, 0, 1, . . . , r } as
given in (1.1), and set

(2.1) Iı := Z>0 ∩ I = {1, . . . , r }.

In this chapter, we will introduce the right coideal subalgebra U
ı of U and

an algebra embedding ı : Uı → U. Then we construct an intertwiner ϒ for the
two bar involutions on U

ı and U under ı, and use it to construct a Uı -module
isomorphism Ton any finite-dimensional U-module.

1. Definition of the algebra U
ı

The algebra U
ı = U

ı
r is defined to be the associative algebra over Q(q)

generated by eαi , fαi , kαi , k −1
αi (i ∈ Iı ) , and t , subject to the following relations

for i, j ∈ Iı :

kαik
−1
αi = k

−1
αi kαi = 1, kαikα j = kα jkαi ,

kαieα jk
−1
αi = q

(αi−α−i ,α j )eα j , kαi fα jk
−1
αi = q

−(αi−α−i ,α j ) fα j ,

kαi tk
−1
αi = t ,

eαi fα j − fα jeαi = δi, j (kαi − k
−1
αi )/(q − q

−1),

e2
αieα j + eα je

2
αi = (q + q

−1)eαieα jeαi , if |i − j | = 1,
eαieα j = eα jeαi , if |i − j | > 1,

f 2
αi fα j + fα j f

2
αi = (q + q

−1)fαi fα j fαi , if |i − j | = 1,
fαi fα j = fα j fαi , if |i − j | > 1,
eαi t = teαi , if i > 1,

e2
α1t + te

2
α1 = (q + q

−1)eα1teα1 ,

t2eα1 + eα1t
2 = (q + q −1)teα1t + eα1 ,

fαi t = t fαi , if i > 1,

f 2
α1t + t f

2
α1 = (q + q

−1)fα1t fα1 ,

t2 fα1 + fα1t
2 = (q + q −1)t fα1t + fα1 .
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We introduce the divided powers for a ≥ 0, i ∈ Iı :

e(a)αi = eai /[a]! and f (a)αi = f ai /[a]!

Lemma 2.1

(1) The Q(q)-algebra Uı has an involution ωı such that, for all i ∈ Iı ,

ωı (kαi ) = k
−1
αi , ωı (eαi ) = fαi , ωı (fαi ) = eαi , ωı (t) = t .

(2) The Q(q)-algebra Uı has an anti-involution τı such that, for all i ∈ Iı ,

τı (eαi ) = eαi , τı (fαi ) = fαi , τı (t) = t , τı (kαi ) = k
−1
αi .

(3) The Q-algebra Uı has an anti-linear (q 7→ q −1) bar involution such that

kαi = k
−1
αi , eαi = eαi , f αi = fαi , t = t ,

for all i ∈ Iı .

(Sometimes we denote the bar involution on U
ı byψ ı .)

Proof. — Follows by a direct computation from the definitions. �

2. Quantum symmetric pair (U,Uı )

The Dynkin diagram of type A2r+1 together with the involution θ can be
depicted as follows:

A2r+1 :
α−r α−1 α0 α1 αr
• • • • •

θ

A general theory of quantum symmetric pairs via the notion of coideal
subalgebraswasdeveloped systematically byLetzter [Le] (also see [KP], [Ko]).
As the properties in Propositions 2.2 and 2.5 below indicate, the algebraUı is a
(right) coideal subalgebra of U and that (U,Uı ) forms a quantum symmetric
pair.

Proposition 2.2. — There is an injective Q(q)-algebra homomorphism

ı : Uı −→ U

which, for all i ∈ Iı , sends

kαi 7−→ KαiK
−1
α−i , eαi 7−→ Eαi + K

−1
αi Fα−i ,

fαi 7−→ FαiK
−1
α−i + Eα−i , t 7−→ Eα0 + qFα0K

−1
α0 + K

−1
α0 .
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2. QUANTUM SYMMETRIC PAIR (U, U ı ) 25

Proof. — This proposition is a variant of a general property for quantum
symmetric pairs which can be found in [Le, Thm. 7.1]. Hence we will not
repeat the proof, except noting how to covert the result therein to the form
used here.

It follows from a direct computation that ı is a homomorphism of Q(q)-
algebras.

We shall compare ı with the embedding in [KP, Prop. 4.1] (as modified
by [KP, Rem. 4.2]), which is a version of [Le, Thm. 7.1]. Set

UC = C(q
1
2 ) ⊗Q(q) U.

Recall from [KP, §4] a Q(q)-subalgebra U ′q(k) of UC with a generating set S
consisting, for all 0 , i ∈ Iı , of

Fα0 − K
−1
α0 Eα0 + q

−1/2K −1
α0 , KαiK

−1
α−i , Fα−i − K

−1
α−iEαi , Fαi − Eα−iK

−1
αi .

Claim. — The algebrasC(q 1
2 )⊗Q(q)ı (U

ı ) andC(q 1
2 )⊗Q(q)U

′
q(k) are anti-isomorphic.

Consider the C(q 1
2 )-algebra anti-automorphism κ : UC → UC such that

Eαi 7→
√
−1Fα−i , Fαi 7→ −

√
−1Eα−i , Kαi 7→ Kα−i

for all 0 , i ∈ I, and

Eα0 7→
√
−1q 1/2Fα0 , Fα0 7→ −

√
−1q−1/2Eα0 , Kα0 7→ Kα0 .

A direct computation shows that κ sends

KαiK
−1
α−i 7→ KαiK

−1
α−i ,

Eαi + K
−1
αi Fα−i 7→

√
−1(Fα−i − K −1

α−iEαi ),

FαiK
−1
α−i + Eα−i 7→

√
−1(Fαi − Eα−iK −1

αi ),

Eα0 + qFα0K
−1
α0 + K

−1
α0 7→

√
−1q 1/2(Fα0 − K

−1
α0 Eα0 + q

−1/2K −1
α0 ).

Hence, κ restricts to an anti-isomorphism between C(q 1
2 ) ⊗Q(q) ı (U

ı ) and
C(q 1

2 ) ⊗Q(q) U
′
q(k), whence the claim.

We observe that [KP, Prop. 4.1] provides a presentation of the algebraU ′q(k)
with the generating setS and a bunch of relations, which correspond under κ
exactly to (the images of) the defining relations of Uı . In other words, the
composition

C(q
1
2 ) ⊗Q(q) U

ı ı
−−→ C(q

1
2 ) ⊗Q(q) ı (U

ı )
κ
−−→ C(q

1
2 ) ⊗Q(q) U

′
q(k)

is an anti-isomorphism. Hence ı : Uı → U must be an embedding. �
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26 CHAPTER 2. INTERTWINER FOR A QUANTUM SYMMETRIC PAIR

Remark 2.3. — Note that the coproduct for U used in [KP] follows
Lusztig [Lu2] and hence differs from the one used in this book; this leads
to somewhat different presentations of the quantum symmetric pairs. Our
choices are determined by the application we have in mind: the (Uı ,HBm )-
duality in Chapter 5 and the translation functors for category O in Part 2.
One crucial advantage of our presentation is the existence of a natural bar
involution as given in Lemma 2.1 (3).

AnyU-moduleM can be naturally regarded as aUı -module via the embed-
ding ı.

Remark 2.4. — The bar involution on U
ı and the bar involution on U are not

compatible through ı, i.e., ı (u) , ı (u ) for u ∈ Uı in general. For example,

ı (eαi ) = ı (eαi ) = Eαi + K
−1
αi Fα−i , ı (eαi ) = Eαi + Fα−iK

−1
αi = Eαi + Fα−iKαi .

Note that Eαi (K −1
αi Fα−i ) = q

2(K −1
αi Fα−i )Eαi for all 0 , i ∈ I. Using the quantum

binomial formula [Lu2, 1.3.5], we have, for all i ∈ Iı , a ∈ N,

ı (e(a)αi ) =
a∑
j=0

q j(a−j)F ( j)α−iK
−j
αi E
(a−j)
αi ,(2.2)

ı ( f (a)αi ) =

a∑
j=0

q j(a−j)F ( j)αi K
−j
α−i E

(a−j)
α−i .(2.3)

Proposition 2.5. — The coproduct ∆ : U → U ⊗ U restricts via the embedding ı
to a Q(q)-algebra homomorphism ∆ : Uı 7→ U

ı ⊗ U such that, for all i ∈ Iı ,

∆(kαi ) = kαi ⊗ KαiK
−1
α−i ,

∆(eαi ) = 1 ⊗ Eαi + eαi ⊗ K −1
αi + k

−1
αi ⊗ K

−1
αi Fα−i ,

∆(fαi ) = kαi ⊗ FαiK
−1
α−i + fαi ⊗ K

−1
α−i + 1 ⊗ Eα−i ,

∆(t) = t ⊗ K −1
α0 + 1 ⊗ qFα0K

−1
α0 + 1 ⊗ Eα0 .

Similarly, the counit ϵ of U induces a Q(q)-algebra homomorphism ϵ : Uı → Q(q)
such that, for all i ∈ Iı ,

ϵ(eαi ) = ϵ(fαi ) = 0, ϵ(t) = 1, ϵ(kαi ) = 1.

Proof. — This follows from a direct computation. �

Remark 2.6. — Propositions 2.2 and 2.5 imply that Uı (or rather ı (Uı )) is
a (right) coideal subalgebra of U in the sense of [Le]. There exists a Q(q)-
algebra embedding ıL : Uı → Uwhich makes Uı (or rather ıL(Uı )) a left coideal
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3. THE INTERTWINER ϒ 27

subalgebra of U; that is, the coproduct ∆ : U→ U ⊗ U restricts via ıL to a Q(q)-
algebra homomorphism ∆ : Uı → U ⊗ U

ı . We will not use the left variant in
this book.

Remark 2.7. — The pair (U,Uı ) forms a quantum symmetric pair in the
sense of [Le]. At the limit q 7→ 1, it reduces to a classical symmetric pair
(sl(2r + 2), sl(2r + 2)w0); herew0 is the involution on gl(2r + 2)which sends Ei, j
to E−i,−j and its restriction to sl(2r + 2) if we label the rows and columns
of sl(2r + 2) by

{
− r − 1

2
, · · · , − 1

2
, 1

2
, · · · , r + 1

2
}
.

The following corollary follows immediately from the Hopf algebra struc-
ture of U.

Corollary 2.8. — Letm : U ⊗ U→ U be the multiplication map. Then we have

m(ϵ ⊗ 1)∆ = ı : Uı −→ U.

The map ∆ : Uı 7→ U
ı ⊗ U is clearly coassociative, i.e., we have

(1 ⊗ ∆)∆ = (∆ ⊗ 1)∆ : Uı −→ U
ı ⊗ U ⊗ U.

This ∆ will be called the coproduct of Uı , and ϵ : Uı → Q(q) will be called the
counit of Uı . The counit map ϵ makes Q(q) a U

ı -module. We shall call this
the trivial representation of Uı .

Remark 2.9. — The 1-dimensional spaceQ(q) can be realized asUı -modules
in different (non-isomorphic) ways. For example, we can consider the Q(q)-
algebras homomorphism ϵ ′ : U

ı → Q(q), such that ϵ ′(eαi ) = ϵ ′(fαi ) = 0,
ϵ ′(kαi ) = 1 for all i ∈ Z>0, and ϵ ′(t) = x for any x ∈ Q(q). We shall only
consider the one induced by ϵ as the trivial representation of Uı , which is
compatible with the trivial representation of U via ı.

3. The intertwiner ϒ

Let Û be the completion of the Q(q)-vector space U with respect to the
following descending sequence of subspaces

U
+
U

0
( ∑
ht(µ)≥N

U
−
−µ

)
, for N ≥ 1.

Then we have the obvious embedding of U into Û. We let Û
−
be the clo-

sure of U− in Û, and so Û

−
⊆ Û. By continuity the Q(q)-algebra structure

on U extends to a Q(q)-algebra structure on Û. The bar involution ‘ ¯ ’ on U

extends by continuity to an anti-linear involution on Û, also denoted by ‘ ¯ ’.
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28 CHAPTER 2. INTERTWINER FOR A QUANTUM SYMMETRIC PAIR

Recall, by Remark 2.4, that the bar involutions onU
ı andU are not compatible

via the embedding ı : Uı → U.

Theorem 2.10. — There is a unique family of elements ϒµ ∈ U−−µ for µ ∈ NΠ such
that ϒ =

∑
µ ϒµ ∈ Û

−
intertwines the bar involutions onUı andU via the embedding ı

and ϒ0 = 1; that is, ϒ satisfies the following identity (in Û):

(2.4) ı (u)ϒ = ϒ ı (u), for all u ∈ Uı .

Moreover, ϒµ = 0 unless µθ = µ.

Remark 2.11. — Define ı : Uı → U, where ı (u) := ψ
(
ı(ψ ı (u))

)
, for u ∈ Uı . Then

the identity (2.4) can be equivalently reformulated as

(2.5) ı (u)ϒ = ϒ ı (u), for all u ∈ Uı .

This reformulationmakes it more transparent to observe the remarkable anal-
ogy with Lusztig’s Θ; see (1.9).

Sometimes it could be confusing to use ‘ ¯ ’ to denote the two distinct bar
involutions on U and U

ı . Recall that we set in Chapter 2 that ψ (u) = u for all
u ∈ U, and set in Chapter 1 that ψ ı (u) = u ∈ U

ı for u ∈ U
ı . In the ψ -notation

the identities (2.4) and (2.5) read, for all u ∈ Uı ,

ı
(
ψ ı (u)

)
ϒ = ϒψ

(
ı (u)

)
and ı (u)ϒ = ϒψ

(
ı
(
ψ ı (u)

) )
.

Definition 2.12. — The element ϒ in Theorem 2.10 is called the intertwiner
for the quantum symmetric pair (U,Uı ).

As we shall see, the intertwiner ϒ leads to the construction of what we call
quasi-R-matrix for Uı , which plays an analogous role as Lusztig’s quasi-R-
matrix for U. We shall prove later on that ϒµ ∈ U−A for all µ; see Theorem 4.18.

The proof of Theorem 2.10 will be given in §4 below. Here we note imme-
diately a fundamental property of ϒ.

Corollary 2.13. — We have ϒ · ϒ = 1.

Proof. — Clearly ϒ is invertible in Û. Multiplying by ϒ −1 on both sides of the
identity (2.4) in Theorem 2.10, we have

ϒ −1ı (u ) = ı (u)ϒ −1, ∀u ∈ Uı .

Applying ‘ ¯ ’ to the above identity and replacing u by u, we have

ϒ
−1
ı (u) = ı (u )ϒ

−1
, ∀u ∈ Uı .
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Hence ϒ
−1 (in place of ϒ) satisfies the identity (2.4) as well. Thanks to the

uniqueness of ϒ in Theorem 2.10, wemust have ϒ −1
= ϒ, whence the corollary.

�

4. Constructing ϒ

The goal here is to construct ϒ and establish Theorem 2.10.
The set of all u ∈ U

ı that satisfy the identity (2.4) is clearly a subalgebra
of Uı . Hence it suffices to consider the identity (2.4) when u is one of the
generatorseαi , fαi ,kαi , and t inUı , that is, the following identities for all µ ∈ NΠ
and 0 , i ∈ I:

KαiK
−1
α−iϒµ = ϒµKαiK

−1
α−i ,

FαiK
−1
α−iϒµ−αi−α−i + Eα−iϒµ = ϒµ−αi−α−i FαiKα−i + ϒµEα−i ,

qFα0K
−1
α0 ϒµ−2α0 + K

−1
α0 ϒµ−α0 + Eα0ϒµ

= q −1ϒµ−2α0Fα0Kα0 + ϒµ−α0Kα0 + ϒµEα0 .

Using [Lu2, Prop. 3.1.6], we can rewrite the above identities in terms of −ir
and r−i as follows:

KαiK
−1
α−iϒµ − ϒµKαiK

−1
α−i = 0,(2.6)

(q −1 − q)q(α−i ,µ−α−i−αi )ϒµ−αi−α−i Fαi + −ir (ϒµ ) = 0,(2.7)

(q −1 − q)q(α−i ,µ−α−i−αi )Fαiϒµ−αi−α−i + r−i (ϒµ ) = 0,(2.8)

(q −1 − q)q(α0,µ−α0)(q −1ϒµ−2α0Fα0 + ϒµ−α0) + 0r (ϒµ ) = 0,(2.9)

(q −1 − q)q(α0,µ−α0)(q −1Fα0ϒµ−2α0 + ϒµ−α0) + r0(ϒµ ) = 0.(2.10)

Recall the non-degenerate bilinear form ( . , . ) on U
− in Chapter 2; see

Proposition 1.2. The identities (2.7)–(2.10) can be shown to be equivalent to
the following identities (2.11)–(2.14):

(ϒµ , Fα−iz) = (1 − q−2)−1q(α−i ,µ−α−i−αi )+1 (ϒµ−αi−α−i , ri (z)),(2.11)

(ϒµ , zFα−i ) = (1 − q−2)−1q(α−i ,µ−α−i−αi )+1 (ϒµ−αi−α−i , ir (z)),(2.12)

(ϒµ , Fα0z) = (1 − q−2)−1q(α0,µ−α0)
(
ϒµ−2α0 , r0(z)

)
(2.13)

+ q(α0,µ−α0)+1(ϒµ−α0 , z),

(ϒµ , zFα0) = (1 − q−2)−1q(α0,µ−α0)
(
ϒµ−2α0 , 0r (z)

)
(2.14)

+ q(α0,µ−α0)+1(ϒµ−α0 , z),
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for all z ∈ U−−ν , ν ∈ NΠ, µ ∈ NΠ, and 0 , i ∈ I. For example, the equivalence
between (2.11) and (2.7) is shown as follows. For all z, one has:

(2.7) ⇐⇒ ( −ir
(
ϒµ ), z

)
= −(q −1 − q)q(α−i ,µ−α−i−αi )(ϒµ−αi−α−i Fαi , z)z,

⇐⇒ (Fα−i , Fα−i )
−1(ϒµ , Fα−iz)

= −(q −1 − q)q(α−i ,µ−α−i−αi )(Fαi , Fαi )
(
ϒµ−αi−α−i , ri (z)

)
,

⇐⇒ (2.11).

The remaining cases are similar.
Summarizing, we have established the following.

Lemma 2.14

(1) The validity of (2.4) is equivalent to the validity of (2.6) and (2.7)–(2.10).

(2) The validity of (2.4) is equivalent to the validity of (2.6) and (2.11)–(2.14).

Let ′f∗ (resp. (U−)∗) be the non-restricted dual of ′f (resp. U−). In light of
Lemma 2.14(2), we define ϒ ∗L and ϒ ∗R in ′f∗, inductively on weights, by

ϒ ∗L (1) = ϒ ∗R (1) = 1,

ϒ ∗L (Fα−iz) = (1 − q
−2)−1q(α−i ,ν−αi )+1ϒ ∗L

(
ri (z)

)
,

ϒ∗L(Fα0z) = (1 − q−2)−1q(α0,ν )ϒ ∗
(
r0(z)

)
+ q(α0,ν )+1ϒ ∗(z),

ϒ ∗R (zFα−i ) = (1 − q
−2)−1q(α−i ,ν−αi )+1ϒ ∗L

(
ir (z)

)
,

ϒ∗R(zFα0) = (1 − q−2)−1q(α0,ν )ϒ ∗
(
0r (z)

)
+ q(α0,ν )+1ϒ ∗(z),

(2.15)

for all i ∈ I and z ∈ fν with ν ∈ NΠ. (The formulas (2.15) are presented here
only for the sake of latter reference as they also make sense in the case of U  .)

Note that since (αi ,α−i ) = 0 for all i , 0, we can simplify the definition (2.15)
of ϒ ∗L and ϒ ∗R as follows:

ϒ ∗L (1) = ϒ ∗R (1) = 1,

ϒ ∗L (Fα−iz) = (1 − q
−2)−1q(α−i ,ν )+1ϒ ∗L

(
ri (z)

)
,

ϒ∗L(Fα0z) = (1 − q−2)−1q(α0,ν )ϒ ∗
(
r0(z)

)
+ q(α0,ν )+1ϒ ∗(z),

ϒ ∗R (zFα−i ) = (1 − q
−2)−1q(α−i ,ν )+1ϒ ∗L

(
ir (z)

)
,

ϒ∗R(zFα0) = (1 − q−2)−1q(α0,ν )ϒ ∗
(
0r (z)

)
+ q(α0,ν )+1ϒ ∗(z),

(2.16)

for all i ∈ I and z ∈ fν with ν ∈ NΠ.
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Lemma 2.15. — For all x ∈ ′fµ with µθ , µ, we have

ϒ ∗L (x) = ϒ ∗R (x) = 0.

Proof. — We will only prove that ϒ ∗L (x) = 0 for all x ∈ ′fµ with µθ , µ, as the
proof for the identity ϒ ∗R (x) = 0 is the same. By definition of ϒ ∗L (2.16), the
value of ϒ ∗L (x) for x ∈

′
fµ is equal to (up to some scalar multiple) ϒ ∗L (x

′) for
some x ′ ∈ ′fµ′, where µ ′ = µ − αi − α−i for some i; here we recall θ (αi ) = α−i .
Also by definition (2.16), we have ϒ ∗L (Fαi ) = 0 for all i ∈ I. Now the claim
follows by an induction on weights. �

Lemma 2.16. — We have

ϒ ∗L = ϒ ∗R .

Proof. — We shall prove the identity ϒ ∗L (x) = ϒ ∗R (x) for all homogeneous ele-
ments x ∈ ′f, by induction on ht(|x |).

When ht(|x |) = 0 or 1, this is trivial by definition. Assume the identity
holds for all x with ht(|x |) ≤ k, for k ≥ 1. Let

x ′ = Fα−ix
′′Fα−j ∈

′
fν+α−i+α−j

with ht(|x ′ |) = k + 1 ≥ 2. We can further assume that θ (ν + α−i + α−j ) =
ν + α−i + α−j , since otherwise ϒ ∗L (x

′) = ϒ ∗R (x
′) = 0 by Lemma 2.15. The proof is

divided into four cases.
(1) Assume that i, j , 0. Then we have

ϒ ∗L (x
′) = (1 − q−2)−1q(α−i ,ν+α−j )+1ϒ ∗L

(
ri (x

′′Fα−j )
)
= L1 + L2,

where

L1 = (1 − q−2)−1q(α−i ,ν+α−j )+(αi ,α−j )+1ϒ ∗L
(
ri (x

′′)Fα−j
)
,

L2 = (1 − q−2)−1q(α−i ,ν+α−j )+1δi,−jϒ
∗
L (x

′′).

We also have

ϒ ∗R (x
′) = (1 − q−2)−1q(α−j ,ν+α−i )+1ϒ ∗R

(
jr (Fα−ix

′′)
)
= R1 + R2,

where

R1 = (1 − q−2)−1q(α−j ,ν+α−i )+(α j ,α−i )+1ϒ ∗R
(
Fα−i jr (x

′′)
)
,

R2 = (1 − q−2)−1q(α−j ,ν+α−i )+1δi,−jϒ
∗
R (x

′′).
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Applying the induction hypothesis to ri (x
′′)Fα−j and Fα−i jr (x

′′) gives us

L1 = (1 − q−2)−2q(α−i ,ν+α−j )+(αi ,α−j )+(α−j ,ν−αi )+2ϒ ∗L
(
jr

(
ri (x

′′)
) )

= (1 − q−2)−2q(α−i ,ν )+(α−j ,ν )+(α−i ,α−j )+2ϒ ∗L
(
jr

(
ri (x

′′)
) )

;

R1 = (1 − q−2)−2q(α−j ,ν+α−i )+(α j ,α−i )+(α−i ,ν−α j )+2ϒ ∗R
(
ri

(
jr (x

′′)
) )

= (1 − q−2)−2q(α−i ,ν )+(α−j ,ν )+(α−j ,α−i )+2ϒ ∗R
(
ri

(
jr (x

′′)
) )
.

Note that jr (ri (x
′′)) = ri ( jr (x

′′)) by Lemma 1.1 and ht(| jr (ri (x ′′))|) < ht(|x ′ |).
By the induction hypothesis,

ϒ ∗L
(
jr

(
ri (x

′′)
) )
= ϒ ∗R

(
ri

(
jr (x

′′)
) )
.

Hence L1 = R1.
By the induction hypothesis, we also have ϒ ∗L (x

′′) = ϒ ∗R (x
′′). When i = −j,

we have νθ = ν , and hence we have L2 = R2 because

(1 − q−2)−1q(α−i ,ν+α−j )+1 = (1 − q−2)−1q(α−i ,ν+αi )+1

= (1 − q−2)−1q(α
θ
−i ,ν

θ+αθi )+1

= (1 − q−2)−1q(αi ,ν+α−i )+1

= (1 − q−2)−1q(α−j ,ν+α−i )+1.

Summarizing, we have ϒ ∗L (x
′) = L1 + L2 = R1 + R2 = ϒ ∗R (x

′) in this case.
(2) Assume that i = 0 and j , 0. Then we have

ϒ ∗L (x
′) = (1 − q−2)−1q(α0,ν+α−j )ϒ ∗L

(
r0(x

′′Fα−j )
)
+ q(α0,ν+α−j )+1ϒ ∗L (x

′′Fα−j )

= (1 − q−2)−1q(α0,ν+α−j )ϒ ∗L
(
q(α0,α−j )r0(x

′′)Fα−j
)
+ q(α0,ν+α−j )+1ϒ ∗L (x

′′Fα−j )

= (1 − q−2)−1q(α0,ν+α−j )+(α0,α−j )ϒ ∗L (r0(x
′′)Fα−j ) + q

(α0,ν+α−j )+1ϒ ∗L (x
′′Fα−j )

Applying the induction hypothesis to r0(x
′′)Fα−j and x ′′Fα−j , we have

ϒ ∗L
(
r0(x

′′)Fα−j
)
= (1 − q−2)−1q(α−j ,ν−α0)+1ϒ ∗L

(
jr

(
r0(x

′′)
) )
,

ϒ ∗L (x
′′Fα−j ) = (1 − q−2)−1q(α−j ,ν )+1ϒ ∗L

(
jr (x

′′)
)
.

Hence we obtain

ϒ ∗L (x
′) =(1 − q−2)−2q(α0,ν )+(α−j ,ν )+(α−j ,α0)+1ϒ ∗L

(
jr

(
r0(x

′′)
) )

+ (1 − q−2)−1q(α0,ν )+(α−j ,ν )+(α−j ,α0)+2ϒ ∗L
(
jr (x

′′)
)
.
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From a similar computation we obtain

ϒ ∗R (x
′) =(1 − q−2)−2q(α0,ν )+(α−j ,ν )+(α0,α−j )+1ϒ ∗R

(
r0

(
jr (x

′′)
) )

+ (1 − q−2)−1q(α0,ν )+(α−j ,ν )+(α0,α−j )+2ϒ ∗R
(
jr (x

′′)
)
.

It follows by Lemma 1.1 that r0( jr (x
′′)) = jr (r0(x

′′). Then, by the induction
hypothesis on r0( jr (x

′′)), jr (r0(x
′′), and jr (x

′′), we obtain ϒ ∗L (x
′) = ϒ ∗R (x

′) in this
case.

(3) Similar computation works for the case where j = 0, i , 0 as in Case (2).
(4) At last, consider the case where i = j = 0.

ϒ ∗L (x
′) = (1 − q−2)−1q(α0,ν+α0)ϒ ∗L

(
r0(x

′′Fα0)
)
+ q(α0,ν+α0)+1ϒ ∗L (x

′′Fα0)

= (1 − q−2)−1q(α0,ν+α0)+(α0,α0)ϒ ∗L
(
r0(x

′′)Fα0

)
(1 − q−2)−1q(α0,ν+α0)ϒ ∗L (x

′′) + q(α0,ν+α0)+1ϒ ∗L (x
′′Fα0).

Applying the induction hypothesis to r0(x
′′)Fα0 and x ′′Fα0 , we have

ϒ ∗L (r0(x
′′)Fα0) = (1 − q−2)−1q(α0,ν−α0)ϒ ∗L

(
0r

(
r0(x

′′)
) )
+ q(α0,ν−α0)+1ϒ ∗L

(
r0(x

′′)
)
,

ϒ ∗L (x
′′Fα0) = (1 − q−2)−1q(α0,ν )ϒ ∗L

(
0r (x

′′)
)
+ q(α0,ν )+1ϒ ∗L (x

′′).

Hence we have

ϒ ∗L (x
′)

= (1 − q−2)−2q(α0,ν )+(α0,ν )+(α0,α0)ϒ ∗L
(

0r
(
r0(x

′′)
) )

+ (1 − q−2)−1q(α0,ν )+(α0,ν )+(α0,α0)+1ϒ ∗L
(
r0(x

′′)
)
+ (1 − q−2)−1q(α0,ν+α0)ϒ ∗L (x

′′)

+ (1 − q−2)−1q(α0,ν )+(α0,ν )+(α0,α0)+1ϒ ∗L
(

0r (x
′′)

)
+ q(α0,ν )+(α0,ν )+(α0,α0)+2ϒ ∗L (x

′′).

Similarly we have

ϒ ∗R (x
′)

= (1 − q−2)−2q(α0,ν )+(α0,ν )+(α0,α0)ϒ ∗R
(
r0

(
0r (x

′′)
) )

+ (1 − q−2)−1q(α0,ν )+(α0,ν )+(α0,α0)+1ϒ ∗R
(

0r (x
′′)

)
+ (1 − q−2)−1q(α0,ν+α0)ϒ ∗R (x

′′)

+ (1 − q−2)−1q(α0,ν )+(α0,ν )+(α0,α0)+1ϒ ∗R
(
r0(x

′′)
)
+ q(α0,ν )+(α0,ν )+(α0,α0)+2ϒ ∗R (x

′′).

Therefore ϒ ∗L (x
′) = ϒ ∗R (x

′) in this case too by induction and by Lemma 1.1.
This completes the proof of Lemma 2.16. �

We shall simply denote ϒ ∗L = ϒ ∗R by ϒ ∗ thanks to Lemma 2.16. Recall
′
f/I = U

−, where I = 〈Si j 〉.

Lemma 2.17. — We have ϒ ∗(I) = 0; hence we may regard ϒ ∗ ∈ (U−)∗.
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Proof. — Recall rk (Si j ) = kr (Si j ) = 0, for all i, j, k. Any element in I is a Q(q)-
linear combination of elements of the form Fαm1

· · · Fαmh
Si jFαn1

· · · Fαnl . So it
suffices to prove ϒ ∗(Fαm1

· · · Fαmh
Si jFαn1

· · · Fαnl ) = 0, by induction on h + l .

Recall the Serre relator Si j , for i , j ∈ I, from (1.4). Let us verify that
ϒ ∗(Si j ) = 0, which is the base case of the induction. If |i − j | = 1, the weight
of Si j is −2αi − α j , which is not θ -invariant. If |i − j | > 1, the weight of Si j
is −αi − α j , which is not θ -invariant unless i = −j. In case of i = −j, a quick
computation by definition (2.16) gives us that ϒ ∗(Si j ) = 0. In the remaining
cases, it follows by Lemma 2.15 that ϒ ∗(Si j ) = 0.

If h > 0, by (2.16), (1.3) and (1.5) we have

ϒ ∗(Fαm1
· · · Fαmh

Si jFαn1
· · · Fαnl )

= ϒ ∗(r−m1

(
Fαm2

· · · Fαmh
Si jFαn1

. . . Fαnl )
)

= ϒ ∗
(∑

cm′n′Fαm′1
· · · Fαm′

h′
Si jFαn′1

· · · Fαn′
l ′

)
+ δ−m1,0c

′ϒ ∗(Fαm2
· · · Fαmh

Si jFαn1
· · · Fαnl ),

for some scalars cm′n′ and c ′. Similarly if l > 0, we have

ϒ ∗(Fαm1
· · · Fαmh

Si jFαn1
· · · Fαnl )

= ϒ ∗
(
−nl r (Fαm1

· · · Fαmh
Si jFαn1

· · · Fαnl−1
)
)

= ϒ ∗
(∑

cm′′n′′Fαm′′1
· · · Fαm′′

h′′
Si jFαn′′1

· · · Fαn′′
l ′′

)
+ δ−nl ,0c

′′ϒ ∗(Fαm1
· · · Fαmh

Si jFαn1
· · · Fαnl−1

).

for some scalars cm′′n′′ and c ′′. In either case, we have h′ + l ′ = h′′ + l ′′ < h + l .
Therefore by induction on h + l , Lemma 2.17 is proved. �

Now we are ready to prove Theorem 2.10.

Proof of Theorem 2.10. — We first prove the existence of ϒ satisfying the iden-
tity (2.4). Set ϒµ = 0 if µ < NΠ. Let B = {b} be a basis of U− such that
Bµ = B∩U−−µ is a basis ofU−−µ . Let B∗ = {b∗} be the dual basis of B with respect
to the bilinear pairing ( . , . ) in Chapter 2. Define ϒ by

ϒ :=
∑
b ∈B

ϒ ∗(b∗)b =
∑
µ

ϒµ .

As functions on U
−, (ϒ, . ) = ϒ ∗. Clearly ϒ is in Û

−
and ϒ0 = 1. Also ϒ

satisfies the identities in (2.11)–(2.14) by the definition of ϒ ∗. For any x ∈ U−ν ,
it follows by Lemma 2.15 that ϒ ∗L (x) = ϒ ∗R (x) = 0 if νθ , ν . It follows that (2.6)

ASTÉRISQUE 402



5. THE ISOMORPHISM T 35

is satisfied. Therefore, by Lemma 2.14(2), ϒ satisfies the desired identity (2.4)
in the theorem.

By Lemma 2.14(1) and the definition of ϒ, the identity (2.7) holds for ϒ, and
so −ir (ϒµ ) is determined by ϒν with weight ν ≺ µ. By [Lu2, Lemma 1.2.15],
if an element x ∈ U

−
−ν with ν , 0 satisfies −ir (x) = 0 for all i ∈ I then x = 0.

Therefore, by induction on weight, the identity (2.7) together with ϒ0 = 1
imply the uniqueness of ϒ.

The ϒ as constructed satisfies the additional property that ϒµ = 0
unless µθ = µ, by Lemmas 2.15– 2.17. The theorem is proved. �

5. The isomorphism T

Consider a function ζ on Λ such that
ζ (µ + α0) = −qζ (µ),

ζ (µ + αi ) = −q
(αi−α−i ,µ+αi )ζ (µ),

ζ (µ + α−i ) = −q
(α−i ,µ+α−i )−(αi ,µ)ζ (µ), ∀µ ∈ Λ, i ∈ Iı .

(2.17)

Noting that (αi ,α−i ) = 0 for all i ∈ Iı , we see that ζ satisfying (2.17) is equivalent
to ζ satisfying{

ζ (µ + α0) = −qζ (µ),

ζ (µ + αi ) = −q
(αi ,µ+αi )−(α−i ,µ)ζ (µ), ∀µ ∈ Λ, 0 , i ∈ I.

(2.18)

Such ζ clearly exists. For any weight U-module M , define a Q(q)-linear map
onM

ζ̃ : M −→ M, ζ̃ (m) = ζ (µ)m, ∀m ∈ Mµ .(2.19)

Recall that w0 is the longest element ofW and Tw0 is the associated braid
group element from Chapter 3.

Theorem 2.18. — For any finite-dimensional U-moduleM , the composition map

T := ϒ ◦ ζ̃ ◦Tw0 : M −→ M

is a Uı -module isomorphism.

Proof. — The map T is clearly a Q(q)-linear isomorphism. So it remains to
verify thatTcommuteswith the action ofUı ; we shall check this on generators
of Uı by applying repeatedly Lemma 1.4.
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Letm ∈ Mw0(µ) and i ∈ Iı . Then we have

T(kαim) = ϒ ◦ ζ̃ ◦Tw0

(
ı (kαi )

)
Tw0(m)

= ϒ ◦ ζ̃ ◦Tw0(KαiK
−1
α−i )Tw0(m)

= ϒ ◦ ζ̃ KαiK
−1
α−iTw0(m)

= (KαiK
−1
α−i )ϒ ◦ ζ̃ ◦Tw0(m) = kαiT(m).

We also have
T(eαim) = ϒ ◦ ζ̃

(
Tw0

(
ı (eαi )

)
Tw0(m)

)
= ϒ ◦ ζ̃

(
Tw0(Eαi + K

−1
αi Fα−i )Tw0(m)

)
= −ϒ ◦ ζ̃

(
K −1
αi (Kαi Fα−i + Eαi )Kα−iTw0(m)

)
= −ϒ

(
ζ (µ − α−i )

)
q(α−i ,µ)−(αi ,µ−α−i )Kαi Fα−iTw0(m)

− ϒ
(
ζ (µ + αi )q

(α−i ,µ)−(αi ,µ+αi )EαiTw0(m)
)

(a)
== ϒ(Eαi + Kαi Fα−i )ζ (µ)Tw0(m)

(b)
== (Eαi + K

−1
αi Fα−i )ϒ ◦ ζ̃ ◦Tw0(m)

= eαiT(m).

The identity (a) above follows from the definition of ζ and the identity (b)
follows from the definition of ϒ.

By a similar computation we have Tfαi (m) = fαiT(m).
For the generator t , we have

T(t m) = ϒ ◦ ζ̃ ◦Tw0

(
ı (t)

)
Tw0(m)

= ϒ ◦ ζ̃ ◦Tw0(Eα0 + qFα0K
−1
α0 + K

−1
α0 )Tw0(m)

= ϒ ◦ ζ̃ (−Fα0Kα0 − q
−1Eα0 + Kα0)Tw0(m)

= ϒ
(
− qζ (µ − α0)q

−1Fα0Kα0 − q
−1ζ (µ + α0)Eα0 + ζ (µ)Kα0

)
Tw0(m)

(c)
== ϒ(q −1Fα0Kα0 + Eα0 + Kα0)ζ (µ)Tw0(m)

(d)
== (Eα0 + qFα0K

−1
α0 + K

−1
α0 )ϒ ◦ ζ̃ ◦Tw0(m)

= tT(m).

Here the identity (c) follows from the definition of ζ and identity (d) follows
from the definition of ϒ. Hence the theorem is proved. �
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In this chapter, we define a quasi-R-matrix Θı for Uı , which will play an
analogous role as Lusztig’s quasi-R-matrix forU. Our Θı is constructed from
the intertwiner ϒ and Θ.

1. Definition of Θı

Recall Lusztig’s quasi-R-matrix Θ from (1.8). It follows by Theorem 2.10
that ϒ is a well-defined operator on finite-dimensional U-modules. For any
finite-dimensional U-modules M and M ′, the action of ϒ on M ⊗ M ′ is also
well defined. So we shall use the formal notation ϒM to denote the action of ϒ
onM ⊗ M ′. Hence the operator

(3.1) Θı := ϒMΘ(ϒ −1 ⊗ 1)

on M ⊗ M ′ is well defined. Note that Θı lies in (a completion of) U ⊗ U. We
shall prove in Proposition 3.5 that it actually lies in (a completion of) Uı ⊗ U.

Definition 3.1. — The element Θı is called the quasi-R-matrix for the quan-
tum symmetric pair (U,Uı ).

Recall that we set in Chapter 2 that ψ (u) = u for all u ∈ U, and in Chapter 1
thatψ ı (x) := x ∈ Uı for x ∈ Uı . We shall also set

ψ (x) := ı (x) ∈ U for x ∈ Uı .
Define

∆ : Uı −→ U
ı ⊗ U, ∆(u) = (ψ ı ⊗ψ )∆

(
ψ ı (u)

)
, for all u ∈ Uı .

Recall that the bar involution on U
ı is not compatible with the bar involution

on U through ı (see Remark 2.4); in particular the ∆ here does not coincide
with the restriction to U

ı of the map in the same notation ∆ : U → U ⊗ U

in [Lu2, 4.1.1].

Proposition 3.2. — Let M and M ′ be finite-dimensional U-modules. As linear
operators onM ⊗ M ′, we have for all u ∈ Uı

∆(u)Θı = Θı ∆(u).
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Proof. — For u ∈ U
ı , we set ∆(u ) =

∑
u(1) ⊗ u(2) ∈ U

ı ⊗ U. Then, for m ∈ M

andm′ ∈ M ′, we have

ϒMΘ(ϒ −1 ⊗ 1)∆(u )(m ⊗m′) = ϒMΘ
(∑

ϒ −1ı (u(1) ) ⊗ u(2)

)
(m ⊗m′)

(a)
== ϒMΘ

(∑
ı (u(1)) ⊗ u(2)

)
(ϒ −1 ⊗ 1)(m ⊗m′)

(b)
== ϒM∆

(
ı (u )

)
Θ(ϒ −1 ⊗ 1)(m ⊗m′)

(c)
== ∆(u)ϒMΘ(ϒ −1 ⊗ 1)(m ⊗m′).

The identities (a) and (c) follow fromTheorem 2.10 and the identity (b) follows
from (1.9). Note that the bar-notation above translates into the ψ -notation as
follows:

u = ψ ı (u), u(1) = ψ ı (u(1)), u(2) = ψ (u(2)),

ı (u(1)) = ψ
(
ı
(
u(1)

) )
, ı (u ) = ψ

(
ı
(
ψ ı (u)

) )
.

The proposition is proved. �

2. Normalizing Θı

Our next goal is to understand Θı in a precise sense as an element in a
completion of U ⊗ U

− instead of merely as well-defined operators on M ⊗ M ′

for finite-dimensional U-modulesM,M ′.
Let B = {b} be a basis of U− such that Bµ = B ∩ U

−
−µ is a basis of U−−µ for

each µ. Let B∗ = {b∗} be the basis of U− dual to B with respect to the bilinear
form ( . , . ) in Chapter 2. For each N ∈ N, define the Q(q)-linear truncation
map

tr≤N : ′f −→ ′
f

such that, for any i1, . . . , ik ∈ I,

(3.2) tr≤N (Fαi1 . . . Fαik ) =
{
Fαi1 . . . Fαik if k ≤ N ,

0 if k > N .

This induces a truncation map on U
− = ′f/I, also denoted by tr≤N , since I is

homogeneous. Recalling Θ from (1.8), we denote

Θ≤N :=
∑

ht(µ)≤N
Θµ .

Then we define

(3.3) Θı
≤N :=

∑
µ

id ⊗ tr≤N
(
∆(ϒµ )Θ≤N (ϒ

−1 ⊗ 1)
)
,
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which is actually a finite sum, and hence Θı
≤N ∈ U ⊗ U

− and Θı
≤0 = 1 ⊗ 1.

Define

(3.4) Θı
N := Θı

≤N − Θ
ı
≤N−1 =

∑
bµ ∈Bµ
ht(µ)=N

aµ ⊗ bµ ∈ U ⊗ U
−,

where it is understood that Θı
≤−1 = 0. The following lemma is clear from

weight consideration.

Lemma 3.3. — Let M and M ′ be finite-dimensional U-modules. For all m ∈ M

andm′ ∈ M ′, we have

Θı (m ⊗m′) = Θı
≤N (m ⊗m

′), for N � 0.

Note that any finite-dimensional U-module is also a Û-module.

Lemma 3.4. — Let u ∈ Û be an element that acts as zero on all finite-dimensional
U-modules. Then u = 0.

Proof. — It is well known that any element u ∈ U that acts as zero on all
finite-dimensional U-modules has to be 0 (see [Lu2, Prop. 3.5.4]). Hence the
lemma follows by weight consideration. �

We have the following fundamental property of Θı
N .

Proposition 3.5. — For any N ∈ N, we have Θı
N ∈ ı (U

ı ) ⊗ U
−.

Proof. — The identity in Proposition 3.2 for u being one of the generators
kαi , eαi , fαi , and t of Uı can be rewritten as the following identities (valid
for all N ≥ 0):

(kαi ⊗ KαiK
−1
α−i )Θ

ı
N (m ⊗m

′) = Θı
N (kαi ⊗ KαiK

−1
α−i )(m ⊗m

′),(
(kαi ⊗ FαiK

−1
α−i )Θ

ı
N−1 + (fαi ⊗ K

−1
α−i )Θ

ı
N + (1 ⊗ Eα−i )Θ

ı
N+1

)
(m ⊗m′)

=
(
Θı
N−1(k

−1
αi ⊗ FαiKα−i ) + Θ

ı
N (fαi ⊗ Kα−i ) + Θ

ı
N (1 ⊗ Eα−i )

)
(m ⊗m′),(

(k −1
αi ⊗ K

−1
αi Fα−i )Θ

ı
N−1 + (eαi ⊗ K

−1
αi )Θ

ı
N + (1 ⊗ Eαi )Θ

ı
N+1

)
(m ⊗m′)

=
(
Θı
N−1(kαi ⊗ Kαi Fα−i ) + Θ

ı
N (eαi ⊗ Kαi ) + Θ

ı
N+1(1 ⊗ Eαi )

)
(m ⊗m′),(

(1 ⊗ qFα0K
−1
α0 )Θ

ı
N−1 + (t ⊗ K

−1
α0 )Θ

ı
N + (1 ⊗ Eα0)Θ

ı
N+1

)
(m ⊗m′)

=
(
Θı
N−1(1 ⊗ q

−1Fα0Kα0) + Θ
ı
N (t ⊗ Kα0) + Θ

ı
N+1(1 ⊗ Eα0)

)
(m ⊗m′),
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for all 0 , i ∈ Iı , m ∈ M and m′ ∈ M ′, where M,M ′ are finite-dimensional
U-modules. Write

Θı
N =

∑
bµ ∈Bµ
ht(µ)=N

aµ ⊗ bµ ∈ U ⊗ U
−,

where aµ ’s are fixed once B is chosen. Thanks to Lemma 3.4, the above four
identities for allM,M ′ are equivalent to the following four identities:

∑
bµ

ht(µ)=N

ı (kαi )a
µ ⊗ KαiK

−1
α−ibµ =

∑
bµ

ht(µ)=N

aµ ı (kαi ) ⊗ bµKαiK
−1
α−i ,

(3.5)

∑
bµ′′

ht(µ′′)=N−1

ı (kαi )a
µ′′ ⊗ FαiK

−1
α−ibµ′′ +

∑
bµ′

ht(µ′)=N

ı (fαi )a
µ′ ⊗ K −1

α−ibµ′ +
∑
bµ

ht(µ)=N+1

aµ ⊗ Eα−i bµ

(3.6)

=
∑
bµ′′

ht(µ′′)=N−1

aµ
′′

ı (k −1
αi ) ⊗ bµ′′FαiKα−i +

∑
bµ′

ht(µ′)=N

aµ
′

ı (fαi ) ⊗ bµ′Kα−i +
∑
bµ

ht(µ)=N+1

aµ ⊗ bµEα−i ,

∑
bµ′′

ht(µ′′)=N−1

ı (k −1
αi )a

µ′′ ⊗ K −1
αi Fα−ibµ′′ +

∑
bµ′

ht(µ′)=N

ı (eαi )a
µ′ ⊗ K −1

αi bµ′ +
∑
bµ

ht(µ)=N+1

aµ ⊗ Eαibµ

(3.7)

=
∑
bµ′′

ht(µ′′)=N−1

aµ
′′

ı (kαi ) ⊗ bµ′′Kαi Fα−i +
∑
bµ′

ht(µ′)=N

aµ
′

ı (eαi ) ⊗ bµ′Kαi +
∑
bµ

ht(µ)=N+1

aµ ⊗ bµEαi ,

∑
bµ′′

ht(µ′′)=N−1

aµ
′′

⊗ qFα0K
−1
α0 bµ′′ +

∑
bµ′

ht(µ′)=N

ı (t)aµ
′

⊗ K −1
α0 bµ′ +

∑
bµ

ht(µ)=N+1

aµ ⊗ Eα0bµ

(3.8)

=
∑
bµ′′

ht(µ′′)=N−1

aµ
′′

⊗ bµ′′q
−1Fα0Kα0 +

∑
bµ′

ht(µ′)=N

aµ
′

ı (t) ⊗ bµ′Kα0 +
∑
bµ

ht(µ)=N+1

aµ ⊗ bµEα0 .

A straighforward rewriting of (3.6)–(3.8) involves the commutators [Eαk ,bµ ]
for various k ∈ I, which can be expressed in terms of kr and rk by invoking
[Lu2, Prop. 3.1.6].
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In thisway, using thePBWtheorem forUwe rewrite the identities (3.6)–(3.8)
as the following six identities:

∑
bµ′′

ht(µ′′)=N−1

ı (kαi )a
µ′′ ⊗ Fαibµ′′ +

∑
bµ′

ht(µ′)=N

ı (fαi )a
µ′ ⊗ bµ′ +

q(α−i ,µ+α−i )

q −1 − q

∑
bµ

ht(µ)=N+1

aµ ⊗ r−i (bµ ) = 0,

(3.9)

∑
bµ′′

ht(µ′′)=N−1

aµ
′′

ı (k −1
αi ) ⊗ bµ′′Fαi +

∑
bµ′

ht(µ′)=N

aµ
′

ı (fαi ) ⊗ bµ′ +
q(α−i ,µ+α−i )

q −1 − q

∑
bµ

ht(µ)=N+1

aµ ⊗ −ir (bµ ) = 0,

∑
bµ′′

ht(µ′′)=N−1

ı (k −1
αi )a

µ′′ ⊗ Fα−ibµ′′ +
∑
bµ′

ht(µ′)=N

ı (eαi )a
µ′ ⊗ bµ′ +

q(αi ,µ+αi )

q −1 − q

∑
bµ

ht(µ)=N+1

aµ ⊗ ri (bµ ) = 0,

(3.10)

∑
bµ′′

ht(µ′′)=N−1

aµ
′′

ı (kαi ) ⊗ bµ′′Fα−i +
∑
bµ′

ht(µ′)=N

aµ
′

ı (eαi ) ⊗ bµ′ +
q(αi ,µ+αi )

q −1 − q

∑
bµ

ht(µ)=N+1

aµ ⊗ ir (bµ ) = 0,

∑
bµ′′

ht(µ′′)=N−1

aµ
′′

⊗ q −1Fα0bµ′′ +
∑
bµ′

ht(µ′)=N

ı (t)aµ
′

⊗ bµ′ +
q(α0,µ+α0)

q −1 − q

∑
bµ

ht(µ)=N+1

aµ ⊗ r0(bµ ) = 0,

(3.11)

∑
bµ′′

ht(µ′′)=N−1

aµ
′′

⊗ q −1bµ′′Fα0 +
∑
bµ′

ht(µ′)=N

aµ
′

ı (t) ⊗ bµ′ +
q(α0,µ+α0)

q −1 − q

∑
bµ

ht(µ)=N+1

aµ ⊗ 0r (bµ ) = 0.

So far we have the flexibility in choosing the dual bases B and B∗ of U−. Now
let us be more specific by fixing B∗ = {b∗} to be a monomial basis of U−
which consists of monomials in the Chevalley generators Fαi ; for example,
we can take the U−-variant of the basis {E((c))} in [Lu1, p. 476] where Lusztig
worked withU

+. Let B = {b} be the dual basis of B∗ with respect to ( . , . ), and
write Bµ = B ∩ U−µ = {bµ } as before. Fix an arbitrary basis element b̃µ ∈ Bµ
(with µ , 0), with its dual basis element written as b̃∗µ = xFα−i , for some x ∈ U−
and some i. We now apply 1 ⊗ (x , . ) to the identities (3.9)–(3.11), depending
on whether i is positive, zero or negative.
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We will treat in detail the case when i is positive, while the other cases are
similar. Applying 1 ⊗ (x , . ) to the identity (3.9) above, we have∑

bµ′′
ht(µ′′)=N−1

ı (kαi )a
µ′′ ⊗ (x , Fαibµ′′) +

∑
bµ′

ht(µ′)=N

ı (fαi )a
µ′ ⊗ (x ,bµ′)

+
q(α−i ,µ+α−i )

q −1 − q

∑
bµ

ht(µ)=N+1

aµ ⊗
(
x , r−i (bµ )

)
= 0.

Since (x , r−i (bµ )) = (1 − q−2)(xFα−i ,bµ ) = (1 − q−2)δbµ ,b̃µ , we have∑
bµ′′

ht(µ′′)=N−1

ı (kαi )a
µ′′(x , Fαibµ′′) +

∑
bµ′

ht(µ′)=N

ı (fαi )a
µ′(x ,bµ′) − q

(α−i ,µ+α−i )−1ã µ = 0.(3.12)

By an easy induction on height based on (3.12) (where the base case
is Θı

0 = 1 ⊗ 1), we conclude that aµ ∈ ı (Uı ) for all µ; that is,Θı
N ∈ ı (U

ı )⊗U−. �

By Proposition 3.5 we have ı −1(Θı
N ) ∈ U

ı ⊗ U for each N . For any finite-
dimensional U-modules M and M ′, the action of ı −1(Θı

N ) coincides with the
action of Θı

N onM ⊗ M ′.
As we only need to use ı −1(Θı

N ) ∈ U
ı ⊗ U rather than Θı

N , we shall write Θ
ı
N in

place of ı −1(Θı
N ) and regard Θ

ı
N ∈ U

ı ⊗ U from now on.

3. Properties of Θı

Let (Uı ⊗ U
−)∧ be the completion of the Q(q)-vector space U

ı ⊗ U
− with

respect to the following descending sequence of subspaces

H ı
N := U

ı ⊗

( ∑
ht(µ)≥N

U
−
−µ

)
, for N ≥ 1.

TheQ(q)-algebra structure onU
ı ⊗U− extends by continuity to aQ(q)-algebra

structure on (Uı ⊗ U
−)∧, and we have an embedding U

ı ⊗ U
− ↪→ (Uı ⊗ U

−)∧.
The actions of

∑
N ≥0 Θ

ı
N (which is well defined by Lemma 3.3) and of Θı

coincide on any tensor product of finite-dimensional U-modules. From
now on, we may and shall identify

(3.13) Θı =
∑
N ≥0

Θı
N ∈ (U

ı ⊗ U
−)∧,

(or alternatively, one may regard this as a normalized definition of Θı ).
The following theorem is a generalization of Proposition 3.2.
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Theorem 3.6. — Let L be a finite-dimensional U
ı -module and M be a finite-

dimensional U-module. Then as linear operators on L ⊗ M , we have

∆(u)Θı = Θı∆(u), for all u ∈ Uı .

Proof. — By the identities (3.5)–(3.8) in the proof of Proposition 3.5, there
exists N0 > 0 (depending on L andM) such that for N ≥ N0 we have

(3.14) ∆(u)Θı
≤N − Θ

ı
≤N∆(u) = 0 on L ⊗ M,

where u is one of the generators kαi , eαi , fαi , and t of Uı . We then note that,
for u1,u2 ∈ U

ı ,

∆(u1u2)Θ
ı
≤N − Θ

ı
≤N∆(u1u2)(3.15)

= ∆(u1)
(
∆(u2)Θ

ı
≤N − Θ

ı
≤N∆(u2)

)
+

(
∆(u1)Θ

ı
≤N − Θ

ı
≤N∆(u1)

)
∆(u2).

Then by an easy induction using (3.15), we conclude that (3.14) holds for all
u ∈ Uı and N ≥ N0. The theorem now follows from (3.13). �

Proposition 3.7. — We have ΘıΘı = 1 (an identity in (Uı ⊗ U
−)∧).

Proof. — By construction, Θı =
∑

N ≥0 Θ
ı
N (with Θı

0 = 1⊗ 1) is clearly invertible
in (Uı ⊗ U

−)∧. Write
′Θı = (Θı )−1.

Multiplying ′Θı on both sides of the identity in Theorem 3.6, we have
′Θı∆(u) = ∆(u) ′Θı , ∀u ∈ Uı .

Applying ‘ ¯ ’ to the above identity and replacing u by u, we have
′Θı ∆(u) = ∆(u) ′Θı , ∀u ∈ Uı .

Hence ′Θı (in place of ′Θı ) satisfies the same identity in Theorem 3.6 as well;
note that ′Θı ∈ (Uı ⊗ U

−)∧ has constant term 1 ⊗ 1.
By reexamining the proof of Proposition 3.5 and especially (3.12), we note

that the element Θı ∈ (Uı ⊗ U
−)∧ (with constant term 1 ⊗ 1) satisfying the

identity in Proposition 3.2 (and thus Theorem 2.10) is unique. Hence wemust
have Θı = Θı −1, and equivalently, ΘıΘı = 1. �

Recall that m(ϵ ⊗ 1)∆ = ı from Corollary 2.8, where ϵ is the counit and m

denotes the multiplication in U.

Corollary 3.8. — The intertwiner ϒ can be recovered from the quasi-R-
matrix Θı as

m(ϵ ⊗ 1)(Θı ) = ϒ.
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Proof. — Applying m(ϵ ⊗ 1) to the identities (3.5)–(3.8), we obtain in Û an
identity:

(3.16) ı (u)
( ∑
N ≥0

m(ϵ ⊗ 1)(Θı
N )

)
=

( ∑
N ≥0

m(ϵ ⊗ 1)(Θı
N )

)
ı (u), for all u ∈ Uı .

The corollary now follows from (3.13), (3.16) and the uniqueness of ϒ in The-
orem 2.10, as clearly we havem(ϵ ⊗ 1)(Θı

0) = 1. �

4. The bar map on U
ı
-modules

In this section we shall assume all the modules are finite dimensional.
Recall the bar map onU and on its modules is denoted byψ , and the bar map
onU

ı is also denoted byψ ı . It is also understood thatψ (u) = ψ (ı (u)) for u ∈ Uı .

Definition 3.9. — AU
ı -moduleM equippedwith an anti-linear involutionψ ı

is called involutive (or ı-involutive to avoid possible ambiguity) if

ψ ı (um) = ψ ı (u)ψ ı (m), ∀u ∈ Uı andm ∈ M .

Proposition 3.10. — LetM be an involutiveU-module. ThenM is an ı-involutive
U
ı -module with involutionψ ı := ϒ ◦ψ .

Proof. — By Theorem 2.10, we have ı (ψ ı (u))ϒ = ϒψ (u), for all u ∈ U
ı . By def-

inition the action of ψ ı (u) on M is the same as the action of ı (ψ ı (u)) on M .
Therefore, for all u ∈ Uı andm ∈ M , we have

ψ ı (um) = ϒψ (um) = ϒψ (u)ψ (m) = ı
(
ψ ı (u)

)
ϒψ (m) = ψ ı (u)ψ ı (m).

It remains to verify thatψ ı is an involution onM . Indeed, form ∈ M , we have

ψ ı
(
ψ ı (m)

)
= ϒψ

(
ϒψ (m)

)
= ϒϒψ

(
ψ (m)

)
= ϒϒm =m,

where the last identity follows from Corollary 2.13. �

Corollary 3.11. — As Uı -modules, L(λ) and ωL(λ) are ı-involutive, for λ ∈ Λ+.

Remark 3.12. — We can and will choose ξ−λ ∈ ωL(λ) to be ψ -invariant. It
follows that ξ−λ is also ψ ı -invariant, since ψ ı = ϒψ and ϒ lies in a completion
of U− with constant term 1. Because of this, it is more convenient to work
with a lowest weight vector instead of a highest weight vector in a finite-
dimensional simple U-module.

Recall the quasi-R-matrix Θı from (3.1). Given an involutive U
ı -module L

and an involutive U-moduleM , we defineψ ı : L ⊗ M → L ⊗ M by letting

(3.17) ψ ı (l ⊗m) := Θı (ψ ı (l) ⊗ψ (m)), for all l ∈ L andm ∈ M .
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Proposition 3.13. — Let L be an involutiveUı -module and letM be an involutive
U-module. Then (L ⊗ M,ψ ı ) is an involutive Uı -module.

Proof. — For all l ∈ L,m ∈ M , u ∈ Uı , using (3.17) twice we have

ψ ı
(
u(l ⊗m)

)
= Θı (∆(u)(ψ ı (l) ⊗ψ (m)) )
= ∆(u)Θı (ψ ı (l) ⊗ψ (m))
= ψ ı (u)ψ ı (l ⊗m).

The second equality in the above computation uses Theorem 3.6 and the first
equality holds since L andM are involutive modules.

It remains to verify that ψ ı is an involution on L ⊗ M . It is occasionally
convenient to use the bar-notation to denote the involution ψ ı ⊗ ψ on U

ı ⊗ U

below. Indeed, for l ∈ L andm ∈ M , using (3.17) twice we have

ψ ı
(
ψ ı (l ⊗m)

)
= Θı (ψ ı ⊗ψ )

(
Θı (ψ ı (l) ⊗ψ (m))

)
= ΘıΘı

(
ψ 2
ı (l) ⊗ψ

2(m)
)
= l ⊗m,

where the last equality follows from Proposition 3.7 and the second equality
holds since L andM are involutive modules. �

Remark 3.14. — Given two involutive U-modules (M1,ψ1) and (M2,ψ2), the
U-module M1 ⊗ M2 is involutive with the involution given by Θ ◦ (ψ1 ⊗ ψ2),
(see [Lu2, 27.3.1] or Proposition 1.8). Now there are two naturalways to define
an anti-linear involution on the Uı -moduleM1 ⊗ M2:

(i) apply Proposition 3.10 to the involutive U-module(
M1 ⊗ M2,Θ ◦ (ψ1 ⊗ψ2)

)
;

(ii) apply Proposition 3.13 by regarding M1 as an ı-involutive U
ı -module

with involution ϒ ◦ψ1.
One checks that the resulting involutions on the U

ı -module M1 ⊗ M2 in two
different ways coincide.

The following proposition implies that different bracketings on the ten-
sor product of several involutive U-modules give rise to the same ψ ı . (Re-
call a similar property holds for Lusztig’s bar involution on tensor products
of U-modules [Lu2].)

Proposition 3.15. — Let M1, . . . , Mk be involutive U-modules with k ≥ 2. For
any 1 ≤ k ′ < k, we have

ψ ı (m1 ⊗ · · · ⊗mk ) = Θı (ψ ı (m1 ⊗ · · · ⊗mk ′) ⊗ψ (mk ′+1 ⊗ · · · ⊗mk )
)
.
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Proof. — Recall Θı = ϒMΘ(ϒ −1 ⊗ 1). Unraveling the definition ψ ı = ϒψ on
M1 ⊗ · · · ⊗ Mk ′, we have

Θı (ψ ı (m1 ⊗ · · · ⊗mk ′) ⊗ψ (mk ′+1 ⊗ · · · ⊗mk )
)

= ϒMΘ(ϒ −1 ⊗ 1)
(
ϒψ (m1 ⊗ · · · ⊗mk ′) ⊗ψ (mk ′+1 ⊗ · · · ⊗mk )

)
= ϒMΘ

(
ψ (m1 ⊗ · · · ⊗mk ′) ⊗ψ (mk ′+1 ⊗ · · · ⊗mk )

)
= ϒMψ (m1 ⊗ · · · ⊗mk ′ ⊗mk ′+1 ⊗ · · · ⊗mk )

= ψ ı (m1 ⊗ · · · ⊗mk ).

The proposition follows. �
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4. THE INTEGRALITY OF ϒ AND THE ı-CANONICAL

BASIS OF
ωL(λ)

In this chapter, wefirst construct the ı-canonical bases for simpleU-modules
and then for the algebra U

ı in the rank one case. Then we use the rank one
results to study the general higher hank case. We show that the intertwiner ϒ
is integral and construct the ı-canonical basis for ωL(λ) for λ ∈ Λ+.

1. The homomorphism πλ,µ

Though only the rank one case of the results in this section will be needed
in this book, it is natural and causes no extra work to formulate in the full
generality below.

Lemma 4.1. — Let λ ∈ Λ+. We have Uıξ−λ =
ωL(λ) and U

ıηλ = L(λ).

Proof. — We shall only proveUıξ−λ =
ωL(λ). The proof for the second identity

is similar and will be skipped.
We write ξ = ξ−λ . Let h ∈ ωL(λ)µ . We shall prove h ∈ U

ıξ by induction
on ht(µ + λ). When ht(µ + λ) = 0, the claim is clear since h must be a scalar
multiple of ξ . Thanks to U

+ξ = ωL(λ), there exists y ∈ U
+ such that yξ = h.

Writing y as a linear combination of PBW basis elements for U+ and replac-
ing Eα0 , Eαi , Eα−i (for all i ∈ Iı ) by t , eαi , fαi in such a linear combination,
respectively, we obtain an element u = u(y) ∈ Uı . Setting ı (u) = y + z for z ∈ U,
we have uξ = h + zξ . By construction, zξ is a Q(q)-linear combination of el-
ements in ωL(λ) of weight lower than h. Hence by the induction hypothesis,
we have zξ ∈ Uıξ , and so is h = uξ − zξ . �

Recall from Chapter 3 that:
. ωL(λ) for λ ∈ Λ+ is identified with L(λθ ) = L(−w0λ),
. ξλ is the lowest weight vector of ωL(λ),
. ηλθ is the highest weight vector of L(λθ ).
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Lemma 4.2. — For λ ∈ Λ+, there is an isomorphism of Uı -modules

T : ωL(λ) −→ ωL(λ) = L(λθ )

such that
T(ξλ) =

∑
b ∈B(λ)

дbb
−ηλθ

where дb ∈ Q(q) and д1 = 1. Moreover, the isomorphism T is uniquely determined
by the image T(ξλ).

Proof. — Recall the isomorphismT= ϒ◦ζ̃ ◦Tw0 : ωL(λ) → ωL(λ) ofUı -modules
from Theorem 2.18. The existence of Tsatisfying the lemma follows by fixing
the weight function ζ such that T(ξλ) = ηλθ+ terms in lower weights.

The uniqueness of such T follows from Lemma 4.1. �

The following proposition can be found in [Lu2, Chap. 25].

Proposition 4.3. — Let λ, λ′ ∈ Λ+.

(1) There exists a unique homomorphism of U-modules

χ = χλ,λ′ : ωL(λ + λ′) −→ ωL(λ) ⊗ ωL(λ′)

such that χ (ξ−λ−λ′) = ξ−λ ⊗ ξ−λ′.
(2) For b ∈ B(λ + λ′), we have

χ (b+ξ−λ−λ′) =
∑
b1,b2

f (b;b1,b2)b
+
1 ξ−λ ⊗ b

+
2 ξ−λ′,

summed over b1 ∈ B(λ) and b2 ∈ B(λ
′), with f (b;b1,b2) ∈ Z[q].

. If b+ξ−λ′ , 0, then f (b; 1,b) = 1 and f (b; 1,b2) = 0 for any b2 , b.

. If b+ξ−λ′ = 0, then f (b; 1,b2) = 0 for any b2.
(3) There is a unique homomorphism of U-modules

δ = δλ : L(λ) ⊗ ωL(λ) −→ Q(q),

where Q(q) is the trivial representation of U, such that δ (ηλ ⊗ ξ−λ) = 1.
Moreover, for b1,b2 ∈ B(λ), δ (b−1ηλ ⊗ b

+
2 ξ−λ) is equal to 1 if b1 = b2 = 1 and is

in qZ[q] otherwise. In particular, δ (b−1ηλ ⊗ b
+
2 ξ−λ) = 0 if |b1 | , |b2 |.

Proposition 4.4. — Let λ,µ ∈ Λ+. There is a unique homomorphism ofUı -modules

πλ,µ : ωL(µθ + µ + λ) −→ ωL(λ)

such that πλ,µ (ξ−µθ−µ−λ) = ξ−λ .
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Proof. — The uniqueness of the map is clear, thanks to Lemma 4.1.
We shall prove the existence of πλ,µ . Recall that any homomorphism of

U-modules is naturally a homomorphism of Uı -modules. Note that
ωL(µθ ) = L(−w0µ

θ ) = L(µ).

Let πλ,µ be the composition of the following homomorphisms ofUı -modules:

ωL(µθ + µ + λ)

ωL(µθ + µ) ⊗ ωL(λ) ωL(µθ ) ⊗ ωL(µ) ⊗ ωL(λ)

L(µ) ⊗ ωL(µ) ⊗ ωL(λ)ωL(λ)

χ

χ ⊗id

T⊗id ⊗ id

δ ⊗id

πλ,µ

where T is the map from Lemma 4.2. First, we have

(χ ⊗ id)χ (ξ
−µθ−µ−λ) = ξ−µθ ⊗ ξ−µ ⊗ ξ−λ .

Then applying T⊗ id ⊗ id, by Lemma 4.2 we have

(T⊗ id ⊗ id)(ξ
−µθ ⊗ ξ−µ ⊗ ξ−λ)

= ηµ ⊗ ξ−µ ⊗ ξ−λ +
∑

1,b ∈B(µ)

д(1;b)b−ηµ ⊗ ξµ ⊗ ξ−λ .

Applying δ ⊗ 1 to the above identity, we conclude that

πλ,µ (ξ−µθ−µ−λ) = ξ−λ . �

Lemma 4.5. — Retain the notation in Proposition 4.4. The homomorphism πλ,µ
commutes with the involutionψ ı ; that is, πλ,µψ ı = ψ ıπλ,µ .

Proof. — In this proof, we write π = πλ,µ , ξ = ξ
−µθ−µ−λ

, and ξ ′ = ξ−λ . Then
π (ξ ) = ξ ′ by Proposition 4.4. An arbitrary element in ωL(µθ + µ + λ) is of the
form uξ for some u ∈ Uı , by Lemma 4.1. Since ξ and ξ ′ are both ψ ı -invariant
(see Remark 3.12), we have

πψ ı (uξ ) = πψ ı (u)(ξ ) = ψ ı (u)π (ξ ) = ψ ı (u)ξ
′.

On the other hand, we have

ψ ıπ (uξ ) = ψ ı (uξ
′) = ψ ı (u)ψ ı (ξ

′) = ψ ı (u)ξ
′.

The lemma is proved. �
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2. The ı-canonical bases at rank one

In this section we shall consider the rank 1 case of the algebra U
ı , i.e.,

U
ı = Q(q)[t], the polynomial algebra in t . In order to simplify the notation,

we shall write
E = Eα0 , F = Fα0 and K = Kα0

for the generators of U = Uq(sl2). By Proposition 2.2, we have an algebra
embedding ı : Q(q)[t] → Uq(sl2) such that

ı (t) = E + qFK −1 + K −1.

In the rank one case, Λ+ can be canonically identified with N. The finite-
dimensional irreducible U-modules are of the form ωL(s) of lowest weight −s,
with s ∈ N. Recall [Lu2] the canonical basis of ωL(s) consists of{

E(a)ξ−r ; 0 ≤ a ≤ s
}
.

We denote by :
. ωL(s) the Z[q]-submodule of ωL(s) generated by {E(a)ξ−s ; 0 ≤ a ≤ s};
. ωLA(s) the A-submodule of ωL(s) generated by {E(a)ξ−s ; 0 ≤ a ≤ s}.
In the current rank one setting, we can write the intertwiner

ϒ =
∑
k≥0

ϒk ,

with ϒk = ϒkα0 = ckF
(k ) for ck ∈ Q(q), and c0 = 1.

Lemma 4.6. — We have ϒk ∈ U−A, for k ≥ 0.

Proof. — It is equivalent to prove that ck ∈ A = Z[q,q −1] for all k ≥ 0. The
equation (2.4) for u = t implies that

qFK −1ϒk−2 + K
−1ϒk−1 + Eϒk = q

−1ϒk−2FK + ϒk−1K + ϒkE,

for all k ≥ 0. Solving this equation, we have the following recursive formula
for ck :

ck = (−q
k−1)(q −1 − q)(q −1[k − 1]ck−2 + ck−1), for all k ≥ 1,

where c−1 = 0 and c0 = 1. Then it follows by induction on k that ck ∈ A. �

One can show by the recursive relation in the above proof that

ϒ =
∑
k≥0

qk (k+1)
( k∏
i=1
(q2i−1 − q1−2i )F (2k ) +

k+1∏
i=1
(q2i−1 − q1−2i )F (2k+1)

)
.(4.1)
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Proposition 4.7. — Let s ∈ N.

(1) The Uı -module ωL(s) admits a unique Q(q)-basis Bı (s) = {T s
a ; 0 ≤ a ≤ s}

which satisfiesψ ı (T s
a ) = T

s
a and

(4.2) T s
a = E(a)ξ−s +

∑
a′<a

tsa;a′E
(a′)ξ−s ,

where tsa;a′ ∈ qZ[q]. (We also set tsa;a = 1.)

(2) B
ı (s) forms an A-basis for the A-lattice ωLA(s).

(3) B
ı (s) forms a Z[q]-basis for the Z[q]-lattice ωL(s).

We call Bı (s) the ı-canonical basis of the Uı -module ωL(s).

Proof. — Parts (2) and (3) follow immediately from (1) by noting (4.2).
It remains to prove (1). Sinceψ ı = ϒψ andψ (E(a)ξ−s ) = E(a)ξ−s , we have

ψ ı (E
(a)ξ−s ) = ϒ(E(a)ξ−s ) = E(a)ξ−s +

∑
a′<a

ρsa;a′E
(a′)ξ−s ,

for some scalars ρsa;a′ ∈ A. As ψ ı is an involution, Part (1) follows by an
application of [Lu2, Lemma 24.2.1] to our setting. �

Lemma 4.8. — Write

x ≡ x ′ if x − x ′ ∈ q ωL(s) with s ∈ N.

The Uı -homomorphism

π = πs,1 : ωL(s + 2) −→ ωL(s)

from Proposition 4.4 satisfies that, for a ≥ 0,

π (E(a)ξ−s−2) ≡

{
E(a−1)ξ−s if s = a − 1,
E(a)ξ−s otherwise.

Proof. — Recall Proposition 4.4, Proposition 4.3, and

π = (δ ⊗ id)(T⊗ id ⊗ id)(χ ⊗ id)χ .

It is easy to compute the action of Ton ωL(1) = L(1) is given by

T(ξ−1) = Eξ−1 − (q
−1 − q)ξ−1 and T(Eξ−1) = ξ−1.

For the map δ ⊗ id : L(1) ⊗ ωL(1) ⊗ ωL(s) → ωL(s), it is easy to compute that

δ (Eξ−1 ⊗ ξ−1) = 1, δ (ξ−1 ⊗ Eξ−1) = −q, δ (ξ−1 ⊗ ξ−1) = δ (Eξ−1 ⊗ Eξ−1) = 0.
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For the map (χ ⊗ id)χ : ωL(s + 2) → ωL(1) ⊗ ωL(1) ⊗ ωL(s), we have

(χ ⊗ id)χ (E(a)ξ−s−2)

=
∑

a1+a2+a3=a

q−a1a2−a1a3−a2a3+a1+sa1+sa2E(a1)ξ−1 ⊗ E
(a2)ξ−1 ⊗ E

(a3)ξ−s

= ξ−1 ⊗ ξ−1 ⊗ E
(a)ξ−s + q

−a+1+sξ−1 ⊗ Eξ−1 ⊗ E
(a−1)ξ−s

+ q−a+2+sEξ−1 ⊗ ξ−1 ⊗ E
(a−1)ξ−s + q

2s−2a+4Eξ−1 ⊗ Eξ−1 ⊗ E
(a−2)ξ−s .

Then by applying T⊗ id ⊗ id, we have

(T⊗ id ⊗ id)(χ ⊗ id)χ (E(a)ξ−s−2)

= Eξ−1 ⊗ ξ−1 ⊗ E
(a)ξ−s − (q

−1 − q)ξ−1 ⊗ ξ−1 ⊗ E
(a)ξ−s

+ q−a+2+sEξ−1 ⊗ Eξ−1 ⊗ E
(a−1)ξ−s − q

−a+1+s (q −1 − q)ξ−1 ⊗ Eξ−1 ⊗ E
(a−1)ξ−s

+ q−a+1+sξ−1 ⊗ ξ−1 ⊗ E
(a−1)ξ−s + q

2s−2a+4ξ−1 ⊗ Eξ−1 ⊗ E
(a−2)ξ−s .

At last, by applying δ ⊗ 1, we have

π (E(a)ξ−s−2)

= E(a)ξ−s + 0 + 0 + q−a+2+s (q −1 − q)E(a−1)ξ−s + 0 − q2s−2a+5E(a−2)ξ−s

= E(a)ξ−s + q
−a+1+sE(a−1)ξ−s − q

−a+3+sE(a−1)ξ−s − q
2s−2a+5E(a−2)ξ−s .

The lemma follows. �

We adopt the convention that T s
a = 0 if s < a.

Proposition 4.9. — The homomorphism

π = πs,1 : ωL(s + 2) −→ ωL(s)

sends ı-canonical basis elements to ı-canonical basis elements or zero. More precisely,
we have

π (T s+2
a ) =

{
T s
a−1 if s = a − 1,

T s
a otherwise.

Proof. — By Proposition 4.7 and Lemma 4.8, the difference of the two sides
of the identity in the proposition lies in q ωL(s) and hence is a qZ[q]-linear
combination of Bı (s). Lemma 4.5 implies that such a difference is fixed by
the anti-linear involution ψ ı and hence it must be zero. The proposition
follows. �

Lemma 4.10. — Let f (t) ∈ Uı = Q(q)[t] be nonzero. Then

f (t)ξ−s , 0 for all s ≥ deg f .
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Proof. — We write ξ = ξ−s . Write a = deg f , and f (t) =
∑a

i=0 cit
i with ca , 0.

Then ı (f (t)) = caEa + x , where x is a linear combination of elements in Uwith
weights lower than that of Ea . It follows that

f (t)ξ = caE
aξ + xξ , 0 for s ≥ a,

since caEaξ , 0 and it cannot be canceled out by xξ for weight reason. �

Proposition 4.11. — There exists a unique Q(q)-basis{
T odd
a ; a ∈ N

}
of Uı = Q(q)[t] with degT odd

a = a such that

T odd
a ξ−s =

{
T s
a−1 if s = a − 1,

T s
a otherwise,

(4.3)

for each s ∈ 2N + 1. Moreover, we have T odd
a = T odd

a .

Proof. — By going over carefully the proof of Lemma 4.1 in the rank one case,
we can prove the following refinement:

(♥sa)
Whenever s ≥ a, there exists a unique element Ta(s) ∈ Uı = Q(q)[t]
of degree a such that Ta(s)ξ−s = T s

a .

Let s ≥ a and take l ≥ 0. Since πs,l is a U
ı -homomorphism with

πs,l (ξ−(s+2l )) = ξ−s (see Proposition 4.4), we have by Proposition 4.9

Ta(s + 2l)ξ−s = πs,l
(
Ta(s + 2l)ξ−(s+2l )

) ♥s+2l
a
=== πs,l (T

s+2l
a ) = T s

a
♥sa
== Ta(s)ξ−s .

HenceTa(s +2l) = Ta(s) for all l ≥ 0 and s ≥ a, thanks to the uniqueness ofTa(s)
in (♥sa). Hence,

T odd
a := lim

l 7→∞
Ta(1 + 2l) ∈ Uı

is well defined. It follows by Proposition 4.9 that T odd
a satisfies (4.3).

We now show thatT odd
a is unique (for a given a). Let ′T odd

a be another such
element satisfying (4.3). Then

(T odd
a − ′T odd

a )ξ−s = 0, for all s ∈ 2N + 1.

It follows by Lemma 4.10 that T odd
a = ′T odd

a .
Applying ψ ı to both sides of (4.3) and using Corollary 3.11, we conclude

that T odd
a satisfies (4.3) as well. Hence we have

T odd
a = T odd

a

by the uniqueness. �
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A similar argument gives us the following proposition.

Proposition 4.12. — There exists a unique Q(q)-basis{
T ev
a ; a ∈ N

}
of Uı = Q(q)[t] with degT ev

a = a such that

T ev
a ξ−s =

{
T s
a−1 if a = s + 1,

T s
a otherwise,

for each s ∈ 2N. Moreover, we have T ev
a = T

ev
a .

Clearly we have T odd
0 = T ev

0 = 1. It is also easy to see that T odd
a and T ev

a
for a ≥ 1 are both of the form

(4.4) ta

[a]! + д(t), where degд < a.

We have the following conjectural formula (which is not needed in this
book).

Conjecture 4.13. — For a ∈ N, we have

T odd
2a =

t(t − [−2a + 2])(t − [−2a + 4]) · · · (t − [2a − 4])(t − [2a − 2])
[2a]!

,

T odd
2a+1 =

(t − [−2a])(t − [−2a + 2]) · · · (t − [2a − 2])(t − [2a])
[2a + 1]!

,

T ev
2a =

(t − [−2a + 1])(t − [−2a + 3]) · · · (t − [2a − 3])(t − [2a − 1])
[2a]!

,

T ev
2a+1 =

t(t − [−2a + 1])(t − [−2a + 3]) · · · (t − [2a − 3])(t − [2a − 1])
[2a + 1]! ·

3. Integrality at rank one

Lemma 4.14. — Let s, l ∈ N.

(1) There exists a unique homomorphism of Uı -modules

π− = π−s,l : ωL(s + 2l) −→ L(l) ⊗ ωL(s + l)

such that π−(ξ−s−2l ) = ηl ⊗ ξ−s−l .

(2) π− induces a homomorphism of A-modules

π− = π−s,l : ωLA(s + 2l) −→ LA(l) ⊗
ωLA(s + l).
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Proof. — The uniqueness of such a homomorphism is clear, since by
Lemma 4.1

U
ıξ−s−2l =

ωL(s + 2l).
We let π− = T−1χ be the composition of the Uı -homomorphisms

ωL(s + 2l) ωL(l) ⊗ ωL(s + l) L(l) ⊗ ωL(s + l),
χ T−1⊗1

where χ is the U
ı -homomorphism from Proposition 4.3 and T = ϒ ◦ ζ̃ ◦ Tw0

is the U
ı -homomorphism from Theorem 2.18. As the automorphism Tw0

preserves the A-forms, we can choose the weight function ζ in (2.18) with
suitable value ζ (l) ∈ qZ such that T −1

w0 ζ̃
−1(ξ−l ) = ηl . It follows by (2.18) that ζ

must be A-valued. Then π− = T−1χ is the map satisfying (1) since
χ (ξ−s−2l ) = ξ−l ⊗ ξ−s−l .

By Proposition 4.3 χ maps ωLA(s + 2l) to LA(l) ⊗
ωLA(s + l). It is also well

known that Tw0 is an automorphism of the A-form ωLA(l). By Lemma 4.6,
ϒ −1 = ϒ preserves the A-form ωLA(l) as well. As a composition of all these
maps, π− = (ϒ ◦ ζ̃ ◦Tw0)

−1χ preserves the A-forms, whence (2). �

The following lemma is a variant of Lemma 4.14 and can be proved in the
same way.

Lemma 4.15. — Let s, l ∈ N.
(1) There exists a unique homomorphism of Uı -modules

π+ = π+s,l : ωL(s + 2l) −→ L(s + l) ⊗ ωL(l),

such that π+(ξ−s−2l ) = ηs+l ⊗ ξ−l .
(2) π+ induces a homomorphism of A-modules

π+ : ωLA(s + 2l) −→ LA(s + l) ⊗
ωLA(l).

Recall that a modified Q(q)-algebra ÛU as well as its A-form ÛUA are defined
in [Lu2, Chapter 23]. Any finite-dimensional unital ÛU-module is naturally a
weight U-module, and vice versa (see [Lu2, 23.1.4]). In the rank one setting,
Û
U (or ÛUA) is generated by E, F and the idempotents 1s for s ∈ Z. As ÛU is
naturally aU-bimodule, ı (T odd

a )1s and ı (T ev
a )1s make sense as elements in ÛU1s ,

for a ∈ N and s ∈ Z.

Proposition 4.16

(1) We have ı (T odd
a )1s ∈ ÛUA, for all a ∈ N and s ∈ 2Z + 1.

(2) We have ı (T ev
a )1s ∈ ÛUA, for all a ∈ N and s ∈ 2Z.
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Proof. — (1) Let s ∈ 2N + 1. Fix an arbitrary a ∈ N. Recall Lusztig’s canonical
basis {b ^−s b ′} of ÛU1−s in [Lu2, Thm. 25.2.1]. We write

ı (T odd
a )1−s =

∑
b,b′

cb,b′ b ^−s b
′,

for some scalars cb,b′ ∈ Q(q). Consider the map

π− : ωLA(s + 2l) −→ LA(l) ⊗
ωLA(s + l)

in Lemma4.14 for all l ≥ 0. WehaveT odd
a ξ−s−2l ∈

ωLA(s+2l) byPropositions 4.7
and 4.11. Therefore we have

ı (T odd
a )1−s (ηl ⊗ ξ−s−l ) = T odd

a (ηl ⊗ ξ−s−l ) = π
−(T odd

a ξ−s−2l ) ∈ LA(l) ⊗
ωLA(s + l).

Hence we have (in Lusztig’s notation [Lu2, Thm. 25.2.1])∑
(b,b′)

cb,b′(b ^ b ′)l,s+l = ı (T
odd
a )1−s (ηl ⊗ ξ−s−l ) ∈ LA(l) ⊗ ωLA(s + l).

Since this holds for all l and (b ^ b ′)l,s+l , 0 for l � 0, all cb,b′ must belong
to A. Hence ı (T odd

a )1−s ∈ ÛUA.
By considering the map

π+ : ωLA(s + 2l) −→ LA(s + l) ⊗
ωLA(l)

in Lemma 4.15 for all l ≥ 0, we can show that ı (T odd
a )1s ∈ ÛUA for s ∈ 2N +1 in a

similarway. This proves (1). Theproof of (2) is similar andwill be skipped. �

4. The integrality of ϒ

Back to the general higher rank case, we are now ready to prove the follow-
ing crucial lemma with the help of Proposition 4.16.

Lemma 4.17. — For each λ ∈ Λ+, we have ϒ(ωLA(λ)) ⊆ ωLA(λ).

Proof. — We write ξ = ξ−λ . We shall prove that ϒx ∈ ωLA(λ) by induction on
the height ht(µ + λ), for an arbitrary weight vector x ∈ ωLA(λ)µ . It suffices to
consider x of the form x = E(a1)

αi1
E(a2)
αi2
· · · E(as )αis ξ which isψ -invariant.

The base case when ht(µ + λ) = 0 is clear, since x = ξ and ϒξ = ξ .
Denote x ′ = E(a2)

αi2
· · · E(as )αis ξ ∈

ωLA(λ), and so x = E(a1)
αi1

x ′. The induction step
is divided into three cases depending on whether i1 > 0, i1 < 0, or i1 = 0.
Recall that, for any u ∈ U

ı , the actions of u and ı (u) on ωLA(λ) are the same
by definition.
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(1) Assume that i1 > 0 (i.e., i1 ∈ Iı ). Replacing E(a1)
αi1

in the expression of x
by e(a1)

αi1
, we introduce a new element x ′′ = e(a1)

αi1
x ′ which lies in ωLA(λ) thanks

to (2.2). Then y := x ′′ − x ∈ ωLA(λ) is a linear combination of elements of
weights lower than the weight of x .

We shall consider ψ ı (x ′′) in two ways. By Corollary 3.11, ωLA(λ) is ı-
involutive. Since e(a1)

αi1
isψ ı -invariant andψ ı = ϒψ , we have

ψ ı (x
′′) = ψ ı (e

(a1)
αi1

x ′) = e(a1)
αi1

ψ ı (x
′) = e(a1)

αi1
ϒψ (x ′).

It is well known (cf. [Lu2]) that ψ preserves ωLA(λ), and so ψ (x ′) ∈ ωLA(λ).
Sinceψ (x ′) has weight lower than x , we have ϒψ (x ′) ∈ ωLA(λ) by the induction
hypothesis. Equation (2.2) implies thatψ ı (x ′′) = e(a1)

αi1
ϒψ (x ′) ∈ ωLA(λ).

On the other hand, we have

ψ ı (x
′′) = ψ ı (x) +ψ ı (y) = ϒψ (x) + ϒψ (y) = ϒx + ϒψ (y).

Since ψ (y) ∈ ωLA(λ) has weight lower than x , we have ϒψ (y) ∈ ωLA(λ) by the
induction hypothesis. Therefore we conclude that ϒx = ψ ı (x ′′)−ϒψ (y) belongs
to ωLA(λ).

(2) Assume that i1 < 0. In this case, replacing E(a1)
αi1

in the expression
of x by f (a1)

α−i1
instead, we consider a new element x ′′ = f (a1)

αi1
x ′ which also lies

in ωLA(λ) by (2.3). Then an argument parallel to (1) shows that ϒx ∈ ωLA(λ).
(3) Now consider the case where i1 = 0. Set

β =
s∑

p=2
aiαip − λ.

We decide into two subcases (i)–(ii), depending on whether (α0, β) is odd or
even.

Subcase (i) : Assume that (α0, β) is an odd integer
Replacing E(a1)

αi1
in the expression of x by the elementT odd

a1 defined in Propo-
sition 4.11, we introduce a new element x ′′ = T odd

a1 x ′, which belongs to ωLA(λ)

by Proposition 4.16 (as we can write x ′′ = T odd
a1 1(α0,β )x

′). Thanks to (4.4),
y := x ′′ − x ∈ ωLA(λ) is a linear combination of elements of weights lower
than x . Then similarly as in case (1), we have

ψ ı (x
′′) = ψ ı (T

odd
a1 x ′) = T odd

a1 ψ ı (x
′) = T odd

a1 ϒψ (x ′).

As in (1), we have ϒψ (x ′) ∈ ωLA(λ). Recall from Theorem 2.10 that ϒ =
∑
µ ϒµ ,

where ϒµ , 0 only if µθ = µ. Note that (α0, µ)must be an even integer if µθ = µ.
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Hence (α0, µ+β) is always oddwhenever µθ = µ. Therefore byProposition 4.16,
we have

ψ ı (x
′′) = T odd

a1 ϒψ (x ′) =
∑

µ :µθ=µ

T odd
a1 1(α0,µ+β )ϒµψ (x

′) ∈ ωLA(λ).

Now by the induction hypothesis we have ϒψ (y) ∈ ωLA(λ), and hence

ϒx = ψ ı (x
′′) − ϒψ (y) ∈ ωLA(λ).

Subcase (ii): Assume that (α0, β) is an even integer
In this subcase, we replace E(a1)

αi1
byT ev

a1 . The rest of the argument is the same
as Subcase (i) above.

This completes the induction and the proof of the lemma. �

Theorem 4.18. — We have ϒµ ∈ U−A, for all µ ∈ NΠ.

Proof. — Recall Lusztig’s canonical basis Bµ = B ∩ fµ of f in Chapter 3. We
write ϒµ =

∑
b ∈Bµ cb b

− for some scalars cb ∈ Q(q). By Lemma 4.17, we have

ϒµηλ =
∑
b ∈Bµ

cb b
−ηλ ∈ LA(λ), for all λ ∈ Λ+.

For an arbitrarily fixed b ∈ Bµ , b−ηλ , 0 for λ large enough, and hence we
must have cb ∈ A. Therefore ϒµ ∈ U−A. �

5. The ı-canonical basis of a based U-module

By Corollary 3.11, ωL(λ) for λ ∈ Λ+ is an ı-involutive Uı -module with invo-
lutionψ ı = ϒψ .

Lemma 4.19. — The bar mapψ ı preserves the A-form ωLA(λ), for λ ∈ Λ+.

Proof. — It is well known (cf. [Lu2]) that ψ preserves ωLA(λ). As ωLA(λ) is
preserved by ϒ by Lemma 4.17, it is also preserved byψ ı = ϒψ . �

Define a partial ordering � on the set B(λ) of canonical basis for λ ∈ Λ+ as
follows:

(4.5) b1 � b2 if the images of |b1 |, |b2 | are the same in Λθ
and |b2 | − |b1 | ∈ NΠ.

(Recall that |b | denotes the weight of b as in §2).
For any b ∈ B(λ), we have

(4.6) ψ ı (b
+ξ−λ) = ϒψ (b+ξ−λ) = ϒ(b+ξ−λ) =

∑
b′∈B(λ)

ρb ;b′b
′+ξ−λ ,
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where ρb ;b′ ∈ A by Theorem 4.18. Since ϒ lies in a completion of U
−

satisfying ϒµ = 0 unless µθ = µ (see Theorem 2.10), we have

ρb ;b = 1 and ρb ;b′ = 0

unless b ′ � b. As ψ ı is an involution, we can apply [Lu2, Lemma 24.2.1]
to our setting to establish the following theorem, which is a generalization
of Proposition 4.7 in the rank one case.

Theorem 4.20. — Let λ ∈ Λ+.

(1) The Uı -module ωLA(λ) admits a unique basis

B
ı (λ) :=

{
T λb ; b ∈ B(λ)

}
which isψ ı -invariant and of the form

T λb = b
+ξ−λ +

∑
b′≺b

tλb ;b′ b
′+ξ−λ , for tλb ;b′ ∈ qZ[q].

(2) B
ı (λ) forms an A-basis for the A-lattice ωLA(λ).

(3) B
ı (λ) forms a Z[q]-basis for the Z[q]-lattice ωL(λ).

Definition 4.21. — B
ı (λ) is called the ı-canonical basis of theUı -module ωL(λ).

Remark 4.22. — The ı-canonical basis Bı (λ) is not homogenous in terms of
the weight lattice Λ, though it is homogenous in terms of Λθ .

Remark 4.23. — Lusztig’s canonical basisB(λ) is computable algorithmically.
As ϒ is constructed recursively in §4, there is an algorithm to compute the
structure constants ρb ;b′ in (4.6) and then tλb ;b′.

Set tλb ;b = 1, and tλb ;b′ = 0 if b,b ′ ∈ B(λ) satisfy b ′ � b.

Conjecture 4.24 (Positivity of tλb ;b′). — We have tλb ;b′ ∈ N[q], for b,b
′ ∈ B(λ).

One can hope for similar positivity in the general setting of based U-
modules below.

Recall [Lu2, Chap. 27] has developed a theory of finite-dimensional based
U-modules (M,B) (for general quantum groups U of finite type). The basis B
generates a Z[q]-submodule M and an A-submodule AM of M . Applying the
same argument for Theorem 4.20 above, we have established the following.
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Theorem 4.25. — Let (M,B) be a finite-dimensional based U-module.

(1) The Uı -moduleM admits a unique basis (called ı-canonical basis)
Bı :=

{
Tb ; b ∈ B

}
which isψ ı -invariant and of the form

(4.7) Tb = b +
∑
b′∈B
b′≺b

tb ;b′ b
′, for tb ;b′ ∈ qZ[q].

(2) Bı forms an A-basis for the A-lattice AM , and Bı forms a Z[q]-basis for the
Z[q]-lattice M.

Recall that a tensor product of finite-dimensional simple U-modules is
a based U-module by [Lu2, Thm. 27.3.2]. Theorem 4.25 implies now the
following.

Theorem 4.26. — Let λ1, . . . , λr ∈ Λ+. The tensor product of finite-dimensional
simple U-modules ωL(λ1) ⊗ · · · ⊗

ωL(λr ) admits a unique ψ ı -invariant basis of the
form (4.7) (called ı-canonical basis).

Remark 4.27. — One can hope for a positivity similar to Conjecture 4.24 in
the above general setting of tensor product U-modules.
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5. THE (Uı,HBm )-DUALITY AND COMPATIBLE BAR

INVOLUTIONS

In this chapter, we recall Schur-Jimbo duality between quantum group U

and Hecke algebra of type A. Then we establish a duality between U
ı and

Hecke algebra HBm of type B acting on V⊗m , and show the existence of a
bar involution on V⊗m which is compatible with the bar involutions on U

ı

and HBm . This allows a reformulation of Kazhdan-Lusztig theory for Lie
algebras of type B/C via the involutive Uı -module V⊗m .

1. Schur-Jimbo duality

Recall the notation I2r from (1.1), and we set

I = I2r+2 =
{
− r − 1

2
, · · · , − 3

2
, − 1

2
, 1

2
, 3

2
, · · · , r + 1

2
}
.

Let the Q(q)-vector space
V :=

∑
a∈I

Q(q)va

be the natural representation of U. We shall call V the natural representation
of Uı (by restriction) as well. Form ∈ Z>0, the tensor space V⊗m is naturally
a U-module (and a U

ı -module) via the coproduct ∆. The U-module V is
involutive withψ defined by

ψ (va) := va , for all a ∈ I .

Then V⊗m is an involutiveU-module and hence an ı-involutiveUı -module by
Proposition 3.10 and Remark 3.14.

We view f ∈ Im as a function f : {1, . . . ,m} → I . For any f ∈ Im , we define

Mf := vf (1) ⊗ · · · ⊗ vf (m).

Then {Mf ; f ∈ Im} forms a basis for V⊗m .

Let WBm be the Coxeter groups of type Bm with simple reflections sj ,
0 ≤ j ≤ m − 1, where the subgroup generated by si , 1 ≤ i ≤ m − 1 is iso-
morphic to

WAm−1 � Sm .
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The groupWBm and its subgroup Sm act naturally on Im on the right as follows:
for any f ∈ Im , 1 ≤ i ≤ m, we have

(5.1) f · sj =

{
(. . . , f ( j + 1), f ( j), . . . ) if j > 0,
(−f (1), f (2), . . . , f (m)) if j = 0.

Let HBm be the Iwahori-Hecke algebra of type Bm overQ(q). It is generated
by H0,H1,H2, . . . ,Hm−1, subject to the following relations:

(Hi − q
−1)(Hi + q) = 0 for i ≥ 0,

HiHi+1Hi = Hi+1HiHi+1 for i > 0,
HiHj = HjHi for |i − j | > 1,
H0H1H0H1 = H1H0H1H0.

Associated to σ ∈WBm with a reduced expression σ = si1 · · · sik , we define

Hσ := Hi1 · · ·Hik .

The bar involution on HBm is the unique anti-linear automorphism defined
by

Hσ = H −1
σ −1 , q = q −1, for all σ ∈WBm .

There is a right action of the Hecke algebra HBm on the Q(q)-vector
space V⊗m as follows:

(5.2) Mf Ha =



q −1Mf if a > 0 and f (a) = f (a + 1),
Mf ·sa if a > 0 and f (a) < f (a + 1),
Mf ·sa + (q

−1 − q)Mf if a > 0 and f (a) > f (a + 1),
Mf ·s0 if a = 0 and f (1) > 0,
Mf ·s0 + (q

−1 − q)Mf if a = 0 and f (1) < 0.

One can alternatively set f (0) = 0, then we only need the first three cases
above without any condition on a.

Identifiedas the subalgebrageneratedbyH1,H2, . . . ,Hm−1 ofHBm , theHecke
algebra HAm−1 inherits a right action on V⊗m . Note that the bar involution
on HAm−1 is just the restriction of the bar involution on HBm .

Recall from Chapter 4 the operatorR. We define the following operator on
V⊗m for each 1 ≤ i ≤ m − 1:

Ri := idi−1
⊗R ⊗ idm−i−1 : V⊗m −→ V⊗m .

The following basic result was due to Jimbo.
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Proposition 5.1 (see [Jim])

(1) The action of R−1
i coincides with the action of Hi on V⊗m for 1 ≤ i ≤ m − 1.

(2) The actions of U and HAm−1 on V⊗m commute with each other, and they form
double centralizers.

2. The (Uı ,HBm )-duality

Introduce the Q(q)-subspaces of V:

V− =
⊕

0≤i≤r
Q(q)(v−i−1/2 − q

−1vi+1/2), V+ =
⊕

0≤i≤r
Q(q)(v−i−1/2 + qvi+1/2).

Lemma5.2. — The subspaceV− is aUı -submodule ofV generated byv−1/2 − q
−1v 1/2

and V+ is a U
ı -submodule of V generated by v−1/2 + qv 1/2. Moreover, we have

V = V− ⊕ V+.

Proof. — Follows by a direct computation. �

Now we fix the function ζ in (2.18) with ζ (ε−r−1/2) = 1 so that

ζ (εr+1/2−i ) = (−q)
i−2r−1 for 0 ≤ i ≤ 2r + 1.

Let us compute the U
ı -homomorphism T = ϒ ◦ ζ̃ ◦ Tw0 (see Theorem 2.18)

on the U-module V; we remind that w0 here is associated to U instead
ofWBm orWAm−1 .

Lemma 5.3. — The U
ı -isomorphism T−1 on V acts as a scalar (−q) id on the

submodule V− and as q −1 id on the submodule V+.

Proof. — First one computes that the action of Tw0 on V is given by

Tw0(v−r−1/2+i ) = (−q)
2r+1−ivr+ 1

2−i
for 0 ≤ i ≤ 2r + 1.

Hence

(5.3) ζ̃ ◦Tw0(va) = va ·s0 for all a ∈ I .

Wehave ϒα0 = −(q
−1−q)Fα0 from the proof of Theorem2.10 in §4. Therefore,

using T= ϒ ◦ ζ̃ ◦Tw0 we have

T−1(v−1/2 − q
−1v 1/2) = −q(v−1/2 − q

−1v 1/2) ,(5.4)

T−1(v−1/2 + qv 1/2) = q
−1(v−1/2 + qv 1/2) .(5.5)

The lemma now follows from Lemma 5.3 since T−1 is a Uı -isomorphism. �
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We have the following generalization of Schur-Jimbo duality in Proposi-
tion 5.1.

Theorem 5.4 ((Uı ,HBm )-duality)

(1) The action of T−1 ⊗ idm−1 coincides with the action of H0 ∈ HBm on V⊗m .

(2) The actions of Uı and HBm on V⊗m commute with each other, and they form
double centralizers.

Proof. — Part (1) follows from Lemma 5.3 and the action (5.2) of H0 ∈ HBm
on V⊗m .

By Proposition 5.1, the actions ofUı and HAm−1 onV⊗m commute with each
other. The action of Uı on V⊗m comes from the iterated coproduct

U
ı −→ U

ı ⊗ U
⊗m−1.

Since T−1 : V → V is a U
ı -homomorphism, we conclude that the actions

of T−1 ⊗ idm−1 and U
ı on V⊗m commute with each other. Hence by (1) the

actions of Uı and HBm on V⊗m commute with each other.
The double centralizer property is equivalent to a multiplicity-free decom-

position of V⊗m as an U
ı ⊗ HBm -module. The latter follows by the same

multiplicity-free decomposition claim at the specialization q 7→ 1, in which
case U

ı specializes to the enveloping algebra of sl(r + 1) ⊕ gl(r + 1) and HBm
to the group algebra ofWBm . Then V = V+ ⊕ V− at q = 1 becomes the nat-
ural module of sl(r + 1) ⊕ gl(r + 1), on which s0 ∈ WBm acts as (idV+ ,− idV−).
A multiplicity-free decomposition of V⊗m at q = 1 can be established by a
standard method with the simples parameterized by ordered pairs of parti-
tions (λ, µ) such that `(λ) ≤ r + 1, `(µ) ≤ r + 1 and |λ | + |µ | =m. �

Remark 5.5. — The homomorphism T (or T−1) is not needed in Theo-
rem 5.4(2), as one can check directly that the action of H0 commutes with
the action of Uı . However, it is instructive to note that the action of H0 arises
from Twhich plays an analogous role as the R-matrix.

Remark 5.6. — A version of the duality in Theorem 5.4 was given in [Gr],
where a Schur-type algebra was in place of Uı here. For the applications to
BGG categories in Part 2, it is essential for us to work with the “quantum
group” U

ı equipped with a coproduct.
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3. Bar involutions and duality

Definition 5.7

An element f ∈ Im is called anti-dominant (or ı-anti-dominant), if
0 < f (1) ≤ f (2) ≤ · · · ≤ f (m).

Theorem 5.8. — There exists an anti-linear bar involution

ψ ı : V⊗m −→ V⊗m

which is compatible with both the bar involution of HBm and the bar involution ofUı ;
that is, for all v ∈ V⊗m , σ ∈WBm , and u ∈ Uı , we have

(5.6) ψ ı (uvHσ ) = ψ ı (u)ψ ı (v)Hσ .

Such a bar involution is unique by requiringψ ı (Mf ) = Mf for all ı-anti-dominant f .

Proof. — Applying the general construction in §4 to our setting, we have an
ı-involutiveUı -module (V⊗m ,ψ ı ); in otherwords, we have constructed an anti-
linear involutionψ ı : V⊗m → V⊗m which is compatiblewith the bar involution
of Uı .

As theHBm -moduleV⊗m is a direct sumofpermutationmodules of the form
HBm/HJ for various Hecke subalgebras HJ , there exists a unique anti-linear
involution on V⊗m , denoted byψ ′ı , such that
(1) ψ ′ı (Mf ) = Mf , if f is ı-anti-dominant;
(2) ψ ′ı (MдHσ ) = ψ

′
ı (Mд)Hσ , for all д ∈ Im and σ ∈WBm .

To prove the compatibility ofψ ı with the bar involution ofHBm , it suffices to
proveψ ı satisfies the conditions (1)-(2) above; note that it suffices to consider σ
in (2) to be the simple reflections.

By the construction in §4, the bar involution
ψ ı : V⊗m −→ V⊗m

is given by ψ ı = ϒψ , where ψ : V⊗m → V⊗m is a bar involution of type A.
The following compatibility of the bar involutions in the typeA setting is well
known (see, e.g., [Br1]; note here that our ı-anti-dominant condition is stronger
than the type A anti-dominant condition.):

(1′) ψ (Mf ) = Mf , if f is ı-anti-dominant;
(2′) ψ (MдHσ ) = MдHσ , for any д ∈ Im and any Hσ ∈ HAm−1 .
The U-weight ofMf is wt(f ) :=

∑m
a=1 εf (a) ∈ Λ. Define the Uı -weight ofMf

wt0(f ) :=
m∑
a=1

ε f (a) ∈ Λθ ,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2018



66 CHAPTER 5. THE U ı -DUALITY AND COMPATIBLE BAR INVOLUTIONS

which is the image of wt(f ) in Λθ = Λ/Λθ (here we have denoted by εk the
image of εk in Λθ ). Defined the following partial ordering � on Im (which is
only used in this proof):

д � f if wt0(д) = wt0(f ) and wt(f ) − wt(д) ∈ NΠ.

Applying the intertwiner ϒ =
∑
µ ∈NΠ ϒµ from Theorem 2.10, we can write

for any f ∈ Im that

ϒ(Mf ) =
∑
д∈Im

cдMд, for cд ∈ Q(q).

Here the sum can be restricted to д with wt0(д) = wt0(f ) (since ϒµ = 0 unless
µθ = µ by Theorem 2.10); hence we have wt(дf ) − wt(д) ∈ NΠ (since ϒµ ∈ U−).
Therefore we have

ϒ(Mf ) = Mf +
∑
д≺f

cдMд, for cд ∈ Q(q).

So if f is ı-anti-dominant then we have ϒ(Mf ) = Mf , and thus by Proposi-
tion 3.10 and (1′) above,

ψ ı (Mf ) = ϒψ (Mf ) = ϒ(Mf ) = Mf .

Henceψ ı satisfies Condition (1).
To verify Condition (2) for ψ ı , let us first consider the special case m = 1.

Note that ψ (va) = va and hence ψ ı (va) = ϒ(va) for all a. By Definition 5.7,
a is ı-anti-dominant if and only if a > 0. Thus we have

(5.7) ψ ı (va) = va = ψ
′
ı (va), for a > 0.

On the other hand, by (5.3) and Lemma 5.3 we have

ψ ı (va) = ϒ(va) = ϒ ◦ ζ̃ ◦Tw0(va ·s0)(5.8)

= T(va ·s0) = va ·s0H
−1

0 = ψ ′ı (va) for a < 0.

Henceψ ı = ψ ′ı and (5.6) holds whenm = 1.
Now consider general m ∈ Z>0. For 1 ≤ i ≤ m − 1, by applying Propo-

sition 3.10, the identity (2′) above, and Proposition 5.1 in a row, we have,
for д ∈ Im ,

ψ ı (MдHi ) = ϒψ (MдHi ) = ϒ
(
ψ (Mд)H i

)
= ψ ı (Mд)H i .
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When i = 0, we writeMд = vд(1) ⊗ Mд′, and hence
ψ ı (MдH0) = ψ ı (vд(1)H0 ⊗ Mд′)

= Θı (ψ ı (vд(1)H0) ⊗ψ (Mд′)
)

by Proposition 3.15,

= Θı (ψ ı (vд(1))H 0 ⊗ψ (Mд′)
)

by (5.6) in casem = 1,

= Θı (ψ ı (vд(1)) ⊗ψ (Mд′)
)
H 0 by Theorem 5.4,

= ψ ı (Mд)H 0 by Proposition 3.15.
This provesψ ı = ψ ′ı in general, and hence completes the proof of the compati-
bility of all these bar involutions.

The uniqueness of ψ ı in the theorem follows from the uniqueness of ψ ′ı
above. �

Remark 5.9. — The anti-linear involutionψ ı defined on V⊗m from the Hecke
algebra side gives rise to the Kazhdan-Lusztig theory of type B. Theorem 5.8
implies that the (induced) Kazhdan-Luszig basis on V⊗m coincides with its
ı-canonical basis (see Theorem 4.26). Hence Kazhdan-Lusztig theory of type B
can be reformulated from the algebra Uı side throughψ ı without referring to
the Hecke algebra; see Theorem 11.10.

Remark 5.10. — It follows by (5.7) and (5.8) that{
vi+1/2, (v−i−1/2 − q

−1vi+1/2) ; 0 ≤ i ≤ r
}

forms aψ ı -invariant basis of V. Also{
vi+1/2, (v−i−1/2 + qvi+1/2) ; 0 ≤ i ≤ r

}
forms another ψ ı -invariant basis of V, which must be the ı-canonical basis by
the characterization in Theorem 4.20.
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6. THE QUANTUM SYMMETRIC PAIR (U,U)

In this chapter we consider the quantum symmetric pair (U,U  ) with U of
type A2r . We formulate the counterparts of the main results from Chapter 2
through Chapter 5 where U was of type A2r+1. The proofs are similar and
often simpler for U  since it does not contain a generator t as U

ı does, and
hence will be omitted almost entirely.

1. The coideal subalgebra U


We shall write I = I2r as given in (1.1) in this chapter. We define

I  = I r =
( 1

2 + N
)
∩ I =

{ 1
2
, 3

2
, · · · , r − 1

2
}
.

The Dynkin diagram of type A2r together with the involution θ are depicted
as follows:

A2r :
α−r+1/2 α −1/2 α 1/2 αr−1/2
• • • •

θ

The algebra U  is defined to be the associative algebra over Q(q) generated
by eαi , fαi , kαi , k −1

αi , i ∈ I
 , subject to the following relations for i, j ∈ I  :

kαik
−1
αi = k

−1
αi kαi = 1, kαikα j = kα jkαi ,

kαieα jk
−1
αi = q

(αi−α−i ,α j )eα j , kαi fα jk
−1
αi = q

−(αi−α−i ,α j ) fα j ,

eαi fα j − fαieα j = δi, j (kαi − k
−1
αi )/(q − q

−1) if i, j , 1
2
,

e2
αieα j + eα je

2
αi = (q + q

−1)eαieα jeαi if |i − j | = 1,

f 2
αi fα j + fα j f

2
αi = (q + q

−1)fαi fα j fαi if |i − j | = 1,
eαieα j = eα jeαi if |i − j | > 1,
fαi fα j = fα j fαi if |i − j | > 1,

f 2
α 1

2
eα1/2 + eα1/2 f

2
α1/2 = (q + q

−1)
(
fα1/2eα1/2 fα1/2 − qfα1/2k

−1
α1/2 − q

−1 fα1/2kα1/2

)
,

e2
α1/2 fα1/2 + fα1/2e

2
α1/2 = (q + q

−1)
(
eα1/2 fα1/2eα1/2 − q

−1kα1/2eαv − qk
−1
α1/2eα1/2

)
.
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We introduce the divided powers

e(a)αi = eaαi /[a]! and f (a)αi = f aαi /[a]!.

The following is a counterpart of Lemma 2.1.

Lemma 6.1

(1) The algebra U  has an involution ω  such that

ω  (kαi ) = q
−δi,1/2k −1

αi , ω  (eαi ) = fαi and ω  (fαi ) = eαi for all i ∈ I  .

(2) The algebra U  has an anti-involution τ  such that

τ  (eαi ) = eαi , τ  (fαi ) = fαi and τ  (kαi ) = q
−δi,1/2k −1

αi for all i ∈ I  .

(3) The algebra U  has an anti-linear (q 7→ q −1) bar involution such that

kαi = k
−1
αi , eαi = eαi , and f αi = fαi for all i ∈ I  .

(Sometimes we denote the bar involution on U
 byψ  .)

The following is a counterpart of Proposition 2.2, the proof of which relies
on [KP, Prop. 4.1] and [Le, Thm. 7.1].

Proposition 6.2. — There is an injectiveQ(q)-algebra homomorphism  : U  → U

defined by, for all i ∈ I  ,

kαi 7−→ KαiK
−1
α−i , eαi 7−→ Eαi + K

−1
αi Fα−i , fαi 7−→ FαiK

−1
α−i + Eα−i .

Note that Eαi (K −1
αi Fα−i ) = q

2(K −1
αi Fα−i )Eαi for i ∈ I

 . We have for i ∈ I  ,

(e(a)αi ) =
a∑
j=0

q j(a−j)
(K −1

αi Fα−i )
j

[j]! ·
Ea−jαi

[a − j]!
,(6.1)

(f (a)αi ) =

a∑
j=0

q j(a−j)
(FαiK

−1
α−i )

j

[j]! ·
Ea−jα−i

[a − j]! ·(6.2)

The following is a counterpart of Proposition 2.5.

Proposition 6.3. — The coproduct∆ : U→ U⊗U restricts under the embedding 
to a Q(q)-algebra homomorphism ∆ : U  7→ U

 ⊗ U such that for all i ∈ I  ,

∆(kαi ) = kαi ⊗ KαiK
−1
α−i ,

∆(eαi ) = 1 ⊗ Eαi + eαi ⊗ K −1
αi + k

−1
αi ⊗ K

−1
αi Fα−i ,

∆(fαi ) = kαi ⊗ FαiK
−1
α−i + fαi ⊗ K

−1
α−i + 1 ⊗ Eα−i .
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Similarly, the counit ϵ of U induces a Q(q)-algebra homomorphism ϵ : U  → Q(q)
such that

ϵ(eαi ) = ϵ(fαi ) = 0 and ϵ(kαi ) = 1 for all i ∈ I  .

It follows by Proposition 6.3 that U  is a (right) coideal subalgebra of U.
The maps:
. ∆ : U  → U

 ⊗ U will be called the coproduct of U  and
. ϵ : U  → Q(q)will be called the counit of U  .
The coproduct ∆ : U  → U

 ⊗ U is coassociative, i.e.,

(1 ⊗ ∆)∆ = (∆ ⊗ 1)∆ : U  → U
 ⊗ U ⊗ U.

The counit map ϵ makesQ(q) a (trivial)U  -module. Letm : U⊗U→ U denote
the multiplication map. Just as in Corollary 2.8, we have

m(ϵ ⊗ 1)∆ =  : U  −→ U.

2. The intertwiner ϒ and the isomorphism T

As in §3, we let Û be the completion of the Q(q)-vector space U. We have
the obvious embedding of U into Û. By continuity the Q(q)-algebra structure
on U extends to the Q(q)-algebra structure on Û. The bar involution ‘ ¯ ’
on U extends by continuity to an anti-linear involution on Û, which is also
denoted by ‘ ¯’.

The following is a counterpart of Theorem 2.10.

Theorem 6.4. — There is a unique family of elements ϒµ ∈ U
−
−µ for µ ∈ NΠ

such that
ϒ =

∑
µ

ϒµ ∈ Û

intertwines the bar involutions on U
 and U via the embedding  and ϒ0 = 1; that is,

ϒ satisfies the following identity (in Û):

(6.3) (u )ϒ = ϒ (u) for all u ∈ U  .

Moreover, ϒµ = 0 unless µθ = µ.

The following is a counterpart of Corollary 2.13.

Corollary 6.5. — We have ϒ · ϒ = 1.
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Consider a function ζ on Λ such that{
ζ (µ + αi ) = −q

(αi−α−i ,µ+αi )ζ (µ),

ζ (µ + α−i ) = −q
(α−i ,µ+α−i )−(αi ,µ)ζ (µ),

(6.4)

for all µ ∈ Λ, i ∈ I  . Such ζ exists.
For any U-moduleM , define a Q(q)-linear map

ζ̃ : M −→ M, ζ̃ (m) = ζ (µ)m, for allm ∈ Mµ .

Let w0 denote the longest element of the Weyl groupW of type A2r . As in
Chapter 3 we denote by Tw0 the braid group element.

The following is a counterpart of Theorem 2.18.

Theorem 6.6. — Given any finite-dimensional U-moduleM , the composition map

T := ϒ ◦ ζ̃ ◦Tw0 : M −→ M

is an isomorphism of U  -modules.

3. Quasi-Rmatrix on U


It follows by Theorem 6.4 that ϒ is a well-defined operator on finite-
dimensional U-modules. For any finite-dimensional U-modules M and M ′,
we shall use the formal notation ϒM to denote the well-defined action of ϒ
onM ⊗ M ′. Hence the operator

(6.5) Θ  := ϒMΘ(ϒ −1 ⊗ 1)

onM ⊗ M ′ is well defined. Define

∆ : U  −→ U
 ⊗ U, ∆(u) = ∆(u ) for all u ∈ U  .

The construction in §2 carries over with little modification, and we will be
sketchy. For each N ∈ N, we have a truncation map tr≤N on U

− as in (3.2).
Then the same formulas as in (3.3) and (3.4) give us Θ 

≤N and Θ 
N in U ⊗ U

−.
The following is a counterpart of Proposition 3.5.

Proposition 6.7. — For any N ∈ N, we have Θ 
N ∈ (U

 ) ⊗ U
−.

Proposition 6.7 allows us to make sense of  −1(Θ 
N ) ∈ U

 ⊗ U for each N .
For any finite-dimensional U-modules M and M ′, the action of  −1(Θ 

N ) coin-
cides with the action of Θ 

N onM ⊗ M ′.
As we will only need to use  −1(Θ 

N ) ∈ U
 ⊗ U rather than Θ 

N , we will simply
write Θ 

N for  −1(Θ 
N ) and regard Θ


N ∈ U

 ⊗ U from now on.

ASTÉRISQUE 402



4. THE -INVOLUTIVE MODULES 73

Similarly, it is now understood that

Θ 
≤N =

N∑
r=0

Θ 
r ∈ U

 ⊗ U.

The actions of
∑

N ≥0 Θ

N and of Θ  coincide on any tensor product of finite-

dimensional U-modules. From now on, we may and shall identify

Θ  =
∑
N ≥0

Θ 
N

(or alternatively, use this as a normalized definition of Θ  ) as an element in a
completion (U  ⊗ U

−)∧ of U  ⊗ U
−.

The following is a counterpart of Theorem 3.6.

Theorem 6.8. — Let L be a finite-dimensional U  -module and let M be a finite-
dimensional U-modules. Then as linear operators on L ⊗ M , we have

∆(u)Θ  = Θ ∆(u) for u ∈ U  .

The following is the counterpart of Proposition 3.7.

Proposition 6.9. — We have Θ Θ  = 1.

The following is the counterpart of Corollary 3.8.

Corollary 6.10. — We havem(ϵ ⊗ 1)Θ  = ϒ.

4. The -involutive modules

In this chapter we shall assume all modules are finite dimensional. Recall
the barmap onU and its modules is also denoted byψ , and the barmap onU



is also denoted byψ  . It is also understood thatψ (u) = ψ ((u)) for u ∈ U  .

Definition 6.11. — A U
 -module M equipped with an anti-linear involu-

tionψ  is called involutive (or -involutive) if

ψ  (um) = ψ  (u)ψ  (m), for all u ∈ U  andm ∈ M .

The following is a counterpart of Proposition 3.10.

Proposition 6.12. — LetM be an involutiveU-module. ThenM is an -involutive
U
 -module with involution

ψ  := ϒ ◦ψ .

The following is a counterpart of Corollary 3.11.
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Corollary 6.13. — Let λ ∈ Λ+. Regarded as U
 -modules, L(λ) and ωL(λ) are

-involutive.

Given an involutiveU  -module L and an involutiveU-moduleM , we define

ψ  : L ⊗ M −→ L ⊗ M

by letting

(6.6) ψ  (l ⊗m) := Θ  (ψ  (l) ⊗ψ (m)), for all l ∈ L andm ∈ M .

The following is a counterpart of Proposition 3.13.

Proposition 6.14. — Let L be an involutiveU  -module and letM be an involutive
U-module. Then (L ⊗ M,ψ  ) is an involutive U  -module.

Remark 6.15. — Given two involutive U-modules (M1,ψ1) and (M2,ψ2), the
two different ways, via Proposition 6.12 or Proposition 6.14, of defining
an -involutive U

 -module structure on M1 ⊗ M2 coincide; compare with
Remark 3.14.

The following proposition, which is a counterpart of Proposition 3.15, im-
plies that different bracketings on the tensor product of several involutive
U-modules give rise to the sameψ  .

Proposition 6.16. — Let M1, . . . , Mk be involutive U-modules with k ≥ 2. Then
for any 1 ≤ k ′ < k, we have

ψ  (m1 ⊗ · · · ⊗mk ) = Θ  (ψ  (m1 ⊗ · · · ⊗mk ′) ⊗ψ (mk ′+1 ⊗ · · · ⊗mk )
)
.

5. Integrality of ϒ

Similar to Lemma 4.1 for Uı , we can show that

U
ξ−λ =

ωL(λ) and U
ηλ = L(λ).

The following is a counterpart of Lemma 4.2.

Lemma 6.17. — For any λ ∈ Λ+, there is a unique isomorphism of U  -modules

T : ωL(λ) −→ ωL(λ) = L(λθ ) ,

such that
T(ξλ) =

∑
b ∈B(λ)

дbb
−ηλθ , for дb ∈ Q(q) and д1 = 1.
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Proposition 6.18. — Let λ, µ ∈ Λ+. There is a unique homomorphism of U  -
modules

πλ,µ : ωL(µθ + µ + λ) −→ ωL(λ),

such that πλ,µ (ξ−µθ−µ−λ) = ξ−λ .

Recall that ωL(µθ + µ + λ) and ωL(λ) are both -involutive U
 -modules

withψ  = ϒ ◦ψ . Similar to Lemma 4.5, theU  -homomorphism πλ,µ commutes
with the bar involutionψ  , i.e., πλ,µψ  = ψ πλ,µ .

The following is a counterpart of Lemma 4.17, with a much easier proof.
Indeed, since the identities (6.1)–(6.2) give us all the divided powers we need,
we can bypass the careful study of the rank one case as in §2 for Uı .

Lemma 6.19. — For each λ ∈ Λ+, we have

ϒ
(ωLA(λ)) ⊆ ωLA(λ).

The following is a counterpart of Theorem 4.18.

Theorem 6.20. — We have ϒµ ∈ U−A, for all µ ∈ NΠ.

6. The -canonical basis of ωL(λ)

The following is a counterpart of Lemma 4.19, which now follows from
Theorem 6.20 and Proposition 6.12. Note that we do not need the input from
the rank one case here.

Lemma 6.21. — The bar mapψ  preserves the A-form ωLA(λ), for λ ∈ Λ+.

Recall a partial ordering � on the set B(λ) of canonical basis for λ ∈ Λ+

from (4.5). For any b ∈ B(λ), recallingψ  = ϒψ , we have

(6.7) ψ  (b
+ξ−λ) = ϒ(b+ξ−λ) =

∑
b′∈B(λ)

ρb ;b′ b
′+ξ−λ

where ρb ;b′ ∈ A by Theorem 6.20. Since ϒ lies in a completion of U− satis-
fying ϒµ = 0 unless µθ = µ (see Theorem 6.4), we have ρb ;b = 1 and ρb ;b′ = 0
unless b ′ � b. Since ψ  is an involution, we can apply [Lu2, Lemma 24.2.1] to
our setting to establish the following counterpart of Theorem 4.20.
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Theorem 6.22. — Let λ ∈ Λ+. The U  -module ωL(λ) admits a unique basis

B
 (λ) :=

{
T λb ; b ∈ B(λ)

}
which isψ  -invariant and of the form

T λb = b
+ξ−λ +

∑
b′≺b

tλb ;b′b
′+ξ−λ , for tλb ;b′ ∈ qZ[q].

Definition 6.23. — B
 (λ) is called the -canonical basis of theU  -module ωL(λ).

Just as inChapter 5, we can generalize Theorem6.22 to any basedU-module
(M,B) (in the sense of Lusztig [Lu2, Chap. 27]). The basis B generates a Z[q]-
submoduleMand anA-submodule AM ofM . Recall again Lusztig has shown
that the tensor product of several finite-dimensional simple U-modules is a
based module.

Thus we have the following counterparts of Theorems 4.25–4.26.

Theorem6.24. — Let (M,B) be a finite-dimensional basedU-module. (For example,
takeM = ωL(λ1) ⊗ · · · ⊗

ωL(λr ), for λ1, . . . , λr ∈ Λ
+.)

(1) The U  -moduleM admits a unique basis (called -canonical basis)

B  :=
{
Tb ; b ∈ B

}
which isψ  -invariant and of the form

Tb = b +
∑
b′∈B
b′≺b

tb ;b′ b
′, for tb ;b′ ∈ qZ[q].

(2) B  forms an A-basis for the A-lattice AM , and B  forms a Z[q]-basis for
the Z[q]-lattice M.

7. The (U  ,HBm )-duality

Again in this sectionU is of typeA2r with simple roots parametrized by I2r
in (1.1). Recall the notation I2r+1 from (1.1), and we set

I = I2r+1 =
{
− r , . . . ,−1, 0, 1, . . . , r

}
.

Let the Q(q)-vector space
V :=

∑
a∈I

Q(q)va

be the natural representation of U, hence a U
 -module. We shall call V the

natural representation of U  as well. For m ∈ Z>0, V⊗m becomes a natural U-
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module (hence a U
 -module) via the iteration of the coproduct ∆. Note that

V is an involutive U-module withψ defined as

ψ (va) := va , for all a ∈ I .

ThereforeV⊗m is an involutiveU-module and hence a -involutiveU  -module
by Proposition 6.16.

For any f ∈ Im , we define

Mf = vf (1) ⊗ · · · ⊗ vf (m).

TheWeyl groupWBm acts on Im by (5.1) as before. Now theHecke algebraHBm
acts on the Q(q)-vector space V⊗m as follows:

(6.8) Mf Ha =



q −1Mf if a > 0 and f (a) = f (a + 1),
Mf ·sa if a > 0 and f (a) < f (a + 1),
Mf ·sa + (q

−1 − q)Mf if a > 0 and f (a) > f (a + 1),
Mf ·s0 if a = 0 and f (1) > 0,
Mf ·s0 + (q

−1 − q)Mf if a = 0 and f (1) < 0,
q −1Mf , if a = 0 and f (1) = 0.

Identified as the subalgebra generated by H1,H2, . . . ,Hm−1 of HBm , the Hecke
algebra HAm−1 inherits a right action on V⊗m . The Schur-Jimbo duality as
formulated in Proposition 5.1 remains to be valid in the current setting, i.e.,
the actions of U and HAm−1 on V⊗m commute with each other and they form
double centralizers.

Introduce the Q(q)-subspaces of V:

V− =
⊕

1≤i≤r
Q(q)(v−i − q −1vi ), V+ = Q(q)v0 ⊕

⊕
1≤i≤r

Q(q)(v−i + qvi ).

The following is a counterpart of Lemma 5.2.

Lemma 6.25. — V− is a U  -submodule of V generated by v−1 − q
−1v1 and V+ is a

U
 -submodule of V generated by v0. Moreover, we have V = V− ⊕ V+.

Now we fix ζ in (6.4) such that ζ (ε−r ) = 1. It follows that

ζ (εr−i ) =

{
(−q)−2r+i if i , r ,

q · (−q)−r if i = r .

Let us compute the U
 -homomorphism T= ϒ ◦ ζ̃ ◦Tw0 (see Theorem 6.6) on

the U-module V; we remind that w0 here is associated to U instead ofWBm
orWAm−1 .
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Lemma 6.26. — The U
 -isomorphism T−1 on V acts as a scalar (−q) id on the

submodule V− and as q −1 id on the submodule V+.

Proof. — First one computes that the action of Tw0 on V is given by
Tw0(v−r+i ) = (−q)

2r−ivr−i , for 0 ≤ i ≤ 2r .
Hence

(6.9) ζ̃ ◦Tw0(va) =

{
va ·s0 if a , 0,
qv0 if a = 0.

One computes that
ϒα −1/2+α 1/2 = −(q

−1 − q)Fα 1/2Fα −1/2 .

Therefore using T= ϒ ◦ ζ̃ ◦Tw0 we have
T−1v0 = q

−1v0 ,(6.10)

T−1(v−1 − q
−1v1) = (−q)(v−1 − q

−1v1) ,(6.11)

T−1(v−1 + qv1) = q
−1(v−1 + qv1) .(6.12)

The lemma now follows from Lemma 6.26 sinceT−1 is aU  -isomorphism. �

We have the following generalization of Schur-Jimbo duality, which is a
counterpart of Theorem 5.4. The proof is almost identical as the one for
Theorem 5.4, and for Part (1) we now use Lemma 6.26 and the action (6.8)
of H0 ∈ HBm on V⊗m .

Theorem 6.27 ((U  ,HBm )-duality)

(1) The action of T−1 ⊗ idm−1 coincides with the action of H0 ∈ HBm on V⊗m .
(2) The actions of U  and HBm on V⊗m commute with each other, and they form

double centralizers.

Definition 6.28. — An element f ∈ Im is anti-dominant (or -anti-dominant) if
0 ≤ f (1) ≤ f (2) ≤ · · · ≤ f (m).

The following is the counterpart of Theorem 5.8.

Theorem 6.29. — There exists an anti-linear involution ψ  : V⊗m → V⊗m which
is compatible with both the bar involution ofHBm and the bar involution ofU  ; that is,
for all v ∈ V⊗m , Hσ ∈ HBm , and u ∈ U  , we have

ψ  (uvHσ ) = ψ  (u)ψ  (v)Hσ .

Such a bar involution is unique by requiringψ  (Mf ) = Mf for all -anti-dominant f .
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PART II

REPRESENTATION THEORY

We shall focus on the infinite-rank limit (r →∞) of the algebras and spaces
formulated in Part 1. In Chapter 7 through Chapter 11 we will mainly treat
in detail the counterparts of Chapter 2 through Chapter 5 where U was of
type A2r+1 in Part 1. In Chapter 12 we deal with a variation of BGG cate-
gory with half-integer weights which corresponds to the second quantum
symmetric pair (U,U  ) in Chapter 6 where Uwas of type A2r .

As it becomes necessary to keep track of the finite ranks, we shall add
subscripts and superscripts to various notation introduced in Part 1 to indicate
the dependence on r ∈ N. Here are the new notations in place of those in
Part 1 without superscripts/subscripts (Chapter 2 through Chapter 5):

Λ2r+1, Π2r+1, I2r+1, Iır , U2r+1, U
ı
r , ϒ(r ), Vr , Wr , ψ

(r ), ψ (r )ı , Θ(r )

Part 2 of this book follows closely [CLW2] with new input from Part 1. The
notations here often have different meaning from the same notations used
in [CLW2], as the current ones are often “of type B”.





7. BGG CATEGORIES FOR ORTHO-SYMPLECTIC

LIE SUPERALGEBRAS

In this chapter, we recall the basics on the ortho-symplectic Lie superalge-
bras such as linkage principle and Bruhat ordering. We formulate various
versions of (parabolic) BGG categories and truncation functors.

1. The Lie superalgebra osp(2m + 1 |2n)

We recall some basics on ortho-symplectic Lie superalgebras and set up
notations to be used later on (cf. [CW2] for more on Lie superalgebras).

Fix integersm ≥ 1 and n ≥ 0 throughout this book.
Let Z2 = {0, 1}. LetC2m+1 |2n be a superspace of dimension (2m+1 |2n)with

basis {
ei ; 1 ≤ i ≤ 2m + 1

}
∪

{
e j ; 1 ≤ j ≤ 2n

}
,

where the Z2-grading is given by the following parity function:

p(ei ) = 0, p(e j ) = 1 (∀i, j).
Let B be a non-degenerate even supersymmetric bilinear form on C2m+1 |2n .
The general linear Lie superalgebra gl(2m + 1 |2n) is the Lie superalgebra of
linear transformations on C2m+1 |2n (in matrix form with respect to the above
basis). For s ∈ Z2, we define

osp(2m + 1 |2n)s :=
{
д ∈ gl(2m + 1 |2n)s ; B(д(x),y) = −(−1)s ·p(x )B(x ,д(y))

}
,

osp(2m + 1 |2n) := osp(2m + 1 |2n)0 ⊕ osp(2m + 1 |2n)1.

We now give a matrix realization of the Lie superalgebra osp(2m + 1 |2n).
Take the supersymmetric bilinear form Bwith the followingmatrix form,with
respect to the basis (e1, e2, . . . , e2m+1, e 1, e 2, . . . , e 2n):

J2m+1 |2n :=

©­­­­­­«

0 Im 0 0 0
Im 0 0 0 0
0 0 1 0 0
0 0 0 0 In

0 0 0 −In 0

ª®®®®®®¬
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Let Ei, j , 1 ≤ i, j ≤ 2m + 1, and Ek,h , 1 ≤ k,h ≤ 2n, be the (i, j)th and (k,h)th
elementary matrices, respectively. The Cartan subalgebra of osp(2m+1 |2n) of
diagonal matrices is denoted by hm |n , which is spanned by

Hi := Ei,i − Em+i,m+i , 1 ≤ i ≤ m,

Hj := Ej, j − En+j ,n+j , 1 ≤ j ≤ n.

We denote by {ϵ i , ϵ j ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} the basis of h∗m |n such that

ϵa(Hb ) = δa,b , for a,b ∈
{
i, j ; 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

We denote the lattice of integral weights of osp(2m + 1 |2n) by

(7.1) X (m |n) :=
m∑
i=1
Zϵi +

n∑
j=1
Zϵj .

The supertrace form on osp(2m + 1 |2n) induces a non-degenerate symmetric
bilinear form on h∗m |n determined by ( . | . ), such that

(ϵi |ϵa) = δi,a , (ϵj |ϵa) = −δ j,a , for a ∈
{
i, j ; 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

We have the following root system of osp(2m + 1 |2n)with respect to hm |n

Φ = Φ0 ∪ Φ1 =
{
± ϵi ± ϵj ,±ϵp ,±ϵk ± ϵl ,±2ϵq

}
∪

{
± ϵp ± ϵq ,±ϵq

}
,

where 1 ≤ i < j ≤ n, 1 ≤ p ≤ n, 1 ≤ q ≤ m, 1 ≤ k < l ≤ m.
In this book we shall need to deal with various Borel subalgebras, hence

various simple systems of Φ. Let b = (b1,b2, . . . ,bm+n) be a sequence ofm + n
integers such that m of the bi ’s are equal to 0 and n of them are equal to 1.
We call such a sequence a 0m1n-sequence.

Associated to each 0m1n-sequence b = (b1, . . . ,bm+n), we have the following
fundamental system Πb, and hence a positive system Φ+

b
= Φ+

b, 0̄ ∪ Φ+
b, 1̄, of the

root system Φ of osp(2m + 1 |2n):

Πb =
{
− ϵb1

1 , ϵ
bi
i − ϵ

bi+1
i+1 ; 1 ≤ i ≤ m + n − 1

}
,

where ϵ0
i = ϵx for some 1 ≤ x ≤ m, ϵ1

j = ϵ y for some 1 ≤ y ≤ n, such that
ϵx − ϵx+1 and ϵ y − ϵ y+1 are always positive. It is clear that Πb is uniquely
determined by these restrictions. The Weyl vector is defined to be

ρb := 1
2

∑
α ∈Φ+

b, 0̄

α − 1
2

∑
α ∈Φ+

b, 1̄

α .
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Corresponding to bst = (0, . . . , 0, 1, . . . , 1), we have the following standard
Dynkin diagram associated to Πb st :

© © ©
⊗

© © ©⇐= · · · · · ·

−ϵ1 ϵ1 − ϵ2 ϵm − ϵ 1̄ ϵ 1̄ − ϵ2̄ ϵn−1 − ϵn̄

As usual,
⊗

stands for an isotropic simple odd root, © stands for an even
simple root, and • stands for a non-isotropic odd simple root. A direct com-
putation shows that

(7.2) ρb st = − 1
2 ϵ1 −

3
2 ϵ2 − · · · −

(
m − 1

2
)
ϵm + (m −

1
2 )ϵ 1̄ + · · · + (m − n +

1
2 )ϵn̄ .

More generally, associated to a sequence b which starts with 0 is a Dynkin
diagram which always starts on the left with a short even simple root:

(?) ©
⊙ ⊙ ⊙ ⊙ ⊙ ⊙

⇐= · · · · · ·
−ϵ1

Here
⊙

stands for either
⊗

or© depending onb. Associated to a sequenceb
which starts with 1 is a Dynkin diagram which always starts on the left with
a non-isotropic odd simple root:

(??) •
⊙ ⊙ ⊙ ⊙ ⊙ ⊙

⇐= · · · · · ·
−ϵ 1̄

Remark 7.1. — For generalb, one checks that ρb has a summand (m−n+ 1
2 )ϵn̄

as for ρb st in (7.2) if the Dynkin diagram associated to b has© as its rightmost
node, and that ρb has a summand (m−n− 1

2 )ϵn̄ if theDynkindiagramassociated
to b has

⊗
as its rightmost node.

Now we can write the non-degenerate symmetric bilinear form on Φ as
follows:

(ϵbii |ϵ
bj
j ) = (−1)biδi j , 1 ≤ i, j ≤ m + n.

We define n±
b
to be the nilpotent subalgebra spanned by the positive/negative

root vectors in osp(2m + 1 |2n). Then we obtain a triangular decomposition:

osp(2m + 1 |2n) = n+b ⊕ hm |n ⊕ n
−
b ,

with n+
b
⊕ hm |n as a Borel subalgebra.
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Fix a 0m1n-sequence b and hence a positve system Φ+
b
. We denote by

Z
(
osp(2m + 1 |2n)

)
the center of the enveloping algebraU (osp(2m+1 |2n)). There exists a standard
projection

ϕ : U
(
osp(2m + 1 |2n)

)
−→ U (hm |n)

which is consistent with the PBW basis associated to the above triangular
decomposition (see [CW2, §2.2.3]). For λ ∈ h∗m |n , we define the central char-
acter χλ by letting

χλ(z) := λ
(
ϕ(z)

)
, for z ∈ Z

(
osp(2m + 1 |2n)

)
.

Denote the Weyl group of (the even subalgebra of) osp(2m + 1 |2n) byWosp,
which is isomorphic to (Z2 oSm) × (Z2 oSn).

Then for µ, ν ∈ h∗m |n , we say µ, ν are linked and denote it by µ ∼ ν , if there
exist mutually orthogonal isotropic odd roots α1,α2, . . . ,αl , complex numbers
c1, c2, . . . , cl , and an elementw ∈Wosp satisfying

µ + ρb = w
(
ν + ρb −

l∑
i=1

ciαi
)
, (ν + ρb |α j ) = 0, j = 1 . . . , l .

It is clear that ∼ is an equivalent relation on h∗m |n . Versions of the following
basic fact went back to Kac, Sergeev, and others.

Proposition 7.2 (see [CW2, Thm. 2.30]). — Let λ, µ ∈ h∗m |n . Then λ is linked
to µ if and only if χλ = χµ .

We define the Bruhat ordering �b on h∗m |n and hence on X (m |n) as follows:

(7.3) λ �b µ if µ − λ ∈ NΠb and λ ∼ µ, for λ, µ ∈ h∗m |n .

2. Infinite-rank Lie superalgebras

We shall define the infinite-rank Lie superalgebras osp(2m + 1 |2n +∞) and
osp(2m + 1 |2n |∞). Define the sets

J̃ :=
{

1, 2, . . . , 2m + 1, 1, 2, . . . , 2n
}
∪

{ 1
2
, 1 , 3

2
, · · ·

}
∪

{ 1
2
′ , 1′, 3

2
′ , · · ·

}
,

J :=
{

1, 2, . . . , 2m + 1, 1, 2, . . . , 2n
}
∪

{
1, 2 , . . .} ∪ {1′, 2′, . . .

}
,

J̆ :=
{

1, 2, . . . , 2m + 1, 1, 2, . . . , 2n
}
∪

{ 1
2
, 3

2
, · · ·

}
∪

{ 1
2
′, 3

2
′, · · ·

}
.
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Let Ṽ be the infinite-dimensional superspace overCwith the basis {ei ; i ∈ J̃ },
whose Z2-grading is specified as follows:

p(ei ) = 0 (1 ≤ i ≤ 2m + 1), p(e j ) = 1 (1 ≤ j ≤ 2n),

p(es ′) = p(es ) = 0 (s ∈ Z>0), p(et ′) = p(et ) = 1 (t ∈ 1
2 + N).

With respect to this basis, a linear map on Ṽ may be identified with a com-
plex matrix (ar s )r,s ∈J̃. Let gl(Ṽ ) be the Lie superalgebra consisting of (ar s )r,s ∈J̃
with ar s = 0 for almost all but finitely many ar s ’s. The standard Cartan sub-
algebra of gl(Ṽ ) is spanned by {Er r ; r ∈ J̃ }, with dual basis {ϵr ; r ∈ J̃ }.
The superspaces V and V̆ are defined to be the subspaces of Ṽ with basis {ei }
indexed by J and J̆ respectively. Similarly we can define gl(V ) and gl(V̆ ).

Recall the supersymmetric non-degenerate bilinear form B define in §1.
We can easily identify C2m+1 |2n as a subspace of Ṽ . Define a supersymmetric
non-degenerate bilinear form B̃ on Ṽ by

B̃(es , et ) = B(es , et ), B̃(es , ex ) = B̃(es , ex ′) = 0,

B̃(ex , ey ) = B̃(ex ′, ey′) = 0, B̃(ex , ey′) = δx,y = (−1)p(ex )p(ey′ )B̃(ey′, ex ),

where s, t ∈ {i, j ; 1 ≤ i ≤ 2m + 1, 1 ≤ j ≤ 2n} and x ,y ∈
{ 1

2
, 1 , 3

2
, · · ·

}
.

By restriction, we can obtain a supersymmetric non-degenerate bilinear form
on V and V̆ .

Following §1, we define osp(V ) and osp(V̆ ) to be the subalgebra of gl(V )
and gl(V̆ ) preserving the bilinear forms, respectively. With respect to the
standard basis of V and V̆ , we identify

osp(2m + 1 |2n |∞) = osp(V ), osp(2m + 1 |2n +∞) = osp(V̆ ).

The standard Cartan subalgebras of osp(2m + 1 |2n |∞) and osp(2m + 1 |2n +∞)
are obtained by taking the intersection of the standard Cartan subalgebra
of gl(Ṽ ) with osp(2m + 1 |2n |∞) and osp(2m + 1 |2n + ∞), respectively, which
are denoted by hm |n |∞ and hm |n+∞. For any 0m1n-sequence b, we assign the
following simple system to the Lie superalgebra osp(2m + 1 |2n |∞):

Πb,0 :=
{
− ϵb1

1 , ϵ
bi
i − ϵ

bi+1
i+1 , ϵ

bm+n
m+n − ϵ

0
1 , ϵ

0
j − ϵ

0
j+1 ; 1 ≤ i ≤ m + n − 1, 1 ≤ j

}
.

Similarly, we assign the following simple system to osp(2m + 1 |2n +∞):

Πb,1 :=
{
− ϵb1

1 , ϵ
bi
i − ϵ

bi+1
i+1 , ϵ

bm+n
m+n − ϵ

1
1 , ϵ

1
j − ϵ

1
j+1 ; 1 ≤ i ≤ m + n − 1, 1 ≤ j

}
.

The ϵbii ’s are defined in the same way as in §1 and it is understood that

ϵ1
j := ϵj−1/2 and ϵ0

j := ϵj for any 1 ≤ j .
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We introduce the following formal symbols:

ϵ0
∞ :=

∑
j≥1

ϵ0
j and ϵ1

∞ :=
∑
j≥1

ϵ1
j .

Let P be the set of all partitions. We define

X
∞ ,+

b,0 :=
{m+n∑

i=1
λi ϵ

bi
i +

∑
1≤j

+λj ϵ
0
j + dϵ

0
∞ ; d, λi ∈ Z, (+λ1,

+λ2, . . . ) ∈ P
}
,(7.4)

X
∞ ,+

b,1 :=
{m+n∑

i=1
λi ϵ

bi
i +

∑
1≤j

+λj ϵ
1
j + dϵ

1
∞ ; d, λi ∈ Z, (+λ1,

+λ2, . . . ) ∈ P
}
.(7.5)

3. The BGG categories

We shall define various parabolic BGG categories for ortho-symplectic Lie
superalgebras.

Definition 7.3. — Let b be a 0m1n-sequence. The Bernstein-Gelfand-Gelfand
(BGG) category Ob is the category of hm |n-semisimple osp(2m + 1 |2n)-
modulesM such that

(i) M =
⊕

µ ∈X (m |n)Mµ and dimMµ < ∞;
(ii) there exist finitely many weights 1λ, 2λ, . . . , kλ ∈ X (m |n) (depending

onM) such that if µ is a weight inM , then µ ∈ iλ −
∑
α ∈Πb

Nα , for some i.
The morphisms in Ob are all (not necessarily even) homomorphisms of
osp(2m + 1 |2n)-modules.

Similar to [CLW2, Prop. 6.4], all these categories Ob are identical for var-
ious b, since the even subalgebras of the Borel subalgebras n+

b
⊕ hm |n are

identical and the odd parts of these Borels always act locally nilpotently.
Denote by Mb (λ) the b-Verma modules with highest weight λ. Denote

by Lb (λ) the unique simple quotient ofMb (λ). They are both in Ob .
It is well known that the Lie superalgebra gl(2m + 1 |2n) has an automor-

phism τ given by the formula:

τ (Ei j ) := −(−1)p(i)·(p(i)+p( j))Eji .

The restriction of τ on osp(2m+1 |2n) gives an automorphism of osp(2m+1 |2n).
For an objectM =

⊕
µ ∈X (m |n)Mµ ∈ Ob , we let

M∨ :=
⊕

µ ∈X (m |n)

M∗µ
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be the restrictd dual ofM . We define the action of osp(2m + 1 |2n) onM∨ by

(д · f )(x) := −f
(
τ (д) · x

)
,

for f ∈ M∨,д ∈ osp(2m + 1 |2n), and x ∈ M . We denote by Mτ the resulting
module .

An object M ∈ Ob is said to have a b-Verma flag (respectively, dual b-Verma
flag), ifM has a filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mt = M,

such that Mi/Mi−1 � Mb (γi ), 1 ≤ i ≤ t (respectively, Mi/Mi−1 � Mτ
b
(γi )) for

some γi ∈ X (m |n).

Definition 7.4. — Associated to each λ ∈ X (m |n), ab-tilting moduleTb (λ) is an
indecomposable osp(2m + 1 |2n)-module in Ob characterized by the following
two conditions:

(i) Tb (λ) has a b-Verma flag withMb (λ) at the bottom;
(ii) Ext1Ob (Mb (µ),Tb (λ)) = 0, for all µ ∈ X (m |n).

Recall the definition of the infinite-rank Lie superalgebras in §2. For
a nonempty 0m1n-sequence b = (b1,b2, . . . ,bm+n) and k ∈ N ∪ {∞}, con-
sider the extended sequence (b, 0k ) = (b1,b2, . . . ,bm+n , 0, . . . , 0). This
sequence corresponds to the following simple system of the Lie super-
algebra osp(2m + 2k + 1 |2n), which we shall denote by osp(2m + 1 |2n |2k)
throughout this book to indicate the choice of

Π(b,0k ) =
{
− ϵb1

1 , ϵ
bi
i − ϵ

bi+1
i+1 ; 1 ≤ i ≤ m + n + k

}
,

where bi = 0 for i > m + n. Let

Π
k
b,0 =

{
ϵbii − ϵ

bi+1
i+1 ; i > m + n

}
.

Define the following Levi subalgebra and parabolic subalgebra of
osp(2m + 1 |2n |2k):

l
k
b,0 :=

∑
α ∈ZΠk

b,0

osp(2m + 1 |2n |2k)α ,

p
k
b,0 :=

∑
α ∈Φ+

(b,0k )∪ZΠ
k
b,0

osp(2m + 1 |2n |2k)α .
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Let L0(λ) be the irreducible l
k
b,0-module with highest weight λ. It can be

extended trivially to a pk
b,0-module. We form the parabolic Verma module

M
k
b,0(λ) := Indosp(2m+1 |2n |2k )

p
k
b,0

L0(λ).

For k ∈ N, we define

X
k ,+
b,0 :=

{m+n∑
i=1

λi ϵ
bi
i +

k∑
j=1

+λj ϵ
0
j + d

k∑
j=1

ϵ0
j ; d, λi ∈ Z, (+λ1,

+ λ2, . . . ) ∈ P
}
,(7.6)

X
k ,+
b,1 :=

{m+n∑
i=1

λi ϵ
bi
i +

k∑
j=1

+λj ϵ
1
j + d

k∑
j=1

ϵ1
j ; d, λi ∈ Z, (+λ1,

+ λ2, . . . ) ∈ P
}
.(7.7)

Recall the definition of X∞ ,+

b,0 and X
∞ ,+

b,1 from (7.4)–(7.5).

Definition 7.5. — Let b be a 0m1n-sequence and k ∈ N ∪ {∞}. Let Ok
b,0 be the

category of hm |n |k -semisimple osp(2m + 1 |2n |2k)-modulesM such that
(i) M =

⊕
µ Mµ and dimMµ < ∞;

(ii) M decomposes over l∞
b,0 into a direct sum of L0(λ) for λ ∈ X

k ,+
b,0 ;

(iii) there exist finitely many weights 1λ, 2λ, . . . , kλ ∈ X
k ,+
b,0 (depending on

M) such that if µ is a weight inM , then µ ∈ iλ −
∑
α ∈Π

(b,0k )
Nα , for some i.

The morphisms in O
k
b,0 are all (not necessarily even) homomorphisms of

osp(2m + 1 |2n |2k)-modules.

Let λ ∈ X
k,+
b,0 . We shall denote by L

k
b,0(λ) the simple module in O

k
b,0

with highest weight λ. Following Definition 7.4, we can define the tilting
module T k

b,0(λ) in O
k
b,0.

Similar construction exists for the sequence (b, 1k ), where we consider the
Lie superalgebras osp(2m + 1 |2n + 2k) for k ∈ N ∪ {∞} with the following
simple systems

Π(b,1k ) =
{
− ϵb1

1 , ϵ
bi
i − ϵ

bi+1
i+1 ; 1 ≤ i ≤ m + n + k

}
,

where bi = 1 for i > m + n.
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Let Πk
b,1 = {ϵ

bi
i − ϵ

bi+1
i+1 ; i > m + n}. Define the following Levi subalgebra

and parabolic subalgebra of osp(2m + 1 |2n |2k):

l
k
b,1 :=

∑
α ∈Z[Πk

b,1]

osp(2m + 1 |2n |2k)α ,

p
k
b,1 :=

∑
α ∈Φ+

(b,1k )∪Z[Π
k
b,1]

osp(2m + 1 |2n |2k)α .

Let L1(λ) be the simple lk
b,1-module with highest weight λ. It can be extended

trivially to a pk
b,1-module. Similarlywe candefine the parabolicVermamodule

M
k
b,1(λ) := Indosp(2m+1 |2n+2k )

p
k
b,1

L1(λ).

Definition 7.6. — For k ∈ N ∪ {∞}, let Ok
b,1 be the category of h2m+1 |2n+2k -

semisimple osp(2m + 1 |2n + 2k)-modulesM such that
(i) M =

⊕
µ Mµ and dimMµ < ∞;

(ii) M decomposes over pk
b,1 into a direct sum of L1(λ) for λ ∈ X

k ,+
b,1 ;

(iii) there exist finitely many weights 1λ, 2λ, . . . , kλ ∈ X
k ,+
b,1 (depending on

M) such that if µ is a weight inM , then µ ∈ iλ −
∑
α ∈Π

(b,1k )
Nα , for some i.

The morphisms in O
k
b,1 are all (not necessarily even) homomorphisms of

osp(2m + 1 |2n + 2k)-modules.

. For ξ ∈ X
k,+
b,1 , we shall denote by L

k
b,1(ξ ) the simple module in O

k
b,1 with

highest weight ξ .

. Following Definition 7.4, we can define the tilting module T k
b,1(ξ ) in O

k
b,1.

4. Truncation functors

Recall the definition of X k ,+
b,0 and X

k ,+
b,1 in (7.6) and (7.7). For any

λ =
m+n∑
i=1

λi ϵ
bi
i +

∑
1≤j

+λj ϵ
s
j + dϵ

s
∞ ∈ X

∞ ,+

b,s ,

we define

λk :=
m+n∑
i=1

λi ϵ
bi
i +

k∑
j=1

+λj ϵ
s
j + d

k∑
j=1

ϵsj ∈ X
k,+
b,s , for s ∈ {0, 1}.
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Let M∞
b,0 ∈ O

∞

b,0 and M
∞

b,1 ∈ O
∞

b,1. Then we have the weight space decomposi-
tions

M
∞

b,0 =
⊕
µ

M
∞

b,0,µ and M
∞

b,1 =
⊕
µ

M
∞

b,1,µ .

We define an exact functor
tr0 : O∞

b,0 −→ O
k
b,0, tr0(M

∞

b,0) :=
⊕
µ

M
∞

b,0,µ ,

where µ satisfies (µ, ϵ0
j − ϵ

0
j+1) = 0, for all j ≥ k + 1 and j ∈ N. Similarly, we

define an exact functor
tr1 : O∞

b,1 −→ O
k
b,1, tr1(M

∞

b,1) :=
⊕
µ

M
∞

b,1,µ ,

where µ satisfies (µ, ϵ1
j − ϵ

1
j+1) = 0, for all j ≥ k + 1 and ∈ N.

The following has been known [CW1], [CLW1]; also see [CW2, Prop. 6.9].

Proposition 7.7. — For s = 0, 1, the functors

trs : O∞
b,s −→ O

k
b,s

satisfy the following: for Y = M , L, T and

λ =
m+n∑
i=1

λi ϵ
bi
i +

∑
1≤j

+λj ϵ
s
j + dϵ

s
∞ ∈ X

∞ ,+

b,s ,

we have

trs
(
Y
∞

b,s (λ)
)
=

{
Y
k
b,s (λ

k ) if l(+λ) ≤ k,

0 otherwise.
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8. FOCK SPACES AND BRUHAT ORDERINGS

In this chapter, we formulate the infinite-rank variants of the basic con-
structions in Part 1. We set up various Fock spaces which are the q-versions of
Grothendieck groups, and transport Bruhat ordering from the BGGcategories
to the corresponding Fock spaces.

1. Infinite-rank constructions

Let us first set up some notations which will be used often in Part 2. We set

I =
∞⋃
r=0
I2r+1 = Z, Iı =

∞⋃
r=0
Iır = Z>0, I = Z + 1

2 ·(8.1)

Recall from Chapter 2 the finite-rank quantum symmetric pair (U2r+1,U
ı
r ).

We have the natural inclusions of Q(q)-algebras:

· · · ⊂ U2r−1 ⊂U2r+1 ⊂ U2r+3 ⊂ · · · and · · · ⊂ U
ı
r−1 ⊂ U

ı
r ⊂ U

ı
r+1 ⊂ · · · .

Define the following Q(q)-algebras:

U
ı :=

∞⋃
r=0

U
ı
r and U :=

∞⋃
r=0

U2r+1.

It is easy to see that Uı is generated by {eαi , fαi ,k±1
αi , t ; i ∈ Iı }, and U is

generated by {Eαi , Fαi ,K±1
αi ; i ∈ I}. The embeddings ι : Uı

r → U2r+1 of Q(q)-
algebras induce an embedding of Q(q)-algebras, denoted also by

ι : Uı −→ U.

Again U is naturally a Hopf algebra with coproduct ∆, and its restriction
under ι, ∆ : Uı → U

ı ⊗U,makesUı (or more precisely ι(Uı )) naturally a (right)
coideal subalgebra of U. The anti-linear bar involutions on U

ı
r and U2r+1

induce anti-linear bar involutions on U
ı and U, respectively, both denoted

by ‘ ¯ ’ as well. As in Part 1, in order to avoid confusion, we shall sometimes
setψ (u) := u for u ∈ U, andψ ı (u) := u for u ∈ Uı .
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Recall Π2r+1 denotes the simple system of U2r+1. Then

Π :=
∞⋃
r=0

Π2r+1

is a simple system of U. Recall we denote the integral weight lattice of U2r+1
by Λ2r+1. Then

Λ :=
⊕

i ∈1/2+Z
Z[εi ] =

∞⋃
r=0

Λ2r+1

is the integralweight lattice ofU. Following §1, we have the quotient latticeΛθ
of the lattice Λ.

Recall the intertwiner of the pair (U2r+1,U
ı
r ) in §3, which we shall denote

by ϒ(r ). We have
ϒ(r ) =

∑
µ ∈NΠ2r+1

ϒ(r )µ

in a completion of U−2r+1 with ϒ(r )0 = 1. Following the construction of ϒ(r ) in
Theorem 2.10, we see that

ϒ(r+1)
µ = ϒ(r )µ , for µ ∈ NΠ2r+1.

Hence we can define an element ϒµ ∈ U−µ , for µ ∈ NΠ by letting

ϒµ := lim
r→∞

ϒ(r )µ .

Define the formal sum ϒ (which lies in some completion of U−) by

(8.2) ϒ :=
∑
µ ∈NΠ

ϒµ .

We shall view ϒ as a well-defined operator on U-modules that we are con-
cerned.

2. The Fock space Tb

Let V :=
∑

a∈I Q(q)va be the natural representation of U, where the action
of U on V is defined as follows (for i ∈ I, a ∈ I ):

Eαiva = δi+1/2 ,ava−1, Fαiva = δi−1/2 ,ava+1, Kαiva = q
(αi ,εa )va .

LetW := V∗ be the restricted dual module of V with basis {wa ; a ∈ I } such
that 〈wa ,vb〉 = (−q)

−aδa,b . The action of U on W is given by the following
formulas (for i ∈ I and a ∈ I ):

Eαiwa = δi−1/2 ,awa+1, Fαiwa = δi+1/2 ,awa−1, Kαiwa = q
−(αi ,εa )wa .

By restriction through the embedding ι, V andW are naturally U
ı -modules.
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2. THE FOCK SPACE Tb 93

Fix a 0m1n-sequence b = (b1,b2, . . . ,bm+n). We have the following tensor
space over Q(q), called the b-Fock space or simply Fock space:

(8.3) Tb := Vb1 ⊗ Vb2 ⊗ · · · ⊗ Vbm+n ,

where we denote
Vbi :=

{
V if bi = 0,
W if bi = 1.

The tensors here and in similar settings later on are understood to be over
the field Q(q). Note that both algebras U and U

ı act on Tb via an iterated
coproduct. For f ∈ Im+n , we define

(8.4) Mb
f := vb1

f (1) ⊗ vb2
f (2) ⊗ · · · ⊗ vbm+nf (m+n) ,

where we use the notation

vbi :=
{
v if bi = 0,
w if bi = 1.

We refer to {Mb
f ; f ∈ Im+n} as the standard monomial basis of Tb .

For r ∈ N, we shall denote the natural representation of U2r+1 by Vr now,
where Vr admits a natural basis {va |a ∈ I2r+2}. Let Wr be the dual of Vr
with basis {wa ; a ∈ I2r+2} such that 〈wa ,vb〉 = (−q)

−aδa,b . We have natural
inclusions of Q(q)-spaces

· · · ⊂ Vr−1 ⊂ Vr ⊂ Vr+1 · · · and · · · ⊂ Wr−1 ⊂ Wr ⊂ Wr+1 · · · .

Similarly we can define the space

Tbr := Vb1
r ⊗ V

b2
r ⊗ · · · ⊗ Vbm+nr ,

where we denote

Vbir :=
{
Vr if bi = 0,
Wr if bi = 1.

Then {Mb
f | f ∈ I

m+n
2r+2} forms the standard monomial basis of Tbr . In light of the

standard monomial bases, we may view

(8.5) · · · ⊂ Tbr ⊂ Tbr+1 ⊂ · · · and Tb =
⋃
r ∈N
Tbr .

Definition 8.1. — For f ∈ Im+n2r+2, let wtb (f ) be the U
ı -weight of Mb

f , i.e.,
the image of the U-weight in Λθ .
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94 CHAPTER 8. INFINITE-RANK CONSTRUCTIONS

3. The q-wedge spaces

Recall from §5 the right action on V⊗k on the Hecke algebra HBk , where V
is now of infinite dimension. We take ∧kV as the quotient of V⊗k by the sum
of the kernel of the operators Hi − q

−1, 1 ≤ i ≤ k − 1. The ∧kV is naturally a
U-module, hence also a U

ı -module. For any vp1 ⊗ vp2 ⊗ · · · ⊗ vpk in V⊗k , we
denote its image in ∧kV by vp1 ∧vp2 ∧ · · · ∧vpk .

For d ∈ Z and l ≥ k, consider the Q(q)-linear maps

∧
k,l
d : ∧kV −→ ∧lV,

vp1 ∧ · · · ∧vpk 7−→ vp1 ∧ · · · ∧vpk ∧vd+1/2−k−1 ∧vd+1/2−k−2 ∧ · · · ∧vd+1/2−l .

Let
∧∞d V := lim

−−→
∧kV

be the direct limit of the Q(q)-vector spaces with respect to the maps ∧k,ld ,
which is called the dth sector of the semi-infinite q-wedge space ∧∞V; that is,

∧∞V =
⊕
d ∈Z
∧∞d V.

Note that for any fixed u ∈ U and fixed d ∈ Z, we have

∧
k,l
d u = u∧k,ld : ∧kV −→ ∧lV, for l ≥ k � 0.

Therefore ∧∞d V and hence ∧∞V become both U-modules and U
ı -modules.

We can think of elements in∧∞V as linear combinations of infiniteq-wedges
of the form

vp1 ∧vp2 ∧vp3 ∧ · · · ,

where p1 > p2 > p3 > · · · , and pi − pi+1 = 1 for i � 0.
Alternatively, the space ∧∞V has a basis indexed by pairs of a partition and

an integer given by

| λ,d 〉 := vλ1+d−1/2 ∧vλ2+d−3/2 ∧vλ3+d−5/2 ∧ · · · ,

where λ = (λ1, λ2, . . . ) runs over the set P of all partitions, and d runs over Z.
Clearly we can realize ∧∞d V as the subspace of ∧∞V spanned by {|λ,d〉 |λ ∈ P},
for d ∈ Z.

In the rest of this book, we shall index the q-wedge spaces by

[k] := { 1, 2 , . . . ,k } and [∞ ] := { 1, 2 . . . }.

More precisely, let

Ik+ =
{
f : [k ] → I ; f ( 1) > f ( 2) > · · · > f (k )

}
, for k ∈ N,

I∞+ =
{
f : [∞] → I ; f ( 1) > f ( 2) > · · · and f ( t ) − f ( t + 1) = 1 for t � 0

}
.
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3. THE q-WEDGE SPACES 95

For f ∈ Ik+ , we denote

Vf = vf ( 1) ∧vf ( 2) ∧ · · · ∧vf (k ).

Then {Vf ; f ∈ Ik+} is a basis of ∧kV, for k ∈ Z>0 ∪ {∞}.
For k ∈ Z>0, we letw (k )0 be the longest element inSk . Define

Lw (k )0
:=

∑
w ∈Sk

(−q)l (w )−l (w
(k )
0 )Hw ∈ HAk−1 .

It is well known [KL] that Lw (k )0
= Lw (k )0

. The right action by Lw (k )0
define a

Q(q)-linear map (the q-skew-symmetrizer)

SkSymk : V⊗k −→ V⊗k .

Then the q-wedge space ∧kV can also be regarded as a subspace Im(SkSymk )

of V⊗k while identifying Vf ≡ M (0
k )

f ·w (k )0
Lw (k )0

for f ∈ Ik+ (cf., e.g. [CLW2, §4.1]).

Similar construction gives rise to ∧∞W. For each d ∈ Z and l ≥ k, consider
the Q(q)-linear maps

∧
k,l
d : ∧kW −→ ∧lW(8.6)

wp1 ∧ · · · ∧wpk 7→ wp1 ∧ · · · ∧wpk ∧wd− 1
2+k+1 ∧wd− 1

2+k+2 ∧ · · · ∧wd− 1
2+l
.

Let ∧∞dW := lim
−−→
∧kW be the direct limit of theQ(q)-vector spaces with respect

to the maps ∧k,ld . Define
∧∞W :=

⊕
d ∈Z
∧∞dW.

Note that for any fixed u ∈ U and fixed d ∈ Z, we have

∧
k,l
d u = u∧k,ld : ∧kW→ ∧lW, for l ≥ k � 0.

Therefore ∧∞dW and hence ∧∞W become both U-modules and U
ı -modules.

We can think of elements in ∧∞W as linear combinations of infinite q-
wedges of the form

wp1 ∧wp2 ∧wp3 ∧ · · · ,

where p1 < p2 < p3 < · · · , and pi − pi+1 = −1, for i � 0.
Alternatively, the space ∧∞W has a basis indexed by partitions given by

| λ∗,d 〉 := wd+1/2−λ1 ∧wd+3/2−λ2 ∧wd+5/2−λ3 ∧ · · · ,

where λ = (λ1, λ2, · · · ) runs over the set P of all partitions, and d runs
over Z. Clearly we can realize ∧∞dW as the subspace of ∧∞W spanned by
{ |λ∗,d〉 ; λ ∈ P}, for d ∈ Z.
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96 CHAPTER 8. INFINITE-RANK CONSTRUCTIONS

Let

Ik− =
{
f : [k ] → I ; f ( 1) < f ( 2) < · · · < f (k )

}
, for k ∈ N,

I∞− =
{
f : [∞] → I ; f ( 1) < f ( 2) < · · · and f (t ) − f (t + 1) = −1 for t � 0

}
.

For f ∈ Ik− , we denote

Wf = wf ( 1) ∧wf ( 2) ∧ · · · ∧wf (k ).

Then {Wf ; f ∈ Ik−} is a basis of ∧kW, for k ∈ N ∪ {∞}.

Remark 8.2. — The semi-infinite q-wedge spaces considered in this book
will involve all sectors, while only the 0th sector was considered and needed
in [CLW2, §2.4].

4. Bruhat orderings

Let b = (b1, . . . ,bm+n) be an arbitrary 0m1n-sequence. We first define a
partial ordering on Im+n , which depends on the sequence b. There is a natural
bĳection Im+n ↔ X (m |n) (recall X (m |n) from (7.1)), defined as

f 7→ λbf , where λbf =
m+n∑
i=1
(−1)bi f (i)ϵbii − ρb , for f ∈ Im+n ,(8.7)

λ 7→ f bλ , where f (i) = (λ + ρb |ϵ
bi
i ), for λ ∈ X (m |n).(8.8)

We transport theBruhat ordering (7.3) onX (m |n)by the abovebĳection to Im+n .

Definition 8.3. — The Bruhat ordering or b-Bruhat ordering �b on Im+n is
defined as follows:

For f , д ∈ Im+n , one has f �b д if λbf �b λ
b
д .

We also say f ∼ д if λbf ∼ λ
b
д .

The following lemma follows immediately from the definition.

Lemma 8.4. — Given f ,д ∈ Im+n such that д �b f , then the following is finite:{
h ∈ Im+n ; д �b h �b f

}
.

Recalling the weight wtb ( . ) on Im+n from Definition 8.1, we set

(8.9) wtb (λ) := wtb (f
b
λ ), for λ ∈ X (m |n).

We have the following analogue of [Br1, Lemma 4.18].

Lemma 8.5. — For any f ,д ∈ Im+n , one has f ∼ д if and only if wtb (f ) = wtb (д).
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Proof. — This proof is analogous to [CW2, Thm. 2.30]. Assume f ∼ д at first.
Recall §1, this means

λbд + ρb = w
(
λbf + ρb −

l∑
i=1

ciαi
)
, (λbf + ρb |α j ) = 0, j = 1, . . . , l ,

where the αi ’s are mutually orthogonal isotropic odd roots. Recall the Weyl
group of osp(2m + 1 |2n) is isomorphic to (Z2 oSm) × (Z2 oSn). Thanks to
Definition 2.5 and the actions the kαi ’s on V andW, we have

wtb

(
w

(
λbf + ρb −

l∑
i=1

ciαi
))
= wtb

(
λbf + ρb −

l∑
i=1

ciαi
)
.

Isotropic odd roots ofΦ are of the form±ϵbxx ±ϵ
by
y , wherebx andby are distinct.

We shall discuss one case here, as the others will be similar.
Let α = ϵbss − ϵbtt = ϵ0

s − ϵ
1
t be an isotropic odd root such that

(λbf + ρb |α) =
(m+n∑
i=1
(−1)bi f (i)ϵbii |α

)
= 0.

Therefore, f (s) = f (t). Hence we have

wtb (λ
b
f + ρb + cα) = wtb

(
. . . , f (s − 1), f (s) + c, f (s + 1), . . . ,

f (t − 1), f (t) + c, f (t + 1), . . .
)
= wtb (f ),

where the last equality comes from the actions of kαi ’s on V and W. There-
fore wtb (f ) = wtb (д).

Now suppose wtb (f ) = wtb (д). We have

(8.10)
m+n∑
i=1
(−1)bi εf (i) =

m+n∑
i=1
(−1)bi εд(i).

For distinct bia , bja (ia , ja), if f (ia) = ±f ( ja), (−1)bia εf (ia ) + (−1)bja εf ( ja ) = 0
(recall that εf (s) = ε−f (s)). Similar results hold for д. After canceling all such
pairs (all ia and all ja are distinct) on both sides of (8.10), the survived terms
match bĳectively up to signs. More precisely, for any survived f (x), there
exists a survived д(y), such that д(y) = ±f (x),bx = by . Hence the same number
of pairs cancelled on both sides, say l pairs. Therefore we have

λbf + ρb −
l∑

a=1
ca(ϵ

0
ia − saϵ

1
ja ) = w(λ

b
д + ρb )
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98 CHAPTER 8. INFINITE-RANK CONSTRUCTIONS

for somew ∈ (Z2 oSm) × (Z2 oSn), sa ∈ {±}. The sa ’s are chosen to satisfy

(λbf + ρb |ϵ
0
ia − saϵ

1
ja ) = 0.

Therefore λbf ∼ λ
b
д by the definition in §1. Hence f ∼ д.

This completes the proof of the lemma. �

Now let us define partial orderings on the sets Im+n × I∞± , which again
depend on b. Recall (7.4) and (7.5) for the definitions of X∞ ,+

b,0 and X
∞ ,+

b,1 .
We define a map

(8.11) X
∞ ,+

b,0 −→ Im+n × I∞+ , λ 7−→ f b0
λ ,

by sending each λ =
∑m+n

i=1 λi ϵ
bi
i +

∑
1≤j
+λj ϵ

0
j +dϵ

0
∞ to the element f b0

λ = f (b,0
∞)

λ

given below (which is consistentwith the ρ-shift associated to a simple system
of the type (?) in §1 by Remark 7.1):{ f b0

λ (i) = f bλ (i) if i ∈ [m + n] := {1, 2, . . . ,m + n},

f b0
λ ( j) =

+λj + d + n −m +
1
2 − j if 1 ≤ j .

(8.12)

This map is a bĳection, where the inverse sends f ∈ Im+n × I∞+ to

λb0
f :=

m+n∑
i=1

λbf ,i ϵ
bi
i +

∑
1≤j

+λf , j ϵ
0
j + df ϵ

0
∞.

Similarly we define a bĳection

(8.13) X
∞ ,+

b,1 −→ Im+n × I∞− , λ 7−→ f b1
λ ,

by sending each λ =
∑m+n

i=1 λi ϵ
bi
i +

∑
1≤j
+λj ϵ

1
j +dϵ

1
∞ to the element f b1

λ = f (b,1
∞)

λ
given below:{

f b1
λ (i) := f bλ (i) if i ∈ [m + n],
f b1
λ ( j) := −+λj + d + n −m − 1

2 + j if 1 ≤ j .
(8.14)

The inverse sends f ∈ Im+n × I∞− to

λb1
f :=

m+n∑
i=1

λbf ,i ϵ
bi
i +

∑
1≤j

+λf , j ϵ
1
j + df ϵ

1
∞.

Note that for s ∈ {0, 1}, the sum
∑m+n

i=1 λbf ,i ϵ
bi
i +

∑
1≤j
+λf , j ϵ

s
j lies in the root

system of a finite-rank Lie superalgebra. Hence the following definitions
make sense.
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Definition 8.6. — For f , д ∈ Im+n × I∞+ , we say

f ∼ д if
(
df = dд and

(m+n∑
i=1

λbf ,i ϵ
bi
i +

∑
1≤j

+λf , j ϵ
0
j

)
∼

(m+n∑
i=1

λbд,i ϵ
bi
i +

∑
1≤j

+λд, j ϵ
0
j

))
in the sense of §1. We say that

f �b,0 д if
(
f ∼ д and λb,0д − λ

b,0
f ∈ NΠb,0

)
.

Wesimilarly define an equivalence∼ andapartial ordering�b,1 on Im+n×I∞− .

Definition 8.7. — For f , д ∈ Im+n × I∞− , we say

f ∼ д if
(
df = dд and

(m+n∑
i=1

λbf ,i ϵ
bi
i +

∑
1≤j

+λf , j ϵ
1
j

)
∼

(m+n∑
i=1

λbд,i ϵ
bi
i +

∑
1≤j

+λд, j ϵ
1
j

))
in the sense of §1. We say

f �b,1 д if
(
f ∼ д and λb,1д − λ

b,1
f ∈ NΠb,1

)
.

The following lemma follows from Definitions 8.6–8.7, and Lemma 8.4.

Lemma 8.8

(1) Given f ,д ∈ Im+n × I∞+ such that д �b,0 f , the following set is finite:{
h ∈ Im+n × I∞+ ; д �b,0 h �b,0 f

}
.

(2) Given f ,д ∈ Im+n × I∞− such that д �b,1 f , the following set is finite:{
h ∈ Im+n × I∞− ; д �b,1 h �b,1 f

}
.

The following lemma is an infinite-rank analogue of Lemma 8.5.

Lemma 8.9

. For any f ,д ∈ Im+n × I∞+ , one hasf ∼ д if and only if wtb,0(f ) = wtb,0(д),

. For any f ,д ∈ Im+n × I∞− one hasf ∼ д if and only if wtb,1(f ) = wtb,1(д).

Proof. — This follows from Definitions 8.6–8.7, and Lemma 8.5. �
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9. ı-CANONICAL BASES AND KAZHDAN-LUSZTIG-TYPE

POLYNOMIALS

In this chapter, suitably completed Fock spaces are constructed and shown
to admit ı-canonical aswell as dual ı-canonical bases. We introduce truncation
maps to study the relations among bases for different Fock spaces, which then
allow us to formulate ı-canonical bases in certain semi-infinite Fock spaces.

1. The B-completion and ϒ

Let b be a 0m1n-sequence. For r ∈ N, let

πr : Tb −→ Tbr(9.1)

be thenatural projectionmapwith respect to the standardbasis {Mb
f ; f ∈ Im+n}

of Tb (see (8.5)). We then let T̃b be the completion of Tb with respect to the
descending sequence of subspaces {kerπr ; r ≥ 1}.

Formally, every element in T̃b is a possibly infinite linear combination ofMf ,
with f ∈ Im+n . We let T̂b denote the subspace of T̃b spanned by elements of
the form

Mf +
∑
д≺b f

cbдf (q)Mд, for cbдf (q) ∈ Q(q).(9.2)

Definition 9.1. — The Q(q)-vector spaces T̃b and T̂b are respectively called
the A-completion and B-completion of Tb .

Remark 9.2. — The B-completion we defined here is different from the one
defined in [CLW2], since they are based on different partial orderings. How-
ever, observing that the partial ordering used in [CLW2] is coarser than the
partial ordering here, our B-completion here contains the B-completion in
[CLW2, Def. 3.2] as a subspace. This fact very often allows us to cite directly
the results therein.

Lemma 9.3. — Let f ∈ Im+nr . Then we haveMf ∈ Tbr , and

πr (ϒ
(l )Mf ) = ϒ(r )Mf , for all l ≥ r .
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Proof. — Note thatNΠ2r+1 ⊂ NΠ2l+1, for l ≥ r . It is clear from the construction
of ϒ(r ) in Theorem 2.10 that we have

ϒ(l ) = ϒ(r ) +
∑

µ ∈NΠ2l+1\NΠ2r+1

ϒ(l )µ .

By U-weight consideration, it is easy to see πr (ϒ(l )µ Mf ) = 0 if µ < NΠ2r+1.
Therefore

πr (ϒ
(l )Mf ) = πr (ϒ

(r )Mf ) = ϒ(r )Mf .

The lemma follows. �

It follows from Lemma 9.3 that lim
r→∞

ϒ(r )Mf , for any f ∈ Im+n , is a well-

defined element in T̃b . Therefore we have
ϒMf = lim

r→∞
ϒ(r )Mf ,

where ϒ is the operator defined in (8.2).

Lemma 9.4. — For f ∈ Im+n , we have

(9.3) ϒMf = Mf +
∑
д≺b f

r ′дf (q)Mд, for r ′дf (q) ∈ A.

In particular, we have ϒ : Tb → T̂b .

Proof. — For any u ∈ U− with U
ı -weight 0, f ∈ Im+n , let

uMf =
∑
д

cдfMд .

Fix any д with cдf , 0. Since u has U
ı -weight 0, we know by Lemma 8.5

that д ∼ f and so λbд ∼ λbf . By a direct computation (by writing u in terms of
Chevalley generator F ’s), it is easy to see thatu ∈ U− implies thatλbf −λ

b
д ∈ NΠb .

Hence we have д �b f .
Recall that ϒµ ∈ U− for all µ and ϒµ , 0 only if µ = µθ , i.e., µ is ofUı -weight 0.

Hence we have the identity (9.3), where r ′дf (q) ∈ Afollows from Theorem 4.18.
The lemma follows. �

Lemma 9.5. — The map ϒ : Tb → T̂b extends uniquely to a Q(q)-linear map

ϒ : T̂b −→ T̂b .

Proof. — We adapt the proof of [CLW2, Lemma 3.7] here. To show that the
map ϒ extends to T̂b we need to show that if y = Mf +

∑
д≺b f rд(q)Mд ∈ T̂b

for rд(q) ∈ Q(q) then ϒy ∈ T̂b . By Lemma 9.4 and the definition of T̂b , it
remains to show that ϒy ∈ T̃b . To that end, we note that if the coefficient
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of Mh in ϒy is nonzero, then there exists д �b f such that r ′hд(q) , 0. Thus
we have h �b д �b f . However, by Lemma 8.4 there are only finitely many
such д’s. Thus, only finitely many д’s can contribute to the coefficient of Mh

in ϒy, and hence ϒy ∈ T̃b . �

2. ı-Canonical bases

Anti-linear maps

ψ : Tbr −→ Tbr and ψ : Tb −→ T̂b

were defined in [CLW2, §3.3] (recall Remark 9.2 that our B-completion con-
tains the one therein as a subspace, so T̂b here can and will be understood in
the sense of this book). We define the map

(9.4) ψ ı : Tb −→ T̂b , ψ ı (Mf ) := ϒψ (Mf ).

Recall from §4 that Tbr is an ı-involutive U
ı
r -module with anti-linear involu-

tionψ (r )ı .

Lemma 9.6. — For f ∈ Im+nr , we have

πr
(
ψ ı (Mf )

)
= ψ (r )ı (Mf ).

Proof. — Recall thatψ (r )ı = ϒ(r )ψ (r ). By a variant of Lemma 9.3, we have

πr
(
ψ ı (Mf )

)
= πr

(
ϒ(r )ψ (Mf )

)
by a U-weight consideration. Therefore we have

πr
(
ψ ı (Mf )

)
= ϒ(r )πr

(
ψ (Mf )

)
= ϒ(r )ψ (r )(Mf ),

where the last identity follows from [CLW2, Lemma 3.4]. The lemma follows.
�

It follows immediately that we have

(9.5) ψ ı (Mf ) = lim
r→∞

ψ (r )ı (Mf ), for f ∈ Im+n .

Lemma 9.7. — Let f ∈ Im+n . Then we have

ψ ı (Mf ) = Mf +
∑
д≺b f

rдf (q)Mд, for rдf (q) ∈ A.

Hence the anti-linear mapψ ı : Tb → T̂b extends to a mapψ ı : T̂b → T̂b . Moreover
ψ ı is independent of the bracketing orders for the tensor product Tb .
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Proof. — Following [CLW2, Prop. 3.6] and Remark 9.2, we have

ψ (Mf ) = Mf +
∑
д≺b f

r ′′дf (q)Mд, for r ′′дf (q) ∈ A.

Hence the first part of the lemma follows from Lemma 9.4.
We can show that the map ψ ı : Tb → T̂b extends to a map ψ ı : T̂b → T̂b

by applying the same argument used in the proof of Lemma 9.5. Since
ψ is independent from the bracketing orders for the tensor product Tb
by [CLW2, Prop. 3.5], so isψ ı . �

Lemma 9.8. — The mapψ ı : T̂b → T̂b is an anti-linear involution.

Proof. — We need to prove that for fixed f ,h ∈ Im+n with h ≺b f , we have∑
h�bд�b f

rhд(q) rдf (q) = δhf .

By Lemma 8.4, there is only finitely many д such that h �b д �b f . Recall §4.
We know that ψ (r )ı is an involution. By (9.5), this is equivalent to the same
identities in the finite-dimensional space Tbr with r � 0. Then the lemma
follows from Proposition 3.10. �

Thanks to Lemmas 9.7 and 9.8, we are in a position to apply [Lu2, Lemma
24.2.1] to the anti-linear involutionψ ı : T̂b → T̂b to establish the following.

Theorem 9.9. — The Q(q)-vector space T̂b has unique ψ ı -invariant topological
bases {

T b
f ; f ∈ Im+n

}
and

{
Lbf ; f ∈ Im+n

}
such that

T b
f = Mf +

∑
д�b f

tbдf (q)M
b
д and Lbf = Mf +

∑
д�b f

`bдf (q)M
b
д ,

with tbдf (q) ∈ qZ[q], and `
b
дf (q) ∈ q

−1Z[q −1], for д �b f .

(We shall write tbff (q) = `
b
ff (q) = 1, tbдf (q) = `

b
дf (q) = 0 for д �b f .)

Definition 9.10

. The sets {T b
f ; f ∈ Im+n} and {Lbf ; f ∈ Im+n} are respectively called

ı-canonical basis and dual ı-canonical basis of T̂b .
. The polynomials tbдf (q) and `

b
дf (q) are called ı-Kazhdan-Lusztig (or ı-KL)

polynomials.
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Theorem 9.11

(1) (Positivity) We have
tbдf (q) ∈ N[q].

(2) For all f ∈ Im+n , the following sum is finite:

T b
f = Mf +

∑
д�b f

tbдf (q)M
b
д .

Proof. — Note that the finite sum claim in (2) at the q = 1 specialization holds
by Theorem 11.13 (the proof of Theorem 11.13 does not use the claim (2); we
decided to list such an algebraic statement (2) here rather than as a corollary
to Theorem 11.13). Hence, the validity of the positivity (1) implies the validity
of (2).

It remains to prove (1). Actually the same strategy as for type A (see [BLW]
and [CLW2, proof of Thm. 3.12, Rem. 3.14]) works here, and so we shall be
brief. Fix f ,д ∈ Im+n . Choose a half-integer k � 0 (relative to f ,д), and
consider the subspaces V[k ] of V spanned by vi for i ∈ [−k,k] ∩ I ⊂ I and an
analogous subspaceW[k ] ofW. We then define Tb

[k ] to be the subspace of Tb

spanned by the elementsT b
f for f ∈ ([−k,k]∩ I )m+n . Via the natural identifica-

tionW[k ] � ∧2kV[k ], we can identifyTb
[k ]with a tensor product of copies ofV[k ]

and∧2kV[k ] (such an identification in typeA setting appeared first in [CLW2]).
The latter provides a reformulation of the parabolic KL conjecture of type B

thanks to Remark 5.9 (which was in turn based on Theorems 4.26 and 5.8);
hence tbдf (q) can be identifiedwith a (non-super) KL polynomial of type B. The
positivity of these polynomials is well known (see [KL80], [BGS]), whence
the positivity (1). �

Remark 9.12. — We expect a positivity property of the coefficients in the ex-
pansion of the ı-canonical basis elements here with respect to the (type A)
canonical basis on T̂b in [CLW2] (compare with the remark after Theo-
rem 4.26).

3. Bar involution and q-wedges ofW

Let k ∈ N ∪ {∞}. For f = ( f[m+n], f[k ] ) ∈ Im+n × Ik+ , set

Mb,0
f := Mb

f[m+n]
⊗ Vf[k ] ∈ T

b ⊗ ∧kV.
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Then {Mb,0
f ; f ∈ Im+n × Ik+} forms a basis, called the standard monomial basis,

of the Q(q)-vector space Tb ⊗ ∧kV.
Similarly, Tb ⊗ ∧kW admits a standard monomial basis given by

Mb,1
д := Mb

д[m+n] ⊗ Wд[k ] ∈ T
b ⊗ ∧kW,

where д = (д [m+n] ,д[k ] ) ∈ Im+n × Ik− . Following [CLW2, §4], here we shall
focus on the case Tb ⊗ ∧kW, while the case Tb ⊗ ∧kV is similar.

Let us consider k ∈ N first. As in [CLW2, §4], Tb ⊗ ∧kW can be realized
as a subspace of Tb ⊗W⊗k = T(b,1k ). Therefore we can define a B-completion
of Tb ⊗ ∧kW, denoted by

Tb ⊗̂ ∧k W,
as the closure of the subspace Tb ⊗ ∧kW ⊂ Tb ⊗̂W⊗k = T̂(b,1k ) with respect to
the linear topology {kerπr ; r ≥ 1} defined in §1. By construction Tb ⊗̂ ∧k W
is invariant under the involutionψ ı , i.e., we have

ψ ı (M
b,1
f ) = Mb,1

f +
∑

д≺
(b,1k )f

rдf (q)M
b,1
д ,

where rдf (q) ∈ A, and the sum running over д ∈ Im+n × Ik− is possibly infinite.

Remark 9.13. — If k = 0, Mb,0
f and Mb,1

д are understood as Mb
f and Mb

д ,
respectively; also, Tb ⊗̂ ∧0W and Tb ⊗̂ ∧0 V are understood as T̂b .

Recall the linear maps ∧k,ld defined in (8.6). For l ≥ k and each d ∈ Z, define
the Q(q)-linear map

id ⊗∧k,ld : Tb ⊗ ∧kW −→ Tb ⊗ ∧lW.

It is easy to check that the map id ⊗∧k,ld extends to the B-completions; that is,
we have

id ⊗∧k,ld : Tb ⊗̂ ∧k W −→ Tb ⊗̂ ∧l W.
Let

Tb ⊗̂ ∧∞d W := lim
−−→
Tb ⊗̂ ∧k W

be the direct limit of the Q(q)-vector spaces with respect to the linear
maps id ⊗∧k,ld . It is easy to see that Tb⊗ ∧∞d W ⊂ T

b ⊗̂ ∧∞d W. Define the
B-completion of Tb⊗ ∧∞W as follows:

(9.6) Tb ⊗̂ ∧∞W :=
⊕
d ∈Z
Tb ⊗̂ ∧∞d W.

By the same argument as in §3, we see that Tb ⊗̂ ∧∞d W and Tb ⊗̂ ∧∞ W are
(topological) U-modules, hence (topological) Uı -modules.
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Following the definitions of the partial orderings in Definition 8.3 and
Definition 8.7, we see that Tb ⊗̂ ∧∞W is spanned by elements of the form

Mb,1
f +

∑
д≺b,1f

cдf (q)M
b,1
д , for д, f ∈ Im+n × I∞− .

Following [CLW2, §4.1], we can extend the anti-linear involution

ψ : Tb ⊗̂ ∧k W −→ Tb ⊗̂ ∧k W

to an anti-linear involution

ψ : Tb ⊗̂ ∧∞W −→ Tb ⊗̂ ∧∞W

such that

ψ (Mb,1
f ) = Mb,1

f +
∑

д≺b,1f

r ′′дf (q)M
b,1
f , for r ′′дf (q) ∈ A.

Here we have used the fact that our B-completion contains the B-completion
in loc. cit. as a subspace (see Remark 9.2).

Following the definition of the B-completion Tb ⊗̂ ∧∞ W, we have ϒ as a
well-defined operator on Tb ⊗̂ ∧∞W such that

ϒ(Mb,1
f ) = Mb,1

f +
∑

д≺b,1f

r ′дf (q)M
b,1
f , for r ′дf (q) ∈ A.

Therefore we can define the anti-linear map

ψ ı := ϒψ : Tb ⊗̂ ∧∞W −→ Tb ⊗̂ ∧∞W,

such that

ψ ı (M
b,1
f ) = Mb,1

f +
∑

д≺b,1f

rдf (q)M
b,1
f , for rдf (q) ∈ A.

Lemma 9.14. — Let k ∈ N ∪ {∞}. The map

ψ ı : Tb ⊗̂ ∧k W −→ Tb ⊗̂ ∧k W

is an involution.

Proof. — Fork ∈ N, the lemmawas already established. Fork = ∞, the lemma
can be proved in the same way as Lemma 9.8 with the help of Lemma 8.8. �
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4. Truncations

In this section we shall again only focus on

Tb ⊗ ∧kW

for k ∈ N ∪ {∞}. We shall use f k ∈ Im+n × Ik± as a short-hand notation for the
restriction of f [m+n] ∪ [k ] of a function f ∈ Im+n × I∞± .

Now let us define the truncation map

Tr : Tb ⊗ ∧∞W −→ Tb ⊗ ∧kW,

for k ∈ N, as follows:

Tr(m ⊗ Wh) =

{
m ⊗ Wh[k ] if h( i ) − h( i + 1 ) = −1, for i ≥ k + 1,
0 otherwise.

Lemma 9.15. — Let k ∈ N. The truncation map

Tr : Tb ⊗ ∧∞W −→ Tb ⊗ ∧kW

is compatible with the partial orderings, and hence extends naturally to aQ(q)-linear
map

Tr : Tb ⊗̂ ∧∞W −→ Tb ⊗̂ ∧k W.

Proof. — Let f , д ∈ Im+n × I∞− with д �b,1 f . According to Definition 8.7, this
means f ( i ) = д( i ) for all i � 0. If Tr(Mb,1

f ) , 0 and Tr(Mb,1
д ) , 0, we must

have д( i ) = f ( i ), for all i ≥ k + 1. Hence we have

λ(b,1
k )

дk
�(b,1k ) λ

(b,1k )
f k

by comparing Definition 8.7 with Definition 8.3. Thanks to Lemma 8.5 and
Lemma 8.9, we have дk ∼ f k as well. Therefore we have дk �(b,1k ) f k .

Now suppose Tr(Mb,1
f ) = 0 and д �b,1 f . If f [∞ ] = д [∞ ], then Tr(Mb,1

д ) = 0.
If not, choose i with i maximal such that f ( i ) , д( i ). If i ≤ k, then again we
have Tr(Mb,1

д ) = 0. So suppose i ≥ k + 1. Since д �b,1 f , we have д( j) = f ( j)

for j � 0 and д( i ) < f ( i ). Hence there must be some t ≥ k + 1 such that

д( t) − д( t + 1) ≥ f ( t) − f ( t + 1) > −1.

Therefore Tr(Mb,1
д ) = 0. The lemma follows. �

Lemma 9.16. — The truncation map Tr : Tb ⊗̂ ∧∞W→ Tb ⊗̂ ∧kW commutes with
the anti-linear involutionψ ı , that is,

ψ ı
(
Tr(Mb,1

f )
)
= Tr

(
ψ ı (M

b,1
f )

)
, for f ∈ Im+n × I∞− .
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Proof. — Following [CLW2, Lemma 4.2], we know Tr commutes with ψ .
As shown in the proof of [CLW2, Lemma 4.2], Tr is a homomorphism of
U
−-modules. By (8.2), we have ϒ =

∑
µ ∈Λ ϒµ , where ϒµ ∈ U

−. The lemma
follows. �

Proposition 9.17. — Let k ∈ N ∪ {∞}. The anti-linear map

ψ ı : Tb ⊗̂ ∧k W −→ Tb ⊗̂ ∧k W

is an involution. Moreover, the space Tb ⊗̂ ∧k W has uniqueψ ı -invariant topological
bases {

T b,1
f ; f ∈ Im+n × Ik−

}
and

{
Lb,1f ; f ∈ Im+n × Ik−

}
such that

T b,1
f = Mb,1

f +
∑

д≺
(b,1k ) f

tb,1дf (q)M
b,1
д and Lb,1f = Mb,1

f +
∑

д≺
(b,1k ) f

`b,1дf (q)M
b,1
д

with tb,1дf ∈ qZ[q], and `
b,1
дf (q) ∈ q

−1Z[q −1].

(We shall write tb,1ff = `
b,1
ff (q) = 1, and tb,1дf = `

b,1
дf = 0, for д �(b,1k ) f .)

We call {T b,1
f } and {L

b,1
f } the ı-canonical and dual ı-canonical basesofTb ⊗̂∧kW.

We conjecture that tb,1дf ∈ N[q].

Proposition 9.18. — Let k ∈ N. The truncation map

Tr : Tb ⊗̂ ∧∞W −→ Tb ⊗̂ ∧k W

preserves the standard, ı-canonical, and dual ı-canonical bases in the following sense:
for Y = M,L,T and f ∈ Im+n × I∞− we have

Tr(Y b,1
f ) =

{
Y b,1
f k

if f ( i ) − f ( i + 1 ) = −1, for i ≥ k + 1,
0 otherwise.

Consequently, we have

tb,1дf (q) = tb,1
дk f k
(q) and `b,1дf (q) = `

b,1
дk f k
(q),

for д, f ∈ Im+n × I∞− such that f ( i ) − f ( i + 1 ) = д( i ) −д( i + 1 ) = −1, for i ≥ k + 1.

Proof. — The statement is true for Y = M by definition. Lemma 9.15 and
Lemma 9.16 now imply the statement for Y = T , L. �
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5. Bar involution and q-wedges of V

The constructions and statements in §3 and §4 have counterparts for Tb ⊗
∧kV, k ∈ N ∪ {∞}. We shall state them without proofs. Let Tb ⊗̂ ∧k V be the
B-completion of Tb ⊗ ∧kV. For k ∈ N, we define the truncation map

Tr : Tb ⊗ ∧∞V −→ Tb ⊗ ∧kV

by Tr(m ⊗ Vh) =

{
m ⊗ Vh[k ] if h( i ) − h( i + 1 ) = 1, for i ≥ k + 1,
0 otherwise .

The truncation map Tr extends to the B-completions.

Proposition 9.19. — Let k ∈ N ∪ {∞}. The bar map

ψ ı : Tb ⊗̂ ∧k V −→ Tb ⊗̂ ∧k V
is an involution. Moreover, the space Tb ⊗̂ ∧k V has unique ψ ı -invariant topological
bases

{
T b,0
f ; f ∈ Im+n × Ik+

}
and

{
Lb,0f ; f ∈ Im+n × Ik+

}
such that

T b,0
f = Mb,0

f +
∑

д≺
(b,0k ) f

tb,0дf (q)M
b,0
д and Lb,0f = Mb,0

f +
∑

д≺
(b,0k ) f

`b,0дf (q)M
b,0
д ,

with tb,0дf (q) ∈ qZ[q], and `
b,0
дf (q) ∈ q

−1Z[q −1].

(We will write tb,0
ff (q) = `

b,0
ff (q) = 1 and tb,0

дf = `
b,0
дf = 0, for д �(b,0k ) f .)

. We shall refer to the basis {T b,0
f } as the ı-canonical basis and refer to the

basis {Lb,0f } the dual ı-canonical basis for T
b ⊗̂ ∧k V.

. Also we shall call the polynomials tb,0дf (q), t
b,1
дf (q), `

b,0
дf (q) and `

b,1
дf (q) the

ı-KL polynomials.

Proposition 9.20. — Let k ∈ N. The truncation map

Tr : Tb ⊗̂ ∧∞ V −→ Tb ⊗̂ ∧k V
preserves the standard, ı-canonical, and dual ı-canonical bases in the following sense:
for Y = M,L,T and f ∈ Im+n × I∞+ we have

Tr
(
Y b,0
f

)
=

Y
b,0
f k

if f ( i ) − f ( i + 1 ) = 1, for i ≥ k + 1,

0 otherwise.

Consequently, we have tb,0дf (q) = tb,0
дk f k
(q) and `b,0дf (q) = `

b,0
дk f k
(q), for д, f ∈ Im+n × I∞+

such that f ( i ) − f ( i + 1 ) = д( i ) − д( i + 1 ) = 1, for i ≥ k + 1.
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FOCK SPACES

In this chapter, we study the relations of ı-canonical and dual ı-canonical
bases between three different pairs of Fock spaces.

1. Tensor versus q-wedges

As explained in §3, we can and will regard ∧kV as a subspace of V⊗k , for a
finite k.

Letb be a fixed 0m1n-sequence and k ∈ N. We shall compare the ı-canonical
and dual ı-canonical bases of Tb ⊗ V⊗k and its subspace Tb ⊗ ∧kV .

Let f ∈ Im+n × Ik+ . As before, we write the dual ı-canonical basis ele-
ment L(b,0

k )

f in Tb ⊗̂V⊗k and the corresponding dual ı-canonical basis ele-
ment Lb,0f in Tb ⊗̂ ∧k V as

L(b,0
k )

f =
∑

д∈Im+n×Ik
`
(b,0k )
дf (q)M (b,0

k )
д ,(10.1)

Lb,0f =
∑

д∈Im+n×Ik+

`b,0дf (q)M
b,0
д .(10.2)

The following proposition states that the ı-KL polynomials `’s in Tb ⊗̂∧kV
coincide with their counterparts in Tb ⊗̂V⊗k .

Proposition 10.1. — Let f ,д ∈ Im+n × Ik+ . Then

`b,0дf (q) = `
(b,0k )
дf (q).

Proof. — The same argument in [CLW2, Prop. 4.9] applies here. �
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Let f ∈ Im+n × Ik+ . Similarly as before we write the canonical basis ele-
ment T (b,0

k )

f in Tb ⊗̂V⊗k and the canonical basis element T b,0
f in Tb ⊗̂ ∧k V

respectively as

T (b,0
k )

f =
∑

д∈Im+n×Ik
t (b,0

k )

дf (q)M (b,0
k )

д ,(10.3)

T b,0
f =

∑
д∈Im+n×Ik+

tb,0дf (q)M
b,0
д .(10.4)

Proposition 10.2. — For f , д ∈ Im+n × Ik+ , we have

tb,0дf (q) =
∑
τ ∈Sk

(−q)`(w
(k )
0 τ )t (b,0

k )

д ·τ ,f ·w (k )0
(q).

Proof. — Similar proof as for [CLW2, Prop. 4.10] works there.
Via identifying Vд[k ] ≡ M (0

k )

д[k ] ·w
(k )
0
Lw (k )0

, we have, as in [Br1, Lemma 3.8],

T b,0
f = T (b,0

k )

f ·w (k )0
Lw (k )0

.

A straightforward variation of [Br1, Lemma 3.4] using (10.3) gives us

T b,0
f = T (b,0

k )

f ·w (k )0
Lw (k )0

=
∑
д

t (b,0
k )

д,f ·w (k )0
M (b,0

k )
д Lw (k )0

=
∑
τ ∈Sk

∑
д∈Im+n×Ik+

t (b,0
k )

д ·τ ,f ·w (k )0
M (b,0

k )
д ·τ Lw (k )0

=
∑
τ ∈Sk

∑
д∈Im+n×Ik+

t (b,0
k )

д ·τ ,f ·w (k )0
(−q)`(τ

−1w (k )0 )Mb,0
д

=
∑

д∈Im+n×Ik+

( ∑
τ ∈Sk

t (b,0
k )

д ·τ ,f ·w (k )0
(−q)`(w

(k )
0 τ )

)
Mb,0
д .

The proposition now follows by comparing with (10.4). �

Remark 10.3. — The counterparts of Propositions 10.1–10.2 hold if we
replace V byW.

2. Adjacent ı-canonical bases

Two 0m1n-sequences b, b ′ of the form b = (b1, 0, 1,b2
) and b ′ = (b1, 1, 0,b2

)

are called adjacent. Nowwe compare the ı-canonical aswell as dual ı-canonical
bases in Fock spaces T̂b and T̂b

′

, for adjacent 0m1n-sequences b and b ′.
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In typeA setting, a strategywas developed in [CLW2, §5] for such a compar-
ison of canonical basis in adjacent Fock spaces. We observe that the strategy
applies to our current setting essentially without any change, under the as-
sumption that b1 is nonempty. So wewill need not copy over all the details from
loc. cit. to this book.

Let us review themain ideas in typeA from [CLW2, §5]. Wewill restrict the
discussion here to the case of canonical basis while the case of dual canonical
basis is entirely similar. The starting point is to start with the rank two setting
and compare the canonical bases in the B-completions of V ⊗W andW ⊗ V.
These canonical bases can be easily computed: they are either standardmono-
mials or a sum of two standard monomials with some q-power coefficients.
The problem is that the partial orderings onV ⊗̂W andW ⊗̂V are not compat-
ible. This problem is overcome by a simple observation that matching up the
canonical bases directly is actually a U-module isomorphism of their respec-
tive linear spans, which is denoted byR : U �

→ U′. So the idea is to work with
these smaller spacesU andU′ instead of the B-completions directly. We useU
and U′ to build up smaller completions of the adjacent Tb and Tb

′

, which are
used to match the canonical bases by T b

f 7→ T b ′

f U
. Here the index shift f 7→ f U

is shown to correspond exactly under the bĳection Im+n ↔ X (m |n) to the shift
λ 7→ λU on X (m |n) in Remark 10.5 below (which occurs when comparing the
tilting modules relative to adjacent Borel subalgebras of type b and b ′).

Now we restrict ourselves to two adjacent sequences b and b ′, where b1 is
nonempty; this is sufficient for themainapplicationofdetermining completely
the irreducible and tilting characters in categoryOb for osp(2m+1 |2n)-modules
(see however Remark 10.4 below for the removal of the restriction). We will
compare two Fock spaces of the form Tb

1
⊗V⊗W⊗Tb

2
and Tb

1
⊗W⊗V⊗Tb

2
,

where b1 is nonempty. The coideal property of the coproduct of the algebra
U
ı in Proposition 2.5 allows us to considerV⊗W andW⊗V asU-modules (not

as Uı -modules), and so the type A strategy of [CLW2, §5] applies verbatim to
our setting.

Remark 10.4. — Nowwe consider V ⊗W andW ⊗V asUı -modules (instead
of U-modules). The ı-canonical bases on their respective B-completions can
be computed explicitly, though the computation in this case (corresponding
to the BGG category of osp(3 |2)) is much more demanding; the formulas are
much messier and many more cases need to be considered, in contrast to the
easy type A case of gl(1 |1). Denote by U[ and U′

[
the linear spans of these

canonical bases respectively. We are able to verify by a direct computation
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that matching the canonical bases suitably produces a U
ı -module isomor-

phism U[ → U′[. (The details will take quite a few pages and hence will
be skipped.) Accepting this, the strategy of [CLW2, §5] is adapted to work
equally well for comparing the (dual) ı-canonical bases between arbitrary
adjacent Fock spaces T̂b and T̂b

′

.

Remark 10.5. — Let b = (b1, 0, 1,b2
) and b ′ = (b1, 1, 0,b2

) be adjacent 0m1n-
sequences. Let α be the isomorphic simple root of osp(2m+ 1 |2n) correspond-
ing to the pair 0, 1 in b. Following [CLW2, §6], we introduce the notation
associated to λ ∈ X (m |n):

λL =

{
λ if (λ,α) = 0,
λ − α if (λ,α) , 0,

λU =

{
λ − 2α if (λ,α) = 0,
λ − α if (λ,α) , 0.

Then we have the following identification of simple and tilting modules
(see [PS] and [CLW2, Lemma 6.2, Thm. 6.10]):

Lb (λ) = Lb ′(λ
L), Tb (λ) = Tb ′(λ

U), for λ ∈ X (m |n).

3. Combinatorial super duality

For a partition µ = (µ1, µ2, . . . ), we denote its conjugate partition by µ ′ =

(µ ′1, µ
′
2, . . . ). We define a Q(q)-linear isomorphism,

\ : ∧∞d V −→ ∧
∞
dW (for each d ∈ Z)

or equivalently define

\ : ∧∞V −→ ∧∞W, \
(
| λ,d 〉

)
= | λ′∗,d 〉, for λ ∈ P, d ∈ Z.

The following is a straightforward generalization of [CWZ, Thm. 6.3].

Proposition 10.6. — The map

\ : ∧∞d V→ ∧
∞
dW ( for each d ∈ Z) or \ : ∧∞V→ ∧∞W

is an isomorphism of U-modules.

Proof. — It is a well-known fact that ∧∞d V and ∧∞dW as U-modules are both
isomorphic to the level one integrablemodule associated to thedth fundamen-
tal weight (by the same proof as for [CWZ, Prop. 6.1]; also see the references
therein).

Now the proof of the proposition is the same as for [CWZ, Theorem 6.3],
which is our special case with d = 0. �
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This isomorphism ofU-modules \ : ∧∞V→ ∧∞W induces an isomorphism
of U-modules

\b := id ⊗\ : Tb ⊗ ∧∞V −→ Tb ⊗ ∧∞W.

Let f ∈ Im+n × I∞+ . There exists unique λ ∈ P and d ∈ Z such that

| λ,d 〉 = Vf [∞ ] .

We define f \ to be the unique element in Im+n × I∞− determined by f \(i) = f (i),
for i ∈ [m + n], and Wf \

[∞ ]

= | λ′∗,d 〉. The assignment f 7→ f \ gives a bĳection
(cf. [CWZ])

(10.5) \ : Im+n × I∞+ −→ Im+n × I∞− .

If we write

λb,0f =

m+n∑
i=1

λbf ,i ϵ
bi
i +

∑
1≤j

+λf , j ϵ
0
j + df ϵ

0
∞ ∈ X

∞ ,+

b,0

under the bĳection defined in (8.11), then we have

(10.6) λb,1
f \ =

m+n∑
i=1

λbf ,i ϵ
bi
i +

∑
1≤j

+λ′f , j ϵ
1
j + df ϵ

1
∞ ∈ X

∞ ,+

b,1 .

The following is the combinatorial counterpart of the super duality on
representation theory in Theorem 11.11 . We refer to [CLW2, Thm. 4.8] for a
type A version, on which our proof below is based.

Theorem 10.7. — Let b be a 0m1n-sequence.

(1) The isomorphism \b respects the Bruhat orderings and hence extends to an
isomorphism of the B-completions

\b : Tb ⊗̂ ∧∞ V −→ Tb ⊗̂ ∧∞W.

(2) The map \b commutes with the bar involutions.

(3) Themap \b preserves the ı-canonical and dual ı-canonical bases. More precisely,
for f ∈ Im+n × I∞+ , we have

\b (M
b,0
f ) = Mb,1

f \ , \b (T
b,0
f ) = T

b,1
f \ , \b (L

b,0
f ) = Lb,1

f \ .

(4) We have for all д, f ∈ Im+n × I∞+ , the following identifications of ı-KL polyno-
mials:

`b,0дf (q) = `
b,1
д\ f \ (q) and tb,0

дf (q) = tb,1
д\ f \ (q).
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Proof. — The statements (2)–(4) follows from (1) by the same argument as
[CLW2, Thm. 4.8]. It remains to prove (1).

Recall the definition of the partial orderings in Definitions 8.6–8.7.
To prove (1), we need to show for any f , д ∈ Im+n × I∞+ , д �b,0 f if and only
if д\ �b,1 f \ . This is equivalent to say that f ∼ д and λb,0д �b,0 λb,0f if and
only if f \ ∼ д\ and λb,1

д\
�b,1 λ

b,1
f \ by Definitions 8.6–8.7.

Since \b : Tb ⊗ ∧∞V→Tb ⊗ ∧∞W is an isomorphism of Uı -modules, by
Lemma 8.9, we have f ∼ д if and only if f \ ∼ д\ . We shall assume that f ∼ д,
hence f \ ∼ д\ for the rest of this proof.

We shall only prove that λb,0д �b,0 λb,0f implies λb,1
д\
�b,1 λb,1

f \ here, as the
converse is entirely similar. We write

λb,0f − λ
b,0
д = a(−ϵb1

1 ) +
m+n−1∑
i=1

ai (ϵ
bi
i − ϵ

bi+1
i+1 ) + am+n(ϵ

bm+n
m+n − ϵ

0
1 ) +

∑
i=1

ai (ϵ
0
i − ϵ

0
i+1),

where all coefficients are in N and ai = 0 for all but finitely many i. Set

λb,0h := λb,0f − a(−ϵ
b1
1 )

for some h ∈ Im+n × I∞+ . Apparently we have λb,0д �b,0 λ
b,0
h �b,0 λ

b,0
f .

Note that λb,0h actually dominates λb,0д with respect to the Bruhat ordering
of type A defined in [CLW2, §2.3]. Therefore following [CLW2, Thm. 4.8]
and Remark 9.2, we have

(10.7) λb,1
д\
�b,1 λ

b,1
h\ .

On the other hand, by definitions of λb,0h and the isomorphism of \, we have
that λb,1

h\ = λ
b,1
f \ − a(−ϵ

b1
1 ), and hence

λb,1
h\ �b,1 λ

b,1
f \ .

Combining this with (10.7) implies that λb,1
д\
�b,1 λb,1

f \ . The statement (1) is
proved. �
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11. KAZHDAN-LUSZTIG THEORY OF TYPE B AND

ı-CANONICAL BASIS

In this chapter, we formulate connections between Fock spaces and
Grothendieck groups of various BGG categories. We establish relations of
simple as well as tilting modules between a BGG category and its parabolic
subcategory. We show that Uı at q = 1 are realized as translation functors
in the BGG category. Finally, we establish the Kazhdan-Lusztig theory
for osp(2m + 1 |2n), which is the main goal of the book.

1. Grothendieck groups and Fock spaces

Recall the Fock space Tb in §2. Starting with an A-lattice Tb
A
spanned by

the standard monomial basis of the Q(q)-vector space Tb , we define

TbZ = Z ⊗AT
b
A

where Aacts on Z with q = 1. For any u in the A-lattice Tb
A
, we denote by u(1)

its image in TbZ .
Recall the category Ob from §3.
. Let O∆

b
be the full subcategory of Ob consisting of all modules possessing

a finite b-Verma flag.
. Let [O∆

b
] be its Grothendieck group.

The following lemma is immediate from the bĳection

Im+n ←→ X (m |n) (λ←→ f bλ )

given by (8.7) and (8.8).

Lemma 11.1. — The map

Ψ : [O∆
b ] −→ T

b
Z ,

[
Mb (λ)

]
7−→ Mb

f bλ
(1),

defines an isomorphism of Z-modules.

Recall the category O
k
b,0 from §3. We shall denote O

k,∆
b,0 the full subcate-

gory of Ok
b,0 consisting of all modules possessing finite parabolic Verma flags.

Recall in §3, we defined the q-wedge spaces ∧kV and ∧kW. Recall a bĳection
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X
∞ ,+

b,0 → Im+n × I∞+ , λ 7→ f b0
λ from (8.11). Similarly, we have a bĳection

X
k ,+
b,0 −→ Im+n × Ik+ , λ 7−→ f b0

λ .

(Here f b0
λ is understood as the natural restriction to the part [m + n] × k.)

Now the following lemma is clear.

Lemma 11.2. — For k ∈ N ∪ {∞}, the map

Ψ :
[
O
k,∆
b,0

]
−→ TbZ ⊗ ∧

kVZ ,
[
M

k
b,0(λ)

]
7−→ Mb,0

f b0
λ

(1),

defines an isomorphism of Z-modules.

We have abused the notation Ψ for all the isomorphisms unless otherwise
specified, since they share the same origin.

For k ∈ N ∪ {∞}, we define [[Ok,∆
b,0 ]] as the completion of [Ok,∆

b,0 ] such that the
extensions of Ψ

Ψ :
[[
O
k,∆
b,0

]]
−→ TbZ ⊗̂ ∧

k VZ(11.1)

are isomorphism of Z-modules. Recall the category O
k
b,1 from §3. We shall

denote O
k,∆
b,1 the full subcategory of Ok

b,1 consisting of all modules possessing
parabolic Verma flags. Recall a bĳection

X
∞ ,+

b,1 −→ Im+n × I∞− , λ 7−→ f b1
λ

from (8.13). Similarly, we have a bĳection

X
k ,+
b,1 −→ Im+n × Ik− , λ 7−→ f b1

λ .

(Here f b1
λ is understood as the natural restriction to the part [m + n] × k.)

Now the following lemma is clear.

Lemma 11.3. — For k ∈ N ∪ {∞}, the map

Ψ :
[
O
k,∆
b,1

]
−→ TbZ ⊗ ∧

kWZ ,
[
M

k
b,1(λ)

]
7−→ Mb,1

f b1
λ

(1),

is an isomorphism of Z-modules.

For k ∈ N ∪ {∞}, we define [[Ok,∆
b,1 ]] as the completion of [Ok,∆

b,1 ] such that the
extensions of Ψ

Ψ :
[[
O
k,∆
b,1

]]
−→ TbZ ⊗̂ ∧

k WZ(11.2)

are isomorphism of Z-modules.
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Proposition 11.4. — The truncation maps defined here are compatible under the
isomorphism ψ with the truncations in Propositions 9.18 and 9.20. More precisely,
we have the following commutative diagrams,

[[O
∞ ,∆

b,0 ]] TbZ ⊗̂ ∧
∞ VZ

[[O
k,∆
b,0 ]] TbZ ⊗̂ ∧

k VZ

Ψ

Ψ

tr0 Tr

[[O
∞ ,∆

b,1 ]] TbZ ⊗̂ ∧
∞ VZ

[[O
k,∆
b,1 ]] TbZ ⊗̂ ∧

k VZ

Ψ

Ψ

tr1 Tr

Proof. — Theproposition followsbyadirect computationusing the respective
standard bases {[M∞

b,0(λ)]} and {[M
∞

b,1(λ)]}, and applying Propositions 9.18,
9.20, and 7.7. �

2. Comparison of characters

Let b be a fix 0m1n-sequence. For k ∈ N, consider the extended sequences
(b, 0k ) and (b, 1k ). Associated to the extended sequences, we introduced in
Chapter 7 the categories Om+k |n

(b,0k ) andO
m |n+k
(b,1k ) , as well as the parabolic categories

O
k
b,0 and O

k
b,1, respectively.

For λ ∈ X
k,+
b,0 , we can express the simple module [L(b,0k )(λ)] in terms of

Verma modules as follows:[
L(b,0k )(λ)

]
=

∑
µ ∈X (m+k |n)

aµλ
[
M(b,0k )(µ)

]
, for aµλ ∈ Z.

Since the simplemodules {L(b,0k )(λ) = L
k
b,0(λ) |λ ∈ X

k,+
b,0 } also lie in the parabolic

category O
k
b,0, we can express them in terms of parabolic Verma modules as

follows: [
L(b,0k )(λ)

]
=

∑
ν ∈X k,+

b,0

bνλ
[
M

k
b,0(ν )

]
, for bνλ ∈ Z.

Recall that
M

k
b,0(λ) = Indosp(2m+1 |2n |2k )

p
k
b,0

L0(λ).

By the Weyl character formula applied to L0(λ), we obtain aνλ = bνλ ,
for ν , λ ∈ X k,+

b,0 . This proves the following.
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Proposition 11.5. — Let λ ∈ X k,+
b,0 and let ξ ∈ X k,+

b,1 . Then we have[
L(b,0k )(λ)

]
=

∑
µ ∈X (m+k |n)

aµλ
[
M(b,0k )(µ)

]
=

∑
ν ∈X k,+

b,0

aνλ
[
M

k
b,0(ν )

]
.

[
L(b,1k )(ξ )

]
=

∑
µ ∈X (m |n+k )

a′µξ
[
M(b,1k )(µ)

]
=

∑
η∈X k,+

b,1

a′ηξ
[
M

k
b,1(η)

]
.

Now we proceed with the tilting modules. Let λ ∈ X
k,+
b,0 and ξ ∈ X

k,+
b,1 .

We can express the tilting modules T(b,0k )(λ) and T(b,0k )(ξ ) in terms of Verma
modules as follows:[

T(b,0k )(λ)
]
=

∑
µ ∈X (m+k |n)

cµλ
[
M(b,0k )(µ)

]
, for cµλ ∈ Z,[

T(b,1k )(ξ )
]
=

∑
η∈X (m |n+k )

c ′ηξ
[
M(b,1k )(η)

]
, for c ′ηξ ∈ Z.

Recall the tilting modules T k
b,0(λ) and T

k
b,1(ξ ) in the parabolic categories O

k
b,0

and O
k
b,1. The following proposition is a counterpart of [CLW2, Prop. 8.7] with

the same proof, which is based on [So2], [Br2]. Recallw (k )0 denotes the longest
element inSk .

Proposition 11.6

(1) Let λ ∈ X k,+
b,0 , and write T

k
b,0(λ) =

∑
ν ∈X k,+

b,0
dνλM

k
b,0(ν ). Then we have

dνλ =
∑
τ ∈Sk

(−1)`(τw
(k )
0 )cτ ·ν,w (k )0 ·λ

.

(2) Let ξ ∈ X k,+
b,1 , and write T

k
b,1(ξ ) =

∑
η∈X k,+

b,1
d ′ηξM

k
b,1(η). Then we have

d ′ηξ =
∑
τ ∈Sk

(−1)`(τw
(k )
0 )c ′

τ ·η,w (k )0 ·λ
.

3. Translation functors

Brundan [Br1] established a U-module isomorphism between the
Grothendieck group of the category O of gl(m |n) and a Fock space (at q = 1),
where some properly defined translation functors act as Chevalley generators
of U at q = 1. Here we shall develop a type B analogue in the setting
of osp(2m + 1 |2n).
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Let V be the natural osp(2m + 1 |2n)-module. Notice that V is self-dual.
Recalling §1, we have the following decomposition

Ob =
⊕
χλ

Ob, χλ ,

where χλ runs over all the integral central characters. Thanks to Lemma 8.5,
we can set

Ob,γ := Ob, χλ , if wtb (λ) = γ
(recall wtb from (8.9)). For r ≥ 0, let SrV be the r th supersymmetric power of
V . For i ∈ Iı ,M ∈ Ob,γ , we define the following translation functors in Ob :

f (r )αi M := prγ−r (εi−1/2−εi+1/2)
(M ⊗ SrV ),(11.3)

e(r )αi M := prγ+r (εi−1/2−εi+1/2)
(M ⊗ SrV ),(11.4)

tM := prγ (M ⊗ V ),(11.5)

where prµ is the natural projection from Ob to Ob,µ .
Note that the translation functors naturally induce operators on the

Grothendieck group [O∆
b
], denoted by f (r )αi , e

(r )
αi , and t as well. The following

two lemmas are analogues of [Br1, Lemmas 4.23–4.24]. Since they are
standard, we shall skip the proofs.

Lemma 11.7. — On the category Ob , the translation functors f (r )αi , e
(r )
αi , and t are all

exact. They commute with the τ -duality.

Lemma 11.8. — Let ν1, . . . , νN be the set of weights of SrV ordered so that vi > vj
if i < j. Let λ ∈ X (m |n). Then Mb (λ) ⊗ S

rV has a multiplicity-free Verma flag with
subquotients isomorphic toMb (λ+ν1), . . . ,Mb (λ+νN ) in the order from bottom to top.

Denote by UZ = Z ⊗AUA the specialization of the A-algebra UA at q = 1.
Hence we can view TbZ as aUZ -module. Thanks to (2.2)–(2.3), we know ι(f (r )αi )

and ι(e(r )αi ) lie in UA, hence their specializations at q = 1 in UZ act on TbZ .

Proposition 11.9. — Under the identification [O∆
b
] andTbZ via the isomorphism Ψ,

the translation functors f (r )αi , e
(r )
αi , and t act in the same way as the specialization

of f (r )αi , e
(r )
αi , and t in U

ı .

Proof. — Let us show in detail that the actions match for r = 1 (i.e. ignoring
the higher divided powers). Set

λ + ρb =
m+n∑
j=1

ajϵ
bj
j ∈ X (m |n) and γ = wtb (λ).
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Then we haveMb (λ) ∈ Ob,γ . By Lemma 11.8,Mb (λ) ⊗V has a multiplicity-free
Verma flag with subquotients isomorphic to

Mb (λ + ϵ1), . . . ,Mb (λ + ϵm+n),Mb (λ),Mb (λ − ϵm+n), . . . ,Mb (λ − ϵ1).

Applying the projection prγ−(εi−1/2−εi+1/2)
to the filtration, we obtain that

fαiMb (λ) has a multiplicity-free Verma flag with subquotients isomorphic to
Mb (λ ± ϵj ) such that aj = ±(i − 1

2 ) respectively.
On the other hand, we have Ψ(Mb (λ)) = Mb

f bλ
(1). Recall the formulas for the

embedding ı from Proposition 2.2. Suppose

ι(fαi )M
b
f bλ
(1) =

∑
д

Mb
д (1),

for i ∈ Iı . It is easy to see that for Mb
д to appear in the summands, we must

have λbд + ρb = λ + ρb ± ϵj such that aj = ±(i − 1
2 ) respectively. Hence the action

of ι(fαi ) on TbZ matchs with the translation functor fαi on [O∆
b
] under Ψ.

Similar argument works for the translation functor eαi .
Applying the projection prγ to the Verma flag filtration of Mb (λ) ⊗ V , we

obtain that tMb (λ) from (11.4) has a multiplicity-free Verma flag with subquo-
tients isomorphic toMb (λ) andMb (λ±ϵj ) such that aj = ∓ 1

2 respectively. Then
one checks that the action of ι(t) on TbZ matchs with the translation functor t
on [O∆

b
] under Ψ.

For the general divided powers, the proposition follows from a direct com-
putation using Lemma 11.8 , [Br1, Cor. 4.25], and the expressions of ι(f (r )αi )

and ι(e(r )αi ) in (2.2) and (2.3). We leave the details to the reader. �

4. Classical KL theory reformulated

The following is a reformulation of the Kazhdan-Lusztig theory for Lie
algebra of type B, which was established by [BB], [BK], [So1], [So2]; also
see [Vo]. Recall that for b = (0m)we have TbZ = VZ

⊗m .

Theorem 11.10. — Let b = (0m) and let k ∈ N ∪ {∞}. Then the isomorphism

Ψ : [[Ok,∆
b,0 ]] −→ T

b
Z ⊗̂ ∧

k VZ

in (11.1) satisfies, for λ ∈ X k ,+
b,0 ,

Ψ
(
[L

k
b,0(λ)]

)
= Lb,0

f b0
λ

(1) and Ψ
(
[T

k
b,0(λ)]

)
= T b,0

f b0
λ

(1).
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Proof. — For k ∈ N, the theorem follows easily from Remark 5.9 that the
parabolic Kazhdan-Lusztig basis is matched with the ı-canonical basis.
The case k = ∞ follows from Proposition 9.20 and Proposition 7.7. �

5. Super duality and Fock spaces

Theorem 11.11 (see [CLW2, Thm. 7.2]). — There is an equivalence of categories
(called super duality)

SD : O∞ ,∆

b,0 −→ O
∞ ,∆

b,1

such that the induced map SD : [[O∞ ,∆

b,0 ]] → [[O
∞ ,∆

b,1 ]] satisfies, for any Y = M , L, orT ,

SD
[
Y
∞

b,0(λ)
]
=

[
Y
∞

b,1(λ
\)
]
, for λ ∈ X∞ ,+

b,0 .

Proposition 11.12. — Let b be any 0m1n-sequence. Assume that the isomorphism
Ψ : [[O∞ ,∆

b,0 ]] → T
b
Z ⊗̂ ∧

∞ VZ in (11.1) satisfies, forλ ∈ X∞ ,+

b,0 ,

Ψ
(
[L
∞

b,0(λ)]
)
= Lb,0

f b0
λ

(1) and Ψ
(
[T
∞

b,0(λ)]
)
= T b,0

f b0
λ

(1).

Then the isomorphism Ψ : [[O∞ ,∆

b,1 ]] → T
b
Z ⊗̂ ∧

∞WZ satisfies, for λ ∈ X∞ ,+

b,1 ,

Ψ
(
[L
∞

b,1(λ)]
)
= Lb,1

f b1
λ

(1) and Ψ
(
[T
∞

b,1(λ)]
)
= T b,1

f b1
λ

(1).

Proof. — By the combinatorial super duality in Theorem 10.7, we have the
following isomorphism

\b : TbZ ⊗̂ ∧
∞ VZ −→ TbZ ⊗̂ ∧

∞WZ ,

which preserves the ı-canonical and dual ı-canonical bases. Combining this
with the super duality, we have the following diagram:

(11.6)

[[O
∞ ,∆

b,0 ]] TbZ ⊗̂ ∧
∞ VZ

[[O
∞ ,∆

b,1 ]] TbZ ⊗̂ ∧
∞ VZ

Ψ

Ψ

SD \b

where SD is the super duality from Theorem 11.11.
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With the help of the basis {[M∞
b,0(λ)]}, it is easy to check that the diagram

(11.6) commutes. Hence we have the following two commutative diagrams:

[L
∞

b,0(λ)]
Lb,0
f b0
λ

(1)

[L
∞

b,1(λ
\)] Lb,1

f b1
λ\

(1)

[T
∞

b,0(λ)]
T b,0
f b0
λ

(1)

[T
∞

b,1(λ
\)] T b,1

f b1
λ\

(1)

The two horizontal arrows on the bottom give us the proposition. �

6. ı-KL theory for osp

We can now formulate and prove the main result of Part 2, which is a
generalization of [CLW2, Thm. 8.11] (Brundan’s conjecture [Br1]) to the ortho-
symplectic Lie superalgebra osp(2m + 1 |2n).

Theorem 11.13. — For any 0m1n-sequence b starting with 0, the isomorphism
Ψ : [[O∆

b
]] → T̂bZ in (11.1) (with k = 0) satisfies, for λ ∈ X (m |n),

Ψ
(
[Lb (λ)]

)
= Lb

f bλ
(1), Ψ([Tb (λ)]) = T

b
f bλ
(1).

The following proposition is a counterpart of [CLW2, Thm. 8.8]. It can
now be proved in the same way as in loc. cit. as we have done all the suitable
preparations in §2 (as in [CLW2, §6]). We will skip the details.

Proposition 11.14. — Let b = (b1, 0, 1,b2
) and b ′ = (b1, 1, 0,b2

) be adjacent
0m1n-sequences with nonempty b1 starting with 0. Then Theorem 11.13 holds for b
if and only if it holds for b ′.

Remark 11.15. — The assumption “nonempty b1 starting with 0” in Propo-
sition 11.14 is removable, if we apply the observation in Remark 10.4. Subse-
quently, we can also remove a similar assumption on b from Proposition 11.12
and Theorem 11.13. In its current form, Theorem 11.13 already solves com-
pletely the irreducible and tilting character problem on Ob for an arbitrary b,
since Ob is independent of b and the relations between the simple/tilting
characters in Ob for different b are understood (see Remark 10.5).
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Proof of Theorem 11.13. — The overall strategy of the proof is by induction
on n, following the proof of Brundan’s KL-type conjecture in [CLW2]. The in-
ductive procedure, denoted by

ıKL(m |n) ∀m ≥ 1 =⇒ ıKL(m |n + 1),

is divided into the following steps:

ıKL(m + k |n) ∀k =⇒ ıKL(m |n |k) ∀k, by changing Borels(11.7)
=⇒ ıKL(m |n |k) ∀k, by passing to parabolic(11.8)
=⇒ ıKL(m |n |∞), by taking k 7→ ∞(11.9)
=⇒ ıKL(m |n +∞), by super duality(11.10)
=⇒ ıKL(m |n + 1) ∀m, by truncation.(11.11)

It is instructive to write down the Fock spaces corresponding to the steps
above:

V⊗(m+k ) ⊗W⊗n ∀k =⇒ V⊗m ⊗W⊗n ⊗ V⊗k ∀k
=⇒ V⊗m ⊗W⊗n ⊗ ∧kV ∀k
=⇒ V⊗m ⊗W⊗n ⊗ ∧∞V
=⇒ V⊗m ⊗W⊗n ⊗ ∧∞W

=⇒ V⊗m ⊗W⊗(n+1) ∀m ≥ 1.

A complete proof would be simply a copy from the proof of [CLW2,
Thm. 8.10], as we are in a position to take care of each step of (11.7)–(11.11).
Here we will be contented with specifying how each step follows and refer
the reader to the proof of cite[Thm. 8.10]CLW12 for details.

Thanks to Theorem 5.8, the base case for the induction, ıKL(m |0), is equiva-
lent to the original Kazhdan-Lusztig conjecture [KL] for so(2m + 1), which is
a theorem of [BB] and [BK] (and extended to all singular weights by [So1]);
The tilting module characters were due to [So2].
. Step (11.7) is a special case of Proposition 11.14.
. Step (11.8) is based on §1 (Propositions 10.1–10.2) and §2 (Proposi-
tions 11.5–11.6).
. Step (11.9) is based on Proposition 11.4.
. Step (11.10) is based on Proposition 11.12.
. Step (11.11) is based on Propositions 7.7, 11.4, and 9.18 (with k = 1
therein).

The theorem is proved. �
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Remark 11.16. — There is a similar Fock space formulation of Kazhdan-
Lusztig theories for various parabolic subcategories of osp(2m + 1 |2n)-
modules, which can be derived as a corollary to Theorem 11.13.

Remark 11.17. — The establishment of a KL theory in Theorem 11.13 natu-
rally leads to the expectation on a Koszul graded lift for Ob ; cf. [BGS].
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12. BGG CATEGORY OF osp(2m + 1 |2n)-MODULES OF

HALF-INTEGER WEIGHTS

We shall deal here with a version of BGG category for osp(2m + 1 |2n) asso-
ciatedwith a half-integerweight set ′X (m |n). The relevant quantum symmetric
pair turns out to be the r →∞ limit of (U2r ,U


r ) established in Chapter 6. This

chapter is a variant of Chapters 7–11, in which we will formulate the main
theorems while skipping the identical proofs.

1. Setups for half-integer weights

Let us first set up some notations. Switching the sets of integers and half-
integers in (8.1), we set

I =
∞⋃
r=0
I2r = Z + 1

2 , I  =
∞⋃
r=0
I r = N + 1

2 , I = Z.(12.1)

Recall from Chapter 6 the finite-rank quantum symmetric pairs (U2r ,U

r )

with embedding  : U 
r → U2r . Let

U
 :=

∞⋃
r=0

U

r , U :=

∞⋃
r=0

U2r .

The pair (U,U  ) forms a quantum symmetric pair as well, with the obvious
induced embedding  : U  → U. Let Π :=

⋃∞
r=0 Π2r be the simple system ofU.

Recall the intertwiner ϒ(r ) of the pair (U2r ,U

r ). Note that ϒ(r+1)

µ = ϒ(r )µ , for
µ ∈ NΠ2r , and this allows us to define

ϒµ = lim
r→∞

ϒ(r )µ , for µ ∈ NΠ.

We then define the formal sum (which lies in some completion of U−)

(12.2) ϒ :=
∑
µ ∈NΠ

ϒµ ,

which shall be viewed as a well-defined operator on U-modules that we are
concerned.
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Introduce the following set of half-integer weights

(12.3) ′X (m |n) :=
m∑
i=1

(
Z + 1

2
)
ϵi +

n∑
j=1

(
Z + 1

2
)
ϵ j .

Let b = (b1, . . . ,bm+n) be an arbitrary 0n1m-sequence. We first define a partial
ordering on Im+n , which depends on the sequence b. There is a natural
bĳection

Im+n ←→ ′X (m |n), f 7−→ λbf and λ 7−→ f bλ ,

defined formallyby the same formulas (8.7)–(8.8) for thebĳection Im+n ↔ X (m |n)

therein, though I here has a different meaning.
Recall the Bruhat ordering �b given by (7.3) on hm |n and hence on ′X (m |n).

We now transport the ordering on ′X (m |n) by the above bĳection to Im+n .

Definition 12.1. — The Bruhat ordering or b-Bruhat ordering �b on Im+n is de-
fined as follows: for f , д ∈ Im+n ,

f �b д if λbf �b λ
b
дλ

b
д .

We also say f ∼ д if λbf ∼ λ
b
д .

A BGG category ′Ob of osp(2m + 1 |2n)-modules with weight set ′X (m |n) is
defined in the same way as in Definition 7.3, where the weight set was taken
to beX (m |n). Again, the category ′Ob contains several distinguishedmodules:
the b-Verma modulesMb (λ), simple modules Lb (λ), and tilting modulesTb (λ),
for λ ∈′ X (m |n).

2. Fock spaces and -canonical bases

Let V :=
∑

a∈I Q(q)va be the natural representation of U. Let W := V∗
be the restricted dual module of V with the basis {wa ; a ∈ I } such that
〈wa ,vb〉 = (−q)

−aδa,b . By restriction through the embedding , V and W are
naturally U

 -modules. For a given 0m1n-sequence b = (b1,b2, . . . ,bm+n), we
againdefine theFock spaceTb by the formula (8.3) and the standardmonomial
basis Mf , for f ∈ Im+n , by the formula (8.4). Following §1, we define the B-
completion of the Fock space Tb with respect to the Bruhat ordering defined
in Definition 12.1.

Following §1 and §2, we define an anti-linear involution

ψ  := ϒψ : T̂b −→ T̂b ,
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where ϒ is the operator defined in (12.2), such that

ψ  (Mf ) = Mf +
∑
д≺b f

rдf (q)Mд, for rдf (q) ∈ A.

Therefore we have the following counterpart of Theorem 9.9 (here we em-
phasize that the index set I here is different from the same notation used
therein and U

 is a different algebra than U
ı ).

Theorem 12.2. — The Q(q)-vector space T̂b has unique ψ  -invariant topological
bases {

T b
f ; f ∈ Im+n

}
and

{
Lbf ; f ∈ Im+n

}
such that

T b
f = Mf +

∑
д�b f

tbдf (q)M
b
д and Lbf = Mf +

∑
д�b f

`bдf (q)M
b
д ,

with tbдf (q) ∈ qZ[q], and `
b
дf (q) ∈ q

−1Z[q −1], for д �b f .

(For д �b f , we shall write tbff (q) = `
b
ff (q) = 1 and tbдf (q) = `

b
дf (q) = 0.)

. The sets {T b
f ; f ∈ Im+n

}
and {Lbf ; f ∈ Im+n} are called the -canonical

basis and dual -canonical basis of T̂b , respectively.
. The polynomials tbдf (q) and `

b
дf (q) are called -Kazhdan-Lusztig (or -KL)

polynomials.

3. KL theory and -canonical basis

Starting with an A-lattice Tb
A
spanned by the standard monomial basis of

the Q(q)-vector space Tb , we define

TbZ = Z ⊗AT
b
A

where Aacts on Z with q = 1. For any u in the A-lattice Tb
A
, we denote by u(1)

its image in TbZ .
Let ′O∆

b
be the full subcategory of ′Ob consisting of all modules possessing

a finite b-Verma flag. Let [′O∆
b
] be its Grothendieck group. The following

lemma is immediate from the bĳection I ↔ ′X (m |n).

Lemma 12.3. — The map

Ψ : [′O∆
b ] −→ T

b
Z ,

[
Mb (λ)

]
7−→ Mb

f bλ
(1),

defines an isomorphism of Z-modules.
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130 CHAPTER 12. BGG CATEGORY OF osp(2m + 1 |2n) WITH HALF-INTEGER WEIGHTS

Denote by U

A
the A-form of U  generated by the divided powers, and set

U

Z = Z ⊗AU


A
.

Remark 12.4. — The map Ψ is actually a U

Z -module isomorphism, where

U

Z acts on [′O∆

b
] via translation functors analogous to Proposition 11.9.

We define [[′O∆
b
]] as the completion of [′O∆

b
] such that the extension of Ψ

Ψ : [[′O∆
b ]] −→ T̂

b

is an isomorphism of Z-modules. We have the following counterpart of
Theorem 12.5 with the same proof.

Theorem 12.5. — For any 0m1n-sequence b starting with 0, the isomorphism

Ψ : [[′O∆
b ]] −→ T̂

b
Z

satisfies

Ψ
(
[Lb (λ)]

)
= Lb

f bλ
(1) and Ψ

(
[Tb (λ)]

)
= T b

f bλ
(1), for λ ∈ ′X (m |n).
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We show that Hecke algebra of type B and a coideal subal-
gebra of the type A quantum group satisfy a double central-
izer property, generalizing the Schur-Jimbo duality in type A.
The quantum group of type A and its coideal subalgebra
form a quantum symmetric pair. A new theory of canoni-
cal bases arising from quantum symmetric pairs is initiated.
It is then applied to formulate and establish for the first time a
Kazhdan-Lusztig theory for the BGG category O of the ortho-
symplectic Lie superalgebras osp(2m + 1 | 2n). In particular,
our approach provides a new formulation of the Kazhdan-
Lusztig theory for Lie algebras of type B/C.


