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TORSION AND SYMPLECTIC VOLUME
IN SEIFERT MANIFOLDS

by Laurent Charles & Lisa Jeffrey

Abstract. — For any oriented Seifert manifold X and compact connected Lie group
G with finite center, we relate the Reidemeister density of the moduli space of rep-
resentations of the fundamental group of X into G to the Liouville measure of some
moduli spaces of representations of surface groups into G.

Résumé (Torsion et volume symplectique des variétés de Seifert). — Pour toute
variété de Seifert orientée X et tout groupe de Lie compact connexe G de centre fini,
nous calculons la densité de Reidemeister de l’espace des modules des représentations
du groupe fondamental de X dans G en fonction de la mesure de Liouville de certains
espaces de modules de représentations de groupes de surfaces.

1. Introduction

For any Lie group G and manifold Y , the moduli space M(Y ) of conju-
gacy classes of representations of π1(Y ) in G, has natural differential geometric
structures. If Σ is a closed oriented surface, M(Σ) has a symplectic stucture
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288 L. CHARLES & L. JEFFREY

defined via intersection pairing [1], [4]. More generally, if Σ is a compact ori-
ented surface and u ∈ M(∂Σ), the subspace M(Σ, u) of M(Σ) consisting of
the representations restricting to u on the boundary has a natural symplec-
tic structure. If X is a closed 3-dimensional oriented manifold, M(X) has a
natural density µX defined from Reidemeister torsion [16].

In this article, we relate these structures for X any oriented Seifert manifold
and Σ a convenient oriented surface embedded in X. We will prove that when
G is compact with finite center, the subspace M0(X) ⊂ M(X) of irreducible
representations, is a smooth manifold covered by disjoint open subsets Oα,
such that each Oα identifies withM0(Σ, uα) for some uα ∈ M(∂Σ). Further-
more, on each Uα the canonical density µX identifies, up to some multiplicative
constant depending on α, with the Liouville measure of the symplectic structure
ofM0(Σ, uα).

Our main motivation is the Witten’s asymptotic conjecture, which predicts
that the Witten-Reshetikhin-Turaev invariant of a 3-manifold X has a precise
asymptotic expansion in the large level limit. This expansion is a sum of
oscilatory terms, whose amplitudes are function of the Reidemeister volume of
the components ofM(X). In the case where X is a Seifert manifold, some of
these amplitudes are actually function of the symplectic volumes of the moduli
spacesM0(Σ, u), [13], [3]. So a relation between Reidemeister and symplectic
volumes was expected. At a more general level, it is known that the Chern-
Simons theory on a Seifert manifold can be interpreted as two-dimensional
Yang-Mills theory [2].

Let us state our results with more detail and then discuss the related liter-
ature.

Statement of the main result. — The Seifert manifolds we will consider are the
oriented closed connected three manifold equipped with a locally free circle
action. Any such manifold may be obtained as follows. Let Σ be an oriented
compact surface with n > 1 boundary components C1, . . . , Cn. Let D be the
standard closed disk of C. Let ϕi be an orientation reversing diffeomorphism
from ∂D × S1 to Ci × S1. Let X be the manifold obtained by gluing n copies
of D×S1 to Σ×S1 through the maps ϕi. We have [ϕi(∂D)] = −pi[Ci]+qi[S

1]
in H1(Ci × S1) where pi, qi are two relatively prime integers. We assume that
pi > 1 for all i.

Let G be a compact connected Lie group with finite center. For Y = X, Σ,
Ci or S1, we denote byM(Y ) (resp. M0(Y )) the set of representations (resp.
irreducible representations) of π1(Y ) in G up to conjugation. Since Ci and S1

are oriented circles, we can identify M(Ci) and M(S1) with the set C(G) of
conjugacy classes of G. For any u ∈ C(G)n, we denote byM0(Σ, u) the subset
of M0(Σ) consisting of the representations whose restriction to each Ci is ui.
Recall thatM0(Σ, u) is a smooth symplectic manifold.
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For any (u, v) ∈ C(G)n+1, we denote M0(X,u, v) the subset of M0(X)
consisting of representations whose restriction to each Ci is ui and to S1 is v.
Let P be the subset of C(G)n+1 consisting of the (u, v) such thatM0(X,u, v) is
non empty.

Theorem 1.1. — M0(X) is a smooth manifold, whose components may have
different dimensions. For any [ρ] ∈ M0(X), the tangent space T[ρ]M0(X) is
canonically identified with H1(X,Ad ρ) where Ad ρ is the flat vector bundle
associated to ρ via the adjoint representation. Furthermore, P is finite and for
any (u, v) ∈ P, M0(X,u, v) is an open subset of M0(X) and the restriction
map Ru.v fromM0(X,u, v) toM0(Σ, u) is a diffeomorphism.

For any irreducible representation ρ of π1(X) in G, the homology groups
H0(X,Ad ρ) and H3(X,Ad ρ) are trivial. By Poincaré duality, H2(X,Ad ρ) is
the dual of H1(X,Ad ρ). So the Reidemeister torsion of Ad ρ is a non van-
ishing element of

(
detH1(X,Ad ρ)

)−2 well-defined up to sign. Consequently,
the inverse of the square root of the torsion is a density of H1(X,Ad ρ). Since
H1(X,Ad ρ) identifies with the tangent space ofM0(X) at ρ, we define in this
way a density µX onM0(X).

For any u ∈ C(G) and [ρ] ∈ M0(Σ, u), the tangent space T[ρ]M0(Σ, u) is
identified with the kernel of the morphism H1(Σ,Ad ρ)→ H1(∂Σ,Ad ρ). The
symplectic product of T[ρ]M0(Σ, u) is induced by the intersection product
of H1(Σ,Ad ρ) with H1(Σ, ∂Σ,Ad ρ). We denote by µu the corresponding
Liouville measure ofM0(Σ, u).

As a last definition, let ∆ : C(G)→ R be the function given by

∆(u) =
∣∣detHg

(Adg − id)
∣∣1/2,

where g is any element in the conjugacy class u and Hg is the orthocomplement
of ker(Adg − id). Equivalently, let t be the Lie algebra of a maximal torus of G,
R ⊂ t∗ be the corresponding set of real roots and R+ ⊂ R be a set of positive
roots. Then for any X ∈ t,

∆([eX ]) =
∏

α∈R+; α(X)6=0

2| sin(πα(X))|.

Theorem 1.2. — For any (u, v) ∈ P, we have onM0(X,u, v)

µX =

(
n∏

i=1

∆(uri
i )

p
(dimG−dimui)/2
i

)
R∗u,vµu,

where Ru,v is the restriction map from M0(X,u, v) to M0(Σ, u) and for each
i, ri is any inverse of qi modulo pi, and uri

i ∈ C(G) is the conjugacy class
containing the gri for g ∈ ui.
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Several definitions require an invariant scalar product on the Lie algebra
of G: the symplectic structure of M0(Σ, u), the Poincaré duality between
H1(X,Ad ρ) and H2(X,Ad ρ) and the Reidemeister torsion of Ad ρ. Our im-
plicit convention is to choose the same invariant scalar product each time.

During the proof, we will prove interesting intermediate results:
- for any irreducible representation ρ of π1(X) in G, the cohomology
groups H1(X,Ad ρ) and H2(X,Ad ρ) both identify naturally with the
kernel of the restriction morphism H1(Σ,Ad ρ)→ H1(∂Σ,Ad ρ).

- by these identifications, the intersection product of H1(X,Ad ρ) with
H2(X,Ad ρ) is sent to the intersection product of H1(Σ,Ad ρ) with
H1(Σ, ∂Σ,Ad ρ).

- the Reidemeister torsion of Ad ρ → X is equal to C−2 detψ where
ψ : H1(X,Ad ρ) → H2(X,Ad ρ) is the map induced by the previous
identifications and C is the factor appearing in Theorem 1.2.

This results are respectively proved in Sections 4, 5 and 6. Theorem 1.2 is
proved in Section 7 and Theorem 1.1 in Section 3.2.

Related results in the litterature. — Witten [17] proved that for S a closed
oriented surface, the canonical density µS ofM0(S) defined from Reidemeister
torsion, is the Liouville measure of the natural symplectic structure ofM0(S).
He also extended this result to surfaces with boundary. We tried to deduce
Theorem 1.2 from this by relating the torsions of Ad ρ → X and Ad ρ → Σ,
without any success. Our actual proof does not use Witten’s result.

Witten also computed explicitely the volumes
∫
M0(Σ,u)

µu, cf. [17], For-
mula 4.114. For G = SU(2) and non central conjugacy classes ui, Park [12]
adapted the Witten’s method to compute

∫
M0(X,u,v)

µX , X being our Seifert
manifold. Computing the volume of M0(X,u, v) with Theorem 1.2 and Wit-
ten’s formula, we can extend Park’s result to any compact connected Lie group
G with finite center and any conjugacy classes ui.

McLellan [8] proved a result similar to Theorem 1.2 for G = U(1). To do
this, he introduced a Sasakian structure on X and used a computation of the
corresponding analytic torsion [14]. We will explain in Section 8 how we can
recover McLellan’s result by adapting our method, providing an elementary
proof.

2. The Seifert manifoldX

Let g, n, p1, q1, . . . , pn, qn be integers such that

g > 0, n > 1 and ∀i, pi, qi are coprime and pi > 1.(1)

To such a familly we associate the following manifold X. Let Σ be a compact
oriented surface with genus g and n boundary components denoted by C1, . . . , Cn.
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LetD be a closed disk and for any i, let ϕi : ∂D×S1 → Ci×S1 be an orientation
reversing diffeomorphism such that we have in H1(S1 × Ci),

[ϕi(∂D)] = −pi[Ci] + qi[S
1],(2)

where ∂D and Ci are oriented as boundaries of D and Σ respectively. Then
X is obtained by gluing n copies of D×S1 to Σ×S1 along its boundary through
the maps ϕi,

X = (Σ× S1) ∪ϕ1∪···∪ϕn
(D × S1)∪n.(3)

By construction Σ× S1 is a submanifold of X. In the sequel we often consider
Σ and S1 as submanifolds of X by identifying Σ with Σ × {y} and S1 with
{x} × S1, where x and y are some fixed points of Σ and S1 respectively.

The above definitions are all what we need for this article. Nevertheless, it is
interesting to understand this in the context of Seifert manifolds. First, if X is
obtained as previously, we can extend the S1-action on Σ × S1 to X, so that
for any i, the action on the i-th copy of D × S1 is free if pi = 1 and otherwise
it has one exceptional orbit with isotropy Zpi

. Conversely, consider any three
dimensional closed connected oriented manifold Y equipped with an effective
locally free action of S1. Then choose n > 1 orbits O1,. . . , On of Y including
all the exceptional ones. Let T1, · · · , Tn be disjoint saturated open tubular
neighborhoods of the O1,. . . , On respectively. Let Σ be any cross-section of
the action on Y \ (T1 ∪ · · · ∪ Tn). For any i, set Ci = (∂Σ) ∩ T i and define pi
as the order of the isotropy group of Oi and qi so that [Ci] = qi[Oi] in H1(T i),
where Ci is oriented as the boundary of Σ and Oi by the S1-action. Let X be
any manifold associated to the data Σ, (p1, q1),. . . , (pn, qn) as in (3). Then
Y is diffeomorphic to X, cf. [5], Theorem 1.5 or the Section 1 of [10] for more
details. We can even choose the diffeomorphism between Y and X so that it
commutes with the S1-action and fixes Σ. The collection

(g; (p1, q1), . . . , (pn, qn))

is called the unnormalized Seifert invariant of Y .

3. Character space of a Seifert manifold

Notations. — Let G be a Lie group. For any connected topological space Y ,
we denote by M(Y ) the set of conjugacy classes of representations of π1(Y )
into G(1). A representation ρ : π1(Y ) → G is said to be irreducible if the
centraliser of ρ(π1(Y )) is reduced to the center of G. We denote byM0(Y ) the
subset ofM(Y ) consisting of conjugacy classes of irreducible representations.

1. A representation of π1(Y ) into G is a group morphism from π1(Y ) to G. Two repre-
sentations ρ, ρ′ are conjugate if there exists g ∈ G, such that ρ′(h) = gρ(h)g−1, ∀h ∈ G.
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If Z is a subspace of Y , there is a natural morphism j∗ from π1(Z) to π1(Y )
and consequently a natural map fromM(Y ) toM(Z), sending [ϕ] into [ϕ◦j∗].
For any representation ρ : π1(Y )→ G, we call ρ ◦ j∗ the restriction of ρ to Y .

3.1. A decomposition of M0(X). — From now on, X is the Seifert manifold
introduced in Section 2. Recall that we view S1 and Σ as submanifolds of X.

Proposition 3.1. — Let ρ be a representation of π1(X) into G. Then ρ is
irreducible if and only if its restriction to Σ is irreducible. Furthermore, if
ρ is irreducible, then ρ(S1) is central. Finally, for any i, ρ(Ci)

pi is conjugate
to ρ(S1)qi .

In the statement we slightly abused notation by applying ρ to oriented circles
of X. Since any loop γ of X is homotopic to an element of π1(X) unique up
to conjugation, the conjugacy class of ρ(γ) is uniquely defined.

Proof. — By Van Kampen theorem, the natural morphism π1(Σ × S1) →
π1(X) is onto. So ρ : π1(X) → G is irreducible if and only if its restriction
to π1(Σ×S1) is irreducible. Since ρ(π1(Σ)) ⊂ ρ(π1(Σ×S1)), if ρ|Σ is irreducible,
then ρ|Σ×S1 is irreducible. Conversely, assume that ρ|Σ×S1 is irreducible. Since
π1(Σ × S1) ' π1(Σ) × π1(S1), t = π1(S1) is in the centraliser of π1(Σ × S1),
and consequently ρ(t) is central. This implies that ρ(π1(Σ×S1)) and ρ(π1(Σ))
have the same centraliser. So ρ|Σ is irreducible.

By Equation (2), ρ(Ci)
pi and ρ(S1)qi are conjugate. �

Let Z(G) be the center of G and C(G) be the set of conjugacy classes. If
u ∈ C(G) and p is an integer, up ∈ C(G) is defined as the conjugacy class of gp
where g ∈ u. Let P be the subset of C(G)n×Z(G) consisting of the pairs (u, v)
such that for any i, upi = vqi . Then by the last part of Proposition 3.1,

M0(X) =
⋃

(u,v)∈P
M0(X,u, v),(4)

whereM0(X,u, v) consists of the [ρ] ∈M0(X) such that ρ(S1) ∈ v and ρ(Ci) ∈
ui for any i. Denote by Ru,v the restriction map

Ru,v :M0(X,u, v)→M0(Σ, u), [ρ]→ [ρ|Σ],(5)

whereM0(Σ, u) is the subset ofM0(Σ) consisting of the classes [ρ] such that
for any i, ρ(Ci) ∈ ui.

Proposition 3.2. — For any (u, v) ∈ P, the map Ru,v is a bijection.

Proof. — It is a consequence of the fact that π1(Σ × S1) = π1(Σ) × π1(S1)
and that the kernel of the surjective map π1(Σ × S1) → π1(X) is the normal
subgroup normally generated by the ϕi(∂D)’s. �
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3.2. Topology and manifold structure. — From now on, assume that G is com-
pact and has a finite center. As explained in Appendix A, for any compact
connected manifold Y ,M(Y ) has a natural Hausdorff topology andM0(Y ) is
an open subset.

Lemma 3.3. — The set P is finite. For any (u, v) ∈ P,M0(X,u, v) is an open
subset ofM0(X).

Proof. — By identifying C(G) with the quotient of a maximal torus by the
Weyl group, we easily see that for any v ∈ C(G) and p ∈ Z, the equation
up = v has only a finite number of solutions. This implies that P is finite.
We deduce that theM0(X,u, v)’s are open by applying the following fact: for
any compact connected manifold Y , for any x ∈ π1(Y ), the map from M(Y )
to C(G) sending [ρ] into [ρ(x)] is continuous. �

By Appendix A, M0(X) has a natural open subset Ms,0(X) which is a
manifold. Furthermore, it is known that the spaces M0(Σ, u) are smooth
manifolds.

Proposition 3.4. — We have M0(X) = Ms,0(X). Furthermore, for any
(u, v) ∈ P, Ru,v is a diffeomorphism fromM0(X,u, v) toM0(Σ, u).

It is possible that the variousM0(X,u, v) have different dimensions. Actu-
ally,

dimM0(Σ, u) = 2(g − 1) dimG+

n∑

i=1

dimui.

Proof. — Let u ∈ C(G)n and consider the set Mu of (a, b, c) ∈ (G2g+n)0

satisfying the relations

[a1, b1] · · · [ag, bg]c1 · · · cn = id, ci ∈ ui, ∀i.
Here we used the same notation (G2g+n)0 as in Appendix A. It is known that
Mu is a smooth submanifold of G2g+n.

Choose a standard set of generators (x, y, z) of π1(Σ) and let t ∈ π1(X) be
isotopic to S1. The map π1(Σ× S1)→ π1(X) being onto, (x, y, z, t) is a set of
generators of π1(X). Through these generators, R0(π1(X)) gets identified with
a subset A of G2g+n+1 as explained in Appendix A. By the decomposition (4),
A is the union of the Mu × {v} where (u, v) runs over P. P being finite, A is
a submanifold of G2g+n+1, which shows that R0(π1(X)) = Rs,0(π1(X)) in the
notation of Appendix A and consequently that Ms,0(X) = M0(X). For any
(u, v) ∈ P, the projectionMu×{v} →Mu being a diffeomorphism, we conclude
that Ru,v is a diffeomorphism. �

Consider again a compact connected manifold and a representation ρ of π1(Y )
in G. Composing ρ with the adjoint representation, the Lie algebra g becomes a
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π1(Y )-module. Denote by H•(π1(Y ),Ad ρ) the group cohomology with coeffi-
cient in g. Alternatively, we may consider the flat vector bundle Ad ρ→ Y asso-
ciated to ρ via the adjoint representation. Let H•(Y,Ad ρ) be the cohomology
of Y with local coefficient. Then for j = 0 or 1, Hj(π1(Y ),Ad ρ) ' Hj(Y,Ad ρ).

Lemma 3.5. — For any irreducible representation ρ of π1(X), we have a nat-
ural identification between H1(X,Ad ρ) and T[ρ]M0(X).

Proof. — By Appendix A, T[ρ]M0(X) is naturally identified with a subspace
of H1(X,Ad ρ). Similarly, it is known that T[ρ]M0(Σ, u) gets identified to the
kernel of the morphism H1(Σ,Ad ρ) → H1(∂Σ,Ad ρ). Furthermore, we easily
see that the tangent linear map to Ru,v is the restriction of the morphism
H1(X,Ad ρ) → H1(Σ,Ad ρ). As we will see in Theorem 4.2, the following
sequence is exact

0→ H1(X,Ad ρ)→ H1(Σ,Ad ρ)→ H1(∂Σ,Ad ρ)→ 0.

This implies that H1(X,Ad ρ) = T[ρ]M0(X). �

4. The homology groupsH1(X,Ad ρ) andH1(Σ,Ad ρ)

As in the previous section, for any compact connected topological space
Y and representation ρ : π1(Y ) → G, we consider the flat vector bundle
Ad ρ → Y . We are interested in corresponding homology groups H•(Y,Ad ρ)
for Y = X or Σ. As a first remark, if ρ is irreducible, then by Appendix A,
H0(Y,Ad ρ) = H0(π1(Y ),Ad ρ) = 0 because the center of G is finite. By
duality, H0(Y,Ad ρ) = 0.

Consider the surface Σ and an irreducible representation ρ : π1(Σ) → G.
For any boundary component Ci, choose a base point xi ∈ Ci and let Vi =
ker(holi− id) where holi : Ad ρ|xi

→ Ad ρ|xi
is the holonomy of Ci in Ad ρ. We

have two isomorphisms

H0(Ci,Ad ρ) ' Vi, H1(Ci,Ad ρ) ' Vi.
sending u ∈ Vi into [xi]⊗ u and [Ci]⊗ u respectively.

Lemma 4.1. — We have H0(Σ,Ad ρ) = H2(Σ,Ad ρ) = 0. Furthermore the
natural map f : H1(∂Σ,Ad ρ)→ H1(Σ,Ad ρ) is injective.

Proof. — Σ being connected with a non empty boundary, H0(Σ, ∂Σ,Ad ρ) =
0, so by Poincaré duality,H2(Σ,Ad ρ) = 0. Since ρ is irreducible,H0(Σ,Ad ρ) =
0 and by Poincaré duality, H2(Σ, ∂Σ,Ad ρ) = 0. Writing the long exact se-
quence associated to the pair (Σ, ∂Σ), we deduce that f is one-to-one. �

Consider now the Seifert manifold X and an irreducible representation ρ :
π1(X)→ G. Since Σ is a submanifold of X, we have a natural morphism

g : H1(Σ,Ad ρ)→ H1(X,Ad ρ)
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By Lemma 3.1, the restriction of ρ to S1 is central. So the restriction of the
bundle Ad ρ to Σ×S1 is isomorphic to Ad ρ|X�RS1

(2). Here we denote by RS1

the trivial vector bundle over S1 with fiber R. This allows to define a second
application

h : H1(Σ,Ad ρ)→ H2(X,Ad ρ)

which sends α ∈ H1(Σ,Ad ρ) into the image of α� [S1] ∈ H2(Σ× S1,Ad ρ) by
the natural morphism H2(Σ× S1,Ad ρ)→ H2(X,Ad ρ).

Theorem 4.2. — We have H0(X,Ad ρ) = H3(X,Ad ρ) = 0. Furthermore the
following sequences are exact:

0→ H1(∂Σ,Ad ρ)
f−→ H1(Σ,Ad ρ)

g−→ H1(X,Ad ρ)→ 0,

0→ H1(∂Σ,Ad ρ)
f−→ H1(Σ,Ad ρ)

h−→ H2(X,Ad ρ)→ 0.

Proof. — Since ρ is irreducible, H0(X,F ) = 0. By Poincaré duality,
H3(X,F ) = 0. To prove that the sequences are exact, we will consider the
Mayer-Vietoris long exact sequence associated to the decomposition (3) of X.

Since the restriction of Ad ρ to Σ × S1 is isomorphic to Ad ρ|Σ � RS1 , we
can compute by applying the Künneth theorem to the maps

Hj(∂Σ× S1,Ad ρ)→ Hj(Σ× S1,Ad ρ), j = 3, 2, 1, 0.(6)

We have that Hj(S
1,R) = R for j = 0, 1 and by Lemma 4.1, Hj(Σ,Ad ρ) = 0

for j = 0, 2. We deduce that

H3(Σ× S1,Ad ρ) = H0(Σ× S1,Ad ρ) = 0

and H0(∂Σ× S1,Ad ρ) ' H0(∂Σ,Ad ρ), which determines (6) for j = 0 and 3.
For j = 2, the map (6) identifies with the map f : H1(∂Σ,Ad ρ)→ H1(Σ,Ad ρ)
and for j = 1 with

f ⊕ 0 : H1(∂Σ,Ad ρ)⊕H0(∂Σ,Ad ρ)→ H1(Σ,Ad ρ),

because H0(Σ,Ad ρ) = 0. Applying again the Künneth theorem, the maps
Hj(Σ× S1,Ad ρ)→ Hj(X,Ad ρ) identify with g and h for j = 1 and 2 respec-
tively.

It remains to compute the maps Hj(Ci × S1,Ad ρ)→ Hj(D × S1, ϕ̃∗i Ad ρ).
Here we denote by ϕ̃i the embedding of D × S1 into X extending ϕi. Since
D is contractible, Hj(D × S1, ϕ̃∗i Ad ρ) = 0 for j = 2, 3. Let us determine the
holonomy of S1 in the bundle ϕ̃∗i Ad ρ→ D × S1. It is equal to the holonomy
of ϕi(S1) in Ad ρ → Ci × S1. For any loop γ of Ci × S1 based at (xi, 0), we

2. If E → B and E′ → B′ are two vector bundles, we denote by E �E′ the vector bundle
(π∗E)⊗ ((π′)∗E′) where π and π′ are the projection from B ×B′ onto B and B′.
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denote by holγ : Ad ρ|xi
→ Ad ρ|xi

the holonomy of γ in Ad ρ→ Ci×S1. Since
D is contractible, holϕi(∂D) is trivial, so that

ker(holϕi(S1)− id) = ker(holϕi(∂D)− id) ∩ ker(holϕi(S1)− id)

= ker(holCi − id) ∩ ker(holS1 − id)

= ker(holCi − id)

= Vi,

where we have used first that ϕi is a diffeomorphism and second that holS1 is
trivial. We deduce that

Hj(D × S1, ϕ̃∗i Ad ρ) ' Vi
for j = 0 or 1. As above, let us identify H1(Ci×S1,Ad ρ) with H1(Ci,Ad ρ)⊕
H0(Ci,Ad ρ) = Vi ⊕ Vi. Then by Equation (2), the map H1(Ci × S1,Ad ρ)→
H1(D × S1, ϕ̃∗i Ad ρ) corresponds to

Vi ⊕ Vi → Vi, (u, v)→ qiu+ piv.

Putting everything together and setting V =
⊕
Vi, we obtain the following

long exact sequence

0→ V
f−→ H1(Σ,Ad ρ)

h−→ H2(X,Ad ρ)→ V ⊕ V
f̃−→ H1(Σ,Ad ρ)⊕ V [g,g̃]−−−→ H1(X,Ad ρ)→ V

id−→ V → 0,

where g̃ : V → H1(X,Ad ρ) is unknown and f̃ is the map
(
f 0
q p

)
with q, p : V →

V the maps whose restriction to Vi are the multiplications by qi, pi respectively.
We recover the fact that f is injective. Since f is injective and the pi don’t

vanish, f̃ is injective too. Furthermore the identity of V is certainly injective.
So the Mayer-Vietoris long exact sequences breaks into three exact sequences:

0→ V
f−→ H1(Σ,Ad ρ)

h−→ H2(X,Ad ρ)→ 0(7)

0→ V ⊕ V f̃−→ H1(Σ,Ad ρ)⊕ V [g,g̃]−−−→ H1(X,Ad ρ)→ 0(8)

0→ V
id−→ V → 0.(9)

Here, (7) is the second exact sequence in the statement of the theorem. Finally,
it is an easy exercise to deduce from the exact sequence (8) that the first
sequence in the statement of the theorem is exact. �

5. Poincaré duality onX and Σ

Choose an invariant scalar product on the Lie algebra of G. For any topo-
logical space Y and representation ρ of π1(Y ) in G, the flat vector bundle Ad ρ
inherits a flat metric. This allows to define a cup product Hk(Y,Z,Ad ρ) ×
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H`(Y, Z,Ad ρ) → Hk+`(Y,Z,R) for any closed subspace Z of Y . We will us
these products for X and Σ.

Consider an irreducible representation ρ of π1(Σ) in G. We have a bilinear
map

H1(Σ, ∂Σ,Ad ρ)×H1(Σ,Ad ρ)→ R, (α, β)→ α · β(10)

sending (α, β) to the evaluation of the cup product α ∪ β on the fundamental
class of (Σ, ∂Σ). Consider the following portion of the long exact sequence
associated to the pair (Σ, ∂Σ)

· · · → H1(Σ, ∂Σ,Ad ρ)
π−→ H1(Σ,Ad ρ)

f∗−→ H1(∂Σ,Ad ρ)→ · · ·
and introduce the space K := ker f∗ = Imπ ⊂ H1(Σ,Ad ρ). For any α, β ∈ K,
we set

Ω(α, β) := α̃ · β,(11)

where α̃ is any element of H1(Σ, ∂Σ,Ad ρ) such that π(α̃) = α.

Lemma 5.1. — The bilinear map Ω is well-defined, antisymmetric and non
degenerate.

So (K,Ω) is a symplectic vector space.

Proof. — For any α̃, β̃ ∈ H1(Σ, ∂Σ,Ad ρ), α̃ · π(β̃) + β̃ · π(α̃) = 0. Assuming
that π(α̃) = α and π(β̃) = β, we get that

Ω(α, β) = α̃ · β = −β̃ · α,
which proves that Ω(α, β) does not depend on the choice of α̃ and that Ω(α, β) =
−Ω(β, α). By Poincaré duality, the pairing (10) is non degenerate, so the same
holds for Ω. �

Consider now an irreducible representation ρ of π1(X) in G. By Poincaré
duality, we have a nondegenerate pairing

H1(X,Ad ρ)×H2(X,Ad ρ)→ R(12)

sending (α, β) to the evaluation of α ∪ β ∈ H3(X) on the fundamental class.
By Theorem 4.2, the maps g∗ and h∗ induce isomorphisms from H1(X,Ad ρ)
and H2(X,Ad ρ) to K.

Theorem 5.2. — For any α ∈ H1(X,Ad ρ) and β ∈ H2(X,Ad ρ), we have

α · β = Ω(g∗α, h∗β).

Proof. — We will use de Rham cohomology. First let us prove that any
element in H2(X,Ad ρ) has a representative β ∈ Ω2(X,Ad ρ) which vanishes
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identically on a neighborhood of Z = ϕ̃1(D× S1) ∪ · · · ∪ ϕ̃n(D× S1) and such
that

β = p∗Σβ̃ ∧ p∗S1τ + dγ on Σ× S1,(13)

where pΣ and pS1 are the projection from Σ×S1 onto Σ and S1 respectively, β̃ ∈
Ω1(Σ,Ad ρ) is closed, τ ∈ Ω1(S1) satisfies

∫
S1 τ = 1 and γ belongs to Ω1(Σ ×

S1,Ad ρ).
To check that, let us start with any representative β ∈ Ω2(X,Ad ρ). Since

H2(Z,Ad ρ) = 0, we have β = dµ on Z. We can even assume that this holds
on a neighborhood U of Z. Let ϕ ∈ C∞(X) with support contained in U
and identically equal to 1 on Z. Replacing β with β − d(ϕµ), we have that
β ≡ 0 on a neighborhood of Z. By Künneth theorem, H2(Σ × S1,Ad ρ) =
H1(Σ,Ad ρ)⊗H1(S1,R), which implies that β has the form (13) on Σ× S1.

Let us prove that any element in H1(X,Ad ρ) has a representative α ∈
Ω1(X,Ad ρ) such that

α = p∗Σα̃ on Σ× S1,(14)

where α̃ ∈ Ω1(Σ,Ad ρ) is closed and vanishes identically on ∂Σ.
To check that, we start with any representative α ∈ Ω1(X,Ad ρ). By Kün-

neth theorem, H1(Σ× S1,Ad ρ) = H1(Σ,Ad ρ) so that we have on Σ× S1 the
equality α = p∗Σα̃+ dγ with α̃ ∈ Ω1(Σ,Ad ρ) closed and γ ∈ Ω0(Σ× S1,Ad ρ).
Observe that [α̃] = g∗[α], so by Theorem 4.2, f∗[α̃] = 0. Thus adding to α̃
an exact form (which modifies γ), the restriction of α̃ to ∂Σ vanishes. Finally,
extending γ to X, and replacing α by α− dγ, we obtain Equation (14).

Now consider α and β as above. Then

[α] · [β] =

∫

X

α ∧ β =

∫

Σ×S1

α ∧ β,

because β vanishes identically on a neighborhood of Z. To evaluate this last
integral, we replace α and β by their expressions (14), (13). By Stokes’ theorem,

∫

Σ×S1

p∗Σα̃ ∧ dγ =

∫

∂Σ×S1

p∗Σα̃ ∧ γ = 0

because α̃ vanishes identically on ∂Σ. By Fubini theorem and because
∫
S1 τ = 1,

∫

Σ×S1

p∗Σα̃ ∧ p∗Σβ̃ ∧ p∗S1τ =

∫

Σ

α̃ ∧ β̃.

Since α̃ vanishes on ∂Σ, it is the representative of a class inH1(Σ, ∂Σ,Ad ρ). So
this last integral is equal to Ω([α̃], [β̃]). Furthermore [α̃] = g∗[α] and [β̃] = h∗[β],
which concludes the proof. �
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6. Torsion ofX

Let ρ be an irreducible representation ρ of π1(X) in G. Since H0(X,Ad ρ) =
H3(X,Ad ρ) = 0, the torsion of the flat euclidean vector bundle Ad ρ is a non
vanishing vector of the line

detH•(X,Ad ρ) '
(
det(H1(X,Ad ρ))

)−1 ⊗ det(H2(X,Ad ρ))

well-defined up to sign. In the Appendix B, we recall its definition and the
properties we will need to compute it. By Theorem 4.2, we have an isomorphism

ψ : H1(X,Ad ρ)→ H2(X,Ad ρ)

sending g(β) into h(β) for any β ∈ H1(Σ,Ad ρ). The determinant of ψ belongs
to detH•(X,Ad ρ).

Let ∆ : C(G)→ R be the function given by

∆(u) =
∣∣detHg

(Adg − id)
∣∣1/2,

where g is any element in the conjugacy class u and Hg is the orthocomplement
of ker(Adg − id).

Theorem 6.1. — For any irreducible representation ρ of π1(X) in G, the
torsion of Ad ρ→ X is given by

τ(Ad ρ) =

n∏

i=1

pdimVi
i

∆2(ρ(Ci)ri)
detψ,(15)

where ri is any inverse of qi modulo pi and Vi = ker(Adρ(Ci)− id).

Let us make a few remark on the left hand side of (15).
1. It follows from the relation (2) and the fact that ρ(S1) is central by

Lemma 3.1, that (Adρ(Ci))
pi is the identity. So the right hand side of

(15) does not depend on the choice of ri.
2. Vi is the Lie algebra of the centralizer of ρ(Ci) in G. So the dimension

of Vi is equal to dimG−dimui where ui is the conjugacy class of ρ(Ci).

Proof. — By the proof of Theorem 4.2, the Mayer-Vietoris long exact se-
quence breaks into three short exact sequences: (7), (8) and (9). Choose
α ∈ detV and β ∈ ∧dimH1(Σ,Ad ρ)−dimV

H1(Σ,Ad ρ) such that f(α) ∧ β ∈
detH1(Σ,Ad ρ) does not vanish. By (7), we have an isomorphism

R ' detV ⊗
(
detH1(Σ,Ad ρ)

)−1 ⊗ detH2(X,Ad ρ)(16)

sending 1 into α⊗
(
f(α) ∧ β

)−1 ⊗ h(β). By (8), we have an isomorphism

R ' (detV )−2 ⊗
(
detH1(Σ,Ad ρ)⊗ detV

)
⊗
(
detH1(X,Ad ρ)

)−1(17)
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sending 1 into α−2 ⊗
(
(f(α) ∧ β) ⊗ (det p)α

)
⊗ g(β)−1 where p is the map

introduced in the proof of Theorem 4.2. We easily compute that:

det p =

n∏

i=1

pdimVi
i .

By (9), we have an isomorphism

R ' detV ⊗
(
detV

)−1(18)

sending 1 into α ⊗ α−1. Taking the tensor product of (16), (17) and (18), we
get the isomorphism associated to the Mayer-Vietoris long exact sequence:

R '
(
detH1(X,Ad ρ)

)−1 ⊗ detH2(X,Ad ρ).(19)

It sends 1 into
(
det p

)
h(β)/g(β) =

(
det p

)(
detψ

)
.

Let us compute the torsion of the restrictions of Ad ρ to Ci × S1, Σ × S1

and ϕ̃i(D × S1) respectively. We will use the identifications made previously
for the various cohomology groups. First, the torsion of Ad ρ→ Ci × S1 is

1 ∈ R ' detVi ⊗
(
detVi

)−1 ⊗ detVi ⊗
(
detVi

)−1
.

Indeed, the bundle Ad ρ|Ci×S1
is isomorphic to Ad ρ|Ci

� RS1 . Furthermore,
χ(Ci) = χ(S1) = 0. By property 2 of the Appendix B, this implies that the
torsion of Ad ρ→ Ci × S1 is 1.

Second the torsion of Ad ρ→ Σ× S1 is

1 ∈ R ' detH1(Σ,Ad ρ)⊗
(
detH1(Σ,Ad ρ)

)−1
.

Indeed, the bundle Ad ρ|Σ×S1
is isomorphic to Ad ρ|Σ �RS1 . Since χ(S1) = 0,

we deduce from properties 2 and 4 of the Appendix B that the torsion of Ad ρ→
Σ× S1 is equal to τ(RS1)

χ(Ad ρ|
Σ

)
= 1.

Third the torsion of ϕ̃∗i Ad ρ → D × S1 belongs to R ' detVi ⊗
(
detVi

)−1.
Since ϕi is a diffeomorphism from ∂D×S1 to Ci×S1 reversing the orientation
and satisfying (2), we have the following relation in H1(Ci × S1)

ϕi([S
1]) = ri[Ci] + si[S

1],

where ri, si are such that such that pisi + qiri = 1. Since ρ(S1) is central,
Adρ(S1) is the identity, so

Adρ(ϕi(S1)) = Adri

ρ(Ci)
.

By Property 4 of the Appendix B, we conclude that the torsion of ϕ̃∗i Ad ρ is
equal to the square of ∆(ρ(Ci)

ri).
By Property 3 of the Appendix B, we deduce from the previous computations

that
(
det p

)(
detψ

)
= τ(Ad ρ)

n∏

i=1

∆2(ρ(Ci)
ri),
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which concludes the proof. �

Using the duality between homology and cohomology and Poincaré duality,
we have

detH•(X,Ad ρ) ' det(H1(X,Ad ρ))⊗
(
det(H2(X,Ad ρ))

)−1

'
(
det(H1(X,Ad ρ))

)2
.

(20)

So (detψ)−1 may be viewed as the square of a volume element ofH1(X,Ad ρ).
Recall that g∗ induces an isomorphism from H1(X,Ad ρ) to a symplectic vector
space (K,Ω). The following lemma is an easy consequence of Theorem 5.2.

Lemma 6.2. — g∗ sends (detψ)−1 to the square of the Liouville form ΩN/N !,
where N = 1

2 dimK.

7. Application to moduli spaces

Let us apply the previous results to the character manifold M0(X). Re-
call that a density of a n dimensional manifold M is a section of the line
bundle, whose fiber at x is the space of applications f : (TxM)n → R satisfy-
ing f(Ax1, . . . , Axn) = |detA|f(x1, . . . , xn) for any endomorphism A of TxM .
Here, we have natural densities onM0(X) andM0(Σ, u) defined as follows:

• Since the tangent space T[ρ]M0(X) is H1(X,Ad ρ), by the isomorphism
(20), the torsion τ(Ad ρ) is the inverse of the square of a density of
T[ρ]M0(X). This defines a density µX of M0(X) whose value at [ρ] is
τ(Ad ρ)−1/2.

• For any u ∈ C(G)n, M0(Σ, u) is a symplectic manifold, so it has a
canonical density µu. The symplectic structure of TρM0(Σ, u) is the
form Ω considered in Lemma 5.1 and if N = 1

2 dimM0(Σ, u), µu([ρ]) =

|Ω∧N |/N !.

For any (u, v) ∈ P, we defined a diffeomorphism Ru.v from M0(X,u, v) to
M0(Σ, u). By the proof of Lemma 3.5, the linear tangent map of Ru,v at [ρ] is
the map g∗ : H1(X,Ad ρ)→ K. We deduce from Theorem 6.1 and Theorem 5.2
via Lemma 6.2 our main result.

Theorem 7.1. — For any (u, v) ∈ P, we have onM0(X,u, v)

µX =

(
n∏

i=1

∆(uri
i )

p
dimVi/2
i

)
R∗u,vµu

with ri any inverse of qi modulo pi.
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8. Abelian case

In this section, we adapt the previous result to the constant coefficient case.
We consider the same Seifert manifold X as above and we assume that the
Euler number

χ = −
n∑

i=1

qi
pi

does not vanish.
For Y = X,Σ, ∂Σ, we let Hj(Y ) := Hj(Y,R). In contrast to the previous

case, the groups H0(X) and H3(X) do not vanish. Introduce the three maps

f : H1(∂Σ)→ H1(Σ), g : H1(Σ)→ H1(X), h : H1(Σ)→ H2(X)

defined as follows. f and g are the morphisms corresponding to the inclusions
∂Σ ⊂ Σ and Σ ⊂ X respectively. h sends γ ∈ H1(Σ) to the image of γ� [S1] ∈
H2(Σ× S1) in H2(X).

Proposition 8.1. — The morphisms g and h are surjective and their kernel
is the image of f .

Proof. — The proof is similar to the one of Theorem 4.2, with the additional
difficulty that H0(X) ' R, H0(Σ) ' R and H3(X) ' R. The Mayer-Vietoris
long exact sequence splits into three exact sequences:

0→ R→ Rn f−→ H1(Σ)
h−→ H2(X)→ 0

0→ R2n B−→ Rn ⊕H1(Σ)⊕ R A−→ H1(X)→ 0

0→ Rn C−→ Rn ⊕ R→ R→ 0,

(21)

where C andB are given by C(x) = (x, x1+· · ·+xn) andB(x, y) = (z, f(x), y1+
· · ·+ yn) with z ∈ Rn given by zi = qixi + piyi. By the first sequence in (21),
h is surjective and its kernel is the image of f . One checks that ImB and
0⊕H1(Σ)⊕ 0 are transversal subspaces, their intersection being 0⊕ Im f ⊕ 0.
Using that for any γ ∈ H1(Σ), A(0, γ, 0) = g(γ), one deduces from the second
sequence of (21) that g is surjective with kernel the image of f . �

Let Σ be the closed surface obtained by gluing a disk to each boundary
component of Σ. The inclusion Σ ⊂ Σ induces an isomorphism H1(Σ) '
H1(Σ)/ Im f . So by Proposition 8.1, we have two isomorphisms

g̃ : H1(Σ)→ H1(X), h̃ : H1(Σ)→ H2(X).

Proposition 8.2. — For any α ∈ H1(X) and β ∈ H2(X), we have

α ·X β = (g̃∗α) ·Σ (h̃∗β),

where ·X and ·Σ denote the Poincaré pairings of X and Σ respectively.
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Proof. — The proof is similar to the one of Theorem 5.2. First, since the
image of B in (21) contains 0⊕0⊕H0(Σ), the image of H2(X)→ H1(Σ×S1) '
H1(Σ)⊕H0(Σ) is contained in H1(Σ). Consequently any class α of H1(X) has
a representative a ∈ Ω1(X) such that

a = p∗ã on Σ× S1

with p : Σ × S1 → Σ the projection and ã ∈ Ω1(Σ) a representative of g̃∗α.
Second, any class β ∈ H2(X) has a representative b ∈ Ω2(X) whose support is
contained in an open subset of Σ× S1 and such that

b = p∗b̃ ∧ q∗τ + dγ,

where b̃ ∈ Ω1(Σ) is a representative of h̃∗β, supported in an open subset of Σ,
q is the projection Σ × S1 → S1, τ ∈ Ω1(S1) is such that

∫
S1 τ = 1 and

γ ∈ Ω1(Σ× S1). Finally, one checks that
∫

X

a ∧ b =

∫

Σ

ã ∧ b̃.

using Stokes’ formula. �

We can also compute the torsion of X as in Theorem 6.1. Since H0(X)

and H3(X) have rank one, the torsion belongs to H0(X) ⊗
(
detH1(X)

)−1 ⊗
detH2(X)⊗

(
H3(X))−1.

Proposition 8.3. — The Reidemeister torsion of X is given by

τ(X) = χ

n∏

i=1

pi [x]⊗ detψ ⊗ [X]−1,

where χ = −∑ qi/pi is the Euler number of X, x ∈ X and [x] ∈ H0(X) is the
corresponding class, ψ is the map h̃◦g̃−1 : H1(X)→ H2(X) and [X] ∈ H3(X) is
the fundamental class.

Proof. — We adapt the proof of Theorem 6.1. Let e = 1 ∈ R, (ei) be the
canonical basis of Rn, δ = e1 ∧ · · · ∧ en, ρ = f(e1) ∧ · · · ∧ f(en−1) and σ ∈∧2g

H1(Σ) such that ρ ∧ σ is a generator of
∧2g+n−1

H1(Σ). Then one checks
that the isomorphisms corresponding to the three exact sequences in (21) send
1 into e⊗ δ−1⊗ (ρ∧ σ)⊗ h(σ)−1, χ−1(

∏
pi)
−1e⊗ (δ⊗ (ρ∧ σ)⊗ e)−1⊗ h(σ)−1

and δ−1 ⊗ (δ ⊗ e) ⊗ e−1 respectively. The factor χ(
∏
pi) appears because

B(δ⊗ δ) = χ(
∏
pi)δ⊗ ρ⊗ e. The torsions of ∂Σ× S1, ∂Σ×D and Σ× S1 are

respectively δ⊗ (δ⊗ δ)−1⊗ δ, δ⊗ δ−1 and (ρ∧σ)⊗ (δ⊗ (ρ∧σ)⊗ e)−1⊗ e. We
conclude with Property 3 of Appendix B. �

Trivializing H0(X) and H3(X) by sending [x] and [X] to 1, and identifying
H1(X) with the dual of H2(X) by Poincaré duality, the inverse of square root
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of the torsion gets identified with an element of detH1(X). By Propositions 8.2
and 8.3, the torsion satisfies

g̃∗(τ(X))−1/2 =
∣∣∣χ

n∏

i=1

pi

∣∣∣
−1/2

µ,(22)

where µ ∈ detH1(Σ) is the Liouville density of H1(Σ).
This may be applied to the space J (X) consisting of representation of π1(X)

in U(1) as follows. First, for any connected compact manifold Y , J (Y ) is an
abelian Lie group, the product being the pointwise multiplication. The Lie
algebra of J (Y ) is the space of morphisms from π1(Y ) to R, which identifies
with H1(Y ). In particular for the Seifert manifold X, the Lie algebra of J (X)
being H1(X), (τ(X))−1/2 determines an invariant density of J (X). Further-
more, the Lie algebra of J (Σ) being H1(Σ), J (Σ) has an invariant symplectic
structure and a corresponding Liouville density.

For any (u, v) ∈ U(1)n+1, let J (X,u, v) be the subset of J (X) consisting of
the representations ρ such that ρ(Ci) = ui for any i and ρ(S1) = v. Then

J (X) =
⋃

(u,v)∈Q
J (X,u, v),(23)

where Q is the set of (u, v) ∈ U(1)n+1 such that u1 · · ·un = 1 and for any i,
upi

i = vqi . Since the Euler number χ does not vanish, Q is finite. Furthermore,
for any (u, v) ∈ Q, J (X,u, v) is connected. So (23) is the decomposition
of J (X) into connected components.

Let 1 = (1, . . . , 1) ∈ U(1). J (X,1, 1) is the component of the identity
of J (X). We have a natural Lie group isomorphism Φ from J (X,1, 1) to J (Σ),
such that for any ρ ∈ J (X,1, 1), the restrictions of ρ and Φ(ρ) to Σ are the
same. The linear tangent map at the identity to Φ is the adjoint map to the
map g̃ : H1(Σ)→ H1(X). Thus Equation (22) computes the invariant density
of J (X,1, 1) in terms of the pull back by Φ of the Liouville density. We recover
in this way Theorem 9 of [8].

Appendix A. Representation space

The general theory describing the smooth structure of a representation space
is rather involved and belongs more to algebraic geometry, [7]. In this appendix,
we summarize the basic general facts we need, remaining in the context of
differential geometry.

Let G be a connected Lie group and π be a finitely generated group. Let
R(π) be the space of representations of π in G. For any set of generators
a = (a1, . . . , aN ) of π, the map

ξa : R(π)→ GN , ρ→ (ρ(a1), . . . , ρ(aN )),
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is injective, and allows us to identify R(π) with ξa(R(π)). If a = (a1, . . . , aN )
and b = (b1, . . . , bM ) are two sets of generators, the bijection ξb ◦ ξ−1

a from
ξa(R(π)) onto ξb(R(π)) is a homeomorphism. Indeed, expressing the ai’s in
terms of the bj ’s, we obtain a smooth map ϕ : GN → GM extending ξb ◦ ξ−1

a .
We endow R(π) with the topology such that for any set of generators a of π,
ξa is a homeomorphism onto its image.

Let Rs(π) be the set of representations ρ of π in G admitting an open neigh-
borhood U and a set of generators (a1, . . . , aN ) such that ξa(U) is a smooth
submanifold of GN . Rs(π) has a unique manifold structure such that for any
such pairs (U, a), the map ξa : U → ξa(U) is a diffeomorphism. Indeed,
arguing as above, we see that for any two pairs (U, a) and (V, b) the map
ξb ◦ ξ−1

a : ξa(U ∩ V )→ ξb(U ∩ V ) is a diffeomorphism.
For any representation ρ of π in G, composing ρ with the adjoint represen-

tation, the Lie algebra g becomes a left G-module. Consider the corresponding
cochain complex in degrees 0 and 1: C0(π,Ad ρ) = g, C1(π,Adρ) = Map(π, g),
the differential in degree 0 is

dρ : g→ C1(π,Ad ρ), ξ →
(
γ → Adρ(γ) ξ − ξ

)

and the space of 1-cocycle

Z1(π,Ad ρ) =
{
τ : π → g; ∀γ1, γ2 ∈ π, τ(γ1γ2) = τ(γ1) + Adρ(γ1) τ(γ2)

}
.

For any γ ∈ π, the map eγ : R(π) → G sending ρ into ρ(γ) is continuous.
Its restriction to Rs(π) is smooth. If ρ ∈ Rs(π), we have a natural map from
TρRs(π) to Z1(π,Ad ρ) sending ρ̇ to the cocycle τ given by

τ(γ) = Rρ(γ)−1Tρeγ(ρ̇), ∀γ ∈ π,
where for any g ∈ G, Rg−1 : TgG → g is the linear map tangent to the right
multiplication by g−1. It is easily seen that this map is well-defined and injec-
tive, so we consider the tangent space TρRs(π) as a subspace of Z1(π,Ad ρ).
G acts on R(π) by conjugation. The action preserves Rs(π). A straight-

forward computation shows that the infinitesimal action at ρ ∈ Rs(π) is the
differential dρ introduced above.

Assume from now on that G is compact. The subset R0(π) of R(π) consist-
ing of irreducible representations is open. Indeed, if (a1, . . . , an) is any set of
generators, then ξa(R0(π)) = ξa(R(π)) ∩ (GN )0 where (GN )0 consists of the
N -uplets whose centralizer in G is the center. By the slice theorem for action
of compact Lie group, (GN )0 is open in GN , because it is either empty or the
principal stratum for the diagonal action of G on GN by conjugation.

Set Rs,0(π) := R0(π)∩Rs(π). The quotient spaceMs,0(π) := Rs,0(π)/G is
a smooth manifold because it is the quotient of a smooth manifold by a smooth
action of the compact Lie group G with constant isotropy Z(G). Furthermore,
for any ρ ∈ Rs,0(π), the infinitesimal action at ρ being dρ, we have

H0(π,Ad ρ) = ker dρ = z(g),
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where z(g) is the Lie algebra of the center of G. Furthermore T[ρ]Ms,0(π)

identifies with a subspace of H1(π,Ad ρ) = Z1(π,Ad ρ)/ Im dρ.

Appendix B. Reidemeister Torsion

Let M be a compact manifold possibly with a non empty boundary. Let
E → M be a flat real vector bundle equipped with a flat metric. Denote
by detH•(E) the line

detH•(E) = detH0(E)⊗ (detH1(E))−1 ⊗ · · · ⊗ (detHn(E))(−1)n

,

where n is the dimension of M and for any finite dimensional vector space V ,
detV =

∧top
V . In the acyclic case, detH•(E) = R. The Reidemeister torsion

of E is a non-vanishing vector τ(E) ∈ detH•(E) well-defined up to sign. Let
us recall briefly its definition.

Let K be the simplicial complex of a smooth triangulation of X. For any
cell σ of K, let Eσ be the space of flat sections of the restriction of E to σ. In-
troduce the complex C•(K,E) where Ck(K,E) =

⊕
dimσ=k Eσ with the usual

differential. Then the Hk(E) are the homology groups of C•(K,E). Conse-
quently, we have an isomorphism detC•(K,E) ' detH•(E). Furthermore, for
any cell σ, Eσ is an Euclidean space. So Ck(K,E) has a natural scalar product
where the Eσ are mutually orthogonal, and detH•(E) inherits an Euclidean
product by the previous isomorphism. The Reidemeister torsion τ(E) is by
definition a unit vector of detH•(E). It does not depend on the choice of the
triangulation, cf. [9], Section 9.

The torsion satisfies the following properties, cf. [6] for 1, 2 and [9], Section 3
for 3.

1. Let E = E1⊕E2 where E1 and E2 are two flat Euclidean vector bundles
with base M . Then we have a natural isomorphism H•(E) ' H•(E1)⊕
H•(E2). The corresponding isomorphism detH•(E) ' detH•(E1) ⊗
detH•(E2) sends τ(E) into τ(E1)⊗ τ(E2).

2. Let E1 → M1 and E2 → M2 be two flat Euclidean vector bundles.
Assume that M1 is closed. Set M = M1 ×M2 and E = E1 � E2. By
Künneth theorem, we have H•(E) ' H•(E1)⊗H•(E2). The correspond-
ing isomorphism

detH•(E) '
(
detH•(E1)

)χ(E2) ⊗
(
detH•(E2)

)χ(E1)

sends τ(E) into τ(E1)χ(E2) ⊗ τ(E2)χ(E1).
3. Let E be a flat Euclidean vector bundle whose base M is obtained by

gluing two manifolds M1, M2 along their boundary N . By the Mayer-
Vietoris exact sequence, we have an isomorphism

detH•(E)⊗ detH•(E|N ) ' detH•(E|M1
)⊗ detH•(E|M2

).
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This isomorphism sends τ(E)⊗ τ(E|N ) to τ(E|M1
)⊗ τ(E|M2

).

Finally, it is a classical exercise to compute the torsion of a bundle over a circle.
4. Let E be a flat Euclidean vector bundle E on an oriented circle C.

Let p ∈ C and let ϕ : Ep → Ep be the holonomy of C. Let H =
ker(ϕ − id). We have two isomorphisms H0(E) ' H and H1(E) ' H
sending u ∈ H into [p]⊗ u and [C]⊗ u respectively. Thus detH•(E) '
detH ⊗ (detH)−1 ' R, so that the torsion may be considered as a real
number. With this convention, we

τ(E) = det−1
(
(ϕ− id)|H⊥

)
,

where H⊥ is the orthogonal complement of H.
Further references on Reidemeister torsion are the monographs [15] and [11].
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