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A NEW APPROACH TO KAZHDAN-LUSZTIG
THEORY OF TYPE B VIA QUANTUM
SYMMETRIC PAIRS

Huanchen BAO, Weiqiang WANG

Abstract. — We show that Hecke algebra of type B and a coideal subalgebra of
the type A quantum group satisfy a double centralizer property, generalizing
the Schur-Jimbo duality in type A. The quantum group of type A and its
coideal subalgebra form a quantum symmetric pair. A new theory of canonical
bases arising from quantum symmetric pairs is initiated. It is then applied
to formulate and establish for the first time a Kazhdan-Lusztig theory for
the BGG category O of the ortho-symplectic Lie superalgebras osp(2m+1|2n).
In particular, our approach provides a new formulation of the Kazhdan-Lusztig
theory for Lie algebras of type B/C.

Résumé (Une nouvelle approche a la théorie de Kazhdan-Lusztig de type B via les
paires symétriques)

On démontre que les algébres de Hecke de type B et des coidéaux du groupes
quantiques de type A satisfont une propriété de double centralisateur qui géné-
ralise la dualité de Schur-Jimbo en type A. Le groupe quantique de type A et
son coidéal forment une paire symétrique quantique. Une nouvelle théorie des
bases canoniques associées aux paires symétriques quantiques est développée.
Elle est appliquée pour formuler et établir une théorie & la Kazhdan-Lusztig
pour la catégorie © de BGG de la super-algébre de Lie ortho-symplectique
0sp(2m + 1|2n). Notre approche donne en particulier une nouvelle formulation
de la théorie de Kazhdan-Lusztig pour les algébres de Lie de type B/C.

(© Astérisque 402, SMF 2018
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INTRODUCTION

1. Background

A milestone in representation theory was the Kazhdan-Lusztig (KL) theory
initiated in [KL] (and completed in [BB], [BK]), which offered a powerful
solution to the difficult problem of determining the irreducible characters in
the BGG category O of a semisimple Lie algebra g. The Hecke algebra #y,
associated to the Weyl group W of g plays a central role in the KL formulation,
which can be paraphrased as follows: the simple modules of the principal
block in 6 correspond to the Kazhdan-Lusztig basis of 7, while the Verma
modules correspond to the standard basis of #yy. The characters of the simple
modules in singular blocks are then determined from those in the principal
block via translation functors [So1], and the characters of tilting modules were
subsequently determined in [So2].

Though the classification of finite-dimensional simple Lie superalgebras
over C was achieved in 1970’s by [Kac], the study of representation theory such
as the BGG category O for a Lie superalgebra turns out to be very challenging
and the progress has been made only in recent years. One fundamental reason
is that the Weyl group (of the even part) of a Lie superalgebra alone is not
sufficient to control the linkage principle in 0, and hence the corresponding
Hecke algebra cannot play the same crucial role as in the classical Kazhdan-
Lusztig theory. Among all basic Lie superalgebras, the infinite series gl(m|n)
and osp(m|2n) are arguably the most fundamental ones. Since these Lie
superalgebras specialize to Lie algebras when one of the parameters m or n is
zero, any possible (conjectural) approach on the irreducible character problem
in the BGG category of such a Lie superalgebra has to first provide a new
formulation for a classical Lie algebra in which the Hecke algebra does not
feature directly.

Brundan [Bri] formulated in 2003 a conjecture on the irreducible and
tilting characters for the BGG category O for the general linear Lie super-
algebra gl(m|n), using Lusztig’s canonical basis. In this case, fortunately



2 INTRODUCTION

Schur-Jimbo duality [Jim] between a Drinfeld-Jimbo quantum group U and a
Hecke algebra of type A enables one to reformulate the KL theory of type Ain
terms of Lusztig’s canonical basis on some Fock space V®™, where V is the nat-
ural representation of U. Brundan’s formulation for gl(m|n) makes a crucial
use of the Fock space V®™ @ W®", where W denotes the restricted dual to V.
The longstanding conjecture of Brundan was settled in [CLW2], where a super
duality approach developed earlier [CW1], [CL] (¢f. [CW2, Chap. 6]) plays a
key role. (For a more recent and different proof of Brundan’s conjecture see
Brundan, Losev, and Webster [BLW].)

Finding a general formulation for a Kazhdan-Lusztig theory for the BGG
category O of the ortho-symplectic Lie superalgebras is one of the most intrigu-
ing open problems in super representation theory. There was no conjecture
available in the literature, and the reason should have become clear as we
explain above: no alternative approach to KL theory of type BCD had been
discovered without using Hecke algebras directly.

A super duality approach was developed in [CLW1] which solves the irre-
ducible character problem for some distinguished parabolic BGG categories of
the osp Lie superalgebras. This approach was not sufficient to attack the prob-
lem in the full BGG category for 0sp, and a Brundan-type formulation was not
available. There has been a completely different approach developed by Gru-
son and Seganova [GS] toward the finite-dimensional irreducible characters
for the osp Lie superalgebras. One of the implications of the super duality
which is important to us though is that the linkage for the distinguished
parabolic categories of 0sp(2m + 1|2n)-modules is controlled by Hecke algebra
of type B, and so one hopes that it remains to be so for the full BGG category
of 0sp(2m + 1|2n)-modules.

2. The goal

The goal of this book is to give a complete and conceptual solution to prob-
lem on irreducible characters in the BGG category 6 of modules of integer and
half-integer weights for the ortho-symplectic Lie superalgebras osp(2m + 1]2n)
of type B(m,n). The case of Lie superalgebra osp(2m|2n) is treated in [Bao].
In particular, the non-super specialization of our work amounts to a new for-
mulation to Kazhdan-Lusztig theory of Lie algebras of classical type in which
Hecke algebras are not used directly.

To achieve the goal, we are led to initiate in Part 1 a new theory of quasi-%-
matrix and new canonical basis (called i-canonical basis) arising from quantum
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3. AN OVERVIEW OF PART I 3

symmetric pairs (U, U"). We show that the coideal subalgebra U’ of U and the
Hecke algebra of type B,, form double centralizers on V®™, generalizing the
Schur-Jimbo duality. A new formulation of the KL theory for Lie algebras of
type B is then made possible by such a new duality. Part 1 (which consists of
Chapters 1 and 6) has nothing to do with Lie superalgebras and should be of
independent interest.

We develop in Part 2 an infinite-rank version of the constructions in Part 1,
and then relate the i-canonical basis to the BGG category O, of osp(2m +1|2n)-
modules of (half-)integer weights relative to a Borel subalgebra whose type is
specified by a 0™1"-sequence b. In this approach, the role of Kazhdan-Lusztig
basis is played by the (dual) i-canonical basis for a suitable completion of
the U'-module T? associated to b; Here T? is a tensor space which is a variant
of V&m @ Wer,

3. An overview of Part I

Our starting point is actually natural and simple. The generalization of
Schur duality beyond type A in the literature is not suitable to our goal, since
it replaces the Lie algebra/group of type A by its classical counterpart and
modifies the symmetric group to become a Brauer algebra (or a quantum
version of such). For our purpose, as we look for a substitute for KL theory
where the Hecke algebras have played a key role, we ask for some quantum
group like object with a coproduct (not Schur type algebra) which centralizes
the Hecke algebra of type B, when acting on V®". We recognized such a
quantum group like object as a coideal subalgebra of the quantum group U,
a quantum version of the enveloping algebra of the subalgebra of sl(V) fixed
by some involution, which forms a quantum symmetric pair with U.

Note that the formulation of Part 1 is in the setting that V is finite-
dimensional, while it is most natural to set V to be infinite-dimensional when
making connection with category O in Part 2.

The structure theory of quantum symmetric pairs was systematically de-
veloped by Letzter and then Kolb (see [Le], [Ko] and the references therein).
Though our coideal subalgebra can be identified with some particular exam-
ples in literature by an explicit (anti-)isomorphism, the particular form of our
presentation and its embedding into U are different and new. The coideal
subalgebra in our presentation manifestly admits a bar involution, and the
specialization at ¢ = 1 of our presentation has a natural interpretation in terms
of translation functors in category ©. Depending on whether the dimension
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4 INTRODUCTION

of V is even or odd, we denote the (right) coideal subalgebra by U* or U/,
respectively. The two cases are similar but also have quite some differences,
and the case of U’ is more challenging as it contains an unconventional gener-
ator which we denote by ¢ (besides the Chevalley-like generators e,, and f,).
We mainly restrict our discussion to U’ (and so dim V is even) below.
Recall that the coproduct
A:U—UosU

is not compatible with the bar involution y on U and ¢y ® y on U® U, and
Lusztig’s quasi-R-matrix © is designed to intertwine A and A, where

Aw) = (¥ @ PA(Y(w),

for u € U. Lusztig’s construction of © is a variant of Drinfeld’s construction
of universal &-matrix [Dr], and it takes great advantage of the triangular de-
composition and a natural bilinear form of U. The bar involution on V®” was
then constructed by means of the quasi-%-matrix ©. Inspired by the type A
reformulation of KL theory (cf., e.g., [VV], [Br1], [CLW2]), as an alternative
of the Kazhdan-Lusztig theory without using Hecke algebras we ask for a
canonical basis theory arising from quantum symmetric pairs.

The embedding : : U’ — U which makes U’ a coideal subalgebra of U
does not commute with the bar involution ¢/, on U' and ¢ on U. We have a
coproduct of the coideal form

Define A:U —UoU.

AU -UU, A =, ®P)A(f(w), forallueU.
Note that the A here is not a restriction of Lusztig’s A. Toward our goal, in
place of Lusztig’s quasi-&-matrix for U one would need a quasi-R-matrix ©*
which intertwines A and A for U'. The problem here is that U' does not have
any obvious triangular decomposition or bilinear form as for U.
Our key strategy is to ask first for some suitable intertwiner Y which inter-
twines1and 1: U* — U, where

i(u) == ¢ ((,(w)), forueUY,

note the remarkable analogy with a key property of Lusztig’s ®. We succeed in
constructing such an intertwiner Y in some completion of the negative half U~
of U and show that it is unique up to a scalar multiple (see Theorem 2.10).
Then by combining T with Lusztig’s © we are able to construct the quasi-%-
matrix ©', which lies in some completion of U' ® U™. The crucial properties

YY=1 and ©'0'=1
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4. AN OVERVIEW OF PART II 5

hold. The intertwiner Y can also be applied to turn an involutive U-module
into an i-involutive U’-module (see Proposition 3.10, Definitions 1.7 and 3.9).

It turns out to be a subtle problem to show that Y lies in (a completion of)
the integral dl-form U, where

d=7Z[gq "]

We are led to study the simple lowest weight U-modules “L(4) for 1 € A*
regarded as U'-modules. By a detailed study on the behavior of the genera-
tor t in U’ in the rank one case, we show that Y preserves the si-form “Ly(A)
for all A € A", and this eventually allows us to establish the integrality of Y
(see Theorem 4.18). We then construct the i-canonical basis of “L(A) which is
¥,-invariant and admits a triangular decomposition with respect to Lusztig’s
canonical basis on “L(1) with coefficients in Z[q] (see Theorem 4.20). Con-
sequently, we construct in Theorem 4.26 an i-canonical basis for any tensor
product of several finite-dimensional simple U-modules, which differs from
and is related to Lusztig’s canonical basis on the same tensor product.
Generalizing the Schur-Jimbo duality in type A, we show that the action of
the coideal algebra U’ and Hecke algebra #5,, on V€ form double central-
izers, where V is the natural representation of U (see Theorem 5.4). With Y
and ©' at hand, we are able to construct a bar involution ¢, on the (U', #3p,, )-
bimodule V¥ which is compatible with the bar involutions on U' and %3,
(see Theorem 5.8). In particular, the i-canonical basis on the involutive U’-
module (V®™,¢,) alone is sufficient to reformulate the KL theory of type B.

4. An overview of Part II

Part 2 is very close to [CLW2] in spirit, where the category O of gl(m|n)-
modules was addressed. In this part, we take the Q(g)-space V to be the
direct limit as r — oo of the 2r-dimensional ones considered in Part 1. Also
let U and U’ be the corresponding infinite-rank limits of their finite-rank
counterparts in Part 1.

For an 0™1"-sequence b (which consists of m zeros and n ones), we define a
tensor space T? using m copies of V and n copies of W with the tensor order
prescribed by b (with 0 corresponds to V); for instance, associated to

b*=(0,...,0,1,...,1),

we have
T = vom @ Wen,

SOCIETE MATHEMATIQUE DE FRANCE 2018



6 INTRODUCTION

Such a tensor space (called Fock space) was an essential ingredient in the
formulation of Kazhdan-Lusztig-type conjecture for gl(m|n) and its general-
izations [Br1], [Ku], [CLW2]. In this approach, T? at ¢ = 1 (denoted by T%)
is identified with the Grothendieck group of the BGG category of gl(m|n)-
modules (relative to a Borel subalgebra of type b), and the (dual) canonical
bases of the U-module T? play the role of Kazhdan-Lusztig basis which solves
the irreducible and tilting character problem in the BGG category for gl(m|n).

Now with the intertwiner Y and the quasi-R-matrix ©' for the quantum
symmetric pair (U, U") at disposal, we are able to construct the i-canonical
and dual i-canonical bases for T? (or rather in its suitable completion with
respective to a Bruhat ordering); see Theorem 9.9. In the finite-rank setting,
this was already proved in Part 1. Nevertheless, the infinite-rank setting
requires much care and extra work to deal with suitable completions, similar
to [CLW2] (see also [Br1]). A simple but crucial fact is that the partial ordering
for T? used in [CLW2] is coarser than the one used in this book and this allows
various constructions in loc. cit. to carry over to the current setting. We will
ignore the completion issue completely in the remainder of the Introduction.

Our main theorem (Theorem 11.13), which will be referred to as (b-KL) here,
states that there exists an isomorphism between the Grothendieck group of
the BGG category Op of osp(2m + 1|2n)-modules of integer weights (relative
to a Borel subalgebra of type b) and T2, which sends the Verma, simple, and
tilting modules to the standard monomial, dual i-canonical, and -canonical
bases (at g = 1), respectively. In other words, the entries of the transition
matrix between (dual) i-canonical basis and monomial basis play the role of
Kazhdan-Lusztig polynomials in our category 0.

Granting the existence of the (dual) i-canonical bases of T?, the overall
strategy of a proof of (b-KL) follows the one employed in [CLW2] in establish-
ing Brundan’s Kazhdan-Lusztig-type conjecture, which is done by induction
on n with the base case solved by the classical Kazhdan-Lusztig theory of
type B [KL], [BB], [BK] (as reformulated above in terms of the i-involutive
U'-module V®™). There are two main steps in the proof. First, we need
(an easy generalization of) the super duality developed in [CLW1] for osp,
which is an equivalence of parabolic categories of 05p(2m+1|2n + co)-modules
and osp(2m + 1|2n|co)-modules. We establish the corresponding combina-
torial super duality which states that there is an U'-isomorphism between
Tb @ AV and T? ® AW, which matches the corresponding standard mono-
mial, i-canonical, and dual i1-canonical bases. The super duality is used to
establish the b-KL for one distinguished 0™1"-sequence.

ASTERISQUE 402



5. SOME FUTURE WORKS 7

The second step is a comparison of (b-KL) and (b"-KL) for adjacent se-
quences b and b’ (here “adjacent” means differing exactly by an adjacent
pair 01). Let us assume for simplicity that the first entries of b and b’ are
both 0 here (see Remarks 10.4 and 11.15 for the removal of this assumption),
as this is sufficient in solving the irreducible and tilting character problems
for osp(2m+1|2n)-modules. Thanks to the coideal property of U, the iterated
coproduct for U’ has images in U' @ U® --- ® U. Therefore the comparison
of (b-KL) and (b"-KL) for adjacent b and b’ can be carried out exactly as in
the type A setting [CLW2] since the exchange of the adjacent 0 and 1 does not
affect the first tensor factor and hence will not use U’. The upshot is that the
validity of the statement (b-KL) for one 0™1"-sequence implies the validity
for an arbitrary 0™1"-sequence.

The infinite-rank version of the other quantum symmetric pairs (U, U’) and
its j-canonical basis theory is used to solve a variant of the BGG category 6
of 0sp(2m + 1|2n)-modules, now of half-integer weights; see Chapter 12.

5. Some future works

This work will serve as a new starting point in several (closely related)
directions.

The constructions of this book is adapted in [Bao] to provide the irreducible
character formula in the BGG category © for Lie superalgebras osp(2m|2n),
settling another longstanding open problem in Lie superalgebras since 1970s.

Recall the Schur-Jimbo duality has a natural geometric realization in terms
of partial flag varieties of type A due to Grojnowski and Lusztig. It is natural
to ask for a geometric interpretation of the type B duality as well as i-canonical
basis developed algebraically and categorically in this book. This turns out to
have a classical answer in [BKLW], which settles another old open problem
of understanding the quantum algebra arising from partial flag varieties of
classical type. (This generalizes the classic work of Beilinson, Lusztig, and
MacPherson [BLM] for type A.)

While we have developed adequately a theory for i-canonical basis for
quantum symmetric pairs to solve the irreducible character problem in the
category Oy, a full fledged theory of canonical basis for quantum symmetric
pairs remains to be developed. The quantum symmetric pairs (U, U’) and
(U, U’) are just two examples of general quantum symmetric pairs of finite or
more generally Kac-Moody type (see [Le], [Ko]). The general quantum sym-
metric pairs afford presentations similar to the ones given in this book which

SOCIETE MATHEMATIQUE DE FRANCE 2018



8 INTRODUCTION

admit a natural bar involution. A theory of i-canonical bases for the general
quantum symmetric pairs will be pursued in a separate publication [BW].
While several key steps developed in this book will be generalized suitably,
further new ideas are also needed.

One influential and persuasive philosophy in the last two decades, sup-
ported by the quiver variety construction of Nakajima and reinforced by the
categorification program of Chuang, Rouquier, Khovanov and Lauda, is that
various constructions in general settings are of “type A” locally. A general
philosophical message of this book and [BKLW] is that there exists a whole
range of new yet classical i-constructions, algebraic, geometric and categorical,
which are of “type A with involution”.

The most significant quantum symmetric pairs beyond U’ and U’ in our
view would be the ones associated to the quantum group of affine type A,
whose i-canonical basis theory is expected to be closely related to the ir-
reducible character problem in modular representation theory of algebraic
groups or quantum groups of classical types.

The geometric aspects of the finite or affine coideal algebras and i-icanonical
bases will be developed by Yiqiang Li and his collaborators. A KLR type -
categorification will be addressed elsewhere.

6. Organization

The book is divided into two parts.

Part 1, which consists of Chapters 1-6, provides various foundational con-
structions on quantum symmetric pairs, where dim V is assumed to be finite.
Part 2, which consists of Chapters 7-12, extends the 1-canonical basis and dual
1-canonical basis to the setting where V is infinite-dimensional and uses this
to solve the irreducible and tilting character problems of category © for Lie
superalgebra osp(2m + 1|2n).

In the preliminary Chapter 1, we review various basic constructions for
quantum group U. We also introduce the involution 6 on the root system and
integral weight lattice of U and a “weight lattice” Ag which will be used in
quantum symmetric pairs.

In Chapter 2, we introduce the right coideal subalgebra U’ of U and an
algebra embedding : : U' — U. The algebra U’ is endowed with a natural
bar involution. Then we construct an intertwiner Y = ) u L which lies in a
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6. ORGANIZATION 9

completion U, for the two bar involutions on U’ and U under , and show it
is unique once we fix the normalization Yy = 1. We prove that YT = 1. Note
the remarkable similarity of Y with Lusztig’s quasi-R-matrix for quantum
groups. The intertwiner Y is used to construct a U'-module isomorphism J
on any finite-dimensional U-module, which should be viewed as an analogue
of R-matrix on the tensor product of U-modules.

In Chapter 3, we define ©* for U’, which will play an analogous role as
Lusztig’s quasi-R-matrix for U on tensor product modules. Our first defini-
tion of ©' is simply obtained by combining the intertwiner T and ©. More
detailed analysis is required to show that (a normalized version of) ©* lies in a
completion of U'® U™. We prove that ©'@' = 1. Then we use Y to construct an
1-involutive module structure on an involutive U-module, and then use ' to
construct an involution on a tensor product of a U'-module with a U-module.

In Chapter 4, we first study the rank one case of U and U’ in detail, which
turns out to be nontrivial. In the rank one setting, we easily show that Y is
integral and then construct the i-canonical bases for simple U-modules “L(s)
for s > 0. We formulate a U'-homomorphism from “L(s +2) to “L(s) and
use it to study the relation of i-canonical bases on “L(s + 2) and “L(s), which
surprisingly depends on the parity of s. This allows us to establish the i-
canonical basis for U’ in two parities, which is shown to afford integrality and
should be regarded as “divided powers” of the generator t.

Then we apply the rank one results to study the general higher rank case.
We show that the intertwiner Y is integral and hence the bar involution v,
on the simple U-module “L(4) preserves its d-form. Then we construct the
1-canonical basis for “L(A) for A € A*.

In Chapter 5, we recall Schur-Jimbo duality between quantum group U
and Hecke algebra of type A. Then we establish a commuting action of U’
and Hecke algebra #p,, of type B on V®™, and show that they form dou-
ble centralizers. Just as Jimbo showed that the generators of Hecke algebra
of type A are realized by R-matrices, we show that the extra generator of
Hecke algebra of type B is realized via the U'-homomorphism I introduced
in Chapter 2. We then show the existence of a bar involution on V®™ which is
compatible with the bar involutions on U’ and #3,,. This allows a reformula-
tion of Kazhdan-Lusztig theory for Lie algebras of type B/C via the involutive
U'-module V®™ (without referring directly to the Hecke algebra).

In Chapter 6, we consider the other quantum symmetric pair (U, U’) with U
of type Ajy,, so its natural representation V is odd-dimensional. We formu-
late the counterparts of the main results from Chapter 2 through Chapter 5
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10 INTRODUCTION

where U was of type As,+1 and dim V was even. The proofs are similar and
often simpler for U’ since it does not contain a generator ¢ as U’ does, and
hence will be omitted almost entirely.

In Part 2, which consists of Chapters 7-12, we switch to infinite-
dimensional V and infinite-rank quantum symmetric pair (U, U").

In the preliminary Chapter 7, we set up variants of BGG categories of the
ortho-symplectic Lie superalgebras, allowing possibly infinite-rank and/or
parabolic versions.

In Chapter 8, we formulate precisely the infinite-rank limit of various con-
structions in Part 1, suchas V, U, U', Y, ,, and so on. We transport the Bruhat
ordering from the BGG category 6, for 0sp(2m +1|2n) to the Fock space T? by
noting a canonical bijection of the indexing sets. We formulate the g-wedge
versions of the Fock spaces, which correspond to parabolic versions of the
BGG categories.

In Chapter 9, we construct the i-canonical bases and dual :-canonical bases
in various completed Fock spaces, where the earlier detailed work on com-
pletion of Fock spaces in [CLW2] plays a fundamental role.

In Chapter 10, we are able to compare (dual) i-canonical bases in three
different settings: a tensor space versus its (partially) wedge subspace, a Fock
space versus an adjacent one, and a Fock space with a tensoring factor AV
versus another with AW.

In Chapter 11, we show that the coideal subalgebra U' at ¢ = 1 is realized
by translation functors in the BGG categories. This underlies the importance
of the coideal subalgebra U'. Then we put all the results in earlier chapters of
Part 2 together to prove the main theorem which solves the irreducible and
tilting character problem for osp(2m + 1|2n)-modules of integer weights.

The Chapter 12 deals with a variant of the BGG category of osp(2m + 1|2n)-
modules with half-integer weights. The Kazhdan-Lusztig theory of this
half-integer variant is formulated and solved by the quantum symmetric
pair (U,U’), an infinite-rank version of the ones formulated in the last
chapter of Part 1.

Convention and notation. — We shall denote by N the set of nonnegative
integers, and by Z - the set of positive integers.

> InPart1, where dim V = 2r+2 (exceptin Chapter 6 wheredim V = 2r + 1),
the integer r is fixed and so will not show up in most of the notations
(such as V, U,U', Y, ¢, and so on).
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6. ORGANIZATION 11

> In Part 2 (more precisely in Chapters 8—9), subscripts and superscripts
are added to the notation used in Part 1 to indicate the dependence
onr (eg., V,, Uy, U, (), x/xfr) and so on). In this way we shall con-
sider V as a direct limit li_n}Vr, and various constructions including the
intertwiner Y as well as the bar involution ¢, arise as limits of their coun-
terparts in Part 1.

Acknowledgement. — This research is partially supported by WW’s NSF
grants DMS-1101268 and DMS-1405131. We are indebted to Shun-Jen Cheng
for his generous helps in many ways and thank Institute of Mathematics,
Academia Sinica, Taipei for providing an excellent working environment and
support, where part of this project was carried out.

Notes added. — This final version of our book is not much different from
the version originally posted in arXiv:1310.0103.

In the preprint [ES] Ehrig and Stroppel simultaneously and indepen-
dently discovered connections between the coideal algebras and category ©
of type D. They also independently obtained the bar-invariant presentations
of the coideal algebras.

In the preprint [BaKo] Balagovic and Kolb have generalized our construc-
tion of the intertwiner in this book for general quantum symmetric pairs
(this generalization has overlap with our forthcoming paper [BW], where it
is used toward a general construction of i-canonical bases). Balagovic and
Kolb have showed that the notion of intertwiner leads to solutions to the
reflection equation, just as Drinfeld’s universal R-matrix provides solutions
to Yang-Baxter equation.
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PART I

QUANTUM SYMMETRIC PAIRS






1. PRELIMINARIES ON QUANTUM GROUPS

In this preliminary chapter, we review some basic definitions and construc-
tions on quantum groups from Lusztig’s book, including the braid group ac-
tion, canonical basis and quasi-%-matrix. We also introduce the involution 0
and the lattice Ag which will be used in quantum symmetric pairs.

1. The involution 0 and the lattice Ag

Let g be an indeterminate. For r € N, we define the index sets

Iyps1 ={i€Z; -r<i<r},
(1.1) {

I, ={i€Z+%;—r<i<r}.

Set k = 2r + 1 or 2r, and we use the shorthand notation I = I; in the
remainder of Chapter 1. Let

I={a=¢_1—é12; i €1}
be the simple system of type Ai, and let ® be the associated root system.
Denote by
A= Z (Zeic1yp + Zeiayn)
iel
the integral weight lattice, and denote by (., .) the standard bilinear pairing
on A such that (¢4, €5) = d4p for all a, b. For any p = 3}, c;a; € NII, set

ht(u) = > ci.

1

Let 0 be the involution of the weight lattice A such that
9(81_1/2) = —€-i+1/2, foralliel.

We shall also write A? = (1), for A € A. The involution 6 preserves the bilinear
form (., .) on the weight lattice A and induces an automorphism on the root
system @ such that a’ = a_; for all i € I. Denote by

A ={pen; p®=pu}
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the subgroup of 0-fixed points in A. It is easy to see that the quotient group
(1.2) Ag := AJAY

is a lattice. For y € A, denote by i the image of ; under the quotient map.
There is a well-defined bilinear pairing Z[a; — a—;];e1 X Ag — Z, such that

(D et — i) = ) ailai - ai,p)
i>0 i>0

for any i € Ag with any preimage y € A.

2. The algebras 'f, fand U

Consider a free Q(q)-algebra 'f generated by F,, for i € I associated with the
Cartan datum of type (I, (., .)) [Luz]. As a Q(g)-vector space, 'f has a direct
sum decomposition as

t=P 4.

peNII
where F,, has weight a; for all i € II. For any x € 'f,, we set

x| = p.
For each i € I, we define r;, and ;r to be the unique Q(g)-linear maps on 'f
such that, for all x € 'f, and x" € f,,

{ ri1) =0, ri(Fe;) =3dij, ri(xx) =xri(x") + g% ri(x)x;
ir(1) =0, r(Fa;) =8ij, ir(xx’) = q%Mx r(x’) + ir(x)x".

The following lemma is well known (see [Luz] and [Jan, Section 10.1]).

(1.3)

Lemma 1.1. — The Q(q)-linear map r; and ;r commute; that is, rj o ;v = ;r o r;
foralli, jel.

ProrosiTION 1.2 (see [Luz]). — There is a unique symmetric bilinear form (., .)
on 'f which satisfies that, for all x,x" € 'f,

(1) (Fai’Faj) = 5!](1 - q_2>_1/

(2) (Fayx,x") = (Fays Fo,) (x, ir(x")),

(3) (XFai’x,) = (Fai’ Fai)(x’ ri(x,))'

Let I be the radical of the bilinear form (.,.) on ’f. It is known in [Luz]
that I is generated by the quantum Serre relators S;j, for i # j € I, where

2 2 -1 P g1
G S = {FaiFaj +FoF2 —(q+q FoFuFey  ifli—jl=1;

Fo;Fa; = Fo;Fo, if |i — j| > 1.
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2. THE ALGEBRAS ’f, f AND U 17

Let f = 'f/I. By [Luz], we have
(1'5) r[(Sij) = fr(sij) = O’ Vf, l’] el (l * ])

Hence r; and ,r descend to well-defined Q(q)-linear maps on f.
We introduce the divided power

Fi = g /lall,
where a > 0 and

[al = (q"~¢"9)/(g-q) [al'=[1]-[2]---[al].

Let d = Z[q,q7'] and f4 be the d-subalgebra of f generated by F((;j) for
various a > O and i € II.

The quantum group U = U, (sl(k + 1)) is defined to be the associative Q(g)-
algebra generated by Ey,, Fo,, Ko, K, Liel, subject to the following relations
fori,jel:

Ko K;' =K 'Kqy =1, Ko Kay = KoK
KaiEajK(;il — q(lxi,aj)Eaj , KaiFajK(;il — q—(lxi,aj)Faj ,

Eq,Fa; = FayEa, = 8i j(Ke, K/ (q—q7"),

E3 Eq +EqE5 =(q+q DEqEqEq  ifli—jl =1,

Aj~a;
EqEq; = EqEa, ifli—j|>1,
FOZYiFO‘j +FajF025i = (q+q_1)leiF0!jF0!i if |i _]| = 1,
sziFaj:FajFa,— 1f|l_]|>1

Let U*, UY and U™ be the Q(g)-subalgebra of U generated by E,,, K;},
and F,, respectively, for i € I. Following [Luz], we can identify f = U™ by
matching the generators in the same notation. This identification induces a
bilinear form (., .) on U™ and Q(g)-linear maps r;, ;r (i € I) on U”. Under this
identification, we let UZ u be the image of f,, and let U be the image of f;.
The following Serre relation holds in U™:

(16) Sij = 0, VI,] € ]I, (l ?5])

Similarly we have f = U* by identifying each generator F,, with E,,. Similarly
we let U}, denote the image of fy under this isomorphism, which is generated
by all divided powers Efx‘? =E§ /[a]'.
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18 CHAPTER 1. PRELIMINARIES ON QUANTUM GROUPS

ProPOSITION 1.3
(1) There is an involution w on the Q(q)-algebra U such that, for all i € 1,
W(Eg) = Foyy  0(Fy) = Eq;,  0(Kg,) = K™
(2) There is an anti-linear (q — q ') bar involution of the Q-algebra U such that
Eo; =Eq. Foy=Fy, Ko =K'
foralli € 1. (Sometimes we denote the bar involution on U by .)

Recall that U is a Hopf algebra with a coproduct A : U — U ® U such that
A(Eq,) =1®Eq, + Eq, ® K1,
(1.7) A(Fy,) =Fy, ® 1 + Ko, ® Fy,
AKy,) = Ko, ® Kg, .
The coproduct A here (which is chosen to be convenient for the connection
with category 0O) differs from the one used in [Luz2]; this results to a switching

between positive and negative parts of U for quasi-R-matrix, and between
highest and lowest weight modules.

There is a unique Q(g)-algebra homomorphism € : U — Q(g), called counit,
such that
€(Eq;) =0, €(Fy) =0, €e(Ky)=1.

3. Braid group action and canonical basis

Let W := Wy, = G4 be the Weyl group of type Ax. Recall [Luz2] for
each «; and each finite-dimensional U-module M, a linear operator T,, on M
is defined by, for A € Aand m € M,

Te(m) = > (-1)'q"EQFESm.
a,b,c>0
—a+b—c=(A,a;)

These T,,’s induce automorphisms of U, denoted by T, as well, such that
Ty, (um) = Ty, (u)Ty,(m), forallu e Ume M.

As automorphisms on U and as Q(g)-linear isomorphisms on M, the T,,’s
satisfy the braid group relation (see [Lu2, Thm 39.4.3]):

T, Ta; = Toy T if i —j| > 1,
T To; Tay = Tay Ty T if i - j| = 1.
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3. BRAID GROUP ACTION AND CANONICAL BASIS 19

Hence for each w € W, T,, can be defined independent of the choices of
reduced expressions of w. (The T,, here is consistent with T,, in [Jan], and
itis T, in [Luz].)

Denote by £(.) the length function of W, and let wg be the longest element
of W.

LemMmaA 1.4. — The following identities hold for i € I:
Twy(Key) =Kty Twy(Eay) = —Fa Ko sy Twg(Fa;) = =K 'Eq, .

Proof. — The identity T,,(Kq,) = K ,;i is clear (see [Luz] or [Jan]).
Let us show that T,,(E,,) = —F4 ;K ,, for any given i € I. Indeed, we can
always write wg = ws; with {(w) = £(wp) — 1. Then we have T,,, = T,,T;,, and

Two(Eai) =T, (Tsi(Eai)) = Tw(_FaiKai) = _Tw(Fa,-)Ka_i = _Foc_,-Ka_,-,
where the last identity used w(—«a;) = wo(a;) = —a—; and [Jan, Prop. 8.20].
The identity T, (F._,) = —K,'Eq, can be similarly proved. o

Consider the set of dominant weights
AT = {)L eN; 2a;, )/ (aj, ;) €N, Vi € ]I}.

Note that y € A* if and only if u¥ € A*, since the bilinear pairing (., .) on A is
invariant under 6 : A — A.

Let M(A) be the Verma module of U with highest weight 1 € A and with a
highest weight vector denoted by 1 or ,. We define a U-module “M(A), which
has the same underlying vector space as M(4) but with the action twisted by
the involution » given in Proposition 1.3. When considering 7 as a vector
in “M(A), we shall denote it by & or £_;.

The Verma module M(1) associated to dominant A € A* has a unique finite-
dimensional simple quotient U-module, denoted by L(4).

Similarly we define the U-module “L(A).

For A € At, we let

qu(/l) = U;qry and (A)qu(/l) = U;gg
be the si-submodules of L(1) and “L(1), respectively.

In [Lua], [Luz2] and [Ka], the canonical basis B of f; is constructed. Re-
call that we can identify f with both U™ and U*. For any element b € B,
when considered as an element in U™ or U", we shall denote it by b~ or b*,
respectively.

In [Luz], subsets B(1) of B is also constructed for each A € A*, such that
{b7n,; b € B(1)} gives the canonical basis of Ly (7).
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20 CHAPTER 1. PRELIMINARIES ON QUANTUM GROUPS

Similarly {b*¢_; ; b € B(1)} gives the canonical basis of “L(1).

By [Luz, Prop. 21.1.2], we can identify “L(1) with L(1%) = L(-~wyA) such that
the set {b*&_, ; b € B(1)} is identified with the set

{b7n30 ; b€ BAY)} = {b7n_wya; b € B(-woA)}.
We shall identify “L(4) with L(A%) in this way throughout this book.

4. Quasi-R-matrix ©

ProrosITION 1.5 (see [Lu2, Thm. 4.1.2]). — There exists a unique family of ele-
ments ©, in Uy, ® U, with p € NII, such that ©9 = 1®1 and the following identities
hold for all y and all i:

(1®Eq)0, + (Eq, ® K )Oy—g; = ©,(1® Eg,) + O gy (Ee; ® Koy
(Fay ® 1O + (Ko, ® Fo,)Opu—gy = Op(Fo; ® 1) + 0, (K! ® F,),
(Ka; ® Kg;)Oy = 0(Ko,; ® Ky,).
ReEMARK 1.6. — We adopt in this book the convention that ©, lies in U" ® U~
due to our different choice of the coproduct A from [Luz2]. (In contrast the ©,

in [Lu2] lies in U~ ® U*.) The convention here is adopted in order to be more
compatible with the application to category O in Part 2.

Lusztig’s quasi-%-matrix for U is defined to be

(1.8) 0:= ) 6,

peNII

For any finite-dimensional U-modules M and M’, the action of ® on M ® M is
well defined. Proposition 1.5 implies that

(1.9) Aw)O(m® m’) = © A(@)(m & m’),
forallm e M, m" € M’ and u € U. By [Lu2, Cor. 4.1.3], we have
(1.10) OO(mem)=mem’, forallmeMandm' € M’.
In [Lu2, 32.1.5], a U-module isomorphism
R=Ruymw MOIM-—>MM
is constructed. As an operator, R can be written as
R =00goP

where:
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4. QUASI-R-MATRIX © 21

>g:M®M — M® M is the map g(m® m’) = ¢»P'm ® m’ for all m € M,
and m’ € M,’u

>P : M ®M — M® M is a Q(g)-linear isomorphism such that
Pm@m')=m' @ m.

DEerINITION 1.7. — A U-module M equipped with an anti-linear involution ¢
is called involutive if

Y(um) = y(u)y(m), forallue Uand me M.

Given two involutive U-modules (M, y1) and (Ma, ¥»), following Lusztig we
define a map ¢ on M; ® M by

(1.11) Y(m® m') = O(yr(m) ® Yo(m’)).
By Proposition 1.5, we have y/(u(m ® m’)) = ¢(u)y(m ® m’) for all u € U, and
the identity (1.10) implies that the map ¢ on M; ® M; is an anti-linear involu-

tion. This proves the following result of Lusztig (though the terminology of
involutive modules is new here).

ProrosiTioN 1.8 (see [Luz, 27.3.1]). — Given two involutive U-modules (M, i)
and (Mp, ), (M1 ® Ma, ) is an involutive U-module with  given in (1.11).

It follows by induction that M; ®- - -® M, is naturally an involutive U-module
for given involutive U-modules Mj, . . ., M;; see [Luz, 27.3.6].
As in [Luz], there is a unique anti-linear involution ¢ on “L(A) such that
Y(wé) = yw)?é
for all u € U. Similarly there is a unique anti-linear involution ¢ on L(4) such
that

Y(un) = ¢y
for all u € U. Therefore “L(A) and L(4) are both involutive U-modules.
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2. INTERTWINER FOR A QUANTUM SYMMETRIC PAIR

In Chapters 2-5, we will formulate and study in depth the quantum sym-
metric pair (U, U’) for U of type Ay with k = 2r + 1 being an odd integer.

We shall use the shorthand notation I = Iy,,1 = {-r,...,-1,0,1,...,r} as
given in (1.1), and set
(2.1) I'=Z-onI={1,...,r}.

In this chapter, we will introduce the right coideal subalgebra U’ of U and
an algebra embedding 1 : U' — U. Then we construct an intertwiner Y for the
two bar involutions on U’ and U under 1, and use it to construct a U'-module
isomorphism J on any finite-dimensional U-module.

1. Definition of the algebra U’

The algebra U' = U, is defined to be the associative algebra over Q(q)
generated by ey, fo,, ko, k,;il (i €I'), and ¢, subject to the following relations
fori,jel

kaiky' =kilke, =1, kaika; = ka;ka;s

kaieajk;il — q(ai_a—i,aj)eaj7 kaifajk;il — q—(ai—a_i,aj)faj’
kostky' =t,

eaifaj - fajea,— = 5i,j(k0(i - ko?ll)/(q - q_l)’

eiieaj + eajeii =(q+ q_l)eaieajeai, if li—j| =1,

eaiezxj = eO{jelX[’ 1f |l _Jl > ]-,
ftif%"’f%fzfi =(q+q_1)f0!if05jfai’ ifli_jl =1’

fU(,‘f‘O{j =fzxjf(x,-, lfll_Jl > ]-,

eq;t = teg,, ifi>1,

eilt + teé1 =(q+ q_l)ealteal,

t2€a1 + €q 12 = (g + q_l)tealt + eqs

Jait = tfa; ifi>1,
fat+tfa, =@+ q ) futfa.

t2f051 + faltz =(qg+ q_l)tfalt + for-
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We introduce the divided powers fora > 0,i € I":
e = ef/[a]l and fi¥ = f7/[a

LEmMMA 2.1

(1) The Q(q)-algebra U' has an involution «, such that, for all i € I',

ke =kt olea) = fap 0(fay) = € wi(t) =t
(2) The Q(q)-algebra U' has an anti-involution t, such that, for all i € I,
t(ea;) = €apy  T(fa) = farn w) =t (k) =k .
(3) The Q-algebra U* has an anti-linear (q — q ') bar involution such that
koy =ki'. e =eap foy=fur E=t,
forallieT'.

(Sometimes we denote the bar involution on U' by ¢,.)

Proof. — Follows by a direct computation from the definitions. o

2. Quantum symmetric pair (U, U’)

The Dynkin diagram of type Ay,.1 together with the involution 6 can be
depicted as follows:

0
Arir : o - @ °
a_y a1 oy o ar

A general theory of quantum symmetric pairs via the notion of coideal
subalgebras was developed systematically by Letzter [Le] (also see [KP], [Ko]).
As the properties in Propositions 2.2 and 2.5 below indicate, the algebra U' is a
(right) coideal subalgebra of U and that (U, U’) forms a quantum symmetric
pair.

ProrosiTION 2.2. — There is an injective Q(q)-algebra homomorphism
1: U — U
which, for all i € I', sends
ko ¥ KoK €a; > Eqy + K Fa,,
foi ¥ Fou Kt + Eq t +— Eqy + qFa Ky + K-
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2. QUANTUM SYMMETRIC PAIR (U, U") 25

Proof. — This proposition is a variant of a general property for quantum
symmetric pairs which can be found in [Le, Thm.7.1]. Hence we will not
repeat the proof, except noting how to covert the result therein to the form
used here.

It follows from a direct computation that : is a homomorphism of Q(q)-
algebras.

We shall compare 1 with the embedding in [KP, Prop. 4.1] (as modified
by [KP, Rem. 4.2]), which is a version of [Le, Thm. 7.1]. Set

1
Uc = (C(q2) ®Q(q) U.

Recall from [KP, §4] a Q(g)-subalgebra Ug(®) of Uc with a generating set &
consisting, for all 0 # i € I, of

Fo

0

—Ky'Eay+q PK,. KoKg', Fa,—K;'Ea, Fo —Ea K;'.
Claim. — The algebras C(q% )®q(q)t(U") and (C(q% ) ®q(q) Uy (8) are anti-isomorphic.
Consider the C(q%)-algebra anti-automorphism « : Uc — Uc such that
Eq > V-1F,,, F, +— —V-1E,,, K, — Kq_,
forall0#iel,and
Eqy > V=1¢"2F,y, Foy = —V=1q"Y%Ey, Kgy = Koy
A direct computation shows that x sends
Ko Kg! - KoK,
Eqy + K Fo , > V=1(Fo, — K Eq,),
Fo,Kgh + Eq, = V=1(Fy, — Ea K1),
Eqq + qFa Ko + Kot > V=1q"2(Foy — K Eay + 472K ).

a0

Hence, « restricts to an anti-isomorphism between C(q%)&@(q) 1(UY) and
C(g?) ®q(q) Uj(E), whence the claim.

We observe that [KP, Prop. 4.1] provides a presentation of the algebra Uy (t)
with the generating set G and a bunch of relations, which correspond under «
exactly to (the images of) the defining relations of U'. In other words, the
composition

1 1 1 1 K 3 !

is an anti-isomorphism. Hence : : U’ — U must be an embedding. |
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RemMARrRk 2.3. — Note that the coproduct for U used in [KP] follows
Lusztig [Luz] and hence differs from the one used in this book; this leads
to somewhat different presentations of the quantum symmetric pairs. Our
choices are determined by the application we have in mind: the (U', #3,,)-
duality in Chapter 5 and the translation functors for category O in Part 2.
One crucial advantage of our presentation is the existence of a natural bar
involution as given in Lemma 2.1 (3).

Any U-module M can be naturally regarded as a U’-module via the embed-
ding 1.

ReMARK 2.4. — The bar involution on U and the bar involution on U are not
compatible through 1, i.e., 1(u) # 1(u) for u € U’ in general. For example,

1(€a;) = 1(eq;) = Eq, + Ky Fa s 1(eq;) = Eq; + Fo [Kz' = Eq; + Fo_ Ko,

Note that Eq,(K;'F,_,) = ¢*(K;'Fy_,)Eq, forall 0 # i € I. Using the quantum
binomial formula [Lu2, 1.3.5], we have, forall i e I', a € N,

a
(2.2) well) = ) q/ PR KI G,
Jj=0
a . . 0 . .
(23) (fih) = PR LD,
Jj=0
ProrosiTioN 2.5. — The coproduct A : U — U ® U restricts via the embedding 1

to a Q(q)-algebra homomorphism A : U' — U' ® U such that, for all i € I,
Alka;) = kay ® KoK
Mea) =1 ®Eq, +eq, ® Kl + k' @ K Fo,
A(fu;) = kay ® Fa, Kt + fu, ® Kt +1® Eq

At) =t ®Ky' +1® qFu Ky +1® Eqg.

"t ap

Similarly, the counit € of U induces a Q(q)-algebra homomorphism e : U' — Q(q)
such that, for all i € I,

€leq;,) =€(fo;) =0, €e(t)=1, e(ky)=1.
Proof. — This follows from a direct computation. o

REMARK 2.6. — Propositions 2.2 and 2.5 imply that U’ (or rather :(U")) is
a (right) coideal subalgebra of U in the sense of [Le]. There exists a Q(q)-
algebra embedding i;, : U' — U which makes U’ (or rather 1;(U")) a left coideal
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3. THE INTERTWINER Y 27

subalgebra of U; that is, the coproduct A : U — U ® U restricts via 11, to a Q(g)-
algebra homomorphism A : U" — U ® U'. We will not use the left variant in
this book.

ReMARK 2.7. — The pair (U,U’) forms a quantum symmetric pair in the
sense of [Le]. At the limit ¢ — 1, it reduces to a classical symmetric pair
(sl(2r +2), 51(2r + 2)*0); here wy is the involution on gl(2r + 2) which sends E; ;
to E_; _; and its restriction to sl(2r + 2) if we label the rows and columns
0f5[(2r+2)by{—r—%,---,—%,%,---,r+%}.

The following corollary follows immediately from the Hopf algebra struc-
ture of U.

CoroLLARY 2.8. — Let m : U® U — U be the multiplication map. Then we have
me® DA =1:U"— U.
The map A : U' — U' ® U is clearly coassociative, i.e., we have
1eMA=AHA:U — U eUgU.

This A will be called the coproduct of U, and € : U" — Q(q) will be called the
counit of U'. The counit map € makes Q(q) a U'-module. We shall call this
the trivial representation of U'.

ReMARK 2.9. — The 1-dimensional space Q(q) can be realized as U'-modules
in different (non-isomorphic) ways. For example, we can consider the Q(q)-
algebras homomorphism €’ : U' — Q(g), such that €’(es,) = €'(fs,) = 0,
€'(kg;) = 1 forall i € Z-o, and €’(t) = x for any x € Q(q). We shall only
consider the one induced by € as the trivial representation of U’, which is
compatible with the trivial representation of U via 1.

3. The intertwiner Y

Let U be the completion of the Q(g)-vector space U with respect to the
following descending sequence of subspaces

U Y un,) forNz1
ht(y)>N
Then we have the obvious embedding of U into U. Welet U be the clo-
sure of U"in U, and so U ¢ U. By continuity the Q(q)-algebra structure
on U extends to a Q(q)-algebra structure on U. The bar involution ‘=’ on U
extends by continuity to an anti-linear involution on U, also denoted by “~’
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28 CHAPTER 2. INTERTWINER FOR A QUANTUM SYMMETRIC PAIR

Recall, by Remark 2.4, that the bar involutions on U’ and U are not compatible
via the embedding:: U' — U.

TueOREM 2.10. — There is a unique family of elements Y, € UZ, for p € NII such
thatY = 3., Y, € U intertwines the bar involutions on U* and U via the embedding 1
and Yy = 1; that is, Y satisfies the following identity (in U):

(2.4) (@)Y =Y1(u), forallueU.

Moreover, Y, = 0 unless p° = p.

REMARK 2.11. — Define7: U' — U, where 1(u) := ¢ ((/,(«))), for u € U'. Then
the identity (2.4) can be equivalently reformulated as

(2.5) 1(w)Y =Y1(u), forallueU'.

This reformulation makes it more transparent to observe the remarkable anal-

ogy with Lusztig’s ©; see (1.9).

Sometimes it could be confusing to use ‘=’ to denote the two distinct bar
involutions on U and U’. Recall that we set in Chapter 2 that y/(u) = u for all
u € U, and set in Chapter 1 that ¢,(u) = u € U’ for u € U'. In the y-notation
the identities (2.4) and (2.5) read, for all u € U,

)Y =Yy (u(w)) and 1(w)Y = Yy (i(¢.(w)).

DEerINITION 2.12. — The element Y in Theorem 2.10 is called the intertwiner
for the quantum symmetric pair (U, U*).

As we shall see, the intertwiner Y leads to the construction of what we call
quasi-R-matrix for U’, which plays an analogous role as Lusztig’s quasi-R&-
matrix for U. We shall prove later on that Y, € U}, for all y; see Theorem 4.18.

The proof of Theorem 2.10 will be given in §4 below. Here we note imme-
diately a fundamental property of Y.

COROLLARY 2.13. — We have Y - Y = 1.

Proof. — Clearly Y is invertible in U. Multiplying by Y ! on both sides of the
identity (2.4) in Theorem 2.10, we have

Y h@) = 1(w)Y 7, Yu e U
Applying “~’ to the above identity and replacing u by u, we have

Y_lz(_u) = l(ﬂ)Y_l, Yu e U
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Hence T | (in place of Y) satisfies the identity (2.4) as well. Thanks to the

=-1
uniqueness of Y in Theorem 2.10, we musthaveY = = Y, whence the corollary.
O

4. Constructing Y

The goal here is to construct Y and establish Theorem 2.10.

The set of all u € U’ that satisfy the identity (2.4) is clearly a subalgebra
of U'. Hence it suffices to consider the identity (2.4) when u is one of the
generators ey, fu,, ka;, and t in U, that s, the following identities forall 4 € NII
andO0#iel:

KoK 'Y, = VKo K,
Far K Yyeaimas + Ea Yy = Yymai-a i Far Koy + YuEa s
QFaoK oy Yu2a0 + Ko Yyumag + Eag Xy

= ¢ V200 FaoKay + VymapKag + YuEay-

Using [Luz2, Prop. 3.1.6], we can rewrite the above identities in terms of _;r
and r_; as follows:

(2.6) KoK 2 Y, — Y, Ko K" =0,

(2.7) (@' = q)q*F Y,y Fa+ _ir(Y,) =0,
(2.8) (7" = Qg T, Yy, + roi(Y,) =0,
(2.9) (@' = g gy payFay + Yuma) + 0r(Xy) =0,
(2.10) (@7 = 9)q" " % (q ™ Foy Yy—2aq + Yuzag) + ro(Yy) = 0.

Recall the non-degenerate bilinear form (.,.) on U™ in Chapter 2; see
Proposition 1.2. The identities (2.7)—(2.10) can be shown to be equivalent to
the following identities (2.11)—(2.14):

(2.11) (Y, Fy ,2) = (1 - g 2)tglemnma—imatl(y o ri(2)),
(2.12) (Yo 2Fa ) = (1= g 2) T Nqemmeatl(y, o o ir(2)),
(2.13) (Yo Fayz) = (1= 72) gl o010 (Y, 0, 70(2))

+ gl (Y, 2),
(2.14) (X1 2Fag) = (1= ¢72) gl H= %0 (Y, 4., 07(2)

+ q(ao,u—ao)ﬂ(yﬂ_ao’ z),
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30 CHAPTER 2. INTERTWINER FOR A QUANTUM SYMMETRIC PAIR

forallz € UZ,, v € NII, p € NII, and 0 # i € I. For example, the equivalence
between (2.11) and (2.7) is shown as follows. For all z, one has:

27) = (wir(Tw.2) = =g = Qg * (g, 0 Fayr 2)2,
& (Fu;» Fu ) "y, Fo ,2)
= (g7 = @q' D (Fyy, Fo) Yucai—a s Ti(2)),
= (2.11).

The remaining cases are similar.

Summarizing, we have established the following.

LEMMA 2.14
(1) The validity of (2.4) is equivalent to the validity of (2.6) and (2.7)—(2.10).
(2) The validity of (2.4) is equivalent to the validity of (2.6) and (2.11)—(2.14).

Let 'f* (resp. (U7)*) be the non-restricted dual of 'f (resp. U"). In light of
Lemma 2.14(2), we define Y;" and Y in ‘f*, inductively on weights, by

(1) =1z(1) =1,

Y (Fy,2) = (1 = g72) " lgloe-evmatly (ry(2)),

(2.15) Y; (Foyz) = (1= 7271 ql%0 Y *(ro(2)) + ¢+ *(2),
Y (2F,_,) = (1 - g72) " lglenv=adly (,r(z)),

Y5 (2Fq) = (1= g72) Lg% Y *(gr(2)) + g% 1Y *(2),

foralli e I and z € f, with v € NII. (The formulas (2.15) are presented here
only for the sake of latter reference as they also make sense in the case of U’.)

Note that since (a;, —;) = 0 for all i # 0, we can simplify the definition (2.15)
of Y;" and Y as follows:

Y1) =11 =1,

Y/ (Fa,2) = (1 - g2 g =" 107 (ri(2)),

(2.16) Y (Fgy2) = (1= ¢72) g0V * (ro(2)) + ¢! V1Y *(2),
Y3 (zFa,) = (1= ) g =" (ir(2)),

Yj(2Fay) = (1= q2) 71 q Y *(r(2)) + ¢ 1Y *(2),

foralli eI and z € f, with v € NII.
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LemMma 2.15. — For all x € 'f, with p° # u, we have
Y/ (x) = Yg(x) = 0.

Proof. — We will only prove that Y;*(x) = 0 for all x € f, with p? # y, as the
proof for the identity Y;(x) = 0 is the same. By definition of Y, (2.16), the
value of Y(x) for x € 'f, is equal to (up to some scalar multiple) Y;"(x") for
some x’ € 'f,,, where y’ = i — a; — a_; for some i; here we recall 0(;) = a_;.
Also by definition (2.16), we have Y;'(F,,) = 0 for all i € I. Now the claim
follows by an induction on weights. o

LEMMA 2.16. — We have

Y=y

Proof. — We shall prove the identity Y;"(x) = Y3 (x) for all homogeneous ele-
ments x € f, by induction on ht(|x|).

When ht(|x|) = Oor 1, this is trivial by definition. Assume the identity
holds for all x with ht(|x|) < k, for k > 1. Let

’ 1" ’
X :sz_,-x Fa_j € fv+a_i+zx_j

with ht(|x’|) = k+1 > 2. We can further assume that 0(v + a_; + a_;) =
v+ a_; +a_j, since otherwise 1;(x") = Yz(x") = 0 by Lemma 2.15. The proof is
divided into four cases.

(1) Assume that i, j # 0. Then we have

Y () = (1—q72) g o DT (ry(x Fo ) = Ln + Lo,
where
Li=(- q—Z)—1q(a_i,v+a_j)+(ai,zx_j)+1rik(ri(x//)Faij)’
Ly = (1 - g 2)"Lglenrea)tls, y*(x").
We also have
Ya(x) = (1-q2) g @ rvre-DHy s (ir(Fy ,x”)) = R1 + Ry,
where

Ry = (1 _ q—Z) _1q(a_j’V+a_i)+(aj’a_i)+1Y§ (Fa,i jr(xu))’
R2 — (1 _ q—Z) —1q(a,j,v+a,i)+15i’_jY5(xu).
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Applying the induction hypothesis to r;(x")F,_, and F,_, jr(x") gives us
(1 q 2) =2 _(a_j,v+a_j)+a;,aj)+(a_j,v— (x)+2Y ( (rl(x )))
(1 q 2) =2 (i, v)+Ha-j,v)+(a_;, a_J)+2Y ( (rl(x//)))
— (1 _ q—Z)—Zq(a_J,v+a_1)+(aj,a_,)+(a_,,v aj)+2YR. (ri(jr(x /)))
(1 q—2) -2 (a,l V)+(0(,j,l/)+(0(7j,0(7i)+2'r}; (ri (jr(xll)) ) .

Note that ;r(ri(x")) = ri(jr(x”)) by Lemma 1.1 and ht(|;r(r;(x""))[) < ht(|]x]).
By the induction hypothesis,

Y7 (jr(ri) =Yg (ri(jr(x"))-

Hence L1 = R;.
By the induction hypothesis, we also have Y;"(x”") = Y;(x”). When i = —j,
we have v? = v, and hence we have L, = R, because

(1 g2 Lglaivral 2 (1 _ g2) L glasvrail
-(1- q—z) -1_(a%,v0+af)+1
= (1 - g %) Iglenvran+l
= (1= g2) " Lglarvransl,
Summarizing, we have Y;"(x") = L1 + Ly = Ry + Ry = Yj(x’) in this case.
(2) Assume that i = 0 and j # 0. Then we have

YL*(X/) — (1 _ q—Z) —1q(a0,v+a_j)rik (rO(x”Fa j)) + q(ao,v+a_j)+lY*(qua j)
— (1 _ q—Z) —1q(a0,v+a_j)YL* (q(ao “‘f)ro(x”)F ) + q(ag v+a_J)+1Y ( //F )
— (1 _ q—Z) —1q(a0,v+a,j)+(ao,a,j)YL (I”()(x )Fa,j) + q(ao,v+a,])+1YL (x”Fa,j)

Applying the induction hypothesis to ro(x”)F,_, and x"'F,_,, we have
Y/ (ro(x")Fa ;) = (1= g7 g 70 (jr(ro(x")),
Y (<"Fa,) = (1= q72) 7 g Y (r(x").
Hence we obtain
Y (x) =(1 = g 2) g0 e ap a0 Iy (7))

+ (1 — q_z) _1q(a0’ V)+(a7j, V)+(0Lj, C(())+2YL* (jr(xl/)) )
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From a similar computation we obtain
Y;(xl) :(1 _ q—Z)—zq(oto, V)+(0(_j, v)+(a0,0{_j)+1Y; (7’0 ( jr(x//)))
+(1- q—Z) —1q(ao, V)+(a—j,V)+(a0,a_j)+2‘rI>; ( jr(x”)).

It follows by Lemma 1.1 that ro(jr(x”)) = jr(ro(x”). Then, by the induction
hypothesis on ro(;r(x”)), jr(ro(x”), and jr(x""), we obtain Y;"(x") = Y7 (x’) in this
case.

(3) Similar computation works for the case where j = 0,i # 0 as in Case (2).
(4) At last, consider the case where i = j = 0.
() = (1= g 27 O] (ro(x Fg)) + 'O (6 Foy)
= (1 - g~2) 1 glenvra (e (7o (x")F, )
(1= g% 71V 0T () + g 0" O (x Fog ).
Applying the induction hypothesis to ry(x”’)F, and x”’F,,, we have
X[ (0" Eay) = (1= 7)1 Y (or(ro(x))) + ¢ (),
Y[ (" Fog) = (1= ¢7%) 7 g 0] (or(x”)) + Y (7).
Hence we have
T (x)
= (1 - g 2) 2o V@0 1+e0 a0y * (or (ro(x")))
(1= q2) gl a0 i@y () 4 (1 - g72) L glenvray s ()
+ (1= g2) 7 gl @0 Va0 Iy (7)) 4 gl I Va0 2y (1)
Similarly we have
T(x")
= (1— %) gl (o (or(x)
(1= g ) gl oY (or(x7)) + (1= g72) T 0O ()

+ (1 _ q—Z) —1q(ag, v)+(ao, V)+(a0’a0)+1T£ (ro(xu)) + q(ao, v)+(ag, v)+(ap, aO)+2Y};(x”),

Therefore Y;"(x") = Y3 (x") in this case too by induction and by Lemma 1.1.
This completes the proof of Lemma 2.16. O

We shall simply denote Y = 1y by Y* thanks to Lemma 2.16. Recall
'f/1=U", where I = (S;;).

LemMA 2.17. — We have Y *(I) = 0; hence we may regard Y* € (U™)".
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Proof. — Recall r(S;ij) = xr(Sij) = 0, for all i, j, k. Any element in I'is a Q(q)-
linear combination of elements of the form Fam1 .- 'Famh Siijn1 . 'Fan,- So it
suffices to prove Y*(Fo,ml SijFan, - Fan,) = 0, by induction on h + [.

Recall the Serre relator S,J, for i # j € I, from (1.4). Let us verify that
Y*(Sij) = 0, which is the base case of the induction. If |i — j| = 1, the weight
of S;; is —2a; — «;, which is not f-invariant. If |i — j| > 1, the weight of §;;
is —a; — aj, which is not #-invariant unless i = —j. In case of i = —j, a quick
computation by definition (2.16) gives us that Y*(S;;) = 0. In the remaining
cases, it follows by Lemma 2.15 that Y*(S;;) = 0

If h > 0, by (2.16), (1.3) and (1.5) we have

dmh

Y*(Faml ot 'FotmhSijFoc,,1 o 'Fanl)
= X"y (Fam, *** Fa, SijFan, - - - Fay,))

:]f*(zcm,n,lvo,mi - Fayy SifFay - Fa, )

l'

+ 5—m1,0clY*(Fam2 T athzJFanl o 'Fanl),
for some scalars c,,,» and ¢’. Similarly if I > 0, we have

Y*(Faml o '1'—"05,,1hsijFot,l1 o 'F(xnl)

= Y*(_nlr(Faml .. 'Famhs Fanl .. 'FanH ))

%
=Y (ZcmunuFami,---Fam;;”SijFa yo Fay |

l"

" 5—n,,0c”Y *(Faml .. amh Sl]Fanl ce Fo(nF1 )

for some scalars c,,»,,» and ¢”’. In either case, we have b’ + 1’ = h"”" +1” < h + 1.
Therefore by induction on h + [, Lemma 2.17 is proved. o

Now we are ready to prove Theorem 2.10.

Proof of Theorem 2.10. — We first prove the existence of Y satisfying the iden-
tity (2.4). Set Y, = 0if 4 ¢ NII. Let B = {b} be a basis of U™ such that
B, =BNUZ,isabasisof UZ,. Let B* = {b"} be the dual basis of B with respect
to the bilinear pairing (., .) in Chapter 2. Define Y by

Y—ZY(b)b ZY

beB

As functions on U™, (Y,.) = Y*. Clearly Y is in U and Yp = 1. Also Y
satisfies the identities in (2.11)—(2.14) by the definition of Y*. For any x € U,
it follows by Lemma 2.15 that 1" (x) = Yz (x) = 0 if v? £ v. Tt follows that (2.6)
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is satisfied. Therefore, by Lemma 2.14(2), Y satisfies the desired identity (2.4)
in the theorem.

By Lemma 2.14(1) and the definition of Y, the identity (2.7) holds for Y, and
so _;r(Y,) is determined by Y, with weight v < . By [Lu2, Lemma 1.2.15],
if an element x € UZ, with v # 0 satisfies _;r(x) = 0 for all i € I then x = 0.
Therefore, by induction on weight, the identity (2.7) together with Yo = 1
imply the uniqueness of Y.

The Y as constructed satisfies the additional property that Y, = 0
unless 1% = y, by Lemmas 2.15- 2.17. The theorem is proved. ]

5. The isomorphism I

Consider a function ¢ on A such that

{(u+ ) = —q(p),
(217) (i + i) = =gt ),
((u+ay) = =g rired-@ni(y), YueA il

Noting that (a;, a—;) = Oforalli € I', we see that { satisfying (2.17) is equivalent
to { satisfying

{(u+a0) =-qf(p),
(2.18)
((u+a;) =—q@rred-ewmr(y), VupeA, 0#iel.

Such { clearly exists. For any weight U-module M, define a Q(g)-linear map
on M

(2.19) O:M— M, {(m)={()m, VmeM,.

Recall that wy is the longest element of W and T,,, is the associated braid
group element from Chapter 3.

THEOREM 2.18. — For any finite-dimensional U-module M, the composition map

97::YOZOTWO M — M
is a U'-module isomorphism.

Proof. — The map T is clearly a Q(g)-linear isomorphism. So it remains to
verify that I commutes with the action of U’; we shall check this on generators
of U’ by applying repeatedly Lemma 1.4.
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Let m € M,,(,) and i € I'. Then we have

T (kaym) = Y © £ 0 Togy (1(Ke,)) Tug ()
=Y 0 { 0 Tuy(Ke; K1 )Ty (m)
=Y 0 {Ko,K ;- Ty (m)

= (Ko, Ky )Y 0 {0 Tyy(m) = kg, T (m).

[ Ay s A8

We also have
T (eq;m) = Y 0 L (Tuyy (1(e;)) Tunp (M)
=Y 0 {(Tup(Eay + K3 Far ) Top(m))
= Y 0 {(Kg (Ko, Fa, + Ea;)Kar, Toy(m))
= Y({(u = a—y))q o H I DK, Fy T (m)
_ Y(év(ll + ai)q(a—i,u)—(ai,umi)Eai Two(m))

& Y(By, + Ky Fo ) (1) Toy (m)

(b) - =
- (EOC,' + KailFafi)‘r o g o W(J(m)

= ey, T (m).
The identity (a) above follows from the definition of { and the identity (b)
follows from the definition of Y.
By a similar computation we have J f,,(m) = f,, 7 (m).
For the generator ¢, we have

F(tm) =T o o Ty, (1(t)) Ty (m)
=Y 0 0 Toy(Eay + qFaKoeh + K ) Tog(m)
=Y 0 {(~FuyKay — q "Eqq + Kay) Ty (m)
=Y (- q{ (¢ — @0)q " FagKay = q ' { (11 + @0)Eay + { (1)K Toup ()
9 (g FugKay + Eay + Kag){ (1) Tony (m)

) - - >
= (Bay + qFaK 5 + Kz )Y 0 £ 0 Tyyy(m)

=tJ(m).

Here the identity (c) follows from the definition of { and identity (d) follows
from the definition of Y. Hence the theorem is proved. ]
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In this chapter, we define a quasi-%-matrix ©' for U’, which will play an
analogous role as Lusztig’s quasi-&-matrix for U. Our ©' is constructed from
the intertwiner Y and ©.

1. Definition of 0

Recall Lusztig’s quasi-R-matrix © from (1.8). It follows by Theorem 2.10
that Y is a well-defined operator on finite-dimensional U-modules. For any
finite-dimensional U-modules M and M’, the action of Y on M ® M’ is also
well defined. So we shall use the formal notation Y* to denote the action of Y
on M ® M’. Hence the operator

(3.1) o :=10r'el)
on M ® M’ is well defined. Note that ©* lies in (a completion of) U ® U. We
shall prove in Proposition 3.5 that it actually lies in (a completion of) U’ ® U.

DEFINITION 3.1. — The element ©' is called the quasi-&-matrix for the quan-
tum symmetric pair (U, U’).

Recall that we set in Chapter 2 that ¢(u) = u for all u € U, and in Chapter 1
that ¢,(x) := x € U’ for x € U*. We shall also set

Y(x):=1(x) e U forx e U.
Define

AU —URU, Au) =, ®¢)A,(u), forallu e U

Recall that the bar involution on U’ is not compatible with the bar involution
on U through : (see Remark 2.4); in particular the A here does not coincide
with the restriction to U’ of the map in the same notation A : U - U® U
in [Luz2, 4.1.1].

ProrosITION 3.2. — Let M and M’ be finite-dimensional U-modules. As linear
operators on M ® M’, we have for all u € U’

Au)©' = 0' A(u).
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Proof. — For u € U', we set A(u) = Y uq) ® up) € U' ® U. Then, form e M
and m’ € M’, we have

r*er'e A(Z)(mem) = rA@( > rl(am) e @)(m ®m’)

2yte( ) iu) @)X e Hmem)

D yea(i(@))er e 1)me m)

O AT 0! © 1)(m & m').

The identities (a) and (c) follow from Theorem 2.10 and the identity (b) follows

from (1.9). Note that the bar-notation above translates into the /-notation as
follows:

u= I//l(u)> T'Tl) = ¢z(u(1)), TTZ) = ¢(u(2)),
() = ¥ ((uw)), @) = ¢ (1(¥@w).

The proposition is proved. O

2. Normalizing ©'

Our next goal is to understand ©' in a precise sense as an element in a
completion of U ® U~ instead of merely as well-defined operators on M ® M’
for finite-dimensional U-modules M, M’.

Let B = {b} be a basis of U™ such that B, = BN U, is a basis of U_, for
each p. Let B* = {b*} be the basis of U™ dual to B with respect to the bilinear
form (., .) in Chapter 2. For each N € N, define the Q(g)-linear truncation
map

trey:f— '
such that, for any iy, ..., i €1,

.F, ifk <N,

if k > N.

ik

Fo, ..
(3.2) trsN(Fm.1 ---Faik) = { 0 1

This induces a truncation map on U™ = “f/I, also denoted by tr<y, since I is
homogeneous. Recalling © from (1.8), we denote

Owvi= ). O,
ht(u)<N

Then we define

(3.3) 0Ly = Y id@troy (AY,)ON (" @ 1)),
H
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which is actually a finite sum, and hence ey e Us U and 0,=1e1L
Define

(3-4) Oy =0y -0y = > debecUslU,
b, €By,
ht(u)=N

where it is understood that ©®._, = 0. The following lemma is clear from

weight consideration.

LemMA 3.3. — Let M and M’ be finite-dimensional U-modules. For all m € M
and m’ € M’, we have

O'(mem’)=0Ly(mem’), for N> 0.
Note that any finite-dimensional U-module is also a U-module.

LeMMA 3.4. — Let u € U be an element that acts as zero on all finite-dimensional
U-modules. Then u = 0.

Proof. — It is well known that any element u € U that acts as zero on all
finite-dimensional U-modules has to be 0 (see [Luz, Prop. 3.5.4]). Hence the
lemma follows by weight consideration. o

We have the following fundamental property of 8.
ProrosiTiON 3.5. — Forany N € N, we have ©}, € 1(U") @ U™.

Proof. — The identity in Proposition 3.2 for u being one of the generators
ke;, €a;s fa;, and t of U’ can be rewritten as the following identities (valid
forall N > 0):

(ka; ® Ko, Ky )ON (m @ m') = Oy (kq; ® Ko, Ky )(m @ m'),

iTra- ai~ra_

((key ® Fuu K )ON 1 + (foy ® K )ON + (1@ Eq,)ON,,) (m @ m)

aira_;

= (On_1(k;! ® FoKa ) + ON(fo; ® Ko ) + ON(1 ® Eq ) (m@m'),

((kg! ® K Fy )ON_; + (eq; ® KON + (1® Eq,)Oh, ) (m @ m')
= (O _1(ka; ® Ko, Fy ) + Op(eq, ® Kg,) + Op (1 ® Eg,)) (m@ m'),

((1® qFaKy DOy + (t ®Ki)ON + (1® Eqy)Ok ;) (m® m’)

anrap N+1

= (6}\1—1(1 ® q_lFaoKao) + ®Jl\](t ® Kao) + ®JI\I+1(1 ® an)) (m ® m'),
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forall0 # i € I', m € M and m’ € M’, where M, M’ are finite-dimensional
U-modules. Write
Oy = Z a'®b,eU U,
b,€By,
ht(p)=N

where a,,’s are fixed once B is chosen. Thanks to Lemma 3.4, the above four
identities for all M, M’ are equivalent to the following four identities:

(3.5)
D k)@ @ K Kby = D a'ilke,) ® byKe K
b, by
ht(u)=N ht(u)=N
(3.6)
D ilke)a" @ Fo Kby + > 1(fu)a” @K by + Y ! ®Eq b,
by by by
ht(y”)=N-1 ht(y')=N ht(p)=N+1
= Y @ik ®byFaKa  + ) @ 1(fa) @ byKe , + ) ' @buE
b”II b”/ bl’l
ht(y")=N-1 ht(4/)=N ht(y)=N+1
(3.7)
Z l(k;il)a”" ® K;Fa_iby" + Z 1(eq;)a” ® K(;ilbyf + Z a" ® Eq, by,
bl_'// bl'l, bl’l
ht(y")=N-1 ht(4')=N ht()=N+1
= Z @ 1(ke,) ® by Kg, Fo_, + Z @ 1(eq,) ® byKg, + Z ' ® b,Eg,,
b by by
ht(y”)=N-1 ht(y')=N ht(y)=N+1
(38)
W' ® qF o K b, + ()a"® K 'b,y + M ® Eq b
a q arag VH l a ag “H a agVu
b by by
ht(y”)=N-1 ht(y')=N ht(y)=N+1
- Z 0" ® byrq  FapKay + Za/"z(t) ® by Ky, + Z @' ® by Eq,.
b”II b”/ b”
ht(y")=N-1 ht(/)=N ht(y)=N+1

A straighforward rewriting of (3.6)—-(3.8) involves the commutators [Eg,, b, ]
for various k € I, which can be expressed in terms of ;r and r; by invoking
[Luz2, Prop. 3.1.6].
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In this way, using the PBW theorem for U we rewrite the identities (3.6)—(3.8)
as the following six identities:

(3.9)
. , q(a—i,lﬁ-aii)
> ilka)a” @ Fabyr + Y 1(fu)a @by + —— > @' @ri(b,) =0,
b by -9 “
ht(u”)=N-1 ht(y')=N ht(u)=N+1
” 1 ’ q(lx—i,ﬂ"'“—i)
Z at 1(ky, ) ® by Fo, + Z " 1(fa,) ® by + 61‘1—— Z a'® _ir(b,) =0,
bu” bu' b#
ht(y”)=N-1 ht(y)=N ht(p)=N+1
(3.10)
e , q(ai,llﬂli)
Z l(kai )a# ® Fa_ibl’l// + Z 1(eai)a” ® byl + — Z a' ® r,-(b,,) =0,
b by 9 —9
ht(x”)=N-1 ht(4/)=N ht(p)=N+1
” ’ q(ai”u+ai)
Z a' 1(ke;) ® byrFo_, + Z a’1(eq,) ® by + — Z a"' ® ;r(b,) =0,
b by q by
ht(u”)=N-1 ht(y')=N ht(p)=N+1
(3-11)
” 1 , (a0, p+ap)
Z a’ ®q  Faybyr + Z W(t)a" @by + — Z a’ @ ro(by) =0,
b by q b,
ht(u”)=N-1 ht(y')=N ht(u)=N+1
. , (@0, p+ap)
Z @ ® q 7 by Fay + Z @ 1(t) ® by + q_l__ Z @' ®or(b,) = 0.
b by q b,
ht(p”)=N-1 ht(y)=N ht(p)=N+1

So far we have the flexibility in choosing the dual bases B and B* of U™. Now
let us be more specific by fixing B* = {b*} to be a monomial basis of U~
which consists of monomials in the Chevalley generators Fy,; for example,
we can take the U™ -variant of the basis {E((c))} in [Luz1, p. 476] where Lusztig
worked with U*. Let B = {b} be the dual basis of B* with respect to (., .), and
write B, = BNU_, = {b,} as before. Fix an arbitrary basis element Eﬂ € B,
(with p # 0), with its dual basis element written as ’by;’; = xF, ,, forsomex € U™
and some i. We now apply 1 ® (x, .) to the identities (3.9)—(3.11), depending
on whether i is positive, zero or negative.
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We will treat in detail the case when i is positive, while the other cases are
similar. Applying 1 ® (x, .) to the identity (3.9) above, we have

> k)@ ® (. Faby) + Y 1(fu)a ® (x,by)

b}l” b,
ht(p”)=N-1 ht(y")=N
(o pta-;)
q
+ — Z a' ® (X, r_l-(bl,)) =0.
¢l-q 4
ht(y)=N+1

Since (x,r_;(b,)) = (1 - q‘z)(xF b)) =1~ q_z)‘sby,i,/ we have

(312) D 1lke)a” (x, Fagbyr) + > 1(fa)at (x,by) = q@ i e-071gH = 0,
bHN b”/
ht(p")=N-1 ht(y)=N

By an easy induction on height based on (3.12) (where the base case
is ®) = 1 ® 1), we conclude that a* € 1(U") for all y; thatis, ®} € (U")@U". O

By Proposition 3.5 we have 171(®}) € U' ® U for each N. For any finite-
dimensional U-modules M and M’, the action of 1‘1(91’\,) coincides with the
action of ®}, on M ® M’

As we only need to use 1‘1(@)1’\,) € U' ® U rather than ©},;, we shall write ©}; in
place of 1™1(®},) and regard O}, € U' ® U from now on.

3. Properties of ©'

Let (U' ® U™)" be the completion of the Q(g)-vector space U’ ® U~ with

respect to the following descending sequence of subspaces
Hy=Ueg( ) U,) forNz1.
ht(p)=N

The Q(g)-algebra structure on U* ® U™ extends by continuity to a Q(g)-algebra
structure on (U’ ® U™)", and we have an embedding U' @ U™ — (U' @ U")".

The actions of } 5.0}, (Which is well defined by Lemma 3.3) and of ©'
coincide on any tensor product of finite-dimensional U-modules. From
now on, we may and shall identify

(3.13) 0= Z e} € (U'e U,
N>0

(or alternatively, one may regard this as a normalized definition of ®7).

The following theorem is a generalization of Proposition 3.2.
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THEOREM 3.6. — Let L be a finite-dimensional U'-module and M be a finite-
dimensional U-module. Then as linear operators on L ® M, we have

Aw)®' = ©'A(u), forallue U

Proof. — By the identities (3.5)—(3.8) in the proof of Proposition 3.5, there
exists Np > 0 (depending on L and M) such that for N > Ny we have

(3.14) Aw)®Ly -0 \yAw)=0 onLl®M,
where u is one of the generators k,, eq,;, fo;, and t of U'. We then note that,
for uy,up € UY,
(315)  Awup)0Ly — 0L yA(uruy)
= A(Lﬂ)(A(uz)@;N - @;NZ(uz)) + (A(ul)@);N — @;NZ(LH)) Z(uz).
Then by an easy induction using (3.15), we conclude that (3.14) holds for all
u € U and N > Nyp. The theorem now follows from (3.13). i
PROPOSITION 3.7. — We have ©'0" = 1 (an identity in (U' ® U™)").
Proof. — By construction, ®' = ¥ N5 ) (with ®) = 1®1) is clearly invertible
in (U'® U")". Write
'Qf = (@l) -1 .

Multiplying ‘©" on both sides of the identity in Theorem 3.6, we have

'©'A(u) = A(u) '©', Yu e U.
Applying ‘~’ to the above identity and replacing u by u, we have

"©' A(u) = Au)’©!, VYueU.
Hence '0! (in place of '©') satisfies the same identity in Theorem 3.6 as well;
note that ’6* € (U' ® U™)" has constant term 1 ® 1.

By reexamining the proof of Proposition 3.5 and especially (3.12), we note

that the element ©' € (U' ® U7)" (with constant term 1 ® 1) satisfying the

identity in Proposition 3.2 (and thus Theorem 2.10) is unique. Hence we must
have ' = ®' 7!, and equivalently, '@’ = 1. o

Recall that m(e ® 1)A =1 from Corollary 2.8, where € is the counit and m
denotes the multiplication in U.

CoroLLARY 3.8. — The intertwiner Y can be recovered from the quasi-R-
matrix ©' as

m(e ® 1)(©") =T.
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Proof. — Applying m(e ® 1) to the identities (3.5)~(3.8), we obtain in U an

identity:

(3.16) l(a)( > me® 1)(@&)) - ( > mew 1)(@;,)) (), forallue U
N0 N0

The corollary now follows from (3.13), (3.16) and the uniqueness of Y in The-

orem 2.10, as clearly we have m(e ® 1)(9;) = 1. m|

4. The bar map on U’'-modules

In this section we shall assume all the modules are finite dimensional.
Recall the bar map on U and on its modules is denoted by ¢, and the bar map
on U’ is also denoted by ¢,. It is also understood that y(u) = ¥(i(u)) for u € U'.

DEeFINITION 3.9. — A U'-module M equipped with an anti-linear involution ¢,
is called involutive (or i1-involutive to avoid possible ambiguity) if
U, (um) = ¢, (w)y,(m), Yue U and m € M.

ProPosITION 3.10. — Let M be an involutive U-module. Then M is an 1-involutive
U'-module with involution y/, := Y o .

Proof. — By Theorem 2.10, we have 1(,(u))Y = Y¢/(u), for all u € U'. By def-
inition the action of /,(u) on M is the same as the action of 1(y,(u)) on M.
Therefore, for all u € U* and m € M, we have

Yo(um) = Yy(um) = Yp(u)§(m) = 1(f,(w) Yy (m) = ¢, (w) ¥, (m).

It remains to verify that ¢/, is an involution on M. Indeed, for m € M, we have

¥ (¥.(m)) = Yy (Yy(m)) = XXy (¢(m)) = YXm = m,

where the last identity follows from Corollary 2.13. |
CoroLLARY 3.11. — As U'-modules, L(A) and “L(A) are -involutive, for A € A*.
ReMARK 3.12. — We can and will choose ¢, € “L(A) to be y-invariant. It

follows that £_, is also ¥/,-invariant, since ¢, = Y¢y and Y lies in a completion
of U™ with constant term 1. Because of this, it is more convenient to work
with a lowest weight vector instead of a highest weight vector in a finite-
dimensional simple U-module.

Recall the quasi-R-matrix ©' from (3.1). Given an involutive U'-module L
and an involutive U-module M, we define ¢/, : L® M — L ® M by letting

(3.17) Y, (l®@m):=0'(y,()®¢y(m)), forallleLandme M.
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ProrosITION 3.13. — Let L be an involutive U'-module and let M be an involutive
U-module. Then (L ® M, ) is an involutive U*-module.

Proof. — Foralll € L, m € M, u € U', using (3.17) twice we have

¥ (ul @ m) = ©' (AW (Y1) ® Y (m)))
= A@) ©'(Y() ® ¢ (m))
= () (L ® m).

The second equality in the above computation uses Theorem 3.6 and the first
equality holds since L and M are involutive modules.

It remains to verify that ¢, is an involution on L ® M. It is occasionally
convenient to use the bar-notation to denote the involution ¢, ® y on U’ ® U
below. Indeed, for [ € L and m € M, using (3.17) twice we have

V(. (l@m)) =0' (¢, @ ) (0'(1.() ® ¢ (m)))
=0'0' (y2() ® ¥*(m)) =l®m,

where the last equality follows from Proposition 3.7 and the second equality
holds since L and M are involutive modules. O

REMARK 3.14. — Given two involutive U-modules (M, ¢1) and (My, i), the
U-module M; ® M, is involutive with the involution given by © o (1 ® ¥»),
(see [Lu2, 27.3.1] or Proposition 1.8). Now there are two natural ways to define
an anti-linear involution on the U'-module M; ® Mj:

(i) apply Proposition 3.10 to the involutive U-module

(M1 ® M2, © © (1 ® 2));

(ii) apply Proposition 3.13 by regarding M; as an i-involutive U’'-module
with involution Y o .
One checks that the resulting involutions on the U'-module M; ® M; in two
different ways coincide.

The following proposition implies that different bracketings on the ten-
sor product of several involutive U-modules give rise to the same ¢/,. (Re-
call a similar property holds for Lusztig’s bar involution on tensor products
of U-modules [Luz].)

ProrosriTiON 3.15. — Let My, ..., My be involutive U-modules with k > 2. For
any 1 < k" < k, we have

Yu(m @ @m) =0 (Y,(m &+ @ mp) @ Y(Mprs1 ® -+ ® my)).
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Proof. — Recall ®' = Y20(Y ! ® 1). Unraveling the definition ¥, = Yy on
M ® --- ® My, we have

O'(Yi(m ® - @mp) @ Y(mprs1 ® -+ - ® my))
=70 ' @ D(YY(m @ - ® mp) ® Y(mpry1 ® - - - ® my))
=Y*O(Y(m ® - @ mp) @ Y(mpr1 ® - - ® my))
=YY - @mp @mpry1 @+ @ my)
=Y (m ® - ® my).

The proposition follows. O
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4. THE INTEGRALITY OF Y AND THE -CANONICAL
BASIS OF “L(4)

In this chapter, we first construct the i-canonical bases for simple U-modules
and then for the algebra U’ in the rank one case. Then we use the rank one
results to study the general higher hank case. We show that the intertwiner Y
is integral and construct the i-canonical basis for “L(A) for A € A*.

1. The homomorphism 7, ,

Though only the rank one case of the results in this section will be needed
in this book, it is natural and causes no extra work to formulate in the full
generality below.

LEMMA 4.1. — Let A € A*. We have U'é_) = “L(A) and U'ny = L(A).

Proof. — We shall only prove U'é_3 = “L(A). The proof for the second identity
is similar and will be skipped.

We write &€ = &_). Let h € “L(A),. We shall prove h € U'¢ by induction
on ht(z + A). When ht(y + 1) = 0, the claim is clear since h must be a scalar
multiple of £. Thanks to U™¢ = “L(Q), there exists y € U" such that y¢ = h.
Writing y as a linear combination of PBW basis elements for U* and replac-
ing Ey,, Eq;, Eo, (for all i € I') by ¢, eq,, fa, in such a linear combination,
respectively, we obtain an element u = u(y) € U'. Setting 1(u) = y+zforze U,
we have u¢ = h + z£. By construction, z¢ is a Q(g)-linear combination of el-
ements in “L(A) of weight lower than h. Hence by the induction hypothesis,
we have z¢& € U'¢, and so is h = ué — z¢£. m]

Recall from Chapter 3 that:
> @L(}) for A € A* is identified with L(A?) = L(—wpA),
> £ is the lowest weight vector of “L(2),

> 1,0 is the highest weight vector of L(1?).
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LemMmaA 4.2. — For A € A", there is an isomorphism of U'-modules
T : L) — “L(A) = L(A%)
such that

TE)= D, wb
beB(1)
where g, € Q(q) and g1 = 1. Moreover, the isomorphism T is uniquely determined
by the image F (&5).

Proof. — Recall theisomorphism J = YoonWO : ®°L(A) = “L(A) of U'-modules
from Theorem 2.18. The existence of I satisfying the lemma follows by fixing
the weight function ¢ such that J(&;) = n,0+ terms in lower weights.

The uniqueness of such I follows from Lemma 4.1. O
The following proposition can be found in [Luz, Chap. 25].
ProrosITION 4.3. — Let A, A’ € A™.
(1) There exists a unique homomorphism of U-modules
X =xax: LA+ A") — “L(A) ® “L(A)
such that y(&E-a-y) = &2 ® &y
(2) For b € B(A+ A’), we have

X Ea )= ) fbibba) by E @ b3E
b1, by

summed over by € B(A) and by € B(A'), with f(b; b1,by) € Z[q].
> Ifb*E ) #0, then f(b;1,b) = 1and f(b;1,b2) = 0 for any by # b.
> Ifb*¢_) =0, then f(b;1,by) = 0 for any by.
(3) There is a unique homomorphism of U-modules
5 =8, LY ® “L(D) — Qg),

where Q(q) is the trivial representation of U, such that 5(ny ® é&-;) = 1.
Moreover, for by, by € B(4), §(byny ® by&_;) is equal to 1if by = by = 1 and is
in qZ|q] otherwise. In particular, §(byny ® by & ;) = 0 if |b1| # |ba|.

PROPOSITION 4.4. — Let A, € A*. There is a unique homomorphism of U'-modules
T “Ld + p+ 2) — “L(A)

such that ﬂl’“('g—yg—y—ﬁ) = f_A.
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Proof. — The uniqueness of the map is clear, thanks to Lemma 4.1.
We shall prove the existence of 7 ,. Recall that any homomorphism of
U-modules is naturally a homomorphism of U’-modules. Note that

“L(p?) = L(-wop®) = L(p).

Let 7, be the composition of the following homomorphisms of U'-modules:

w 6 w x®id w 6 13} 13}
/, L(p” + p) ® “L(A) ——— “L(p") ® “L(p) ® “L(A)
X
CL(® + p+2) 7 gid @id
\‘\\”Mt

Hor) deid L(y) ® “L() ® “L(A)

where J is the map from Lemma 4.2. First, we have
(X ®IANE o, )= 0 @E ®E L
Then applying I ® id ® id, by Lemma 4.2 we have
(T ® id®id)(§_ﬂ9 ®E,®E )

=nu@E, @+ . gLb)b @888,
12beB(p)

Applying § ® 1 to the above identity, we conclude that
Ao, ;) = &2 O

LeMMA 4.5. — Retain the notation in Proposition 4.4. The homomorphism n; ,
commutes with the involution v,; that is, ) , ), = V7).

Proof. — In this proof, we write 7 = m; ,, £ = 5(—/19—/1—/1’ and & = & ). Then

(&) = ¢’ by Proposition 4.4. An arbitrary element in OL(u® + p + ) is of the
form ué for some u € U’, by Lemma 4.1. Since ¢ and &’ are both ,-invariant
(see Remark 3.12), we have

i, (ué) = 7, (u)(&€) = Y (wn(€) = Y, (w)é'.
On the other hand, we have

Yo (ué) = u(wé’) = Wy (&) = Y’

The lemma is proved. |
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2. The i-canonical bases at rank one

In this section we shall consider the rank 1 case of the algebra U’, i.e.,
U' = Q(g)[t], the polynomial algebra in t. In order to simplify the notation,
we shall write

E=E,, F=F, and K=K,

for the generators of U = Ug(slz). By Proposition 2.2, we have an algebra
embedding 1 : Q(q)[t] — Ugy(slz) such that

1(t)=E+qFK '+ K1
In the rank one case, A* can be canonically identified with N. The finite-

dimensional irreducible U-modules are of the form “L(s) of lowest weight —s,
with s € N. Recall [Luz] the canonical basis of “L(s) consists of

{E9¢,; 0<ax<s).
We denote by :
> “%(s) the Z[q]-submodule of “L(s) generated by {EW&_; ; 0 < a < s};
> “Lg(s) the sl-submodule of “L(s) generated by {E@E  ; 0<ac<s)
In the current rank one setting, we can write the intertwiner

Y:ZYk,

k>0
with Y =Yg, = e F%) for ¢, € Q(g), and ¢ = 1.

LemMMmA 4.6. — We have Y; € Uy, for k > 0.

Proof. — It is equivalent to prove that ¢, € o = Z[q,q '] for all k > 0. The
equation (2.4) for u = t implies that

gFK o + KWl + EXp = ¢ 1% oFK + Y1 K + YiE,

for all k > 0. Solving this equation, we have the following recursive formula
for c:

e = (= Ng - q)(q [k -1k + cx_1), forallk >1,
where c_1 = 0 and ¢y = 1. Then it follows by induction on k that c; € o. O

One can show by the recursive relation in the above proof that
k+1

k
(4.1) Y= Z qk(k+1)( l_[(qu—l _ ql—Zi)F(Zk) + n(qzm _ ql—Zi)F(2k+1)).
i=1 i=1

k>0
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ProrosITION 4.7. — Let s € N.

(1) The U'-module “L(s) admits a unique Q(q)-basis B'(s) = {T; ; 0 < a < s}
which satisfies Y,(T}) = T, and

(4-2) To =B+ )t B,

a'<a
where t;. ., € qZ[q). (We also set t;,, = 1.)
(2) B'(s) forms an dl-basis for the si-lattice “Lgy(s).
(3) B'(s) forms a Z[q]-basis for the Z|q]-lattice “ZL(s).
We call B'(s) the i-canonical basis of the U'-module “L(s).

Proof. — Parts (2) and (3) follow immediately from (1) by noting (4.2).
It remains to prove (1). Since ¥, = Yy and Y(EWE_ ) = E@WE_(, we have

P(EDE) = YEDE) = BV + 3 ps EOE,

a'<a
for some scalars pS , € d. As i, is an involution, Part (1) follows by an
application of [Lu2, Lemma 24.2.1] to our setting. o

Lemma 4.8. — Write
x=x" if x-x"€q®%(s) with seN.
The U*-homomorphism
=11 “L(s +2) — “L(s)
from Proposition 4.4 satisfies that, for a > 0,

E@ Vg o ifs=a-1,
;t(E(“)g*_s_z) - {E(“)gz_f iherwise.
Proof. — Recall Proposition 4.4, Proposition 4.3, and
r=(0®id)(J ®id®id)(y ®id)y.
It is easy to compute the action of 9 on “L(1) = L(1) is given by
T(E1)=Eia-(¢ ' -qf1 and T(EEy) = £
For the map § ® id : L(1) ® “L(1) ® “L(s) — “L(s), it is easy to compute that

S(EE1®&1)=1, 6(E1®Efq)=—q, 6(6a1®&1)=06(EE1®EEq)=0.
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For the map (y ® id)y : “L(s + 2) — “L(1) ® “L(1) ® “L(s), we have
(x ® id)x(E¢s-2)
- Z g @M@ @aztatsa +Sa2E(fl1)§_1 ® E(a2)§_1 ® E(a3)§—s

a1+az+az=a
=@ @E Y +q T @B @ BTV
L qESEE @ Eq @ EOVE | 4 P20 Er | @ BE . @ EODE .
Then by applying 7 ® id ® id, we have
(T ®id®id)(y ® id) y(EWE 55)
=EE1 @61 @ EYE — (g7 - i @ Ea ® EVE,
+q B @ BEq @ EVE - (g T - gf @ BEq @ ETVE
L E @ @ EODE 4 2V | @ BE @ BODE
At last, by applying § ® 1, we have
T(E9E )
= E@E 1040+ q@25(q7l = @E@ D 40— g 2av5plaDg
= @¢ 4 gratlesplag _ grasdsplaly _ 2s-2av5pa2)p
The lemma follows. i

We adopt the convention that T; = 0if s < a.

ProOPOSITION 4.9. — The homomorphism
=11 PL(s +2) — “L(s)

sends 1-canonical basis elements to 1-canonical basis elements or zero. More precisely,
we have

7(TS2) = Toq Hfs=a-1,
¢ T: otherwise.

Proof. — By Proposition 4.7 and Lemma 4.8, the difference of the two sides
of the identity in the proposition lies in g “Z(s) and hence is a qZ[qg]-linear
combination of B'(s). Lemma 4.5 implies that such a difference is fixed by
the anti-linear involution ¥, and hence it must be zero. The proposition
follows. ]

LemMa 4.10. — Let f(t) € U' = Q(q)[t] be nonzero. Then
ft)é_s#0 forall s> degf.
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Proof. — We write & = ¢_;. Write a = deg f, and f(¢) = X%, c;t’ with ¢, # 0.
Then 1(f(t)) = c,E* + x, where x is a linear combination of elements in U with
weights lower than that of E“. It follows that

f()E =ciE¢+xE+0 fors > a,
since c,E*¢ # 0 and it cannot be canceled out by x¢ for weight reason. |
ProPOSITION 4.11. — There exists a unique Q(q)-basis
{T;’dd ; a€ N}
of U' = Q(q)[t] with deg TS = a such that

TS ifs=a-1,
(4-3) Tdes =1 @t d ‘
T: otherwise,
for each s € 2N + 1. Moreover, we have TS = T4,
Proof. — By going over carefully the proof of Lemma 4.1 in the rank one case,
we can prove the following refinement:

Whenever s > a, there exists a unique element T,(s) € U' = Q(q)[t]

(Va) of degree a such that T,(s)é_s = T;.

Let s > a and take [ > 0. Since 7,; is a U'-homomorphism with
7,1(E_(s+21)) = &€_s (see Proposition 4.4), we have by Proposition 4.9
©S+21 OZ
Ta(s + 2l)§—s = ”s,l(Ta(s + 2l)§—(s+21)) _— ”s,l(T;+Zl) = T; - Ta(3)§—3~
Hence T,(s+2I) = Ty(s) forall I > 0 and s > a, thanks to the uniqueness of T,(s)
in (¥%). Hence,

7odd .= llim T,(1+20) € U

is well defined. It follows by Proposition 4.9 that T2 satisfies (4.3).

We now show that T2 is unique (for a given a). Let 'T29 be another such
element satisfying (4.3). Then

(10dd _rroddye =0, forallse 2N +1.

It follows by Lemma 4.10 that 7994 = 7044,
Applying ¢, to both sides of (4.3) and using Corollary 3.11, we conclude

that 799 satisfies (4.3) as well. Hence we have

Todd _ Todd

by the uniqueness. 0

SOCIETE MATHEMATIQUE DE FRANCE 2018



54 CHAPTER 4. THE INTEGRALITY OF Y AND THE :-CANONICAL BASIS OF “ L(A)

A similar argument gives us the following proposition.
ProposITION 4.12. — There exists a unique Q(q)-basis
{15¥; a e N}
of U' = Q(q)[t] with deg T;" = a such that

Tsvg_s = T;_l l:fa =S + 1,
TS otherwise,

for each s € 2N. Moreover, we have TgY = T".

Clearly we have TOOdCl = T5V = 1. It is also easy to see that 7244 and TV
for a > 1 are both of the form

a

[a]!
We have the following conjectural formula (which is not needed in this
book).

(4-4) +g(t), where degg < a.

CONJECTURE 4.13. — For a € N, we have

odd  tt—=[-2a+2])(t - [-2a+4])---(t = [2a - 4])(t - [2a - 2])
Ta = [2a]! ’
Todd _ (t = [-2a])(t = [-2a +2])--- (t — [2a - 2])(t — [2a])

2a+1 — [2a + 1]! ’

o  (t—[-2a+1])(t-[-2a+3])---(t—[2a - 3])(t - [2a - 1])

T2 = [2a]! ’
Tev tt—[-2a+ 1)t —-[-2a+3])---(t = [2a = 3])(t — [2a — 1])

2a+1 = [2a + 1]! '

3. Integrality at rank one

LeEmMMA 4.14. — Lets,l € N.
(1) There exists a unique homomorphism of U'-modules
=gy “Lis+2]) — L) ® “L(s + 1)
such that w=(§_s_21) = m1 ® &
(2) 7~ induces a homomorphism of sl-modules

nm =7y “La(s +21) — Ly (l) ® “Ly(s +1).
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Proof. — The uniqueness of such a homomorphism is clear, since by

Lemma 4.1
Ul§_3_2[ = wL(s + 21)

We let 7~ = J ~! y be the composition of the U'-homomorphisms

g -1
OL(s + 21) — ©L(1) ® “L(s + ) —— 2 L(I) ® “L(s + 1),

where y is the U'-homomorphism from Proposition 4.3 and 9 = Yo { o T,
is the U'-homomorphism from Theorem 2.18. As the automorphism T,
preserves the dl-forms, we can choose the weight function ¢ in (2.18) with
suitable value (1) € ¢* such that T»;(}Z—l(g_l) = n;. It follows by (2.18) that {
must be sf-valued. Then 7~ = F ~ly is the map satisfying (1) since
X(Eos21) = £ ® st

By Proposition 4.3 y maps “Lg(s + 2I) to Ly(l) ® “Lg(s + I). It is also well
known that T,,, is an automorphism of the d-form “Ly(l). By Lemma 4.6,
Y l=7Y preserves the d-form “Ly(l) as well. As a composition of all these
maps, 7~ =(Yo Zo Twy) 1y preserves the si-forms, whence (2). O

The following lemma is a variant of Lemma 4.14 and can be proved in the
same way.

LEMMA 4.15. — Lets,l € N.
(1) There exists a unique homomorphism of U'-modules
nt =l CL(s +21) — L(s + 1) ® “L(D),
such that 7 (§_s_21) = 541 ® &1
(2) 7" induces a homomorphism of d-modules
" PLy(s +21) — Ly (s + 1) ® “Ly(l).

Recall that a modified Q(q)-algebra U as well as its dd-form Uy are defined
in [Luz, Chapter 23]. Any finite-dimensional unital U-module is naturally a
weight U-module, and vice versa (see [Lu2, 23.1.4]). In the rank one setting,
U (or Uy) is generated by E, F and the idempotents 1, for s € Z. As U is

naturally a U-bimodule, 1(T299)1; and 1(T€Y)1, make sense as elements in Ul;,
forae Nands € Z.

PROPOSITION 4.16
(1) We have 1(T999)1; € Uy, foralla € N and s € 27 + 1.
(2) We have (TSV)15 € Uy, forall a € N and s € 27.
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Proof. — (1) Let s € 2N + 1. Fix an arbitrary a € N. Recall Lusztig’s canonical
basis {b ©_s b’} of Ul_; in [Luz, Thm. 25.2.1]. We write

(T2 = Z oy bO_s b,
bo

for some scalars c¢;, ;» € Q(g). Consider the map
a7 “Ly(s +21) — Ly () ® “Ly(s + 1)

in Lemma 4.14 foralll > 0. Wehave T99¢ 5, € “Ly(s+21) by Propositions 4.7
and 4.11. Therefore we have

(TP ® Eop) = TEW (0 @ Eoy) = w7 (T8 o)) € Lat(D) ® “Lg(s + ).
Hence we have (in Lusztig’s notation [Lu2, Thm. 25.2.1])
D (b O b es = 1T (1 ® Es1) € La(]) @ “La(s + 1),
(b,b)

Since this holds for all I and (b ¢ b"); 51 # 0 for [ > 0, all ¢; ,» must belong
to o. Hence 1(T94)1_ € Uy.
By considering the map

s CLg(s+21) — Ly(s +1) ® “Lg(])

in Lemma 4.15 for all [ > 0, we can show that 1(T°99)1 € Uy fors e 2N +1ina
similar way. This proves (1). The proof of (2) is similar and will be skipped. O

4. The integrality of Y

Back to the general higher rank case, we are now ready to prove the follow-
ing crucial lemma with the help of Proposition 4.16.

LemMMA 4.17. — Foreach A € A*, we have Y(“Lg(A)) € “Ly(A).

Proof. — We write & = £_,. We shall prove that Yx € “Ly(A) by induction on
the height ht(y + 1), for an arbitrary weight vector x € “Ly(A),. It suffices to
consider x of the form x = EEZ?EEZ? e Ef;jfg which is y-invariant.

The base case when ht(u + A) = 0 is clear, since x = £ and Y& = £.

Denote x’ = Effii) .- Eg‘jg)g € “Ly(1), and so x = ESZi)x’. The induction step
is divided into three cases depending on whether i1 > 0, i1 < 0, or i1 = 0.
Recall that, for any u € U’, the actions of u and 1(u) on “Ly(1) are the same
by definition.
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(1) Assume that iy > 0 (i.e., i1 € I'). Replacing EEZ;) in the expression of x
by egfz), we introduce a new element x”’ = efx‘g)x’ which lies in “Ly(A) thanks
to (2.2). Then y := x” — x € “Lg(A) is a linear combination of elements of
weights lower than the weight of x.

We shall consider ,(x”) in two ways. By Corollary 3.11, “Ly(A) is i-

involutive. Since ef,fg) is ¢,-invariant and ¢, = Ty, we have

Pu(x”) = Yulelilx’) = el (x) = et Ty ().
It is well known (cf. [Lu2]) that ¢ preserves “Ly(4), and so ¢(x’) € “Ly(A).
Since ¥/(x’) has weight lower than x, we have Yy/(x”) € “Ly(4) by the induction

hypothesis. Equation (2.2) implies that /,(x") = efﬁi)Ylﬁ(x’) € “Ly(A).
On the other hand, we have

¥a(x") = () + ¥u(y) = Y (x) + Yih(y) = Yx + Yy (y).

Since ¢(y) € “Lg(A) has weight lower than x, we have Y¢/(y) € “Ly(1) by the
induction hypothesis. Therefore we conclude that Yx = ¢/,(x”") - Y¢(y) belongs
to (‘)L&q(/l).

(2) Assume that iy < 0. In this case, replacing Eff&) in the expression
of x by fu(fjl) instead, we consider a new element x”" = 0(,?1) x” which also lies
in “Ly(A) by (2.3). Then an argument parallel to (1) shows that Yx € “Ly(1).

(3) Now consider the case where i1 = 0. Set

ﬁ = 2 aiaip - A
p=2

We decide into two subcases (i)-(ii), depending on whether (o, ) is odd or
even.

Subcase (i) : Assume that (oo, p) is an odd integer

Replacing E(OZ;)
sition 4.11, we introduce a new element x” = T;’lddx’, which belongs to “Ly(A)

in the expression of x by the element 724! defined in Propo-

by Proposition 4.16 (as we can write x” = T;’lddl(ao’ p)x’). Thanks to (4.4),
y := x"”" —x € “Lg(A) is a linear combination of elements of weights lower
than x. Then similarly as in case (1), we have

Yu(x”) = Yu(T2%%") = T2y, (x') = TOY Yy (x).

As in (1), we have Yy(x’) € “Lg(1). Recall from Theorem 2.10 that Y = 3, 1},,
where Y, # 0 only if 1% = pi. Note that (ag, ) must be an even integer if 1% = p.
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Hence (ao, 1+ p) is always odd whenever p? = ji. Therefore by Proposition 4.16,
we have

Yo" = TP () = > ToM g e py T (x) € “La(A).
wpl=p
Now by the induction hypothesis we have Y¢/(y) € “Ly (1), and hence
Yx = ¢,(x") = YY(y) € “La(R).
Subcase (ii): Assume that (o, f) is an even integer
In this subcase, we replace EE,“I;) by T;Y. The rest of the argument is the same

as Subcase (i) above.
This completes the induction and the proof of the lemma. O

TuEOREM 4.18. — We have Y, € U, forall p € NIL

Proof. — Recall Lusztig’s canonical basis B, = BN {, of f in Chapter 3. We
write Yy = Ypep, o b” for some scalars c¢; € Q(g). By Lemma 4.17, we have

Y,m) = Z ey b € Lu(l), forall A e A*.
beB,

For an arbitrarily fixed b € B,, b™n, # 0 for 1 large enough, and hence we
must have ¢, € 9. Therefore Y, € U_. O

5. The i-canonical basis of a based U-module

By Corollary 3.11, “L(A) for A € A* is an 1-involutive U'-module with invo-
lution ¥, = Y¢.

LeMMA 4.19. — The bar map ), preserves the sd-form ®Lgy(A), for A € A*.

Proof. — It is well known (cf. [Luz]) that i preserves “Ly(d). As “Ly(A) is
preserved by Y by Lemma 4.17, it is also preserved by ¢, = Y. ]

Define a partial ordering < on the set B(1) of canonical basis for 1 € A* as
follows:
b1 < by if the images of |b1|, |by| are the same in Ag
and |by| — |b1| € NII.
(Recall that [b| denotes the weight of b as in §2).
For any b € B(4), we have

(4.6) b EL) = TYBTEL) = XGTED = D pepb T,

b’ eB()

(4-5)
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where pp,y € o by Theorem 4.18. Since Y lies in a completion of U™
satisfying Y, = 0 unless p° = y (see Theorem 2.10), we have

po;p =1 and  pppr =0

unless b’ < b. As ¢, is an involution, we can apply [Luz, Lemma 24.2.1]
to our setting to establish the following theorem, which is a generalization
of Proposition 4.7 in the rank one case.

THEOREM 4.20. — Let A € A™.
(1) The U'-module “Ly(A) admits a unique basis
B'(A) = {T}; b e BV}
which is ,-invariant and of the form

T} =bE+ ) th, b, for ), € qZlq).
b’ <b

(2) B'(A) forms an d-basis for the dd-lattice “Lg (7).
(3) B'(4) forms a Z|q]-basis for the Z[q]-lattice *L (7).

DEFINITION 4.21. — B'(1) is called the i-canonical basis of the U*-module “L(A).

REMARK 4.22. — The 1-canonical basis B'(1) is not homogenous in terms of
the weight lattice A, though it is homogenous in terms of Ay.

REMARK 4.23. — Lusztig’s canonical basis B(A) is computable algorithmically.
As Y is constructed recursively in §4, there is an algorithm to compute the
structure constants pj.,y in (4.6) and then tl’},b,.

Set tl’};b =1, and tﬁ;b, =0if b,b’ € B(A) satisfy b” £ b.

CoNJECTURE 4.24 (Positivity of tl/},b,). — We have tﬁ,b, € N[gq], for b,b" € B(A).
One can hope for similar positivity in the general setting of based U-
modules below.

Recall [Lu2, Chap. 27] has developed a theory of finite-dimensional based
U-modules (M, B) (for general quantum groups U of finite type). The basis B
generates a Z[q]-submodule Jl and an d-submodule yM of M. Applying the
same argument for Theorem 4.20 above, we have established the following.
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THEOREM 4.25. — Let (M, B) be a finite-dimensional based U-module.

(1) The U'-module M admits a unique basis (called 1-canonical basis)
B :={T,; b € B}
which is ,-invariant and of the form
4.7) Ty=b+ >ty b, for tyy € qZlql

b’eB
b’ <b

(2) B' forms an d-basis for the d-lattice yM, and B* forms a Z|[q]-basis for the
Z|q]-lattice JL.

Recall that a tensor product of finite-dimensional simple U-modules is
a based U-module by [Luz, Thm.27.3.2]. Theorem 4.25 implies now the
following.

THEOREM 4.26. — Let A1,..., A, € A*. The tensor product of finite-dimensional
simple U-modules “L(A1) ® - - - ® “L(A,) admits a unique ,-invariant basis of the
form (4.7) (called 1-canonical basis).

REMARK 4.27. — One can hope for a positivity similar to Conjecture 4.24 in
the above general setting of tensor product U-modules.
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5. THE (U', #3p,, )-DUALITY AND COMPATIBLE BAR
INVOLUTIONS

In this chapter, we recall Schur-Jimbo duality between quantum group U
and Hecke algebra of type A. Then we establish a duality between U’ and
Hecke algebra #p,, of type B acting on V®”, and show the existence of a
bar involution on V®™ which is compatible with the bar involutions on U
and #p,,. This allows a reformulation of Kazhdan-Lusztig theory for Lie
algebras of type B/C via the involutive U'-module V®™.

1. Schur-Jimbo duality
Recall the notation I, from (1.1), and we set
I=Dpa={-r=omdo b b dore il

Let the Q(q)-vector space
Vi= > Qg)va
a€l
be the natural representation of U. We shall call V the natural representation
of U’ (by restriction) as well. For m € Z, the tensor space V®™ is naturally
a U-module (and a U'-module) via the coproduct A. The U-module V is
involutive with y defined by

V(vg) = v,, forallael.

Then V®™ is an involutive U-module and hence an r-involutive U'-module by
Proposition 3.10 and Remark 3.14.

We view f € I as a function f : {1,...,m} — I. For any f € I, we define
My = vra) ® -+ ® Vp(m)-
Then {My ; f € I"™} forms a basis for V®.

Let Wp,, be the Coxeter groups of type B, with simple reflections s;,
0 <j<m-—1, where the subgroup generated by s;, 1 < i < m —1 is iso-
morphic to
WAm_1 = Gm.
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The group Wp,, and its subgroup S, act naturally on I on the right as follows:
forany f € I™,1 < i < m, we have
oo [ TG DG 20

T . f@) - fm) i =0,

Let #3p,, be the Iwahori-Hecke algebra of type B, over Q(q). It is generated
by Ho, Hi, Hp, . . ., Hp—1, subject to the following relations:

(5-1)

(Hi—q¢ )(Hi+9q) =0 fori >0,
HiH;+1H; = Hiv1HiH; 1 fori >0,
H;H; = H;H; for i —j| > 1,

HoH1HyH; = H1HyH1Hp.
Associated to o € Wp,, with a reduced expression ¢ = s;, - - - s;,, we define

Hy :=H; ---H,

i+
The bar involution on %3, is the unique anti-linear automorphism defined
by
H, = Hg‘}l, q= q_l, forallo e Wp,,.
There is a right action of the Hecke algebra %3, on the Q(g)-vector
space V®™ as follows:

q_le ifa>0and f(a) = f(a+1),

Mg, ifa>0and f(a) < f(a+1),
(5.2) MrHg = { Mg 5, + (g7t - @My ifa>0and f(a) > f(a+1),

Mg s, ifa=0and f(1) >0,

Mg sy + (! - @My ifa=0and f(1) <O0.

One can alternatively set f(0) = 0, then we only need the first three cases
above without any condition on a.

Identified as the subalgebra generated by Hy, Ha, . . ., Hp,—1 of #3,,, the Hecke
algebra #4, , inherits a right action on V®™. Note that the bar involution
on #,,, , is just the restriction of the bar involution on #3,,.

Recall from Chapter 4 the operator &. We define the following operator on
Ve foreachl <i<m-1:

R :=1d" " @R @id™ T Ve — VO,

The following basic result was due to Jimbo.
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ProPOSITION 5.1 (see [Jim])

(1) The action of ;" coincides with the action of H; on V™ for 1 <i <m-—1.

(2) The actions of U and Ha, , on V™ commute with each other, and they form
double centralizers.

2. The (U, #3,,)-duality
Introduce the Q(g)-subspaces of V:
Vo= @ Q@) (v_ic12 = Vi), Vo= @ Q(@)(v_iz1/2 + qUis1)2)-

0<i<r 0<i<r
LemMa 5.2. — Thesubspace V_isa U'-submodule of V generated by v_1 2 — g "v1

and V, is a U'-submodule of V generated by v_1,2 + qu1j. Moreover, we have
V=V_aV,.

Proof. — Follows by a direct computation. O

Now we fix the function ¢ in (2.18) with {(e_,_12) = 1 so that

C(ers1j2-i) = (—q)i_zr_1 forO0<i<2r+1.

Let us compute the U'-homomorphism I = Y o { o T,,, (see Theorem 2.18)
on the U-module V; we remind that wy here is associated to U instead
of Wg,, or Wy,_,.

LemMma 5.3. — The U'-isomorphism F =1 on V acts as a scalar (—q)id on the
submodule V_ and as q ' id on the submodule V .

Proof. — First one computes that the action of T,,, on V is given by
Ty (V—p—1/2+i) = (—q)2’+1_ivr+%_i for0<i<2r+1.

Hence

(53) {0 Tyy(va) = v, forallacl.

Wehave Y, = —(q -1 q)F4, from the proof of Theorem 2.10in §4. Therefore,

using J =Y o { o T,,; we have
(5-4) T Moo — g v12) = —q(vo1p — g Mo1p2),
(5-5) T Yoo1p +quip) = ¢ Hvo1p + quip).

The lemma now follows from Lemma 5.3 since 7 ~! is a U'-isomorphism. 0O
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We have the following generalization of Schur-Jimbo duality in Proposi-
tion 5.1.

THEOREM 5.4 ((U', #p,,)-duality)
(1) The action of T ~' @ id™! coincides with the action of Hy € #g, on V™.

(2) The actions of U" and #p,, on V€™ commute with each other, and they form
double centralizers.

Proof. — Part (1) follows from Lemma 5.3 and the action (5.2) of Hy € #3,,
on Ve,

By Proposition 5.1, the actions of U" and %, ,_, on V®™ commute with each
other. The action of U’ on V®” comes from the iterated coproduct

U —UeU™

Since 7! : V — V is a U'-homomorphism, we conclude that the actions
of 1 ®id™ ! and U' on V& commute with each other. Hence by (1) the
actions of U* and #5, on V®™ commute with each other.

The double centralizer property is equivalent to a multiplicity-free decom-
position of V®¥™ as an U' ® #p,-module. The latter follows by the same
multiplicity-free decomposition claim at the specialization ¢ — 1, in which
case U’ specializes to the enveloping algebra of sl(r + 1) ® gl(r + 1) and %3,
to the group algebra of Wp,,. Then V = V. @ V_ at ¢ = 1 becomes the nat-
ural module of sl(r + 1) ® gl(r + 1), on which sy € Wp,  acts as (idy,, —idy_).
A multiplicity-free decomposition of V®™ at ¢ = 1 can be established by a
standard method with the simples parameterized by ordered pairs of parti-
tions (4, p) such that £(1) < r + 1,£(p) < r+1and |A| + |p| = m. O

REMARK 5.5. — The homomorphism J (or 7 ~!) is not needed in Theo-
rem 5.4(2), as one can check directly that the action of Hy commutes with
the action of U’. However, it is instructive to note that the action of H arises
from 9 which plays an analogous role as the R -matrix.

REMARK 5.6. — A version of the duality in Theorem 5.4 was given in [Gr],
where a Schur-type algebra was in place of U’ here. For the applications to
BGG categories in Part 2, it is essential for us to work with the “quantum
group” U’ equipped with a coproduct.
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3. Bar involutions and duality

DEFINITION 5.7
An element f € I" is called anti-dominant (or 1-anti-dominant), if

0<f()<f(2)<--- < f(m).
THEOREM 5.8. — There exists an anti-linear bar involution
wl . V@m SN V@m

which is compatible with both the bar involution of #g,, and the bar involution of U';
that is, for all v € V®™, o € Wg,, and u € U', we have

(5.6) ¥u(woHy) = ¥, (u) Y,(0)Ho .
Such a bar involution is unique by requiring y,(My) = My for all 1-anti-dominant f.

Proof. — Applying the general construction in §4 to our setting, we have an
r-involutive U'-module (V®™, ,); in other words, we have constructed an anti-
linear involution ¢, : V™ — V®™ which is compatible with the bar involution
of U'.

Asthe #,,-module V®™ is a direct sum of permutation modules of the form
#sp,,/#; tor various Hecke subalgebras #;, there exists a unique anti-linear
involution on V®™, denoted by ¢/, such that

(1) ¢¥;(Mg) = My, if f is 1-anti-dominant;

(2) ¥,(MyH,) = gbl'(Mg)ﬁ(,, forallge I and o0 € Wp, .

To prove the compatibility of ¢, with the bar involution of #3,,, it suffices to
prove ¥, satisfies the conditions (1)-(2) above; note that it suffices to consider ¢

in (2) to be the simple reflections.

By the construction in §4, the bar involution

wl . V@m N V@m

is given by ¥, = Yy, where ¥ : V®™ — V®™" js a bar involution of type A.
The following compatibility of the bar involutions in the type A setting is well
known (see, e.g., [Br1]; note here that our 1-anti-dominant condition is stronger
than the type A anti-dominant condition.):

(1) ¥(Mg) = Mg, if f is 1-anti-dominant;

2") Y(MyHy) = MyH,, forany g € I"™ and any H, € #a,, ,.

The U-weight of My is wt(f) := X7 £r(a) € A. Define the U’-weight of My

m

wto(f) := D Er(a) € Ao,

a=1
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which is the image of wt(f) in Ag = A/A? (here we have denoted by 7 the
image of & in Ag). Defined the following partial ordering < on I (which is
only used in this proof):

g = f if wto(g9) =wto(f) and wt(f)—wt(g) € NII.

Applying the intertwiner Y = 3}, cny Xy from Theorem 2.10, we can write
for any f € I"™ that

Y(Mp)= ) cgMy, for cg € Q(q).
gem

Here the sum can be restricted to g with wto(g) = wto(f) (since Y, = 0 unless
4% = pi by Theorem 2.10); hence we have wt(gf) — wt(g) € NII (since Y, € U").
Therefore we have

T(Mp) = My + ) ¢gMg,  for cg € Q(q).
9=<f

So if f is 1-anti-dominant then we have Y(My) = My, and thus by Proposi-
tion 3.10 and (1) above,

i(Mr) = Y(My) = Y(My) = My.

Hence ¢, satisfies Condition (1).

To verify Condition (2) for ¢,, let us first consider the special case m = 1.
Note that (v,) = v, and hence ¥,(v,) = Y(v,) for all a. By Definition 5.7,
a is 1-anti-dominant if and only if a > 0. Thus we have

(57) wl(va) =Ugq = w;(val fora > 0.

On the other hand, by (5.3) and Lemma 5.3 we have

(58) lﬁt(va) = Y(Ua) =TYo § o wo(Ua-so)
= T (Vasy) = Va-sgHy * = ¥(va) fora<0.
Hence ¢, = ¢/ and (5.6) holds when m = 1.
Now consider general m € Z.g. For 1 < i < m -1, by applying Propo-

sition 3.10, the identity (2’) above, and Proposition 5.1 in a row, we have,
forg e I™,

Vi(MgH:) = YY(MgH;) = Y(y(Mg)H;) = (M) H;.
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When i = 0, we write M, = vy41) ® My, and hence
¢1(M9H0) = ’;bl(vg(l)HO ® Mg’)

= 0" (¢:(vy01)Ho) ® Y(My)) by Proposition 3.15,
= 0" (V1(vg(1)Ho ® (M) by (5.6) in case m =1,
= 0" (Yu(vya)) ® Y(My))Ho by Theorem 5.4,

= §,(My)Ho by Proposition 3.15.

This proves ¢, = ¥/, in general, and hence completes the proof of the compati-
bility of all these bar involutions.

The uniqueness of ¢, in the theorem follows from the uniqueness of ¥/,
above. O

ReMARK 5.9. — The anti-linear involution ¢, defined on V®™ from the Hecke
algebra side gives rise to the Kazhdan-Lusztig theory of type B. Theorem 5.8
implies that the (induced) Kazhdan-Luszig basis on V®™ coincides with its
1-canonical basis (see Theorem 4.26). Hence Kazhdan-Lusztig theory of type B
can be reformulated from the algebra U’ side through ¢, without referring to
the Hecke algebra; see Theorem 11.10.

ReMARK 5.10. — It follows by (5.7) and (5.8) that
{vis1y2, (_icip — ¢ o) ; 0 <i <}
forms a ¢/,-invariant basis of V. Also
{vis1/2, (Voic12 + quivipp) ; 0 < i <r}

forms another ¢/,-invariant basis of V, which must be the i-canonical basis by
the characterization in Theorem 4.20.
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6. THE QUANTUM SYMMETRIC PAIR (U, U’)

In this chapter we consider the quantum symmetric pair (U, U’) with U of
type Ay,. We formulate the counterparts of the main results from Chapter 2
through Chapter 5 where U was of type Ay,.1. The proofs are similar and
often simpler for U’ since it does not contain a generator ¢ as U’ does, and
hence will be omitted almost entirely.

1. The coideal subalgebra U’
We shall write I = I, as given in (1.1) in this chapter. We define
V=I=(3+N)nI={53 - r-3}

The Dynkin diagram of type A, together with the involution 6 are depicted
as follows:

0
//—\\
Ay, @ @ - °
-r+1/2 a-12 a12 Qr-1/2

The algebra U’ is defined to be the associative algebra over Q(q) generated
by ea;, foir Kair kg, 1 iel, subject to the following relations for i, j € I’

m@lk%F1 kaika, = ka;ka; ,

kayea ke = ¢ Deg,, ke foykay = 77 oy,
€a; fo; — fa,ea, = 6, j(ke; — _1)/(61 -q7h ifi,j+ 3>

62 ea; + €€ a =(q+q~ )ealeaje,xl if li—j| =1,
faJay + fo for = @+ @) fay Sy f if[i—jl =1,
€a;€a; = €a;€a; if li—j| > 1,
Jaifo; = fa; fai if [i - jl > 1,

2 2 -1 -1
fa% €aypp + e“l/zfal/z =(g+q )(fal/zeal/zfal/z Qfm/zkal/z q qu/zkoq/z)’

2 2 _ -1 -1
eal/zfal/Z + fal/zeal/z - (q + q )(eal/zfal/zeal/Z —-q kal/Zeav qk()q/zeal/Z)



70 CHAPTER 6. THE QUANTUM SYMMETRIC PAIR (U, U”)

We introduce the divided powers
e =% /lall and fi¥ = £2/[a].
The following is a counterpart of Lemma 2.1.

LEMMA 6.1

(1) The algebra U’ has an involution w, such that
wy(ke;) = g0k}, w)(eq,) = fo, and  ,(fa,) = eq, foralliel’.
(2) The algebra U’ has an anti-involution t, such that
7)(eq;) = €y T(fey) = fo, and 71,(ky;) = q“si-l/zkoji1 foralliel/.
(3) The algebra U’ has an anti-linear (q — q =) bar involution such that
ko, =kl €a, =ea, and f, =fo forallicl.
(Sometimes we denote the bar involution on U’ by ,.)

The following is a counterpart of Proposition 2.2, the proof of which relies
on [KP, Prop. 4.1] and [Le, Thm. 7.1].

ProrosiTION 6.2. — There is an injective Q(q)-algebra homomorphism j : U/ — U
defined by, forall i € I/,

kay ¥ KiK', eV Ea; +Kg'Fa iy foy ¥ Fau K3t + Eq, .

dita-; i aitMa_;
Note that Eai(K,;ilFaﬂ.) = qz(K;ilFmi)Eai fori € I/. We have fori € I/,

Y j(a—j) (Kf;ilF“-i)j. Egi_j

(@)y — E )
(6.1) Jeq;) = £ q ]! [a -]
@ (FuKgly ES
6. (a)y _ jla—j) 247 amiZ T
(6.2) I(fa;) ZO‘I ! [a—j]!

The following is a counterpart of Proposition 2.5.

ProrosiTION 6.3. — The coproduct A : U — U®U restricts under the embedding j
to a Q(q)-algebra homomorphism A : U’ +— U’ ® U such that forall i e I/,

Alke;) = kay ® KoK

Meq,) =1®Eqy +eq ® Ky +ky @K Fy
A(fo;) = kay ® Fa, K! + fo, Kyt +1®E, .

—i
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Similarly, the counit € of U induces a Q(q)-algebra homomorphism € : U/ — Q(q)
such that

€leq,) = €(fo;) =0 and e(ky) =1 foralliel’.

It follows by Proposition 6.3 that U’ is a (right) coideal subalgebra of U.
The maps:

> A : U/ — U’ ® U will be called the coproduct of U’ and

> ¢ : U/ — Q(q) will be called the counit of U’.

The coproduct A : U/ — U’ ® U is coassociative, i.e.,

1eMA=(A®1)A: U/ - U/ @UeU.

The counit map e makes Q(q) a (trivial) U’-module. Let m : U® U — U denote
the multiplication map. Just as in Corollary 2.8, we have

me@ 1A =;:U/ — U.

2. The intertwiner Y and the isomorphism I

As in §3, we let U be the completion of the Q(g)-vector space U. We have
the obvious embedding of U into U. By continuity the Q(q)-algebra structure

1=

on U extends to the Q(g)-algebra structure on U. The bar involution
on U extends by continuity to an anti-linear involution on U, which is also
denoted by “ .

The following is a counterpart of Theorem 2.10.

TueOREM 6.4. — There is a unique family of elements Y, € UZ, for p € NII
such that
r=>1,e0
7

intertwines the bar involutions on U’ and U via the embedding j and Yo = 1, that is,
Y satisfies the following identity (in U):

(6.3) J@Y =T j(u) forallu e U/.
Moreover, Y, = 0 unless p° = p.

The following is a counterpart of Corollary 2.13.

COROLLARY 6.5. — We have Y- Y = 1.
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Consider a function { on A such that
{ L+ @) = =g armra (),

C(p+ i) = =glemsmra-d (g ),
forall u € A, i € IV. Such { exists.
For any U-module M, define a Q(g)-linear map

(6.4)

2:M—>M, 2(m):g"(y)m, forallm e M,.

Let wy denote the longest element of the Weyl group W of type Ay,. Asin
Chapter 3 we denote by T,,, the braid group element.

The following is a counterpart of Theorem 2.18.

THEOREM 6.6. — Given any finite-dimensional U-module M, the composition map

J=YoloT,,:M—M

is an isomorphism of U’-modules.

3. Quasi-% matrix on U’

It follows by Theorem 6.4 that Y is a well-defined operator on finite-
dimensional U-modules. For any finite-dimensional U-modules M and M’,
we shall use the formal notation Y* to denote the well-defined action of Y
on M ® M’. Hence the operator

(6.5) e/ =r*0(Y'el)
on M ® M’ is well defined. Define
A:U — U eU, A)=A®u) forallu e U

The construction in §2 carries over with little modification, and we will be
sketchy. For each N € N, we have a truncation map tr<y on U™ as in (3.2).
Then the same formulas as in (3.3) and (3.4) give us @JS y and 0, inUU".
The following is a counterpart of Proposition 3.5.

ProrosiTION 6.7. — For any N € N, we have @fv e (U)o U™.

Proposition 6.7 allows us to make sense of ]‘1(91{,) € U/ ® U for each N.
For any finite-dimensional U-modules M and M’, the action of ‘1(61{,) coin-
cides with the action of ©}; on M ® M’

As we will only need to use ]‘1(®IJ\,) € U’ ® U rather than ©Y,, we will simply
write ©}, for ;71(©Y,) and regard ©}, € U’ ® U from now on.
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Similarly, it is now understood that

N
0ly=>0lelal.
r=0
The actions of Y50 ©3, and of ®7 coincide on any tensor product of finite-
dimensional U-modules. From now on, we may and shall identify

o/=> o}

N=>0
(or alternatively, use this as a normalized definition of ©/) as an element in a
completion (U’ @ U")" of U/ @ U".
The following is a counterpart of Theorem 3.6.

THEOREM 6.8. — Let L be a finite-dimensional U’-module and let M be a finite-
dimensional U-modules. Then as linear operators on L ® M, we have

Aw)®’ = ©/A(u) forue U,
The following is the counterpart of Proposition 3.7.
PROPOSITION 6.9. — We have ©707 = 1.
The following is the counterpart of Corollary 3.8.

COROLLARY 6.10. — We have m(e ® 1)@/ =Y.

4. The j-involutive modules

In this chapter we shall assume all modules are finite dimensional. Recall
the bar map on U and its modules is also denoted by ¢, and the bar map on U’
is also denoted by ¢,. It is also understood that y(u) = ¢/(j(u)) for u € U’.

DEerINITION 6.11. — A U’/-module M equipped with an anti-linear involu-
tion ¢, is called involutive (or j-involutive) if

¥, (um) = ¢,(u)y,(m), forallu e U/ and m € M.
The following is a counterpart of Proposition 3.10.

PRrOPOSITION 6.12. — Let M be an involutive U-module. Then M is an j-involutive
U’-module with involution

Y, =Yoy.

The following is a counterpart of Corollary 3.11.
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CoOROLLARY 6.13. — Let A € A*. Regarded as U’-modules, L(A) and “L(A) are
J-involutive.

Given an involutive U’/-module L and an involutive U-module M, we define
Y, LOM —LOM
by letting
(6.6) Y,(l@m):=0/(J,()®y(m)), forallleLandme M.

The following is a counterpart of Proposition 3.13.

ProrosITION 6.14. — Let L be an involutive U’-module and let M be an involutive
U-module. Then (L ® M,,) is an involutive U’-module.

REMARK 6.15. — Given two involutive U-modules (M, 1) and (My, ), the
two different ways, via Proposition 6.12 or Proposition 6.14, of defining
an j-involutive U’-module structure on M; ® M, coincide; compare with
Remark 3.14.

The following proposition, which is a counterpart of Proposition 3.15, im-
plies that different bracketings on the tensor product of several involutive
U-modules give rise to the same /.

PROPOSITION 6.16. — Let My, ..., My be involutive U-modules with k > 2. Then
forany 1 < k" < k, we have

Y(m - @mp) =07 (Y,(m @ - @mp) @ Y(mp41 ® -+ @ my)) .

5. Integrality of Y
Similar to Lemma 4.1 for U’, we can show that
U/é ), =“L(A) and U’ny = L(A).
The following is a counterpart of Lemma 4.2.
LemMma 6.17. — For any A € A*, there is a unique isomorphism of U’-modules
T : “L(A) — “L(A) = L(19),

such that

TE= D, b ne. forg €Qlg) and gi = 1.
beB)
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ProrosiTION 6.18. — Let A,u € A*. There is a unique homomorphism of U’-
modules

T L + g+ X)) — “L(A),
such that m,y(g_ug_”_l) =&,
Recall that “L(u? + p + A) and “L(1) are both j-involutive U’-modules

with ¢, = Y o /. Similar to Lemma 4.5, the U/-homomorphism r; ,, commutes
with the bar involution v/, i.e., my ¥/, = ¥, 75 -

The following is a counterpart of Lemma 4.17, with a much easier proof.
Indeed, since the identities (6.1)—(6.2) give us all the divided powers we need,
we can bypass the careful study of the rank one case as in §2 for U*.

LemMA 6.19. — For each A € A, we have

Y(“La(A)) € “La(A).
The following is a counterpart of Theorem 4.18.

THEOREM 6.20. — We have Y, € U_, for all p € NII.

6. The j-canonical basis of “L(A)

The following is a counterpart of Lemma 4.19, which now follows from
Theorem 6.20 and Proposition 6.12. Note that we do not need the input from
the rank one case here.

LemMA 6.21. — The bar map , preserves the sl-form “Lg(A), for A € A™.

Recall a partial ordering < on the set B(1) of canonical basis for 1 € A*
from (4.5). For any b € B(4), recalling ¢, = Yy, we have

(6:7) Y0 ED =TYGTED = Y, powbTEL
veBW)

where py.y € d by Theorem 6.20. Since Y lies in a completion of U™ satis-
fying Y, = 0 unless y¥ = y (see Theorem 6.4), we have p;;, = 1 and pyy = 0
unless b’ < b. Since ¢, is an involution, we can apply [Luz, Lemma 24.2.1] to
our setting to establish the following counterpart of Theorem 4.20.
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THEOREM 6.22. — Let A € A*. The U’-module “L(A) admits a unique basis
B/() := {T}; b e BW)}
which is y,-invariant and of the form
Tlf =b"¢ , + Z tﬁ;b,b”g_;t, for tl/};b’ € qZ|q].
b'<b

DerINITION 6.23. — B/(1) is called the j-canonical basis of the U/-module “L(A).

Just as in Chapter 5, we can generalize Theorem 6.22 to any based U-module
(M, B) (in the sense of Lusztig [Luz, Chap.27]). The basis B generates a Z[q]-
submodule ./l and an sl-submodule 4M of M. Recall again Lusztig has shown

that the tensor product of several finite-dimensional simple U-modules is a
based module.

Thus we have the following counterparts of Theorems 4.25-4.26.
THEOREM 6.24. — Let (M, B) be a finite-dimensional based U-module. (For example,
take M = “L(A1) ® - - - ® “L(A;), for A,..., A, € A*))

(1) The U’-module M admits a unique basis (called j-canonical basis)

B :={Ty; beB}
which is ,-invariant and of the form
Ty =b+ Z ty ', for typ € qZ[q].
b'eB
b’ <b

(2) B’ forms an d-basis for the d-lattice yM, and B’ forms a Z[q]-basis for

the Z[q)-lattice JL.

7. The (U’, #3,, )-duality

Again in this section U is of type Ay, with simple roots parametrized by I,
in (1.1). Recall the notation I»,,1 from (1.1), and we set

I=H2r+1 = { —r,...,—l,O,l,...,r}.
Let the Q(q)-vector space
V= Z Q(q)va
ael

be the natural representation of U, hence a U/-module. We shall call V the
natural representation of U’ as well. For m € Z~o, V®™ becomes a natural U-
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module (hence a U’-module) via the iteration of the coproduct A. Note that
V is an involutive U-module with ¢ defined as

V(vg) :=v,, forallael.

Therefore V®™ is an involutive U-module and hence a j-involutive U/-module
by Proposition 6.16.
For any f € I", we define
My =vr0) @+ ® Uf(m).-

The Weyl group Wg,,, acts on I by (5.1) as before. Now the Hecke algebra #,,
acts on the Q(g)-vector space V®™ as follows:

q_le ifa>0and f(a) = f(a+1),

My s, ifa>0and f(a) < f(a+1),
68)  MH, - Mps, +(q7 =@My ifa>0and f(a) > f(a+1),

Mg s, ifa=0and f(1) > 0,

My, + (' - @My ifa=0and f(1) <0,

q My, ifa=0and f(1) =0.

Identified as the subalgebra generated by Hy, Hy, . . ., Hp,—1 of #3,,, the Hecke
algebra %4, , inherits a right action on V®”. The Schur-Jimbo duality as
formulated in Proposition 5.1 remains to be valid in the current setting, i.e.,
the actions of U and #,,, , on V®” commute with each other and they form
double centralizers.

Introduce the Q(g)-subspaces of V:
Vo= P Q@i -g ), Vi =Qgroe P Qg +qui).
1<i<r 1<i<r

The following is a counterpart of Lemma 5.2.

LemMma 6.25. — V_ is a U’-submodule of V generated by v_1 — g lvyand V, isa
U/-submodule of V generated by vg. Moreover, we have V. =V_& V.

Now we fix { in (6.4) such that {(e—,) = 1. It follows that

(—q) 21 ifi#r,
(=1 0
q- (=" ifi=r.
Let us compute the U’-homomorphism 7 = Y o { o T,,, (see Theorem 6.6) on
the U-module V; we remind that wy here is associated to U instead of W,

or Wy, ,.
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LEMMA 6.26. — The U’-isomorphism T ! on V acts as a scalar (-q)id on the
submodule V_ and as q ' id on the submodule V .

Proof. — First one computes that the action of T,,, on V is given by
Ty (V—r4i) = (—q)zr—iv,_i , forO0<i<?2r.

Hence

(6-9) {o T, (vg) =

~ {va.SO ifa+0,
quo ifa=0.

One computes that
-1
Y05—1/2+0!1/2 = _(q - q)Fa1/2Fa—1/2'

Therefore using 9 =Y o { o T,,, we have

(6.10) T Loy = g oy,
(6.11) T v —q ') = (—@)(v1 - ¢ M),
(6.12) T o +qu1) = q (o1 + qo1).

The lemma now follows from Lemma 6.26 since 7 ~! is a U’-isomorphism. O

We have the following generalization of Schur-Jimbo duality, which is a
counterpart of Theorem 5.4. The proof is almost identical as the one for
Theorem 5.4, and for Part (1) we now use Lemma 6.26 and the action (6.8)
of Hy € #3p,, on V&™.

THEOREM 6.27 ((U’, #p,,)-duality)
(1) The action of T ~' ® id™! coincides with the action of Hy € ¥g,, on V™.

(2) The actions of U’ and #g,, on V€™ commute with each other, and they form
double centralizers.

DEerINITION 6.28. — An element f € I™ is anti-dominant (or j-anti-dominant) if
0<f()<f(2)<--- < f(m).
The following is the counterpart of Theorem 5.8.

THEOREM 6.29. — There exists an anti-linear involution iy, : V®™ — V®™ which
is compatible with both the bar involution of #g,, and the bar involution of U’; that is,
forallv e V™ H, € g, , and u € U/, we have

¢J(uch7) = ¢](u) ';DJ(U)EJ-
Such a bar involution is unique by requiring y,(My) = My for all j-anti-dominant f.
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PART 11

REPRESENTATION THEORY

We shall focus on the infinite-rank limit (r — co) of the algebras and spaces
formulated in Part 1. In Chapter 7 through Chapter 11 we will mainly treat
in detail the counterparts of Chapter 2 through Chapter 5 where U was of
type Azr41 in Part 1. In Chapter 12 we deal with a variation of BGG cate-
gory with half-integer weights which corresponds to the second quantum
symmetric pair (U, U’) in Chapter 6 where U was of type Ap,.

As it becomes necessary to keep track of the finite ranks, we shall add
subscripts and superscripts to various notation introduced in Part 1 to indicate
the dependence on r € N. Here are the new notations in place of those in
Part 1 without superscripts/subscripts (Chapter 2 through Chapter 5):

Aorits Moper, Inpir, TN, Upeyq, UL, YO, V., W,, 3@, yn, e

Part 2 of this book follows closely [CLW2] with new input from Part 1. The
notations here often have different meaning from the same notations used
in [CLW2], as the current ones are often “of type B”.






7. BGG CATEGORIES FOR ORTHO-SYMPLECTIC
LIE SUPERALGEBRAS

In this chapter, we recall the basics on the ortho-symplectic Lie superalge-
bras such as linkage principle and Bruhat ordering. We formulate various
versions of (parabolic) BGG categories and truncation functors.

1. The Lie superalgebra osp(2m + 1|2n)

We recall some basics on ortho-symplectic Lie superalgebras and set up
notations to be used later on (cf. [CW2] for more on Lie superalgebras).

Fix integers m > 1 and n > 0 throughout this book.
LetZ, = {0,1}. Let C2m*112n e o superspace of dimension (2m + 1|2n) with
basis
{ei; 1Si§2m+1}u{ej; 1§j$2n},
where the Z>-grading is given by the following parity function:
ple) =0, plej)=T (Vi)

Let B be a non-degenerate even supersymmetric bilinear form on C27+1127,
The general linear Lie superalgebra gl(2m + 1|2n) is the Lie superalgebra of
linear transformations on C2™*112" (in matrix form with respect to the above
basis). For s € Z,, we define

0sp(2m + 1]2n); := {g € gl(2m + 1|2n); ; B(g(x),y) = —(=1)* P B(x, g(y))},
0sp(2m + 1]2n) := 05p(2m + 1]2n); @ 0sp(2m + 1|2n);.

We now give a matrix realization of the Lie superalgebra osp(2m + 1|2n).
Take the supersymmetric bilinear form B with the following matrix form, with

respect to the basis (e1, e, . . ., €2m+1, €1, €55+ -, €5.):
0 I, 0 0 O
I, 00 0 O
Pmi12n=10 0 1 0 O
0O o o0 o0 I
0 0 0 -1 0
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LetE;;, 1 <ij<2m+1,and E;;, 1 < k,h < 2n, be the (i, j)th and (k, h)th
elementary matrices, respectively. The Cartan subalgebra of 0sp(2m +1|2n) of

diagonal matrices is denoted by b, |,, which is spanned by

Hi:=E;i - Entim+i,
H; = E; 5 -

We denote by {ei,e]f; 1 <i<m,1 <j< n} the basis of h:un such that
€qo(Hp) = 04p, fora,be {i,j; 1<i<ml<j< n}.

We denote the lattice of integral weights of osp(2m + 1|2n) by

(7.1) X(m|n) ::ZZei+ZZej.
i=1 j=1

The supertrace form on 0sp(2m + 1|2n) induces a non-degenerate symmetric
bilinear form on b’ in determined by (. | .), such that

(€il€q) = bi.as (ejf leq) = _5j,a’ forae {i,]_'; 1<i<m,1<j< n}.
We have the following root system of 0sp(2m + 1|2n) with respect to b, ,

O =q;Ud; = {ieiiej,iep,iegiq,iZGq}U{iepiEq,i—ea},

wherel <i<j<nl<p<nl<qg<ml<k<l<m

In this book we shall need to deal with various Borel subalgebras, hence
various simple systems of ®. Let b = (b1, by, ..., bm+n) be a sequence of m + n
integers such that m of the b;’s are equal to 0 and n of them are equal to 1.
We call such a sequence a 0™1"-sequence.

Associated to each 0™1"-sequence b = (b1, . . ., byy+n), We have the following

i + _ Ft +
fundamental system IIy,, and hence a positive system @, = @, V4 of the
root system ® of osp(2m + 1|2n):
I, = {—efl,ef"—efﬁl; 1 SiSm+n—1},

U= ¢ forsomel < x <m, e} = €y for some 1 < y < n, such that

where €; <
€x — €x+1 and ey — €5 are always positive. It is clear that II, is uniquely
determined by these restrictions. The Weyl vector is defined to be

pp = %Za— %Za.

+ +
aeCIJb’(—] aeCIDb’i
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Corresponding to b™ = (0,...,0,1,...,1), we have the following standard
Dynkin diagram associated to IT,s:

O=0—0— " —®—0—0——0

-€1  €-& €m — €] €]~ 6 €1~ ¢n

As usual, ® stands for an isotropic simple odd root, O stands for an even
simple root, and e stands for a non-isotropic odd simple root. A direct com-
putation shows that

(7.2) pbst:—%el—%ez—---—(m—%)em+(m—%)ei+---+(m—n+%)eﬁ.

More generally, associated to a sequence b which starts with 0 is a Dynkin
diagram which always starts on the left with a short even simple root:

®  0=O—0O- OO0 —0O

—€

Here (-) stands for either (X) or O depending on b. Associated to a sequence b
which starts with 1 is a Dynkin diagram which always starts on the left with
a non-isotropic odd simple root:

(xx) 6-:@—(} (OO0

ReMARK 7.1. — For general b, one checks that pp has a summand (m—n+ %)e,—,
as for p,st in (7.2) if the Dynkin diagram associated to b has O as its rightmost
node, and that p, has a summand (m—n— %)e,—, if the Dynkin diagram associated
to b has () as its rightmost node.

Now we can write the non-degenerate symmetric bilinear form on ¢ as
follows:

(eV'le) = (1%, 1<ij<m+n.

We define nli; to be the nilpotent subalgebra spanned by the positive/negative
root vectors in 0sp(2m + 1|2n). Then we obtain a triangular decomposition:

0sp(2m +1(2n) = n; © by & 1y,

with ng ® b, as a Borel subalgebra.
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Fix a 0™1"-sequence b and hence a positve system ;. We denote by
Z(0sp(2m + 1|2n))
the center of the enveloping algebra U(osp(2m+1|2n)). There exists a standard
projection
¢ : U(osp(2m +1|2n)) — U(hpm)n)
which is consistent with the PBW basis associated to the above triangular

decomposition (see [CW2, §2.2.3]). For 1 € b7 i We define the central char-
acter y;, by letting

x1(z) == A(¢(z)), forz € Z(osp(2m + 1|2n)).
Denote the Weyl group of (the even subalgebra of) osp(2m + 1|2n) by Wysp,
which is isomorphic to (Zy < &,,) X (Z2 = G,).
Then for y, v € f)*mln, we say y, v are linked and denote it by p ~ v, if there

exist mutually orthogonal isotropic odd roots a1, ay, . . ., @7, complex numbers
c1,¢2,...,c;, and an element w € W, 4y satisfying

!
K+ Pp =W(V+Pb—ZCiai), (v+pplay) =0, j=1...,L

i=1
It is clear that ~ is an equivalent relation on b} | . Versions of the following
basic fact went back to Kac, Sergeev, and others.

ProrosiTioN 7.2 (see [CW2, Thm.2.30]). — Let A, u € f)*mln. Then A is linked
to pif and only if x, = xu.

We define the Bruhat ordering <j on f)* and hence on X(m|n) as follows:

(7.3) A=zpp if p—AeNI and A~ p, ford,ueh’

m|n*

2. Infinite-rank Lie superalgebras

We shall define the infinite-rank Lie superalgebras osp(2m + 1|2n + o) and
0sp(2m + 1|2n|o0). Define the sets

Ti={12....2m+1,12,....2n} u{}.1.3. - Ju{§.1°§ -},
J={12....2m+11,2,....2n}u{L.2,...}u{l.2,... },
1,1,2

ceo2nfu{zepu{zh3hh
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Let V be the infinite-dimensional superspace over C with thebasis {e; ; i € J 1,
whose Z,-grading is specified as follows:

ple)=0 (1<i<2m+1), ple)=1 (1<j<2n),
pleg) =ples) =0 (s € Zx), pler) =ple) =1 (te;+N).

With respect to this basis, a linear map on V may be identified with a com-
plex matrix (“rs)r,s - Let g[(V) be the Lie superalgebra consisting of (ars)r,s F
with a,s = 0 for almost all but finitely many a,;’s. The standard Cartan sub-
algebra of g[(V) is spanned by {E,, ; r € :]T}, with dual basis {¢, ; r € :]T}
The superspaces V and V are defined to be the subspaces of V with basis {e;}
indexed by J and J respectively. Similarly we can define gl(V) and gl(V).

Recall the supersymmetric non-degenerate bilinear form B define in §1.
We can easily identify C>™*112" as a subspace of V. Define a supersymmetric
non-degenerate bilinear form B on V by

E(es, e:) = B(es, €r), E(es, ex) = E(es, ex) =0,
E(ega eg) = E(eg’, eg’) =0, E(eg, eg’) = 5x,y = (_1)p(e£)p(eg/)§(eg’ eﬁ)’

where s,t € {i,j ; 1 <i <2m+1,1 <j < 2n}and x,y € {%,l,%,---}.
By restriction, we can obtain a supersymmetric non-degenerate bilinear form
onVand V.

Following §1, we define osp(V) and osp(V) to be the subalgebra of gl(V)
and gl(V) preserving the bilinear forms, respectively. With respect to the
standard basis of V and V, we identify

0sp(2m + 1|2n|o0) = osp(V), 0sp(2m + 1|2n + 00) = osp(V).

The standard Cartan subalgebras of osp(2m + 1|2n|c0) and osp(2m + 1|2n + oo)
are obtained by taking the intersection of the standard Cartan subalgebra
of g[(V) with 0sp(2m + 1|2n|oo0) and 0sp(2m + 1|2n + o), respectively, which
are denoted by b, || and b, n+00. For any 0"1"-sequence b, we assign the
following simple system to the Lie superalgebra osp(2m + 1|2n|co):

p.0 —{ - € ,ef”’—efﬁl,egl"rn"—e?,eo ej)“, 1<i<m+n-1,1 Sj}.

Similarly, we assign the following simple system to osp(2m + 1|2n + co):

b; bis1 b 1 1 1
Hbl_{—el,i’—eiﬁ,em”i;"—el,e; €ailsismen-11<j}

The ef”' ’s are defined in the same way as in §1 and it is understood that

e]} =¢€j_1/2 and ej? =¢ foranyl<j.
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We introduce the following formal symbols:

ESO:ZZE? and €l : Ze}

j>1 j=1
Let & be the set of all partitions. We define
m+n
(74) X i= { S Nl Y N ded s dhi € Z(FA ) € 975}
' i—1 1<
m+n
75 Xy = Y Al 4 Y Ayl 4 del s d A € Z,(h, Ry, ) € P
i=1 1<j -

3. The BGG categories

We shall define various parabolic BGG categories for ortho-symplectic Lie
superalgebras.

DEerINITION 7.3. — Let b be a 0"1"-sequence. The Bernstein-Gelfand-Gelfand
(BGG) category ©p is the category of b, ,-semisimple osp(2m + 1|2n)-
modules M such that

() M =D, cx(m|m My and dim M, < oo;

(ii) there exist finitely many weights 14,20, ..., 52 € X(m|n) (depending

on M) such that if ; is a weight in M, then y € ‘A= ¥, o1, Na, for some i.

The morphisms in O, are all (not necessarily even) homomorphisms of
0sp(2m + 1|2n)-modules.

Similar to [CLW2, Prop. 6.4], all these categories O} are identical for var-
ious b, since the even subalgebras of the Borel subalgebras nz ® b, are
identical and the odd parts of these Borels always act locally nilpotently.

Denote by Mjy(1) the b-Verma modules with highest weight 1. Denote
by Lj(4) the unique simple quotient of M (4). They are both in Op.

It is well known that the Lie superalgebra gl(2m + 1|2n) has an automor-
phism 7 given by the formula:

(E;j) = _(_1)P(i)~(p(i)+p(j))Eﬁ‘

The restriction of 7 on 0sp(2m+1|2n) gives an automorphism of 0sp(2m+1|2n).
For an object M = P M, € Op, we let

M= P M,

peX(m|n)

peX(m|n)
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be the restrictd dual of M. We define the action of 0sp(2m + 1|2n) on M¥ by

(9 ))x):=—f(r(g) x),

for f € MY, g € osp(2m + 1|2n), and x € M. We denote by M* the resulting
module .

An object M € O, is said to have a b-Verma flag (respectively, dual b-Verma
flag), if M has a filtration

O=MyC M CMC---CM =M,

such that M;/M;—1 = My(y;),1 < i <t (respectively, M;/M;_1 = M;(y,-)) for
some y; € X(m|n).

DEFINITION 7.4. — Associated to each A € X(m|n), a b-tilting module Ty (1) is an
indecomposable 0sp(2m + 1|2n)-module in 6 characterized by the following
two conditions:

(i) Tp(A) has a b-Verma flag with My (1) at the bottom;

(ii) Extéb (Mp(p), Tp(A)) = 0, for all y € X(m|n).

Recall the definition of the infinite-rank Lie superalgebras in §2. For
a nonempty 0™1"-sequence b = (b1,b,...,bmsn) and k € N U {0}, con-
sider the extended sequence (b,0) = (b1,b2,...,bmen,0,...,0).  This
sequence corresponds to the following simple system of the Lie super-
algebra osp(2m + 2k +1|2n), which we shall denote by osp(2m + 1|2n|2k)
throughout this book to indicate the choice of

_ by b; biv1 . .
H(b’ok)—{—(:‘l e —et1<i<m+n+k},
where b; =0 fori > m+n. Let
i+1 7

Hf’oz{ef”'—eb”l ; i>m+n}.

Define the following Levi subalgebra and parabolic subalgebra of
osp(2m + 1|2n|2k):

k

[ o= Z 05p(2m + 1|21|2k) .
anHiO

Pro= > 0sp2m+1(2n|2k),.
aeq>(+b’0k)uzn’§’0
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Let Lo(4) be the irreducible [IIS) ,-module with highest weight A. It can be

extended trivially to a p’lf ,-module. We form the parabolic Verma module

My () = Ind P 220

b,0
For k € N, we define
m+n

(7.6) X :—{Z/le +Z+Ale§+d

m+n

(7.7) Xllf,’l = {Z)Le +Z+/16 +d

e ays 00, + oo, +
Recall the definition of beo and X b1 from (7.4)—(7.5).

J

M»

05 d A € Z, (At M. .)egs},

1l
—

Jj

M»

e}, d A €7, (2" Ay .. .)egs}.

.
Il
—_

DEeFINITION 7.5. — Let b be a 0™1"-sequence and k € N U {co}. Let @l’f 0 be the
category of b, |, k-semisimple osp(2m + 1|2n|2k)-modules M such that
(i) M= @y M, and dim M, < co;

(ii) M decomposes over [~ 5.0 into a direct sum of Lo(A) for A € l’: 0+,

(iii) there exist finitely many weights '1,2A,...,%k1 € X* " (depending on

M) such that if y is a weight in M, then p € ‘A — ZaeH(b o) N, for some i.

The morphisms in @fo are all (not necessarily even) homomorphisms of
0sp(2m + 1|2n|2k)-modules.

Let A € X* . We shall denote by L o) the simple module in ®
with h1ghest welght A. Following Def1n1t1on 7.4, we can define the t11t1ng
module Tb o) in @b 0

Similar construction exists for the sequence (b, 1%), where we consider the
Lie superalgebras osp(2m + 1|2n + 2k) for k € N U {co} with the following
simple systems

O, 15 = { —efl,ebi e 1<icx m+n+k},

i i+1 7

where b; =1 fori > m + n.
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Let Hl;j 1= {ef’ P - effll ; i > m+n}. Define the following Levi subalgebra

and parabolic subalgebra of osp(2m + 1|2n|2k):
(= > osp@m+1]2n|2k)a,
an[n’;j’l]

Py = > 05p(2m + 1|21 2k ).

k
aed UZ[Hb,l]

(b.1%)
Let L1(4) be the simple [Ii ,-module with highest weight 4. It can be extended
trivially to a pli ,-module. Similarly we can define the parabolic Verma module

Mf 1(1) - Indozp(2m+l |2n+2k)L1 (/1)

b,1

DEeFINITION 7.6. — For k € N U {oo}, let @fl be the category of hoyi12n+2k-
semisimple 0sp(2m + 1|2n + 2k)-modules M such that

(i) M= @p M, and dim M, < co;

(ii) M decomposes over p]lf , into a direct sum of L1(1) for A € Xl]f ’1+ ;

(iii) there exist finitely many weights '1,2A,...,%k1 € Xllf ’1+ (depending on

M) such that if y is a weight in M, then p € ‘A — ZaEH(b " Na, for some i.

The morphisms in 651 are all (not necessarily even) homomorphisms of
0sp(2m + 1|2n + 2k)-modules.

> For & € Xf’; , we shall denote by L]f) ,(£) the simple module in @f , with
highest weight &.

> Following Definition 7.4, we can define the tilting module Tf (£ in @f 1

4. Truncation functors

Recall the definition of Xllf ’O+ and Xllf ’1+ in (7.6) and (7.7). For any

m+n

— b; +9 s s 00, +
A= ) ki€l + ) The +des € X
i=1

1<j

we define

m+n

k k
; k,+
M= hiel + Y Thie +d Y e e X!, forse (0,1},
i=1 1 j=1

j=
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Let MZ%O € @fo and M;‘fl € @;‘j. Then we have the weight space decomposi-
tions

(oe) o0 (o) (o)
My = @Mb,O,y and M = @Mb,l,y'
u i
We define an exact functor

= k CORN oo
tg 1 Oy — Oy tro(My ) i= @ My,
H

where p satisfies (g, e](.) - j(‘)+1) =0, forallj > k+1andj e N. Similarly, we

define an exact functor

. RR k C N =)
tey 1 0, — 0y, tu(My) = @Mb’l’y,
H

where p satisfies (i, e} - e}H) =0,forallj>k+1and e N.

The following has been known [CW1], [CLW1]; also see [CW2, Prop. 6.9].
ProrosriTION 7.7. — For s = 0, 1, the functors
trg: 05 — O

satisfy the following: for Y = M, L, T and

m+n

_ b; + s s 0, +
A= Z/liei‘ +Z /11€J;+d€00 eXb’s ,
i=1

1<j

we have .
Y;’S(AIS) if I(*A) <k,
0 otherwise.

e, (12 00) = {
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8. FOCK SPACES AND BRUHAT ORDERINGS

In this chapter, we formulate the infinite-rank variants of the basic con-
structions in Part 1. We set up various Fock spaces which are the g-versions of
Grothendieck groups, and transport Bruhat ordering from the BGG categories
to the corresponding Fock spaces.

1. Infinite-rank constructions

Let us first set up some notations which will be used often in Part 2. We set

(8.1) I=|)Tn=2 T=|)L=Zo I=Z+}
r=0 r=0
Recall from Chapter 2 the finite-rank quantum symmetric pair (Uz,1, U}.).
We have the natural inclusions of Q(q)-algebras:

o+ C U1 cUpy1cUpyzC--- and ---cU,_;c U cU_  cC---.

Define the following Q(g)-algebras:
U= Ju, and U:=| U,
r=0 r=0

It is easy to see that U’ is generated by {ey,, fai,kgil,t ; i€ I'y,and U is
generated by {EaiaFai’K§i1 ; i € I}. The embeddings i : U, — Uj,11 of Q(q)-
algebras induce an embedding of Q(g)-algebras, denoted also by

1 U — U.

Again U is naturally a Hopf algebra with coproduct A, and its restriction
under ;, A : U' — U'®U, makes U’ (or more precisely :(U")) naturally a (right)
coideal subalgebra of U. The anti-linear bar involutions on U;, and Uz,
induce anti-linear bar involutions on U' and U, respectively, both denoted
by “~" as well. As in Part 1, in order to avoid confusion, we shall sometimes
set ¥(u) :=u foru € U, and ¢,(u) := u for u € U.
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Recall IT», ;1 denotes the simple system of Uy,,1. Then

IT:= O IIpr41
r=0

is a simple system of U. Recall we denote the integral weight lattice of Up,1

by Az;+1. Then o
Y A= EB Llei] = UA2r+l
i€l/2+7Z r=0
is the integral weight lattice of U. Following §1, we have the quotient lattice Ag
of the lattice A.
Recall the intertwiner of the pair (Uy,41, U}.) in §3, which we shall denote

by Y. We have
— (r)
0= 3y

peENIIpr4

in a completion of U, , with Yér) = 1. Pollowing the construction of Y") in
Theorem 2.10, we see that

1
Y‘(IH' ) = Yl(lr), for HE NH2r+1-
Hence we can define an element Y, € U, for y € NII by letting

Y, = lim Y.

r—00

Define the formal sum Y (which lies in some completion of U™) by
(8.2) Ti= >,

We shall view Y as a well-defined operator on U-modules that we are con-
cerned.

2. The Fock space T?

Let V := },c; Q(q)v, be the natural representation of U, where the action
of U on V is defined as follows (fori € I, a € I):

ai, €
Eaivu = 5i+1/2,ava—1’ Faiva = 5i—1/2,ava+l, Kaiva = q( ! a)va-

Let W := V* be the restricted dual module of V with basis {w, ; a € I} such
that (wg, vp) = (—q) %J45- The action of U on W is given by the following
formulas (fori € [ and a € I):

Eaiwa = 5i—1/2,awa+la Faiwa = 5i+1/2,awa—la Kaiwa = q_(ai’ga)wa'

By restriction through the embedding 1, V and W are naturally U'-modules.
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Fix a 0™1"-sequence b = (b1, by, ...,bm+n). We have the following tensor
space over Q(q), called the b-Fock space or simply Fock space:

(8.3) TP = Vg V2. @ Vi,
where we denote . vV  ifb; =0,
W ifb; = 1.

The tensors here and in similar settings later on are understood to be over
the field Q(q). Note that both algebras U and U’ act on T? via an iterated
coproduct. For f € I"™*", we define

b._ b b bmsn
(8.4) My = Vftl) ® Vf%Z) ® @Vl

where we use the notation
Vbi . v lf bl‘ = O,
T w if bi =1.

We refer to {M? ; f € I"*"} as the standard monomial basis of T?.
f

For r € N, we shall denote the natural representation of U,.1 by V, now,
where V, admits a natural basis {v,|a € I3,42}. Let W, be the dual of V,
with basis {w, ; a € 2,42} such that (w,, vp) = (=q)7%J4,5. We have natural
inclusions of Q(q)-spaces

ocV,.1cV,cVyqoer and - W, W, cW,pq---.
Similarly we can define the space
TP =Vl @V g...@ Vimm,
where we denote
vbi =

r

Vr ifb,‘ :0,
W, ifb; =1

Then {M ;’ |f € In*7} forms the standard monomial basis of T?. In light of the
standard monomial bases, we may view

(8.5) ecTPcTlyc-- and TP =| TP
reN

DerINITION 8.1. — For f € 172 let wty(f) be the U'-weight of M2, ie.,
the image of the U-weight in Ay.
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3. The g-wedge spaces

Recall from §5 the right action on V®k on the Hecke algebra #, , where V
is now of infinite dimension. We take AFV as the quotient of V® by the sum
of the kernel of the operators H; — g ',1<i<k-1. The AkVis naturally a
U-module, hence also a U'-module. For any v, ® v, ® -+ ® v, in Vek we
denote its image in AKV by v, A vp, A+ A vp,.

Ford € Z and | > k, consider the Q(g)-linear maps

NS ARV — Al
Upy A== ANUp V> Upy Ao AUp, A UG41/2-k=1 N Ug41/2-k-2 N =+ * AN Vg41/2-1-

Let ASV o= lim ARV
—

be the direct limit of the Q(q)-vector spaces with respect to the maps /\Z’l,
which is called the dth sector of the semi-infinite g-wedge space A*V; that is,

ARV = EB AGV.

deZ
Note that for any fixed u € U and fixed d € Z, we have
Aoty = ual ARV — AV, forl > k> 0.

Therefore ATV and hence A®V become both U-modules and U*-modules.

We can think of elements in AV as linear combinations of infinite g-wedges

of the form
Upy N Upy NUpg A e

where p1 > pp > p3 > ---,and p; —pir1 =1 fori > 0.
Alternatively, the space A*V has a basis indexed by pairs of a partition and
an integer given by
| A, d) =V 4da-1/2 A Vpyed-3/2 N Vpzed-52 N,

where A = (A1, 12, ...) runs over the set & of all partitions, and d runs over Z.
Clearly we can realize AV as the subspace of AV spanned by {|A,d)|1 € 9},
ford € Z.

In the rest of this book, we shall index the g-wedge spaces by

[k]:={L2.....k} and [eo]:={L2...}.
More precisely, let

E={f:lk]=1; f(1)>f(2)>--->f(k)}, forkeN,
IP={f:le]=1; f(1)> f(2)>-- and f(t) - f(t+1)=T1fort>0}.
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For f el f, we denote
Ty = vy AVp) A AVf(k)-
Then {7} ; f € I¥} is a basis of A¥V, for k € Z~q U {o0}.
For k € Z+, we let w(()k) be the longest element in &. Define

— I(w)-I(wP
Lwék) o Z (—q) (w)=wg )HW € Hay -

weby
It is well known [KL] that m = Lwék)' The right action by LW(()k) define a
Q(g)-linear map (the g-skew-symmetrizer)

SkSym, : V& — vek,
Then the g-wedge space A*V can also be regarded as a subspace Im(SkSym, )
of V® while identifying 7y = MJ(BI;)S")LWéM for f € I¥ (cf., e.g. [CLW2, §4.1]).

Similar construction gives rise to A“W. For each d € Z and I > k, consider
the Q(g)-linear maps

(8.6) AL AR — ATW

Wpyr At AWp 52 Wy Aees AW AW 1igein AWaligea Ao A Wa_ Ly

Let AW := lim A*W be the direct limit of the Q(g)-vector spaces with respect
—
to the maps /\’;’l. Define

AW := @ AW,

deZ
Note that for any fixed u € U and fixed d € Z, we have
/\Z’lu = u/\Z’l AW S AW, forl > k> 0.

Therefore A7W and hence A*W become both U-modules and U'-modules.
We can think of elements in AW as linear combinations of infinite g¢-
wedges of the form

Wpr A Wpy AWpy A-ee
where p1 < pp <p3 <---,and p; — p;4+1 = =1, for i > 0.
Alternatively, the space A“W has a basis indexed by partitions given by
| A d ) = War1/2-20 A Was3/2-25 A Was52-25 A s

where 1 = (A1,42,--+) runs over the set & of all partitions, and d runs
over Z. Clearly we can realize AW as the subspace of AW spanned by
{|1A,d) ; A e P}, ford € Z.
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Let
F={f:lkl>1I; f(1)<f(2)<--<f(k)}, forkeN,
I ={f:[] >1I; f(1) < f(2) < and f(t) - f(t+1) = -1 for t > 0}.
For f € I¥, we denote
Wy = wen) AWe2) A A Wr(k).-
Then {7y ; f € I*} is a basis of AKW, for k € N U {co}.

ReMARK 8.2. — The semi-infinite g-wedge spaces considered in this book
will involve all sectors, while only the Oth sector was considered and needed
in [CLW2, §2.4].

4. Bruhat orderings

Let b = (b1,...,bm+n) be an arbitrary 0™1"-sequence. We first define a
partial ordering on I""*", which depends on the sequence b. There is a natural
bijection I"™*" < X(m|n) (recall X(m|n) from (7.1)), defined as

m+n

87)  fr 1, where A = Z(—l)bi f()e’ = py, for f e,
i=1

(8.8) A f/lb, where f(i) = (A + pb|ef"), for A € X(m|n).
We transport the Bruhat ordering (7.3) on X(m|n) by the above bijection to I"™*".

DEerINITION 8.3. — The Bruhat ordering or b-Bruhat ordering <, on I™*" is
defined as follows:

For f,g € """, onehas f <y g if /1]’? <p /1_3.

We also say f ~ g if /1}’ ~/13.

The following lemma follows immediately from the definition.
LemMma 8.4. — Given f,g € I"™*" such that g <}, f, then the following is finite:

{her™"; g <4 h=<p f}.

Recalling the weight wt(.) on I"™*" from Definition 8.1, we set
(8.9) wtp(A) := wtp(f), for A € X(m|n).
We have the following analogue of [Br1, Lemma 4.18].

LemmMma 8.5. — Forany f,g € I'™*", one has f ~ g if and only if wtp(f) = wtp(g).
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Proof. — This proof is analogous to [CW2, Thm. 2.30]. Assume f ~ g at first.
Recall §1, this means

l

)L;’ +pp = W(A; + pp —Zc,a,-), (A}’ +pplaj) =0, j=1,...,1,
i=1

where the ;s are mutually orthogonal isotropic odd roots. Recall the Weyl
group of osp(2m + 1|2n) is isomorphic to (Zy = &,,) X (Z3 =« &,). Thanks to
Definition 2.5 and the actions the k,,’s on V and W, we have

1 1
wtp (W(Ajlg + pp — Z ciai)) =Wty (Afb + pp — Z ciai).
i=1 i=1
Isotropic odd roots of ® are of the form + e,lz" + esy, where b, and b, are distinct.

We shall discuss one case here, as the others will be similar.
Leta = e — e = €0 — ¢! be an isotropic odd root such that

m+n

O +pple) = ( D (-D¥ f(Della) =0,

i=1
Therefore, f(s) = f(t). Hence we have

wtb(A]l? +pp +ca) =wty (..., f(s=1), f(s)+¢, fs+1),...,
f=1),f() +c ft+1),...) =wtp(f),

where the last equality comes from the actions of k,,’s on V and W. There-

fore wtp(f) = wtp(g).
Now suppose wt,(f) = wtp(g). We have

m+n m+n

(8.10) Z(—l)bim = Z(—l)bi@-

i=1 i=1

For distinct bia/ bja (ia * ja), if f(ia) = if(ja), (—1)bi“ Ef(ig) T+ (_1)17,-,1 Ef(ja) = 0
(recall that ef(5) = e_f(5)). Similar results hold for g. After canceling all such

pairs (all i, and all j, are distinct) on both sides of (8.10), the survived terms
match bijectively up to signs. More precisely, for any survived f(x), there
exists a survived g(y), such that g(y) = +f(x), bx = b,. Hence the same number
of pairs cancelled on both sides, say [ pairs. Therefore we have

Ajﬁ + pp — ca(eloa - sae}a) = w()té’ + pp)

1
a=1
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for some w € (Zy < &) X (Zy 2 S&,), sq € {£}. The s,’s are chosen to satisfy
(/1]13 + pbl(:‘?a - sae}a) =0

Therefore Afb ~ )Lg by the definition in §1. Hence f ~ g.

This completes the proof of the lemma. O

Now let us define partial orderings on the sets I"*" x Iy°, which again
depend on b. Recall (7.4) and (7.5) for the definitions of XI;EéJr and X?f.
We define a map

(8.11) Xf(’; — I XIY, A B0,

by sending each A = £74" Aie]" + ¥ ; *2;€) +del, to the element £ (b %)

given below (which is consistent with the p-shift associated to a s1mp1e system
of the type (x) in §1 by Remark 7.1):

{ 20 = fPG) ifie[m+n]:={12....,m+n},

8.12
(8.12) G = N +d+n-m+i-j if1<].

This map is a bijection, where the inverse sends f € I"™™" x I} to

m+n

A0 = Zzblwau e +drel.

1<j

Similarly we define a bijection

+

(8.13) Xt I I, e

by sending each A = 274" ;€] + X1; * A€} +del, to the element fP! = B 1)

given below:

g { flbl(i) = fAb(i) if i € [m+ nj,
1
(8.14) D)= Aj+d+n-m—-3+j ifl1<j.
The inverse sends f € I"™*" x I to
m+n
A= Z/lbl e + ) TApz€) +drel

1<j

Note that for s € {0,1}, the sum } 7" /1” "+ 21g) Af]e lies in the root

system of a finite-rank Lie superalgebra Hence the following definitions
make sense.
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DEeFINITION 8.6. — For f, g € I™™" x I, we say
m+n
f~g if (df =d, and ( Z Ab’ief’i + ZULf,ze]?)
i-1 1<j

m+n
b;
~ ( Z Ag’iei + Z +’19’16](')))
i=1 1<j -
in the sense of §1. We say that
f=pog if (f~gand 20" -2p° € NILy ).

We similarly define an equivalence ~ and a partial ordering < ; on I"™*"xI.

DEerINITION 8.7. — For f, g € I™™" x I, we say
m+n
f~g if (dr=dyand (D22l + ) 2y e
i=1 1<j mn
b _b; 1
~ ( Z Ag i€+ Z +Ag,1€j))
i=1 1<j -

in the sense of §1. We say
f=p1g if (f~gand Ap'-27" € NI, ;).
The following lemma follows from Definitions 8.6-8.7, and Lemma 8.4.
Lemma 8.8
(1) Given f,g € I™*" X I such that g <p ¢ f, the following set is finite:
{hel™"xI?; g <poh<pof}
(2) Given f,g € I™*" X IZ such that g <p 1 f, the following set is finite:
{hel™"xI®; g<p1h=<p1 f}
The following lemma is an infinite-rank analogue of Lemma 8.5.

LemmMmA 8.9

> Forany f,g € I"™" X I°, one hasf ~ g if and only if wtp, o(f) = wtp 0(9),
> Forany f,g € I"™" X I one hasf ~ g if and only if wtp 1(f) = wtp 1(g).

Proof. — This follows from Definitions 8.6-8.7, and Lemma 8.5. i
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9. -=CANONICAL BASES AND KAZHDAN-LUSZTIG-TYPE
POLYNOMIALS

In this chapter, suitably completed Fock spaces are constructed and shown
to admiti-canonical as well as dual i-canonical bases. We introduce truncation
maps to study the relations among bases for different Fock spaces, which then
allow us to formulate i-canonical bases in certain semi-infinite Fock spaces.

1. The B-completion and Y
Let b be a 0™1"-sequence. For r € N, let
(9.1) TP — Tf

be the natural projection map with respect to the standard basis {M2; f € 1"+"}
of T? (see (8.5)). We then let T? be the completion of T? with respect to the
descending sequence of subspaces {ker =, ; r > 1}.

Formally, every element in T? is a possibly infinite linear combination of M )

with f € I"*", We let T? denote the subspace of T? spanned by elements of
the form

(9.2) My + Z cé’f(q)M , for c;’f(q) € Q(g).
9=<pf
DEerINITION 9.1. — The Q(g)-vector spaces T® and T? are respectively called

the A-completion and B-completion of T?.

ReMARK 9.2. — The B-completion we defined here is different from the one
defined in [CLW2], since they are based on different partial orderings. How-
ever, observing that the partial ordering used in [CLW2] is coarser than the
partial ordering here, our B-completion here contains the B-completion in
[CLW2, Def. 3.2] as a subspace. This fact very often allows us to cite directly
the results therein.

LemMa 9.3. — Let f € I™*". Then we have My € T2, and
n(XOMp) = YOMy,  forall 127
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Proof. — Note that NIIp,,1 € NIIp;4q, for! > r. Itis clear from the construction
of Y") in Theorem 2.10 that we have
I _ (1)
rO=x" 4+ 3l
p€NII;1\NTlz, 41
By U-weight consideration, it is easy to see nr(Yl(,l)Mf) = 0if p ¢ NIlp41.
Therefore
(YOM) = 7, (X Ms) = YO Mg
The lemma follows. O
It follows from Lemma 9.3 that lim YU )Mf, for any f e I™*", is a well-
r—o0

defined element in T?. Therefore we have

My = lim Y My,

r—o0

where Y is the operator defined in (8.2).

Lemma 9.4. — For f € I'™*", we have
(9.3) YM; = My + Zf rl (@M, for rl () € sl
9=<b

In particular, we have Y : TP — TP,
Proof. — For any u € U~ with U'-weight 0, f € I"*", let

uMy = Z cgfMy.
g

Fix any g with ¢;¢ # 0. Since u has U'-weight 0, we know by Lemma 8.5
that g ~ f and so /1_3 ~ Afb. By a direct computation (by writing u in terms of
Chevalley generator F’s), itis easy to see that u € U™ implies that )LJIZ —)L’g’ € NII,.
Hence we have g <, f.

Recall that Y, € U™ forall pand Y, # O only if u = ¥, i.e., piis of U'-weight 0.
Hence we have the identity (9.3), where r_(’} f(q) € d follows from Theorem 4.18.
The lemma follows. m]

LemMa 9.5. — The map Y : T® — TP extends uniquely to a Q(q)-linear map

Y: TP — TP,
Proof. — We adapt the proof of [CLW2, Lemma 3.7] here. To show that the
map Y extends to T? we need to show that if y = My + Yg<,f Te(@My € T

for ry(q) € Q(q) then Yy € T®. By Lemma 9.4 and the definition of T?, it
remains to show that Yy € T?. To that end, we note that if the coefficient
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of My, in Yy is nonzero, then there exists g <; f such that r,’lg(q) # 0. Thus
we have h <;, g <} f. However, by Lemma 8.4 there are only finitely many
such g’s. Thus, only finitely many g’s can contribute to the coefficient of M,
in Yy, and hence Yy € T?. i

2. 1-Canonical bases
Anti-linear maps
y: TP — T? and y:T? — TP

were defined in [CLW2, §3.3] (recall Remark 9.2 that our B-completion con-
tains the one therein as a subspace, so T? here can and will be understood in
the sense of this book). We define the map

(9-4) Yo i TP — T8, yu(My) = Yy(My).

Recall from §4 that T? is an i-involutive U.-module with anti-linear involu-
; (r)
tion y,".

LemMmA 9.6. — For f € I"™*", we have
7 (M) = 917 (My).

Proof. — Recall that gbfr) =YWy, By a variant of Lemma 9.3, we have
7 (Y:(My)) = 7 (XY (M)
by a U-weight consideration. Therefore we have
7 (2 (Mp)) = Y, (M) = YOy (M),

where the last identity follows from [CLW2, Lemma 3.4]. The lemma follows.
O

It follows immediately that we have
95) Yi(My) = lim g1 (Mp),  for f e ™"
LemMA 9.7. — Let f € I'"™*". Then we have

YuMp) = My + " (@M, for rgp(q) € sl
9<pf

Hence the anti-linear map , : T> — TP extends to a map , : T> — T?. Moreover
Y, is independent of the bracketing orders for the tensor product T®.
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Proof. — Following [CLW2, Prop. 3.6] and Remark 9.2, we have
Y(Mp) =My + " (@M, for r/(q) € si.
9=<bf
Hence the first part of the lemma follows from Lemma 9.4.

We can show that the map ¢, : TP — TP extends to a map ¥, : TP — TP
by applying the same argument used in the proof of Lemma 9.5. Since
¢ is independent from the bracketing orders for the tensor product T?
by [CLW2, Prop. 3.5], so is ¢/,. o

LemMma 9.8. — The map ), : TP — T? is an anti-linear involution.

Proof. — We need to prove that for fixed f,h € I™*" with h <} f, we have
D rhg(@rer(@) = Ony.
h=pg=pf
By Lemma 8.4, there is only finitely many g such that h < g < f. Recall §4.
We know that lpf’) is an involution. By (9.5), this is equivalent to the same

identities in the finite-dimensional space T? with r > 0. Then the lemma
follows from Proposition 3.10. O

Thanks to Lemmas 9.7 and 9.8, we are in a position to apply [Luz, Lemma
24.2.1] to the anti-linear involution ¢, : T> — T? to establish the following.

TueoREM 9.9. — The Q(q)-vector space TP has unique ,-invariant topological
bases

b . m+n b . m+n
{17; fer™"} and {L7; fel™"}
such that
b b b b b b
TP =Mp+ > thi@M and L2 =Mp+ Y b (9mp,
93pf 9=pf
with t;’f(q) € qZql, and €5f(q) € q_1Z[q_1],f01’g <p f.

(We shall write t7.(q) = (5.(q) = 1, t2.(q) = £7:(q) = 0 for g £y f.)

DEFINITION 9.10
> The sets {T? ; f € I™*"} and {L% ; f e I"*"} are respectively called
1-canonical basis and dual 1-canonical basis of T?.

> The polynomials t;’f(q) and t’;’ f(q) are called i-Kazhdan-Lusztig (or 1-KL)
polynomials.
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THEOREM 9.11
(1) (Positivity) We have
b
t,r(q) € N[q].

(2) Forall f e I™*", the following sum is finite:

b b b
TP = My + Z th (@M.
9=pf

Proof. — Note that the finite sum claim in (2) at the g = 1 specialization holds
by Theorem 11.13 (the proof of Theorem 11.13 does not use the claim (2); we
decided to list such an algebraic statement (2) here rather than as a corollary
to Theorem 11.13). Hence, the validity of the positivity (1) implies the validity
of (2).

It remains to prove (1). Actually the same strategy as for type A (see [BLW]
and [CLW2, proof of Thm. 3.12, Rem. 3.14]) works here, and so we shall be
brief. Fix f,g € I"™". Choose a half-integer k > 0 (relative to f,g), and
consider the subspaces V[ of V spanned by v; for i € [-k, k] NI c I and an
analogous subspace Wi of W. We then define ’]I‘f’k] to be the subspace of T?

spanned by the elements TJZ’ for f € ([-k,k]NnI)™*™. Via the natural identifica-

b
(]
and A%V (such an identification in type A setting appeared first in [CLW2]).

The latter provides a reformulation of the parabolic KL conjecture of type B
thanks to Remark 5.9 (which was in turn based on Theorems 4.26 and 5.8);
hence ¢ ;’ f(q) can be identified with a (non-super) KL polynomial of type B. The
positivity of these polynomials is well known (see [KL8o], [BGS]), whence
the positivity (1). o

tion Wi = A2V, we can identify T with a tensor product of copies of Vi

ReMARK 9.12. — We expect a positivity property of the coefficients in the ex-
pansion of the i-canonical basis elements here with respect to the (type A)
canonical basis on T? in [CLW2] (compare with the remark after Theo-
rem 4.26).

3. Bar involution and g-wedges of W

Let k € N U {oo}. For f = ( fim+n)> flix]) € I™™" X I, set

M;”O = M}me] ® Uy, € T ® AFV.
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Then {M ]13,0 ; f € I x I¥} forms a basis, called the standard monomial basis,

of the Q(g)-vector space T? ® AFV.
Similarly, T? ® AW admits a standard monomial basis given by

b,1 ._ aqb b k
MPTi=Mp @ Wy, € TP @ AFW,

where g = (gmn]-gk]) € I™" x IF. Following [CLW2, §4], here we shall
focus on the case T? ® AKW, while the case T? ® AKV is similar.

Let us consider k € N first. As in [CLW2, §4], T? ® AKW can be realized
as a subspace of Tb @ W&k = T®1°) Therefore we can define a B-completion
of T?> ® AKW, denoted by

Tb® AR W,
as the closure of the subspace T? ® AFW c TPW®F = T®-1% with respect to
the linear topology {ker r, ; r > 1} defined in §1. By construction T?® A*F W
is invariant under the involution ¢,, i.e., we have
pMP Yy =M+ Y (@) My
9=k

where ryr(q) € 9, and the sum running over g € I"™*" X I* is possibly infinite.

ReEMARK 9.13. — If k = 0, M}”O and Mé”l are understood as MJIZ and Mé’,

respectively; also, T?® A W and T?® A V are understood as Th.

Recall the linear maps /\S’l defined in (8.6). For [ > k and each d € Z, define
the Q(g)-linear map
idenb!: TP @ AFW — T? @ A'W.
It is easy to check that the map id ®/\]:l’l extends to the B-completions; that is,
we have
idenb!: TP® AF W — TP® Al W.
Let
TP® A W := lim T?® AF W
—
be the direct limit of the Q(g)-vector spaces with respect to the linear
maps id ®/\5’l. It is easy to see that T?® A W c T?® A W. Define the
B-completion of T?® A* W as follows:
(9.6) TP® A W = (D T8 A7 W.
deZ
By the same argument as in §3, we see that T?® Ay W and Tb® A W are
(topological) U-modules, hence (topological) U'-modules.
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Following the definitions of the partial orderings in Definition 8.3 and
Definition 8.7, we see that T?® A* W is spanned by elements of the form

M+ D copl@MP!, forg, f e ™" xI®,
9<p1f

Following [CLW2, §4.1], we can extend the anti-linear involution
Y TP® AF W — TP® AR W

to an anti-linear involution
Y TP AW — TP A® W

such that

YMPH = MP Y r @My, for ri(q) € ol.
9<p1f

Here we have used the fact that our B-completion contains the B-completion
in loc. cit. as a subspace (see Remark 9.2).

Following the definition of the B-completion TP® A® W, we have Y as a
well-defined operator on T?® A* W such that

b,1 b,1 ’ b,1 ’
TP = MP Zfrgf(q)M . forr/(g) €.
9<b,1

Therefore we can define the anti-linear map
Y, =YY TP AW — TP A W,
such that

PP = MPT 4 S (@MPT for rgp(g) € ot
9=<p,1f

LemMma 9.14. — Let k € N U {co}. The map
¥, TP® AR W — TP® AR W
is an involution.

Proof. — Fork € N, thelemma was already established. For k = oo, the lemma
can be proved in the same way as Lemma 9.8 with the help of Lemma 8.8. O
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4. Truncations
In this section we shall again only focus on
T @ A*W

for k € N U {co}. We shall use fX € I"*" x I¥ as a short-hand notation for the
restriction of f,4njuk) Of @ function f € I"™*" x I°.

Now let us define the truncation map
Tr: TP @ AW — T? @ AFW,

for k € N, as follows:

Tr(m ® W) = m® Wy, ifh(g)—.h(i+1):—1, fori>k+1,
0 otherwise.
LemMma 9.15. — Let k € N. The truncation map

Tr: TP @ AW — TP @ AFW
is compatible with the partial orderings, and hence extends naturally to a Q(q)-linear
map

Tr: TP® A% W — TP& AF W.
Proof. — Let f, g € I X I® with g <5 1 f. According to Definition 8.7, this
means f(i) = g(i) forall i > 0. If Tr(MJl;’l) # 0 and Tr(Mé”l) # 0, we must
have g(i) = f(i), foralli > k + 1. Hence we have

b,1%) b, 1%
A Spam A

by comparing Definition 8.7 with Definition 8.3. Thanks to Lemma 8.5 and
Lemma 8.9, we have gk ~ fk as well. Therefore we have gk =(b,1%) fk.

Now suppose Tr(M;”l) =0and g <p1 f. If fleo] = g[ 0], then Tr(M;”l) = 0.
If not, choose i with i maximal such that f(i) # g(i). If i < k, then again we
have Tr(M;”l) = 0. So suppose i > k + 1. Since g <p1 f, we have g(j) = f(j)
forj> 0and g(i) < f(i). Hence there must be some ¢ > k + 1 such that

9()—g(t+1) > f(p) - f(t+1) > -1.
Therefore Tr(M;7 ’1) = 0. The lemma follows. ]

LEmMMA 9.16. — The truncation map Tr : T°P@ A° W — TP AKW commutes with
the anti-linear involution ,, that is,

Yo (Tr(MED) = Tr(p(Mph),  for fe 1™ x I,

ASTERISQUE 402



4. TRUNCATIONS 109

Proof. — Following [CLW2, Lemma 4.2], we know Tr commutes with .
As shown in the proof of [CLW2, Lemma 4.2], Tr is a homomorphism of
U -modules. By (8.2), we have Y = } ., Y, where Y, € U". The lemma
follows. o

ProrosITION 9.17. — Let k € N U {co}. The anti-linear map
¥, TP® AR W — TPe AF W

is an involution. Moreover, the space T®® AK W has unique ,-invariant topological

bases - .
{Tph; ferm =it} and L}V fel™m xIt)

such that

b,1 _ b,1 b,1 b,1 b,1 _ b,1 b,1 b,1
T = Mpt + Z ol @Myt and LY = MP! + Z el gm}

g<(b,1k)f g<(b,1k)

41 b, b, Ay
with t;’fl € qZ|q], and fgfl(q) eq'Zg™].

(We shall write tjggl = fg;l(q) =1, and té’};l = f;’];l =0, forg £p1x) f-)

We call {T;’ ‘11 and {L;Z’ Y the 1-canonical and dual 1-canonical bases of TP @ AFW.

We conjecture that t;’ }1 € Nlq].

ProrosiTioN 9.18. — Let k € N. The truncation map
Tr:T?® A W — TP Ak W

preserves the standard, 1-canonical, and dual 1-canonical bases in the following sense:
forY =M,L,Tand f € I x I* we have

b1 . . .
Tr‘(Yb’l):{Yfk fo(i)—f(ﬂ):—l,forle-i'l,
f 0 otherwise.

Consequently, we have

b,1 b,1 b,1 b, 1
tgf (CI) = tgL(ch(q) and fgf (CI) = ggljflj(q),

forg, f e I xXI¥ such that f(i)— f(i+1)=9g(i)—g(i+1)=-1, fori > k+1.

Proof. — The statement is true for Y = M by definition. Lemma 9.15 and
Lemma 9.16 now imply the statement for Y =T, L. |
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5. Bar involution and g-wedges of V

The constructions and statements in §3 and §4 have counterparts for T? ®
ARV, k € N U {co}. We shall state them without proofs. Let T?® A* V be the
B-completion of T? ® A*V. For k € N, we define the truncation map

Tr: T? @ A%V — TP @ AFV
me® Ty ifh(i)-h(i+1)=1, fori>k+1,
b Tr(m® Th) = () - —
Y rm® Th) { 0 otherwise .
The truncation map Tr extends to the B-completions.
ProrosiTION 9.19. — Let k € N U {co}. The bar map
¥, : TP® ARV — TP® ARV
is an involution. Moreover, the space TP® A* V has unique 1,-invariant topological
bases {Tb’o; feIrmn Ik} and {Lb’o; f e I™n x 1K} such that
b,0 b,0 b,0 b,0 b,0 b,0 b,0
70 = mMpO+ Z D(@MEC and 130 = M0 + Z @My,

~(b,0k) 9=(b,0%)

with t2:(q) € qZIql, and £;7(q) € ¢ Z[g "]
(We will write t f O(g) = fb O(q) =1and tb 0 fb 0=, for g £w,ox) f)

> We shall refer to the basis {T;’ 0} as the 1-canonical basis and refer to the

basis {Lb’o} the dual 1-canonical basis for TP® A* V.

> Also we shall call the polynomials t (q) t (q) fb 0(q) and fb (g) the
1-KL polynomials.

ProrosiTION 9.20. — Let k € N. The truncation map
Tr:TP®AYV — TP AFV

preserves the standard, 1-canonical, and dual 1-canonical bases in the following sense:

forY=M,L Tand f € I X I® we have

rrppoy < [T FIO- S =1 foriz k1,
f 0 otherwise.

Consequently, we have tb 0(q) = t (q) and fb 0(q) = fb 0 k(Q) forg, f € I x[®
such that f(i) - f(ﬂ) = g(z) 9(@) = 1 Joriz k +1.
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10. COMPARISONS OF i-CANONICAL BASES IN DIFFERENT
FOCK SPACES

In this chapter, we study the relations of i-canonical and dual i-canonical
bases between three different pairs of Fock spaces.

1. Tensor versus g-wedges

As explained in §3, we can and will regard AKV as a subspace of V&, for a
finite k.

Let b be a fixed 0™1"-sequence and k € N. We shall compare the i-canonical
and dual 1-canonical bases of T? ® V® and its subspace T? ® AFV .

Let f € I"™™" x IF. As before, we write the dual 1-canonical basis ele-
ment chb’ok) in TP®V®* and the corresponding dual i-canonical basis ele-

ment L?0 in T?® AF V as

f
(10.1) L}”’O’”: > f“"”( MO,
gGI"”"XIk
(10.2) LJE’O: Z fbo(q)Mb0
geIm+n><Ik

The following proposition states that the -KL polynomials ¢’s in T?®AFV
coincide with their counterparts in TP®@V®*.

PROPOSITION 10.1. — Let f,g € ™" x I¥. Then
20(q) = €5

Proof. — The same argument in [CLW2, Prop. 4.9] applies here. O
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Let f € I™™" x IX. Similarly as before we write the canonical basis ele-

k —~ —~
ment T}b’o ) in TP ®V® and the canonical basis element T;’ 0 in TP® Ak V

respectively as

(b,0%) _ (b,0%) (b,0%)
(10.3) = Y @M,
gEI"””XIk
b0 _ b,0 b.0
(10.4) 20 = > 2 My°.
gelm+nxik

PROPOSITION 10.2. — For f, g € I™" x I¥, we have

b0, \ _ _ NwFr) (b,0%)
tor (@) = Z (=g)"™ tg-f,f-wék>(q)'
TEGk
Proof. — Similar proof as for [CLW2, Prop. 4.10] works there.
Via identifying 7, = M (
9uel W

k
Tb,O — T(b,O )L )
NN

wL, ®, we have, as in [Br1, Lemma 3.8],
0

A straightforward variation of [Br1, Lemma 3.4] using (10.3) gives us

b,0 _ +(b,0%) _ (b,0%) (b,0%)
T, = Tf-wék)LW(()k) = ; tg,f-wék)Mg Lw(()k)

f
_ (b,0%) (b,0%)
SN

TS germnxik

b,Ok -1, (k) b,
Z Z l'( ) (k)(_q)f(f wy )Mg 0

T, fw,
€6y gelmtnxk AR

(b,0%) f(w(k)r)) b,0
Z ( Z tg‘T,f'W[()k)( q)"™o Mg .

gelminx[k 16y

The proposition now follows by comparing with (10.4). o
RemMark 10.3. — The counterparts of Propositions 10.1-10.2 hold if we
replace V by W.

2. Adjacent i-canonical bases

Two 0™1"-sequences b, b’ of the form b = (b',0,1,b% and b’ = (b',1,0,b%)
are called adjacent. Now we compare the i-canonical as well as dual i-canonical
bases in Fock spaces T? and T?', for adjacent 01"-sequences b and b’
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In type A setting, a strategy was developed in [CLW2, §5] for such a compar-
ison of canonical basis in adjacent Fock spaces. We observe that the strategy
applies to our current setting essentially without any change, under the as-
sumption that b* is nonempty. So we will need not copy over all the details from
loc. cit. to this book.

Let us review the main ideas in type A from [CLW2, §5]. We will restrict the
discussion here to the case of canonical basis while the case of dual canonical
basis is entirely similar. The starting point is to start with the rank two setting
and compare the canonical bases in the B-completions of V® W and W ® V.
These canonical bases can be easily computed: they are either standard mono-
mials or a sum of two standard monomials with some g-power coefficients.
The problem is that the partial orderings on V ® W and W®V are not compat-
ible. This problem is overcome by a simple observation that matching up the
canonical bases directly is actually a U-module isomorphism of their respec-

tive linear spans, which is denoted by & : U 5 U’. So the idea is to work with
these smaller spaces U and U’ instead of the B-completions directly. We use U
and U’ to build up smaller completions of the adjacent T? and T, which are
used to match the canonical bases by T;’ — T;’[;. Here the index shift f ~ fU
is shown to correspond exactly under the bijection I"*" < X(m|n) to the shift
A+ AY on X(m|n) in Remark 10.5 below (which occurs when comparing the
tilting modules relative to adjacent Borel subalgebras of type b and b’).

Now we restrict ourselves to two adjacent sequences b and b’, where b is
nonempty; this is sufficient for the main application of determining completely
the irreducible and tilting characters in category Oy, for 0sp(2m+1|2n)-modules
(see however Remark 10.4 below for the removal of the restriction). We will
compare two Fock spaces of the form T?' @ V@ We T?" and T? @ Wa Ve T?’,
where b' is nonempty. The coideal property of the coproduct of the algebra
U’ in Proposition 2.5 allows us to consider V@ W and W®V as U-modules (not
as U'-modules), and so the type A strategy of [CLW2, §5] applies verbatim to
our setting.

REMARK 10.4. — Now we consider V® W and W ® V as U*-modules (instead
of U-modules). The i-canonical bases on their respective B-completions can
be computed explicitly, though the computation in this case (corresponding
to the BGG category of 0sp(3|2)) is much more demanding; the formulas are
much messier and many more cases need to be considered, in contrast to the
easy type A case of gl(1|1). Denote by U, and U] the linear spans of these
canonical bases respectively. We are able to verify by a direct computation
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that matching the canonical bases suitably produces a U'-module isomor-
phism U, — U/. (The details will take quite a few pages and hence will
be skipped.) Accepting this, the strategy of [CLW2, §5] is adapted to work
equally well for comparing the (dual) i-canonical bases between arbitrary
adjacent Fock spaces T? and T?'.

REMARK 10.5. — Let b = (b',0,1,b%) and b’ = (b,1,0,b%) be adjacent 0™1"-

sequences. Let a be the isomorphic simple root of 0sp(2m + 1|2n) correspond-

ing to the pair 0,1 in b. Following [CLW2, §6], we introduce the notation
associated to A € X(m|n):

AL:{)L if (A, @) =0,

A-a if(Aa)#0,

AU_

{/1—20( if (A, a) =0,
A-—a if(La)#0.

Then we have the following identification of simple and tilting modules
(see [PS] and [CLW2, Lemma 6.2, Thm. 6.10]):

Ly() = Ly(AY), Ty = Ty(AY),  for A € X(m|n).

3. Combinatorial super duality

For a partition p = (y1, pi2, ... ), we denote its conjugate partition by p’ =
(111> 155 - - ). We define a Q(g)-linear isomorphism,

B:AYV — ATW (for each d € Z)
or equivalently define
h:A®V — AW, b(|Ad)) =|AL.d), forieP, del.
The following is a straightforward generalization of [CWZ, Thm. 6.3].

ProrosITION 10.6. — The map
B:ASV — ATW (foreachd € Z) or b§: AV — AW
is an isomorphism of U-modules.

Proof. — Tt is a well-known fact that ATV and ATW as U-modules are both
isomorphic to the level one integrable module associated to the dth fundamen-
tal weight (by the same proof as for [CWZ, Prop. 6.1]; also see the references
therein).

Now the proof of the proposition is the same as for [CWZ, Theorem 6.3],
which is our special case with d = 0. |
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This isomorphism of U-modules § : A*V — AW induces an isomorphism
of U-modules

=ideh: T? @ AV — T? @ A®W.
Let f € I'™*" x Iy°. There exists unique A € % and d € Z such that

|4, d) =T,

We define f¥ to be the unique element in I"*" x I determined by f%(i) = f(i),
fori € [m + n], and ‘Wf =|Al,d). The assignment f — f h gives a bijection
(cf. [CWZ]) =
(10.5) B I™ XY — I X I
If we write

m+n

ZAI’””+Z+}L +dfe GXS(’;

1<j

under the bijection defined in (8.11), then we have

m+n

(10.6) At = ZA”” £ DN e +drel e X
1<j -

The following is the combinatorial counterpart of the super duality on
representation theory in Theorem 11.11 . We refer to [CLW2, Thm. 4.8] for a
type A version, on which our proof below is based.

THEOREM 10.7. — Let b be a 0™1"-sequence.

(1) The isomorphism by, respects the Bruhat orderings and hence extends to an
isomorphism of the B-completions

hp : TP® AV — TP® A® W.
(2) The map by, commutes with the bar involutions.

(3) Themap by, preserves the1-canonical and dual i-canonical bases. More precisely,
for f e I X I, we have

(M%) = ML B (TP =T (L) = Ly

(4) We have for all g, f € I™*" x I°, the following identifications of 1-KL polyno-
mials:

{;bO(q) 5bh;h(q) and t (Q)_tnfn(q)
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Proof. — The statements (2)—(4) follows from (1) by the same argument as
[CLW2, Thm. 4.8]. It remains to prove (1).

Recall the definition of the partial orderings in Definitions 8.6-8.7.
To prove (1), we need to show for any f, g € I"™" X I°, g <p o f if and only
if " <p.1 f9. This is equivalent to say that f ~ g and /13’0 <p,0 /1;”0 if and
only if f ~ g% and AZ;l <p.1 Ajl[”hl by Definitions 8.6-8.7.

Since f : T? ® AYV—T? ® AW is an isomorphism of U'-modules, by
Lemma 8.9, we have f ~ g if and only if f% ~ g%. We shall assume that f ~ g,
hence f% ~ g% for the rest of this proof.

We shall only prove that /13’0 =<p,0 /1]1;,0 implies /1;’ ;1 <p.1 A;;l here, as the

converse is entirely similar. We write

m+n-1

b,0 0 _ b b; b; b

A0-200 = al=e)+ Y aile] = )+ amen(en = €D+ Y aile) - €)y),
i=1 i=1

where all coefficients are in N and a; = 0 for all but finitely many i. Set
AP0 = /lfb’o —a(-€)

for some h € I"™*" x I°. Apparently we have Ag’o <p.0 /IZ’O <b.0 AJIZ’O.

Note that Az,o actually dominates /13’0 with respect to the Bruhat ordering
of type A defined in [CLW2, §2.3]. Therefore following [CLW2, Thm. 4.8]
and Remark 9.2, we have

b,1 b,1
(10.7) Agh <p.1 Ahh .

On the other hand, by definitions of /IZ’O and the isomorphism of fj, we have
that AZ’; = A}fal —a(- ef 1), and hence

Mo Sba gy
Combining this with (10.7) implies that /1;’ ;1 <p.1 /1]1;;1. The statement (1) is
proved. O
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11. KAZHDAN-LUSZTIG THEORY OF TYPE B AND
1-CANONICAL BASIS

In this chapter, we formulate connections between Fock spaces and
Grothendieck groups of various BGG categories. We establish relations of
simple as well as tilting modules between a BGG category and its parabolic
subcategory. We show that U' at ¢ = 1 are realized as translation functors
in the BGG category. Finally, we establish the Kazhdan-Lusztig theory
for osp(2m + 1|2n), which is the main goal of the book.

1. Grothendieck groups and Fock spaces
Recall the Fock space T? in §2. Starting with an si-lattice T? spanned by
the standard monomial basis of the Q(q)-vector space T?, we define
b b
TZ =7 Qg ']T&g
where o acts on Z with g = 1. For any u in the si-lattice T?, we denote by u(1)
its image in ']1‘%.
Recall the category 0, from §3.

> Let O, be the full subcategory of 0 consisting of all modules possessing
a finite b-Verma flag.

> Let [0,] be its Grothendieck group.
The following lemma is immediate from the bijection

™" e X(m[n) (2 e f7)
given by (8.7) and (8.8).
LemMmA 11.1. — The map
¥:[0,]— Tz [My(] — M7, (D),
defines an isomorphism of Z-modules.

Recall the category @f o from §3. We shall denote ®§’§ the full subcate-

gory of @f , consisting of all modules possessing finite parabolic Verma flags.
Recall in §3, we defined the g-wedge spaces A*V and AKW. Recall a bijection
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X;i’; — I x 1P, A - f20 from (8.11). Similarly, we have a bijection
Xlli,o+ N 1 I_I:, A — fAbO'
(Here f/{’0 is understood as the natural restriction to the part [m + n] x k.)
Now the following lemma is clear.
LemMmA 11.2. — For k € N U {0}, the map
. [ekd b k k b,0
¥ [0, )] — Ty @A Vz,  [M, (D] — MfAbO(l),
defines an isomorphism of Z-modules.

We have abused the notation ¥ for all the isomorphisms unless otherwise
specified, since they share the same origin.

For k € NU {0}, we define [I@l]f’g ]l as the completion of [@f’g ] such that the
extensions of ¥

(11.1) v [[@IS’A

b.0 ]] —> Tgé /\k VZ

are isomorphism of Z-modules. Recall the category @f , from §3. We shall

denote @f”f the full subcategory of @l’f’l consisting of all modules possessing
parabolic Verma flags. Recall a bijection

0, + =~ b1
X1 — I XIT, A fy
from (8.13). Similarly, we have a bijection
k,+ k b1
X, — I XIE, Ao f
(Here f/{’l is understood as the natural restriction to the part [m + n] x k.)
Now the following lemma is clear.
Lemma 11.3. — For k € N U {co}, the map
. [ekA b k k b,1
¥ [0 ] — Ty @ AWz, [My (D] — Mffl(l),
is an isomorphism of Z-modules.

For k € N U {o0}, we define H@f’f ]l as the completion of [@f’f ] such that the
extensions of ¥

(11.2) ¥ :[[@l’f”f | — TE& AF Wy

are isomorphism of Z-modules.
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ProrosiTION 11.4. — The truncation maps defined here are compatible under the
isomorphism  with the truncations in Propositions 9.18 and 9.20. More precisely,
we have the following commutative diagrams,

[0 ——— TE8 A~ Vg, (0552 —— TE® A® Vy

’ttol lTr try l lTr

[OF 3] ——— TE& Ak Vg (657 ] —— TE& AF vy
Proof. — The proposition follows by a direct computation using the respective
standard bases {[MI?O(A)]} and {[Ml;ﬁl(/l)]}, and applying Propositions 9.18,
9.20, and 7.7. o

2. Comparison of characters

Let b be a fix 0™1"-sequence. For k € N, consider the extended sequences
(b,0%) and (b, 1¥). Associated to the extended sequences, we introduced in
Chapter 7 the categories 6™ 1" and 6™ "**  as well as the parabolic categories

(b,0%) (b,1F)
k k .
GE, 0 and @;’1, respectively.
For A € Xf’g , we can express the simple module [L gr)(4)] in terms of
Verma modules as follows:
[L(b,Ok)(A)] = Z au) [M(b,ok)([l)] s for (l’u)L €.
peX(m+k|n)

Since the simple modules {L, ox)(4) = Li oML e Xi’ g } also lie in the parabolic

category @f o» We can express them in terms of parabolic Verma modules as
follows:
k
[Lip.00D)] = Z bya [M,;,O(v)], for b, € Z.
veXf,’g
Recall that

s Py

b0
By the Weyl character formula applied to Lo(1), we obtain a,; = by,
forv,A e Xf’g . This proves the following.
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ProposITION 11.5. — Let A € Xi’g and let ¢ € Xi’;. Then we have

Looy®] = D) auMpoy@] = > an[d 0]

peX(m+k|n) veXf’g
Lon@] = > aiMpww]= > a.[M m)]
peX(m|n+k) UEXf’;

Now we proceed with the tilting modules. Let 1 € Xf’g and ¢ € Xf’; .
We can express the tilting modules Ty, ox)(4) and T, gr)(§) in terms of Verma
modules as follows:

[To.00@] = D cuMpoow]. foreu e Z,
peX(m+k|n)

[T5,14)(E)] = Z ¢pe[Mp 1)), for ey, € Z.
neX(m|n+k)

Recall the tilting modules Tf o) and Tf ,(£) in the parabolic categories ®§ 0
and @f 1 The following proposition is a counterpart of [CLW2, Prop. 8.7] with

the same proof, which is based on [So2], [Br2]. Recall w(()k) denotes the longest
element in &y.

PROPOSITION 11.6

k, Lk k
(1) Let A € XI;(:, and write TI;O(A) = Zvexf’g dVAMB’O(v). Then we have

(k)
dVA = Z (_1)[(“% )Crv,w(()k)'/l'

TGGk
k+ . _ r oAk
(2) Let & € Xy and write Tb,1(§) = Zneijf dngb,l(”)' Then we have
r _ _ t’(rw(k)) ’
d’7§ = T; ( 1) 0 Cr~17,w(()k)‘/1'
k

3. Translation functors

Brundan [Bri] established a U-module isomorphism between the
Grothendieck group of the category O of gl(m|n) and a Fock space (at ¢ = 1),
where some properly defined translation functors act as Chevalley generators
of U at ¢ = 1. Here we shall develop a type B analogue in the setting
of osp(2m + 1|2n).
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Let V be the natural osp(2m + 1|2n)-module. Notice that V is self-dual.
Recalling §1, we have the following decomposition

Op = @ Ob, x5
XA

where y; runs over all the integral central characters. Thanks to Lemma 8.5,
we can set

Op,y = 0p y,» if Wtp(d) =y
(recall wtp, from (8.9)). For r > 0, let S”V be the rth supersymmetric power of
V. Foriel', M € O, we define the following translation functors in 6:

(M ar._
(11.3) fa; M= pr)’—r(fz‘q/z—fm/z)(M ®S'V),
(Mar._
(11.4) eq, M := pry+r(s,-_1/z—ei+1/2)(M ®S'V),
(11.5) tM = pry(M V),

where pr is the natural projection from 0y to Op, ;.

Note that the translation functors naturally induce operators on the
Grothendieck group [6;'], denoted by fo(,:), e,(;}, and ¢ as well. The following
two lemmas are analogues of [Bri, Lemmas 4.23-4.24]. Since they are
standard, we shall skip the proofs.

LemMma 11.7. — On the category Oy, the translation functors fo(,f), ef{i), and t are all

exact. They commute with the t-duality.

LemMMA 11.8. — Let vy, ..., vy be the set of weights of S"V ordered so that v; > v;
ifi <j. Let A € X(m|n). Then Mp(A) ® SV has a multiplicity-free Verma flag with
subquotients isomorphic to Mp(A+v1), . . ., Mp(A+vN) in the order from bottom to top.

Denote by Uz = Z ®y Uy the specialization of the dl-algebra Uy at ¢ = 1.

Hence we can view TZ as a Uz-module. Thanks to (2.2)—(2.3), we know «( fo(;))

and t(efxri) ) lie in Uy, hence their specializations at ¢ = 1 in Uz act on Tg.

ProrosiTION 11.9. — Under the identification [@lf] and ’]I‘g via the isomorphism ¥,
the translation functors fo((:), eg}, and t act in the same way as the specialization

of £ e and t in U,

Proof. — Let us show in detail that the actions match for r = 1 (i.e. ignoring
the higher divided powers). Set

m+n
A+pp = Z aje]l.)j € X(m|n) and y =wtp(A).
j=1
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Then we have M(4) € Gy ,. By Lemma 11.8, M(1) ® V has a multiplicity-free
Verma flag with subquotients isomorphic to

Mb(A + 61), - ,Mb(/1 + 6m+n)’ Mb()t),Mb(/l - €m+n)’ . ,Mb(/l - 61).

Applying the projection pr, . . to the filtration, we obtain that
Ei-1/2=€i+1/2
fa;Mp(A) has a multiplicity-free Verma flag with subquotients isomorphic to
Mp(A + €j) such that a; = (i — %) respectively.
On the other hand, we have ¥(My(1)) = M ;b (1). Recall the formulas for the

embedding : from Proposition 2.2. Suppose !

(fa) M7, (1) = > mE),
g

for i € I'. It is easy to see that for M, ;’ to appear in the summands, we must
have Ag +pp =A+pp t€jsuchthata; = +(i - %) respectively. Hence the action
of i(fy,) on Tg matchs with the translation functor f,, on [@5] under V.

Similar argument works for the translation functor e, .

Applying the projection pr, to the Verma flag filtration of Mj(1) ® V, we
obtain that tMj (1) from (11.4) has a multiplicity-free Verma flag with subquo-
tients isomorphic to M (1) and Mp(A +€;) such that a; = J—r% respectively. Then
one checks that the action of i(¢) on ’]I‘g matchs with the translation functor ¢
on [04] under V.

For the general divided powers, the proposition follows from a direct com-
putation using Lemma 11.8 , [Br1, Cor. 4.25], and the expressions of i fo(l:))
and z(ef;i)) in (2.2) and (2.3). We leave the details to the reader. m|

4. Classical KL theory reformulated

The following is a reformulation of the Kazhdan-Lusztig theory for Lie
algebra of type B, which was established by [BB], [BK], [So1], [Soz]; also
see [Vo]. Recall that for b = (0™) we have Tg =Vz®m,

THEOREM 11.10. — Let b = (0™) and let k € N U {co}. Then the isomorphism
¥ 050 — TE® ARV

. . k,+
in (11.1) satisfies, for A € XI;,O ,

¥([Ly (D)) :L;;b%(l) and ¥([Ty (A)]) :T;};ga).
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Proof. — For k € N, the theorem follows easily from Remark 5.9 that the
parabolic Kazhdan-Lusztig basis is matched with the i-canonical basis.
The case k = oo follows from Proposition 9.20 and Proposition 7.7. O

5. Super duality and Fock spaces

THEOREM 11.11 (see [CLW2, Thm. 7.2]). — There is an equivalence of categories
(called super duality)
o0, A

0,A ©
SD: ©b,0 — ®b’1

such that the induced map SD : [[@I;E(’)A]] — [[@fiA]] satisfies, forany Y = M, L, or T,

SD[Y (] = [V 05)], for de X"

ProrosITION 11.12. — Let b be any 0™1"-sequence. Assume that the isomorphism
¥ [[@féA]] — Tg@ A% Vz in (11.1) satisfies, ford € X;f’(’;r,

(L, )]) = lej;b%(l) and W([T,5()]) = TJ;,;(?(l).
Then the isomorphism ¥ : [[@I;EiA]] — T2® A® Wy, satisfies, for A € X?f,
¥ ((Ly,()]) = L”;,}la) and ¥(T,7 D)) = T’;,;}a).

Proof. — By the combinatorial super duality in Theorem 10.7, we have the
following isomorphism

by : TE® A® Vz — TE® A™ Wy,

which preserves the i-canonical and dual i-canonical bases. Combining this
with the super duality, we have the following diagram:

o0, A ¥ =~
0,5 I —— T2® A% Vg

(11.6) SDl lhb

oo, A ¥ P
[0, 1 —— T2® A® Vg

where SD is the super duality from Theorem 11.11.
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With the help of the basis {[M?O(A)]}, it is easy to check that the diagram
(11.6) commutes. Hence we have the following two commutative diagrams:

) b,0 0 b,0
1L, (D] ——— L ffo(l) [T, D] ——— Tffo(l)
o I b.1 OOI b.1
Ly W] ——— L () (T35, 00] F——— T ()
: ! , !
The two horizontal arrows on the bottom give us the proposition. O

6. 1-KL theory for osp

We can now formulate and prove the main result of Part 2, which is a
generalization of [CLW2, Thm. 8.11] (Brundan’s conjecture [Br1]) to the ortho-
symplectic Lie superalgebra osp(2m + 1|2n).

THEOREM 11.13. — For any 0™1"-sequence b starting with O, the isomorphism
¥ : [[6)1] = T% in (11.1) (with k = 0) satisfies, for A € X(m|n),

(L)) = L3, (D). ¥(TDD = T (D).

The following proposition is a counterpart of [CLW2, Thm. 8.8]. It can
now be proved in the same way as in loc. cit. as we have done all the suitable
preparations in §2 (as in [CLW2, §6]). We will skip the details.

PrROPOSITION 11.14. — Let b = (b',0,1,b%) and b’ = (b*,1,0,b%) be adjacent
0™1"-sequences with nonempty b* starting with 0. Then Theorem 11.13 holds for b
if and only if it holds for b’.

REMARK 11.15. — The assumption “nonempty b' starting with 0” in Propo-
sition 11.14 is removable, if we apply the observation in Remark 10.4. Subse-
quently, we can also remove a similar assumption on b from Proposition 11.12
and Theorem 11.13. In its current form, Theorem 11.13 already solves com-
pletely the irreducible and tilting character problem on 0, for an arbitrary b,
since O is independent of b and the relations between the simple/tilting
characters in 0y, for different b are understood (see Remark 10.5).
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Proof of Theorem 11.13. — The overall strategy of the proof is by induction
on n, following the proof of Brundan’s KL-type conjecture in [CLW2]. The in-
ductive procedure, denoted by

IKL(m|n) Ym > 1 = KL(m|n + 1),

is divided into the following steps:

(11.7) IKL(m + k|n) Yk = KKL(m|n|k) Vk, by changing Borels
(11.8) = IKL(m|n|k) Vk, by passing to parabolic
(11.9) = IKL(m|n|e0), by taking k +— oo

(11.10) = IKL(m|n + o), by super duality

(11.11) = IKL(m|n + 1) Vm, by truncation.

It is instructive to write down the Fock spaces corresponding to the steps
above:

Vemtk) @ Wen vk = VO™ @ WO @ Ve vk
= Vo™ @ W @ A"V vk
= V" @ W& @ AV
= V" @ W& @ A“W
= Ve @ Wer D vm > 1,

A complete proof would be simply a copy from the proof of [CLW2,
Thm. 8.10], as we are in a position to take care of each step of (11.7)—(11.11).
Here we will be contented with specifying how each step follows and refer
the reader to the proof of cite[Thm. 8.10]JCLW12 for details.

Thanks to Theorem 5.8, the base case for the induction, iKL(m|0), is equiva-
lent to the original Kazhdan-Lusztig conjecture [KL] for so(2m + 1), which is

a theorem of [BB] and [BK] (and extended to all singular weights by [So1]);
The tilting module characters were due to [Soz].

> Step (11.7) is a special case of Proposition 11.14.

> Step (11.8) is based on §1 (Propositions 10.1-10.2) and §2 (Proposi-
tions 11.5-11.6).

> Step (11.9) is based on Proposition 11.4.
> Step (11.10) is based on Proposition 11.12.

> Step (11.11) is based on Propositions 7.7, 11.4, and 9.18 (with k = 1
therein).

The theorem is proved. |
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ReMARK 11.16. — There is a similar Fock space formulation of Kazhdan-
Lusztig theories for various parabolic subcategories of osp(2m + 1|2n)-
modules, which can be derived as a corollary to Theorem 11.13.

ReMARK 11.17. — The establishment of a KL theory in Theorem 11.13 natu-
rally leads to the expectation on a Koszul graded lift for Op; ¢f. [BGS].
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12. BGG CATEGORY OF osp(2m + 1|2n)-MODULES OF
HALF-INTEGER WEIGHTS

We shall deal here with a version of BGG category for osp(2m + 1|2n) asso-
ciated with a half-integer weight set X(m|n). The relevant quantum symmetric
pair turns out to be the r — oo limit of (Uy,, U/) established in Chapter 6. This
chapter is a variant of Chapters 7—11, in which we will formulate the main
theorems while skipping the identical proofs.

1. Setups for half-integer weights

Let us first set up some notations. Switching the sets of integers and half-
integers in (8.1), we set

(12.1) I=JIy=2+} V=JH=N+} 1=z
r=0 r=0

Recall from Chapter 6 the finite-rank quantum symmetric pairs (U, U})
with embedding j : U} — Uy,. Let

U/ = QUL U:= QUZr.

The pair (U, U’) forms a quantum symmetric pair as well, with the obvious
induced embedding ; : U/ — U. Let II := {J;7, II2, be the simple system of U.
Recall the intertwiner Y") of the pair (Up,, U7). Note that Yl(fﬂ) = Yl(,r), for
u € NII,, and this allows us to define

Y, = lim Yf,r), for u € NII.

r—oo

We then define the formal sum (which lies in some completion of U™)

(12.2) Y:= Z 1,

which shall be viewed as a well-defined operator on U-modules that we are
concerned.
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Introduce the following set of half-integer weights

(12.3) X(m|n):= Y (Z+3)ei+ ) (Z+3)e;.
i=1 j=1

Letb = (b1, ..., bmin) be an arbitrary 0"1™-sequence. We first define a partial
ordering on I"™*", which depends on the sequence b. There is a natural
bijection

"""« 'X(m|n), f+— /ljl} and 1 +— f/{’,
defined formally by the same formulas (8.7)—(8.8) for the bijection I"**" « X (m|n)
therein, though I here has a different meaning.

Recall the Bruhat ordering <}, given by (7.3) on b,,,|, and hence on "X(m|n).
We now transport the ordering on "X (m|n) by the above bijection to I"™*".

DEerINITION 12.1. — The Bruhat ordering or b-Bruhat ordering < on I"™*" is de-
fined as follows: for f, g € I'"™*",

f=pg if A2 <2020,
We also say f ~gif)t}’i ~ )LS.

A BGG category 'Oy, of osp(2m + 1|2n)-modules with weight set "X(m|n) is
defined in the same way as in Definition 7.3, where the weight set was taken
to be X(m|n). Again, the category 'O, contains several distinguished modules:
the b-Verma modules M (1), simple modules Ly(4), and tilting modules Tj (1),
for A €’ X(m|n).

2. Fock spaces and j-canonical bases

Let V := 3,1 Q(@)v, be the natural representation of U. Let W := V*
be the restricted dual module of V with the basis {w, ; a € I} such that
(wa,vp) = (=q)"?8q,p. By restriction through the embedding j, V and W are
naturally U/-modules. For a given 0™1"-sequence b = (b1, b2, ..., bmn), We
again define the Fock space T? by the formula (8.3) and the standard monomial
basis Mg, for f € I"™*", by the formula (8.4). Following §1, we define the B-
completion of the Fock space T? with respect to the Bruhat ordering defined
in Definition 12.1.

Following §1 and §2, we define an anti-linear involution

v, ::Yx//:ﬁf'b—ﬂ’l:b,
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where Y is the operator defined in (12.2), such that
Uy (Mp) = My + )" rg(@)My,  for rgp(q) € si.
9<sf
Therefore we have the following counterpart of Theorem 9.9 (here we em-

phasize that the index set I here is different from the same notation used
therein and U’ is a different algebra than U").

THEOREM 12.2. — The Q(qg)-vector space TP has unique ,-invariant topological
bases

b. b .

{T7; fer™} and {L7; feI™"}
such that
TP = My + Z th (@Ml and L) =My + Z (oML,

9=pf 9=pf

with tb (q) € qZql, and fb (q) €q'Z[q7], forg <p f.

(Forg £p f, we shall write t (q) (q) =1and t (q) = f(q) =0.)

> The sets {T? ; f € I’"*"} and {L]’Z ; f € I} are called the j-canonical
basis and dual j-canonical basis of T?, respectively.

> The polynomials t (q) and 5 (q) are called j-Kazhdan-Lusztig (or j-KL)
polynomials.

3. KL theory and j-canonical basis

Starting with an d-lattice T& spanned by the standard monomial basis of
the Q(q)-vector space T?, we define

TS = Z @4 T,
where ol acts on Z with q = 1. For any u in the d-lattice T?, we denote by u(1)
its image in TZ.
Let ‘0, be the full subcategory of ‘0, consisting of all modules possessing

a finite b-Verma flag. Let ['0,] be its Grothendieck group. The following
lemma is immediate from the bijection I < ’X(m|n).

Lemma 12.3. — The map
Y01 — Tz, [Mp(D)] — M, (1),
A

defines an isomorphism of Z-modules.
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Denote by U} the si-form of U’ generated by the divided powers, and set
U]Z =7 ®q Ugjq.

REMARK 12.4. — The map V¥ is actually a U%—module isomorphism, where
UJ, acts on [/65] via translation functors analogous to Proposition 11.9.

We define [[’@lf]] as the completion of [’@lf] such that the extension of ¥
¥:[op) — TP
is an isomorphism of Z-modules. We have the following counterpart of
Theorem 12.5 with the same proof.

THEOREM 12.5. — For any 0™1"-sequence b starting with 0, the isomorphism
¥ ['62] — TE
satisfies
¥([Lp(A)]) = L?Ab(l) and  ¥([Ty(A)]) = Tf’;,,(l), for A € 'X(m|n).
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We show that Hecke algebra of type B and a coideal subal-
gebra of the type A quantum group satisfy a double central-
izer property, generalizing the Schur-Jimbo duality in type A.
The quantum group of type A and its coideal subalgebra
form a quantum symmetric pair. A new theory of canoni-
cal bases arising from quantum symmetric pairs is initiated.
It is then applied to formulate and establish for the first time a
Kazhdan-Lusztig theory for the BGG category © of the ortho-
symplectic Lie superalgebras osp(2m + 1|2n). In particular,
our approach provides a new formulation of the Kazhdan-
Lusztig theory for Lie algebras of type B/C.




