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COMPACT DOMAINS WITH PRESCRIBED CONVEX BOUNDARY
METRICS IN QUASI-FUCHSIAN MANIFOLDS

by Dmitriy Slutskiy

Abstract. — We show the existence of a convex compact domain in a quasi-Fuchsian
manifold such that the induced metric on its boundary coincides with a prescribed
surface metric of curvature K ≥ −1 in the sense of A. D. Alexandrov.

This result extends the existence part of the classical result by Alexandrov and
Pogorelov on the realization of a convex domain with a prescribed boundary metric
in H3 in the case where H3 is replaced by a quasi-Fuchsian manifold and therefore the
topology of a convex domain is not trivial.

Résumé (Domaines convexes compacts avec des métriques de bord prescrites dans les
variétés quasi-fuchsiennes). — Nous montrons l’existence d’un tel domaine compact
convexe dans une variété quasi-fuchsienne que la métrique induite sur son bord coïncide
avec une métrique prescrite de courbure K ≥ −1 au sens de A. D. Alexandrov.

Ce résultat étend la partie d’existence d’un résultat classique par Alexandrov et
Pogorelov sur la réalisation d’un domaine convexe avec une metrique de bord prescrite
dans H3 dans le cas où H3 est remplacé par une variété quasi-fuchsienne et donc la
topologie d’un domaine convexe n’est pas triviale.
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310 D. SLUTSKIY

1. Introduction

The problem of existence and uniqueness of an isometric realization of a
surface with a prescribed metric in a given ambient space is classical in the
metric geometry. Initially stated in the Euclidean case, it can be posed for
surfaces in other spaces, in particular, in hyperbolic 3-space H3.

One of the first fundamental results in this theory is due to A. D. Alexandrov.
It concerns the realization of polyhedral surfaces in the spaces of constant
curvature.

As in [22], we denote by Mm(K) the m-dimensional complete simply con-
nected space of constant sectional curvatureK. So,M3(K) stands for spherical
3-space of curvature K in the case K > 0;M3(K) stands for hyperbolic 3-space
of curvature K when K < 0; and in the case K = 0, M3(K) denotes Euclidean
3-space.

Then the result of A. D. Alexandrov reads as follows:

Theorem 1.1 ([3]). — Let h be a metric of constant sectional curvature K with
cone singularities on a sphere S2 such that the total angle around every singular
point of h does not exceed 2π. Then there exists a closed convex polyhedron
in M3(K) equipped with the metric h which is unique up to the isometries
of M3(K). Here we include the doubly covered convex polygons, which are
planar in M3(K), in the set of convex polyhedra.

Later, A. D. Alexandrov and A. V. Pogorelov proved the following statement
in H3 [19]:

Theorem 1.2. — Let h be a C∞-regular metric of sectional curvature which
is strictly greater than −1 on a sphere S2. Then there exists an isometric
immersion of the sphere (S2, h) into hyperbolic 3-space H3 which is unique up
to the isometries of H3. Moreover, this immersion bounds a convex domain
in H3.

Definition 1.1 ([15, p. 30], [17, p. 11]). — A discrete finitely generated sub-
group ΓF ⊂ PSL2(R) without torsion and such that the quotient H2/ΓF has
a finite volume, is called a Fuchsian group.

Given a hyperbolic plane P in H3 and a Fuchsian group ΓP ⊂ PSL2(R)
acting on P, we can canonically extend the action of the group ΓP on the
whole space H3.

Here we recall another result on the above-mentioned problem considered for
a special type of hyperbolic manifolds, namely, for Fuchsian manifolds, which
is due to M. Gromov [12]:

Theorem 1.3. — Let S be a compact surface of genus greater than or equal
to 2, equipped with a C∞-regular metric h of sectional curvature which is greater
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than −1 everywhere. Then there exists a Fuchsian group ΓF acting on H3, such
that the surface (S, h) is isometrically embedded in H3/ΓF .

Remark 1.4. — The hyperbolic manifold H3/ΓF from the statement of The-
orem 1.3 is called Fuchsian. Note also that the limit set Λ(ΓF ) ⊂ ∂∞H3 of a
Fuchsian group ΓF is a geodesic circle in projective space CP1 regarded as the
boundary at infinity ∂∞H3 of the Poincaré ball model of hyperbolic 3-space H3.

In 2007 F. Fillastre [9] proved a polyhedral analog of Theorem 1.3, i.e., when
h is a hyperbolic metric with cone singularities of angle less than 2π (the term
“hyperbolic” means for us “of constant curvature equal to −1 everywhere”).

Definition 1.2 ([13]). — A compact hyperbolic manifold M is said to be
strictly convex if any two points in M can be joined by a minimizing geodesic
which lies inside the interior of M . This condition implies that the intrinsic
curvature of ∂M is greater than −1 everywhere.

In 1992 F. Labourie [13] obtained the following result which can be consid-
ered as a generalization of Theorems 1.2 and 1.3:

Theorem 1.5. — Let M be a compact manifold with boundary (different from
the solid torus) which admits a structure of a strictly convex hyperbolic man-
ifold. Let h be a C∞-regular metric on ∂M of sectional curvature which is
strictly greater than −1 everywhere. Then there exists a convex hyperbolic met-
ric g on M which induces h on ∂M :

g|∂M = h.

Recall that the limit set Λ(ΓF ) ⊂ ∂∞H3 of a Fuchsian group ΓF acting
on H3 is the intersection of some hyperbolic plane with the boundary at infinity
of the hyperbolic 3-space H3, i.e., a circle (in the Poincaré and Klein models of
the hyperbolic 3-space).

Particular examples of the varieties considered in Theorem 1.5 are the quasi-
Fuchsian manifolds.

Definition 1.3 ([15, p. 120]). — A quasi-Fuchsian manifold is a quasiconfor-
mal deformation space QH(ΓF ) of a Fuchsian group ΓF ⊂ PSL2(R).

In other words, a quasi-Fuchsian manifold is a quotient H3/ΓqF of H3 by
a discrete finitely generated group ΓqF ⊂ PSL2(R) of hyperbolic isometries
of H3 such that there is a Fuchsian group ΓF of isometries of H3 such that
the limit set Λ(ΓqF ) ⊂ ∂∞H3 of ΓqF is a Jordan curve which can be obtained
from the circle Λ(ΓF ) ⊂ ∂∞H3 by a quasiconformal deformation of ∂∞H3. The
group ΓqF is called quasi-Fuchsian.

In geometric terms, a quasi-Fuchsian manifold is a complete hyperbolic man-
ifold homeomorphic to S × R, where S is a closed connected surface of genus
at least 2, which contains a convex compact subset.
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Let us also recall the A. D. Alexandrov notion of curvature which does not
require a metric of a surface to be regular.

Let X be a complete locally compact length space and let dX(·, ·) stand
for the distance between points in X. For a triple of points p, q, r ∈ X a
geodesic triangle4(pqr) is a triple of geodesics joining these three points. For a
geodesic triangle4(pqr) ⊂ X we denote by4(p̃q̃r̃) a geodesic triangle sketched
in M2(K) whose corresponding edges have the same lengths as 4(pqr).

Definition 1.4 ([22, p. 7]). — X is said to have curvature bounded below by
K iff every point x ∈ X has an open neighborhood Ux ⊂ X such that for
every geodesic triangle 4(pqr) whose edges are contained entirely in Ux the
corresponding geodesic triangle 4(p̃q̃r̃) sketched in M2(K) has the following
property: for every point z ∈ qr and for z̃ ∈ q̃r̃ with dX(q, z) = dM2(K)(q̃, z̃)
we have

dX(p, z) ≥ dM2(K)(p̃, z̃).

In 2016 F. Fillastre, I. Izmestiev, and G. Veronelli [10] proved that for every
metric on the torus with curvature bounded from below by −1 in the Alexan-
drov sense there exists a hyperbolic cusp with convex boundary such that the
induced metric on the boundary is the given metric.

Our main goal is to prove the following extension of Theorem 1.5:

Theorem 1.6. — LetM be a compact connected 3-manifold with boundary of
the type S × [−1, 1] where S is a closed connected surface of genus at least 2.
Let h be a metric on ∂M of curvature K ≥ −1 in the Alexandrov sense. Then
there exists a hyperbolic metric g inM with a convex boundary ∂M such that
the metric induced on ∂M is h.

In particular, the following result proved in [23] immediately follows from
Theorem 1.6.

Theorem 1.7. — LetM be a compact connected 3-manifold with boundary of
the type S×[−1, 1] where S is a closed connected surface of genus at least 2. Let
h be a hyperbolic metric with cone singularities of angle less than 2π on ∂M
such that every singular point of h possesses a neighborhood in ∂M which does
not contain other singular points of h. Then there exists a hyperbolic metric g
inM with a convex boundary ∂M such that the metric induced on ∂M is h.

The idea of the proof of Theorem 1.7 is given in [25].
Theorem 1.7 can also be considered as an analog of Theorem 1.1 for the

convex hyperbolic manifolds with polyhedral boundary.

Definition 1.5 ([7]). — A pleated surface in a hyperbolic 3-manifold M is
a complete hyperbolic surface S together with an isometric map f : S → M
such that every s ∈ S is in the interior of some geodesic arc which is mapped
by f to a geodesic arc inM.
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A pleated surface resembles a polyhedron in the sense that it has flat faces
that meet along edges. Unlike a polyhedron, a pleated surface has no corners,
but it may have infinitely many edges that form a lamination.

Remark 1.8. — The surfaces serving as the connected components of the
boundary ∂M of the manifold M from the statement of Theorem 1.7, which
are equipped by assumption with hyperbolic polyhedral metrics, do not nec-
essarily have to be polyhedra embedded in M: these surfaces can be par-
tially pleated, i.e., the universal covers in H3 of these surfaces can contain
pleated 2-dimensional domains situated between several pairwise nonintersect-
ing geodesics which are also geodesics in H3.

Definition 1.6 ([16]). — LetM be the interior of a compact manifold with
boundary. A complete hyperbolic metric g on M is convex co-compact if M
contains a compact subset K which is convex: any geodesic segment c in (M, g)
with endpoints in K is contained in K.

In 2002 J.-M. Schlenker [21] proved uniqueness of the metric g in Theo-
rem 1.5. Thus, he obtained

Theorem 1.9. — Let M be a compact connected 3-manifold with boundary
(different from the solid torus) which admits a complete hyperbolic convex co-
compact metric. Let g be a hyperbolic metric onM such that ∂M is C∞-regular
and strictly convex. Then the induced metric I on ∂M has curvature K > −1.
Each C∞-regular metric on ∂M with K > −1 is induced on ∂M for a unique
choice of g.

It would be natural to conjecture that the metric g in the statements of
Theorems 1.6 and 1.7 is unique. The methods used in their demonstration do
not presently allow to attack this problem.

At last, recalling that the convex quasi-Fuchsian manifolds are special cases
of the convex co-compact manifolds, we can guess that Theorems 1.6 and 1.7
remain valid in the case when M is a convex co-compact manifold. It would
be interesting to verify this hypothesis in the future.

2. Construction of a quasi-Fuchsian manifold containing a compact
convex domain with a prescribed Alexandrov metric

of curvatureK ≥ −1 on the boundary

A compact connected 3-manifoldM of the type S × [−1, 1] from the state-
ment of Theorem 1.6, where S is a closed connected surface of genus at least 2,
can be regarded as a convex compact 3-dimensional domain of an unbounded
quasi-Fuchsian manifoldM◦ = H3/ΓQF where ΓQF stands for a quasi-Fuchsian
group of isometries of hyperbolic space H3. Note that the boundary ∂M of such
domain M consists of two distinct locally convex compact 2-surfaces in M◦.
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Thus, the metric h from the statement of Theorem 1.6 is a pair of Alexandrov
metrics of curvature K ≥ −1 at every point defined on a couple of compact
connected surfaces of the same genus asM, and our aim is to find such quasi-
Fuchsian subgroup ΓQF of isometries of hyperbolic space H3 and such convex
compact domainM⊂M◦ that the induced metric of its boundary ∂M coin-
cides with h.

The main idea of the proof of Theorem 1.6 is
(1) to approximate the Alexandrov metric h by a sequence {hn}n∈N of

C∞-regular metrics for which the Labourie-Schlenker Theorem 1.9 is
applicable, and therefore, there are such quasi-Fuchsian groups Γn of
isometries of H3 and such convex compact domains Mn in the quasi-
Fuchsian manifoldsM◦n = H3/Γn that the induced metrics of the bound-
aries ∂Mn of the setsMn are exactly hn, n ∈ N;

(2) to find a sequence of positive integers nk −−−−→
k→∞

∞ such that the sub-

sequences of groups {Γnk}k∈N and of domains {Mnk}k∈N converge (the
types of convergence will be specified later);

(3) and to show that the induced metric on the boundary of the limit domain
M coincides with h.

For convenience, let us introduce new notation of some entities that we con-
sidered before: we redefine the domain M and the quasi-Fuchsian manifold
M◦ by the symbols M∞ and M◦∞, correspondingly. Also, let us denote the
connected components of the boundary ∂M∞ of the limit domainM∞ by S+

∞
and S−∞, and the induced metrics on the surfaces S+

∞ and S−∞ by h+
∞ and h−∞,

respectively. Therefore, to define the metric h from the statement of Theo-
rem 1.6 means to give a pair of Alexandrov metrics h+

∞ and h−∞ of curvature
K ≥ −1 at every point.

2.1. Construction of sequences of metrics converging to the prescribed metrics

Definition 2.1. — We say that a sequence of metrics {hn}n∈N on a compact
surface S converges to a metric h if for any ε > 0 there exists such N(ε) ∈ N
that all integers n ≥ N(ε) and for any pair of points x and y on S the following
inequality holds:

(2.1) |dhn(x, y)− dh(x, y)| < ε.

First, we shall learn to approximate an Alexandrov metric of curvature
K ≥ −1 on a compact connected surface by a sequence of hyperbolic poly-
hedral metrics (i.e., of sectional curvature −1 everywhere except at a discrete
set of points with conic singularities of angles less than 2π). Next, we shall learn
to approximate any hyperbolic polyhedral metric by a sequence of C∞-regu-
lar metrics of curvature K > −1. Thus, we will be able to find a sequence
of C∞-regular metrics of curvature K > −1 on a compact connected surface
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converging to the given metric of curvature K ≥ −1 at every point in the
Alexandrov sense.

2.1.1. Construction of a sequence of hyperbolic polyhedral metrics converging
to a metric in the Alexandrov sense. — A. D. Alexandrov in [3] developed
a way to approximate an Alexandrov metric of curvature K ≥ 0 on a com-
pact connected surface by a sequence of Euclidean polyhedral metrics. Re-
cently T. Richard [20, Annex A] adapted the Alexandrov method to the case
of Alexandrov metrics of curvature K ≥ −1.

Here we give a more detailed description of what T. Richard proved in the
annex of his PhD thesis.

In terms of [20, Annex A] let us recall the following definition due to A. D. Ale-
xandrov.

Definition 2.2. — Let (X, d) be an Alexandrov compact surface of curvature
K ≥ −1 everywhere. A triangulation T of (X, d) is a family of geodesic tri-
angles {Ti}i∈I with disjoint interiors each homeomorphic to an open disk and
such that the family {Ti}i∈I covers X. Note that in this definition two trian-
gles can have edges intersecting in more than one point that do not coincide
though.

T. Richard verifies that the following proposition proved in [3, Section 6,
p. 88] is valid for an Alexandrov surface of curvature K ≥ −1.

Lemma 2.1 (Lemma A.1.2 in [20]). — For every ε > 0, (X, d) admits a tri-
angulation (in the Alexandrov sense) by convex triangles whose diameters are
inferior to ε.

After T. Richard let us fix ε > 0, denote by Tε a triangulation of (X, d)
provided by Lemma 2.1, and construct a polyhedral surface with hyperbolic
faces (Xε, d̄ε) as it follows: for every triangle T ∈ Tε we associate a compar-
ison triangle T sketched on a hyperbolic plane H2 (= M2(−1)) such that all
corresponding edges of T and T have equal lengths, then we glue together the
collection of hyperbolic comparison triangles following the same combinatorics
as that of Tε, and thus we obtain a polyhedral surface Xε.

We must note the following property of Xε:

Lemma 2.2 (Lemma A.2.1 in [20]). — (Xε, d̄ε) has curvature K ≥ −1 every-
where in the Alexandrov sense.

Remark 2.3. — By construction, the curvature of Xε is equal to −1 every-
where with the exception of vertices of the triangles forming Xε. Therefore,
Lemma 2.2 means that the above mentioned vertices are conic singularities of
angles ≤ 2π of the hyperbolic polyhedral metric on Xε.
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At last, T. Richard [20, pp. 87–91] proves that for any ε > 0 there exists
a real number ε′ > 0 (depending only on (X, d) and verifying the property
ε′ → 0 as ε→ 0) such that for any pair of points v and w in X and for a pair
of corresponding points v̄ and w̄ in Xε the following inequality holds:

(2.2) |d̄ε(v̄, w̄)− d(v, w)| < ε′.

T. Richard calls this way of convergence of hyperbolic polyhedral surfaces
(Xε, d̄ε) to the Alexandrov surface (X, d) as ε → 0 a Gromov-Hausdorff con-
vergence.

Let us rewrite the results of T. Richard described above in the language
developed in Section 2. We consider an Alexandrov compact surface (X, d) as
a topological surface S endowed with a metric h of curvature K ≥ −1 in the
Alexandrov sense and we note that the construction of a hyperbolic polyhedral
surface Xε based on a triangulation Tε of (X, d) (= (S, h)) is equivalent to a
construction of a hyperbolic polyhedral metric hε on S as follows: leaving the
lengths of all edges of the triangulation Tε unchanged, we replace the metric
h restricted on the interior of each triangle T ∈ Tε by a hyperbolic metric
(i.e., of curvature −1 everywhere) inside T . Thus, the inequality (2.2) becomes
equivalent to the following one:

|dhε(v, w)− dh(v, w)| < ε′

for all pairs of points v and w in S (compare it with (2.1)).
Therefore, choosing a sequence of positive real numbers εn → 0 as n → ∞

and then applying the argument of T. Richard for each εn, we state

Lemma 2.4. — Let S be a closed compact surface endowed with a metric h of
curvature K ≥ −1 in the Alexandrov sense, there exists a sequence of hyperbolic
polyhedral metrics {hn}n∈N converging to h (hereinafter we mean by default the
convergence of metrics in the sense of inequality (2.1)).

2.1.2. Construction of a sequence of C∞-regular metrics converging to a hy-
perbolic polyhedral metric. — In this section, we prove the following

Lemma 2.5. — Let S be a surface with a hyperbolic polyhedral metric h. Then
there is a sequence of C∞-regular metrics {hn}n∈N with sectional curvatures
strictly greater than −1 everywhere, converging to the metric h.

First, let us state two preliminary results.

Lemma 2.6. — Let S be a surface with a hyperbolic polyhedral metric h. Then
there is a sequence of C∞-regular metrics {hn}n∈N with sectional curvatures
greater than or equal to −1 everywhere, converging to the metric h.

To prove Lemma 2.6, we construct small conic surfaces in H3 whose in-
duced metrics coincide with the restrictions of the metric h on neighborhoods
of the conic singularities of h, and then we convolute these conic surfaces with
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C∞-smooth functions as in [11]. A full explanation of this idea is given in [23,
Lemma 3.10] (see also [24]).

Also, a direct calculation shows the validity of the following statement (see
[23, Lemma 3.11] and also [24] for the detailed proof).

Lemma 2.7. — Consider a regular metric surface (S, h), where S stands for
a 2-dimensional surface, h is a metric provided on S, and Kh(x) denotes the
sectional curvature of (S, h) at a point x ∈ S. If we consider another metric
surface (S, g), where the metric g = λh is a multiple of h and λ > 0 is a positive
constant, then the sectional curvature Kg(x) of (S, g) at a point x ∈ S is related
to Kh(x) as follows:

(2.3) Kg(x) =
1

λ
Kh(x).

We are now ready to give a demonstration of Lemma 2.5.

Proof. — Let h be a hyperbolic polyhedral metric on a closed compact surface
S of genus g. By Lemma 2.6, there is a sequence of C∞-smooth metrics {~n}n∈N
on S, with sectional curvature ≥ −1 everywhere, converging to h as n→∞.

Next, let us choose a monotonically decreasing sequence of real numbers
λn −−−−→

n→∞
1 and let us define the metrics hn

def
= λn~n on S, n ∈ N. Thus, by

Lemma 2.7, the sectional curvatures of the metrics hn, n ∈ N are strictly greater
than −1 everywhere on S, and, by construction, the sequence of C∞-smooth
metrics {hn}n∈N converges to h as n→∞. �

2.2. Convergence of convex surfaces in a compact domain in H3. — Let h+
∞ and

h−∞ be two metrics of curvature K ≥ −1 in the Alexandrov sense everywhere
on a closed compact surface S of genus g. To be able to apply the Labourie-
Schlenker Theorem 1.9, we shall construct two sequences of C∞-regular metrics
of curvature strictly greater than−1, converging to h+

∞ and h−∞. By Lemma 2.4,
there are two sequences of hyperbolic polyhedral metrics {~+

n }n∈N and {~−n }n∈N
on S, converging to h+

∞ and h−∞ as n → ∞. Also, by Lemma 2.5, for each
n ∈ N there are sequences {~+

n,k}k∈N and {~−n,k}k∈N of C∞-smooth metrics of
curvature K > −1 everywhere on S, converging to the hyperbolic polyhedral
metrics ~+

n and ~−n , respectively, as k →∞. Thus, we are now able to extract
sequences of C∞-smooth metrics {h+

n }n∈N and {h−n }n∈N of curvature K > −1,
converging to the Alexandrov metrics h+

∞ and h−∞, respectively (where h+
n ∈

{~+
n,k}k∈N and h−n ∈ {~−n,k}k∈N, n ∈ N).
By the Labourie-Schlenker Theorem 1.9, for each n ∈ N there is a unique

compact convex domainMn of a quasi-Fuchsian manifoldM◦n with hyperbolic
metric gn such that the induced metrics of the components S+

n and S−n of the
boundary ∂Mn

def
= S+

n ∪S−n are equal to h+
n and h−n (see also Fig. 2.1). It means
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S+
n

S−
n

Mn

M◦
n

Figure 2.1. The surfaces S+
n and S−n in the quasi-Fuchsian

manifoldM◦n.

that, for each n ∈ N there exist isometric embeddings fS+
n

: (S, h+
n )→M◦n and

fS−n : (S, h−n )→M◦n such that fS+
n

(S) = S+
n ⊂M◦n and fS−n (S) = S−n ⊂M◦n.

As M◦n can be retracted by deformation on S+
n and S−n , we conclude that

their fundamental groups are homomorphic:

π1(S+
n ) ' π1(M◦n) ' π1(S−n ).

Also, by construction,

π1(S+
n ) ' π1(S) ' π1(S−n ).

Hence, for all n ∈ N

(2.4) π1(M◦n) ' π1(S).

Since the manifolds M◦n, n ∈ N, are hyperbolic, their universal cover-
ings M̃◦n are actually copies of hyperbolic 3-space H3. Moreover, as each
M◦n is quasi-Fuchsian, there exists a holonomy representation ρn : π1(M◦n)→
I(M̃◦n)(= I(H3)) of the fundamental group ofM◦n in the group of isometries
of the universal covering M̃◦n(= H3) such that M◦n = M̃◦n/[ρn(π1(M◦n))] =
H3/[ρn(π1(M◦n))] and the limit set Λρn ⊂ ∂∞H3 of ρn(π1(M◦n)) is homotopic
to a circle. By (2.4), we can also speak about the holonomy representation ρSn :

π1(S)→ I(M̃◦n)(= I(H3)) of the fundamental group of S in the group of isome-
tries of the universal covering M̃◦n(= H3) such that ρSn(π1(S)) = ρn(π1(M◦n)).
Thus we have thatM◦n = M̃◦n/[ρSn(π1(S))] = H3/[ρSn(π1(S))] and the limit set
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ΛρSn of ρSn(π1(S)) is just Λρn , n ∈ N. We also suppose that π1(S) is generated
by the elements {γ1, . . . , γl}.

H3

M̃n

S̃−
n

S̃+
n

Λρn

Figure 2.2. The universal coverings S̃+
n and S̃−n in the

Kleinian model K3 of hyperbolic space H3.

Inside M̃◦n(= H3), n ∈ N, we can find a convex set M̃n serving as a universal
covering of the domain Mn ⊂ M◦n, i.e., such that Mn = M̃n/[ρ

S
n(π1(S))],

and a pair of convex surfaces S̃+
n and S̃−n serving as universal coverings of

the surfaces S+
n ⊂ M◦n and S−n ⊂ M◦n (see Fig. 2.2), i.e., such that S+

n =

S̃+
n /[ρ

S
n(π1(S))] and S−n = S̃−n /[ρSn(π1(S))]. By construction, ∂M̃n = S̃+

n ∪ S̃−n
and the boundaries at infinity ∂∞M̃n = ∂∞S̃+

n = ∂∞S̃−n = ΛρSn . Indeed, since
for every n ∈ N the surfaces S̃+

n ⊂ H3 and S̃−n ⊂ H3 are invariant under
the action of the group ρSn(π1(S)) of isometries of H3, we have that the limit
sets ∂∞S̃+

n and ∂∞S̃−n of S̃+
n and S̃−n , respectively, are subsets of the limit

set ΛρSn of H3 under the action of the group ρSn(π1(S)). On the other hand,
given a point at infinity z∞ ∈ ΛρSn , there is a point z ∈ H3 and a sequence
{γj}j∈N ⊂ π1(S) such that the sequence of points {ρSn(γj).z}j∈N ⊂ H3 tends
to z∞ as j goes to∞. Consider some points z+ ∈ S̃+

n and z− ∈ S̃−n . Let d+
z and

d−z stand for the hyperbolic distances dH3(z, z+) and dH3(z, z−). The elements
ρSn(γj), j ∈ N, are isometries of H3. Hence, dH3(ρSn(γj).z, ρ

S
n(γj).z

+) = d+
z

and dH3(ρSn(γj).z, ρ
S
n(γj).z

−) = d−z for all j ∈ N. Therefore, the sequences of
points {ρSn(γj).z

+}j∈N ⊂ S̃+
n and {ρSn(γj).z

−}j∈N ⊂ S̃−n also converge to z∞
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as j → ∞, and so, z∞ ∈ ∂∞S̃+
n and z∞ ∈ ∂∞S̃−n . Thus, ΛρSn ⊂ S̃+

n and
ΛρSn ⊂ S̃−n .

Denote by pn : M̃n → Mn the projection of M̃n on Mn, n ∈ N. By
construction, S+

n = pn(S̃+
n ) and S−n = pn(S̃−n ), n ∈ N.

For every n ∈ N we lift the metric gn of the manifoldMn to the metric g̃n of
the universal covering M̃n in such a way that for any γ ∈ π1(S) and for x ∈Mn

and x̃ ∈ M̃n satisfying the relation x = pn(x̃), we have g̃n(x̃) = pn
∗gn(x),

i.e., the metric g̃n(x̃) ∈ T ∗x̃M̃n is a pull-back of the metric gn(x) ∈ T ∗xMn.
We have already remarked that, since gn is hyperbolic, g̃n is hyperbolic too.
Denote by h̃+

n the restriction of the metric g̃n on the surface S̃+
n and by h̃−n the

restriction of the metric g̃n on the surface S̃−n , n ∈ N. By construction, the
metric h̃+

n is the lift of h+
n from the surface S+

n to its universal covering S̃+
n and

the metric h̃−n is the lift of h−n from S−n to S̃−n , n ∈ N.

Definition 2.3. — The diameter δ of a set S with a metric h is the following
quantity: δ def

= sup{dh(u, v)|u, v ∈ S} where dh(u, v) stands for the distance
between points u and v in the metric h.

Lemma 2.8. — There exists a positive constant δS < ∞ which bounds from
above the diameters δ+

n and δ−n of the surfaces (S, h+
n ) and (S, h−n ) for all n ∈ N.

Proof. — Recall the way of construction of the metric h+
n on S, n ∈ N.

First we applied Lemma 2.4, and thus obtained the sequence of hyperbolic
polyhedral metrics {~+

n }n∈N converging to the Alexandrov metric h+
∞. Every

metric ~+
n is obtained from h+

∞ by choosing a geodesic triangulation on (S, h+
∞)

and by replacing the metric h+
∞ of curvature K ≥ −1 in the interior of each

triangle by a hyperbolic plane metric (i.e., of curvature K = −1) while keeping
the lengths of the edges of a considered triangulation unchanged. Therefore,
by construction, the length of any curve on S measured in the metric ~+

n does
not exceed the corresponding length measured in h+

∞.
Next, for each n ∈ N we constructed the sequence of C∞-regular metrics

{~+
n,k}k∈N of curvature K > −1 converging to the hyperbolic polyhedral metric

~+
n by applying Lemma 2.5, and the metric h+

n belongs to the set {~+
n,k}k∈N.

The application of Lemma 2.5 consists of two stages. The first step is the
construction of a sequence of C∞-regular metrics {~+

n,k}k∈N of curvature K ≥
−1 converging to ~+

n due to Lemma 2.6, smoothing the conic singularities
of ~+

n by convolution. This procedure does not increase the distance between
any two points on the surface S. At the second stage, we considered a sequence
of positive real numbers {λk}k∈N decreasing to 1 and then, by multiplying the
metric ~+

n,k by the constant λk(> 1), we obtained the metric ~+
n,k for each k ∈ N

and for every n ∈ N, and thus, we increased all distances on S by
√
λk.
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Since λ1 ≥ λk for every k ∈ N, the distances on S measured in the metric
h+
λ

def
= λ1h

+
∞ are not smaller than the corresponding distances measured in the

metrics h+
n for all n ∈ N. Similarly, the distances on S measured in the metric

h−λ
def
= λ1h

−
∞ are not smaller than the corresponding distances measured in the

metrics h−n for all n ∈ N.
The diameters δ+

λ and δ−λ of the surfaces (S, h+
λ ) and (S, h−λ ) are finite

numbers because S is compact. We can pose δS = max(δ+
λ , δ

−
λ ). �

Lemma 2.9. — There exists a positive constant δM < ∞ such that for each
n ∈ N and for every pair of points u ∈ S+

n ⊂ M◦n and v ∈ S−n ⊂ M◦n the
distance dgn(u, v) between u and v in the manifoldM◦n is less than δM.

Proof. — By Theorem 3.1 in Section 3, the distances σSn between the sur-
faces S+

n and S−n , n ∈ N, are uniformly bounded by a constant σS . Also, by
Lemma 2.8, the diameters of S+

n and S−n are both bounded by a constant δS
which does not depend on n. Hence, our assertion is valid if we take δM to be
equal to σS + 2δS . �

G. McShane remarked that the existence of a constant δM > 0 which serves
as a common upper bound for the distances between the boundary components
S+
n and S−n of the domainsMn, n ∈ N does not guarantee that the diameters

ofMn are uniformly bounded from above.
Indeed, J. Brock in his PhD thesis (see also [6]) studied the following exam-

ple.
Given a pair of homeomorphic Riemann surfaces X and Y of finite type

and a “partial pseudo Anosov” mapping class φ, by the Ahlfors-Bers simulta-
neous uniformization theorem there is a sequence of quasi-Fuchsian manifolds
{Q(φnX,Y )}∞n=1. The diameters of each of the boundary components of the
convex hull of Q(φnX,Y ) is uniformly bounded in n and so is the distance
between the two boundary components but the diameter of the convex hull
of Q(φnX,Y ) goes to infinity because of a “cusp growing there” as n→∞.

However, the diameters of the domainsMn, n ∈ N do not play a role in the
demonstration of Theorem 1.6; only the distances between the surfaces S+

n and
S−n , n ∈ N, are of importance here.

Let us now return to the proof of Theorem 1.6.
Let us fix an arbitrary point x ∈ S, which is not, however, a point of

singularity for the metrics h+
∞ and h−∞ on S, and let us denote x+

n
def
= fS+

n
(x) ∈

S+
n ⊂ M◦n and x−n

def
= fS−n (x) ∈ S−n ⊂ M◦n, n ∈ N. Denote also the distance

between the points x+
n and x−n inM◦n by σxn, n ∈ N. By Lemma 2.9, σxn < δM

for all n ∈ N.
Let us consider two copies S̃+ and S̃− of the universal covering of the surface

S with the projections p+ : S̃+ → S and p− : S̃− → S and let us fix some points
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x̃+ ∈ S̃+ and x̃− ∈ S̃− such that p+(x̃+) = x and p−(x̃−) = x. Without loss of
generality we may think that the fundamental group π1(S) acts on S̃+ and S̃−
in the sense that S ' S̃+/π1(S) and S ' S̃−/π1(S). For every n ∈ N we fix an
arbitrary pair of points x̃+

n ∈ S̃+
n ⊂ M̃◦n(= H3) and x̃−n ∈ S̃−n ⊂ M̃◦n verifying

the conditions pn(x̃+
n ) = x+

n and pn(x̃−n ) = x−n , and such that the distance
in M◦n between x̃+

n and x̃−n is equal to σxn. The functions fS+
n

: S → S+
n and

fS−n : S → S−n defined above induce the canonical bijective developing maps
f̃S̃+

n
: S̃+ → S̃+

n and f̃S̃−n : S̃− → S̃−n with the properties f̃S̃+
n

(x̃+) = x̃+
n and

f̃S̃−n (x̃−) = x̃−n and such that for any γ ∈ π1(S) it is true that f̃S̃+
n

(γ.x̃+) =

ρSn(γ).x̃+
n and f̃S̃−n (γ.x̃−) = ρSn(γ).x̃−n , n ∈ N.

Remark 2.10. — The above-mentioned property of developing maps holds for
any points ỹ+ ∈ S̃+, ỹ− ∈ S̃− and for every γ ∈ π1(S):

f̃S̃+
n

(γ.ỹ+) = ρSn(γ).f̃S̃+
n

(ỹ+) and f̃S̃−n (γ.ỹ−) = ρSn(γ).f̃S̃−n (ỹ−), n ∈ N.

Let the metrics h̃+
λ and h̃−λ on the universal coverings S̃+ and S̃− of the

surface S be the pull-backs of the metrics h+
λ and h−λ on S defined in the proof

of Lemma 2.8. We are now able to construct the Dirichlet domains ∆+ ⊂ S̃+

and ∆− ⊂ S̃− of S with respect to the metrics h+
λ and h−λ based in the points

x̃+ ∈ S̃+ and x̃− ∈ S̃−, respectively. In what follows we will work with the
fundamental domains ∆+ ⊂ S̃+ and ∆− ⊂ S̃− of S.

Lemma 2.11. — For each n ∈ N the domains ∆+
n

def
= f̃S̃+

n
(∆+) ⊂ S̃+

n ⊂ H3

and ∆−n
def
= f̃S̃−n (∆−) ⊂ S̃−n ⊂ H3 are included in the hyperbolic balls B(x̃+

n , δS)

and B(x̃−n , δS) of radius δS centered at the points x̃+
n and x̃−n respectively.

Proof. — It suffices to prove this statement for the domain ∆+
n .

Assume that the surface S̃+ is equipped with the metric h̃+
λ . It follows

from the definition of the Dirichlet domain that the distance from any point
x ∈ ∆+ ⊂ S̃+ to the center x̃+ of ∆+ is not greater than the diameter of the
surface (S, h+

λ ) which is less than or equal to δS (see the proof of Lemma 2.8).
Recall that the developing map f̃S̃+

n
: S̃+ → S̃+

n can be viewed as the identical
application from one copy of the surface S̃+ equipped with the metric h̃+

λ to
another copy of S̃+ equipped with the metric h̃+

n . Also, by the construction
made in the proof of Lemma 2.8, all distances on the surface S measured in
the metric h+

n do not exceed the corresponding distances on S in the metric
h+
λ . Hence, this property is valid for the pull-backs h̃+

n and h̃+
λ on S̃+ of the

metrics h̃+
n and h+

λ on S. Therefore, the distance from any point v ∈ ∆+
n =

f̃S̃+
n

(∆+) ⊂ S̃+
n to the center x̃+

n = f̃S̃+
n

(x̃+) of ∆+
n is not greater than δS .
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To complete the proof we remark that for any couple of points v1, v2 ∈ S̃+
n the

distance between them in the hyperbolic metric of 3-space H3 does not exceed
the distance between v1 and v2 in the induced metric h̃+

n on the 2-surface S̃+
n :

dH3(v1, v2) ≤ dh̃+
n

(v1, v2). �

Denote by ∆̂+ ⊂ S̃+ the union of ∆+ with all “neighbor” fundamental
domains of S of the form γ.∆+ for all γ ∈ π1(S) such that cl∆+ ∩ clγ.∆+ 6= ∅.
Similarly we define the set ∆̂− ⊂ S̃−.

Lemma 2.12. — For each n ∈ N the domains ∆̂+
n

def
= f̃S̃+

n
(∆̂+) ⊂ S̃+

n ⊂ H3 and

∆̂−n
def
= f̃S̃−n (∆̂−) ⊂ S̃−n ⊂ H3 are included in the hyperbolic balls B(x̃+

n , 3δS)

and B(x̃−n , 3δS) of radius 3δS centered at the points x̃+
n and x̃−n correspondingly.

Proof. — It suffices to prove this statement for the domain ∆̂+
n .

First, by Lemma 2.11, the domain ∆+
n is inscribed in the ball B(x̃+

n , δS).
Similarly, for each γ ∈ π1(S) the domain ρSn(γ).∆+

n (isometric to ∆+
n ) is in-

scribed in the ball B(ρSn(γ).x̃+
n , δS). Note that ∆̂+

n is the union of ∆+
n with the

domains of the form ρSn(γ).∆+
n such that cl∆+

n ∩ clρSn(γ).∆+
n 6= ∅, where γ ∈

π1(S). Thus, the set ∆̂+
n is contained in the union UB of the ball B(x̃+

n , δS) and
all balls of the type B(ρSn(γ).x̃+

n , δS) such that B(ρSn(γ).x̃+
n , δS)∩B(x̃+

n , δS) 6= ∅.
Clearly, UB lies entirely inside the ball B(x̃−n , 3δS). �

The following statement is an immediate corollary of Lemmas 2.9 and 2.12.

Lemma 2.13. — For each n ∈ N the domains ∆̂+
n

def
= f̃S̃+

n
(∆̂+) ⊂ S̃+

n ⊂ H3

and ∆̂−n
def
= f̃S̃−n (∆̂−) ⊂ S̃−n ⊂ H3 are both included in the hyperbolic balls

B(x̃+
n , 3δS + δM) and B(x̃−n , 3δS + δM) of radius 3δS + δM centered at the

points x̃+
n and x̃−n .

It is high time to identify the universal coverings M̃◦n (which are copies
of H3) by supposing that the points x̃+

n coincide for all n ∈ N. Let us tem-
porarily forget the 3-dimensional domains M̃n of hyperbolic space H3 in order
to concentrate our attention on the study of properties of the sequences of
surfaces {S̃+

n }n∈N and {S̃−n }n∈N.
Recall the statement of the classical Arzelà-Ascoli Theorem.

Theorem 2.14 (Theorem 7.5.7 in [8], p. 137). — Suppose F is a Banach space
and E a compact metric space. In order that a subset H of the Banach space
CF (E) of continuous functions from E to F be relatively compact, necessary
and sufficient conditions are that H be equicontinuous and that, for each x ∈ E
the set Hx of all f(x) such that f ∈ H be relatively compact in F .

We will apply it in the following
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Lemma 2.15. — There exist subsequences of functions {f̃S̃+
nk

: ∆̂+ → H3}k∈N
and {f̃S̃−nk : ∆̂− → H3}k∈N that converge to continuous functions f̃S̃+

∞
: ∆̂+ →

H3 and f̃S̃−∞ : ∆̂− → H3 correspondingly.

Proof. — It suffices to find a converging subsequence of the sequence of func-
tions {f̃S̃+

n
: ∆̂+ → H3}n∈N. To this purpose we will apply the Arzelà-Ascoli

Theorem 2.14.
Let us equip the domain ∆̂+ ⊂ S̃+ with the restriction h̃+

λ |∆̂+
of the metric

h̃+
λ . Consider the domain (∆̂+, h̃+

λ |∆̂+
) as a compact metric space E from

the statement of Theorem 2.14; hyperbolic space H3 as a Banach space F ; the
sequence of functions {f̃S̃+

n
: ∆̂+ → H3}n∈N in the space of continuous functions

from (∆̂+, h̃+
λ |∆̂+

) to H3 as the set H ⊂ CF (E).

By Lemma 2.13, the images ∆̂+
n = f̃S̃+

n
(∆̂+) ⊂ S̃+

n ⊂ H3 of the maps f̃S̃+
n
,

n ∈ N, are all included in the ball B(x̃+
n , 3δS+δM) (recall that we identified all

points x̃+
n ∈ H3, n ∈ N). Thus, for each x ∈ E the set Hx is relatively compact

in F .
As it was already done in the proof of Lemma 2.11, we consider every de-

veloping map f̃S̃+
n

: ∆̂+ → S̃+
n as the inclusion of the domain ∆̂+ equipped

with the metric h̃+
λ |∆̂+

to the surface S̃+ with the metric h̃+
n , n ∈ N. So, for

any ε > 0 if we pose δ := ε then for every pair of points x, y ∈ ∆̂+ such that
dh̃+

λ
(x, y) < δ it is true that dH3(f̃S̃+

n
(x), f̃S̃+

n
(y)) ≤ dh̃+

n
(f̃S̃+

n
(x), f̃S̃+

n
(y)) < ε

(recall that, by construction, distances measured in the metric h̃+
λ are not

smaller than the corresponding distances measured in the metric h̃+
n ), n ∈ N.

Thus, the functions {f̃S̃+
n

: ∆̂+ → H3}n∈N are equicontinuous.
Therefore, by the Arzelà-Ascoli Theorem 2.14, there exists a subsequence of

functions {f̃S̃+
nk

: ∆̂+ → H3}k∈N that converges to some continuous function

f̃S̃+
∞

: ∆̂+ → H3. Similarly we obtain that there exists a subsequence of
functions {f̃S̃−nk : ∆̂− → H3}k∈N that converges to some continuous function

f̃S̃−∞ : ∆̂− → H3. �

Assumption 1. — Further we assume that the sequences of functions {f̃S̃+
n

:

∆̂+ → H3}n∈N and {f̃S̃−n : ∆̂− → H3}n∈N converge to continuous functions
f̃S̃+
∞

: ∆̂+ → H3 and f̃S̃−∞ : ∆̂− → H3.

2.3. Convergence of the holonomy representations {ρSn}n∈N and of the develop-
ing maps {f̃S̃+

n
: S̃+ → H3}n∈N and {f̃S̃−n : S̃− → H3}n∈N. — Now we

need to derive several properties of the holonomy representations ρSn(π1(S)),
n ∈ N.
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Lemma 2.16. — Given two points y1, y2 ∈ H3 together with orthogonal bases
{e1, e2, e3} and {ê1, ê2, ê3} of the tangent spaces Ty1H3 and Ty2H3, there is a
unique isometry ϑ ∈ I(H3) such that y2 = ϑ.y1 and êi = dy1ϑ(ei), i = 1, . . . , 3.

Proof. — Following Chapter 1, § 1.5 in [1, p. 13] let us recall the construction
of the hyperboloid model I3 of hyperbolic space H3. Denoting the coordinates
in space R4 by x0, x1, x2, x3, we introduce the Minkowski scalar product in R4

by the formula

(2.5) (x, y)M = −x0y0 + x1y1 + x2y2 + x3y3,

which turns R4 into a pseudo-Euclidean vector space, denoted by R3,1.
A basis {u0, u1, u2, u3} ⊂ R3,1 is said to be orthonormal if (u0, u0)M = −1,

(ui, ui)M = 1 for i 6= 0, and (ui, uj)M = 0 for i 6= j. For example, the standard
basis

(2.6) {ε0, ε1, ε2, ε3} =

{(
1
0
0
0

)
,

(
0
1
0
0

)
,

(
0
0
1
0

)
,

(
0
0
0
1

)}
⊂ R3,1

is orthonormal.
Each pseudo-orthogonal (i.e., preserving the above scalar product) transfor-

mation of R3,1 takes an open cone of time-like vectors

C = {x ∈ R3,1 : (x, x)M < 0}
consisting of two connected components

C+ = {x ∈ C : x0 > 0}, C− = {x ∈ C : x0 < 0}
onto itself. Denote by O(3, 1) the group of all pseudo-orthogonal transforma-
tions of space R3,1, and by O′(3, 1) its subgroup of index 2 consisting of those
pseudo orthogonal transformations which map each connected component of
the cone C onto itself.

Using notation developed in § A.1 [5, p. 1] we remind that the manifold

I3 = {x ∈ R3,1 : (x, x)M = −1, x0 > 0}
with the metric induced by the pseudo-Euclidean metric (2.5) is called the hy-
perboloid model I3 of hyperbolic space H3, and the restrictions of the elements
of O′(3, 1) on I3 form the group I(H3) of all isometries of H3.

Again, by Chapter 1, § 1.5 in [1, p. 13], for any x ∈ I3 we can naturally
identify the tangent space TxI3 with the orthogonal complement of the vector
x in space R3,1, which is a 3-dimensional Euclidean space (with respect to
the same scalar product). If {u1, u2, u3} is an orthonormal basis in it, then
{x, u1, u2, u3} is an orthonormal basis in the space R3,1.

Obviously, the vector ε0 of the standard basis (2.6) R3,1 lies in I3 and the
vectors {ε1, ε2, ε3} defined in (2.6) form an orthonormal basis of the tangent
space Tε0I3. Also, according to a fact mentioned in the previous paragraph,
the sets of four vectors {y1, e1, e2, e3} ⊂ R3,1 and {y2, ê1, ê2, ê3} ⊂ R3,1 from
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the statement of Lemma 2.16 are orthonormal bases of R3,1. Define the linear
transformations ϑ1 and ϑ2 of R3,1 determined by their 4 × 4-real matrices
Mϑ

1
def
= (y1, e1, e2, e3) and Mϑ

2
def
= (y2, ê1, ê2, ê3) with the columns consisting of

the coordinates of the corresponding vectors in the standard basis of R3,1. A
direct calculation shows the transformations ϑ1 and ϑ2 send the standard base
to the orthonormal bases {y1, e1, e2, e3} and {y2, ê1, ê2, ê3} of R3,1, respectively.
Moreover, we know that the vectors ε0, y1, and y2 belong to the upper cone
C+. Hence, ϑ1 and ϑ2 are elements of the group O′(3, 1), and we can take the
transformation ϑ from the statement of Lemma 2.16 to be equal to ϑ2[ϑ1]−1.

�

Definition 2.4. — Given a sequence of hyperbolic isometries {ϑn ∈ I(H3)}n∈N
determined by points y1

n, y
2
n ∈ H3 and orthogonal bases {e1

n, e
2
n, e

3
n}, {ê1

n, ê
2
n, ê

3
n}

of the tangent spaces Ty1
n
H3 and Ty2

n
H3, we say that the isometries {ϑn}n∈N

converge to an isometry ϑ∞ ∈ I(H3) in the sense of Lemma 2.16 if the se-
quences of base points {y1

n}n∈N, {y2
n}n∈N converge to points y1

∞, y
2
∞ ∈ H3 and

the sequences of orthogonal bases {e1
n, e

2
n, e

3
n}n∈N, {ê1

n, ê
2
n, ê

3
n}n∈N converge to

orthogonal bases {e1
∞, e

2
∞, e

3
∞}, {ê1

∞, ê
2
∞, ê

3
∞} of the tangent spaces Ty1

∞H
3 and

Ty2
∞H

3, and the above-mentioned limits define uniquely the isometry ϑ∞. De-
note a convergence of isometries in the sense of Lemma 2.16 by ϑn ⇒ ϑ∞
as n→∞.

Definition 2.5. — We say that hyperbolic isometries {ϑn ∈ I(H3)}n∈N con-
verge to an isometry ϑ∞ ∈ I(H3) in a “weak” sense if for any point y ∈ H3

the sequence {ϑn.y}n∈N converges to the point ϑ∞.y ∈ H3 as n→∞. Denote
a “weak” convergence of isometries by ϑn −−−−→

n→∞
ϑ∞.

Lemma 2.17. — Given a collection of hyperbolic isometries {ϑn ∈ I(H3)}∞n=1,
ϑn ⇒ ϑ∞ as n→∞ if and only if ϑn −−−−→

n→∞
ϑ∞.

Proof. — A hyperbolic isometry ϑ : H3 → H3 which sends any y ∈ H3 to
the point ϑ.y ∈ H3 can be interpreted as a linear transformation of Minkowski
space R3,1 as it was mentioned in the proof of Lemma 2.16. Therefore, ϑ(y)
depends continuously on y ∈ H3.

Suppose that ϑn ⇒ ϑ∞ as n → ∞. By construction, a transformation ϑ ∈
I(H3) from Lemma 2.16 depends continuously on the parameters y1, y2 ∈ H3,
{e1, e2, e3} ⊂ Ty1H3, and {ê1, ê2, ê3} ⊂ Ty2H3. Hence, for any point y ∈ H3 the
sequence {ϑn.y}n∈N converges to the point ϑ∞.y ∈ H3 as n→∞, which means
that the convergence of the isometries {ϑn}n∈N in the sense of Lemma 2.16
implies also the “weak” convergence of these isometries to ϑ∞.

Suppose now that ϑn −−−−→
n→∞

ϑ∞. Being a linear transformation of Minkowski

space R3,1, the hyperbolic isometries {ϑn ∈ I(H3)}∞n=1 are represented in the
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standard basis of R3,1 by the 4×4-real matricesMϑn def
= (ϑ0

n, ϑ
1
n, ϑ

2
n, ϑ

3
n), where

ϑkn, k = 0, 1, 2, 3, are the columns of Mϑ
n .

Let P0
def
= (1, 0, 0, 0)T ∈ I3 ⊂ R3,1. The “weak” convergence of the isometries

{ϑn}n∈N at the point P0 means that Mϑn .P0 −−−−→
n→∞

Mϑ∞ .P0, i.e.,

(2.7) ϑ0
n −−−−→

n→∞
ϑ0
∞.

Let P1
def
= (
√

2, 1, 0, 0)T ∈ I3 ⊂ R3,1. The “weak” convergence of the isometries
{ϑn}n∈N at the point P1 means that Mϑn .P1 −−−−→

n→∞
Mϑ∞ .P1, i.e.,

√
2ϑ0

n +

ϑ1
n −−−−→

n→∞

√
2ϑ0
∞+ϑ0

∞. Taking into account (2.7), we obtain that ϑ1
n −−−−→

n→∞
ϑ1
∞.

Similarly we get that ϑ2
n −−−−→

n→∞
ϑ2
∞ and ϑ3

n −−−−→
n→∞

ϑ3
∞. Thus, the “weak”

convergence of the isometries {ϑn}n∈N to ϑ∞ as n → ∞ implies also their
convergence in the sense of Lemma 2.16. �

Lemma 2.18. — For each n ∈ N let a pair of surfaces S̃+
n and S̃−n ⊂ H3

(which are the images of developing maps f̃S̃+
n

: S̃+ → S̃+
n and f̃S̃−n : S̃− →

S̃−n ) be invariant under the actions of a quasi-Fuchsian group ρSn(π1(S)) of
isometries of H3. Suppose in addition that the restrictions of the developing
maps {f̃S̃+

n
: ∆̂+ → H3}n∈N and {f̃S̃−n : ∆̂− → H3}n∈N on the domains ∆̂+ ⊂

S̃+ and ∆̂− ⊂ S̃− defined in Section 2.2 converge to continuous functions
f̃S̃+
∞

: ∆̂+ → H3 and f̃S̃−∞ : ∆̂− → H3. Then there is a sequence of positive
integers nk −−−−→

k→∞
∞ such that the morphisms {ρSnk : π1(S) → I(H3)}k∈N

converge to a morphism ρS∞ : π1(S) → I(H3) in the sense of Lemma 2.16,
i.e., for every γ ∈ π1(S) there exists a hyperbolic isometry which we denote
by ρS∞(γ) such that ρSnk(γ)⇒ ρS∞(γ) as k →∞.

Proof. — First, we prove that there is a sequence of positive integers nk −−−−→
k→∞

∞ such that for any generator γi of the group π1(S) together with its inverse
element γ−1

i ∈ π1(S), i = 1, . . . , l, the subsequences of isometries ρSnk(γi) ⇒
ρS∞(γi) and ρSnk(γ−1

i )⇒ ρS∞(γ−1
i ) converge as k →∞.

Indeed, since for any i = 1, . . . , l points x̃+, γi.x̃+, and γ−1
i .x̃+ lie inside

∆̂+ ⊂ S̃+ by construction, and because of convergence of the developing
maps {f̃S̃+

n
: ∆̂+ → H3}n∈N to a continuous function f̃S̃+

∞
: ∆̂+ → H3, we

know that the sequences of points x̃+
n (= f̃S̃+

n
(x̃+)) −−−−→

n→∞
x̃+
∞(= f̃S̃+

∞
(x̃+)),

ρSn(γi).x̃
+
n (= ρSn(γi).f̃S̃+

n
(x̃+) = f̃S̃+

n
(γi.x̃

+)) −−−−→
n→∞

ρS∞(γi).x̃
+
∞(= ρS∞(γi).f̃S̃+

∞
(x̃+)

= f̃S̃+
∞

(γi.x̃
+)), and [ρSn(γi)]

−1.x̃+
n (= ρSn(γ−1

i ).f̃S̃+
n

(x̃+) = f̃S̃+
n

(γ−1
i .x̃+)) −−−−→

n→∞
[ρS∞(γi)]

−1.x̃+
∞(= ρS∞(γ−1

i ).f̃S̃+
∞

(x̃+) = f̃S̃+
∞

(γ−1
i .x̃+)) converge in H3.
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Also we know that for each n ∈ N and for every i = 1, . . . , l, the dif-
ferential dx̃+

n
ρSn(γi) sends an orthonormal base {en,i1 , en,i2 , en,i3 } of the tangent

space Tx̃+
n
H3 to an orthonormal base {ên,i1 , ên,i2 , ên,i3 } of TρSn(γi).x̃

+
n
H3 (recall

that, by constructions all the points x̃+
n , n ∈ N coincide). Since the sub-

sequences {en,ij }n∈N, {ên,ij }n∈N, j = 1, 2, 3, i = 1, . . . , l, of unitary vectors
are bounded, there exists a sequence of positive integers nk −−−−→

k→∞
∞ such

that the pairs of subsequences of orthonormal bases {enk,i1 , enk,i2 , enk,i3 }k∈N and
{ênk,i1 , ênk,i2 , ênk,i3 }k∈N converge all together (i = 1, . . . , l) ensemble to orthonor-
mal bases {e∞,i1 , e∞,i2 , e∞,i3 } and {ê∞,i1 , ê∞,i2 , ê∞,i3 }. Hence, by Lemma 2.16,
there exists a hyperbolic isometry that we denote by ρS∞(γi) which sends
the point x̃+

∞ to the point ρS∞(γi).x̃
+
∞ defined above, and which differential

dx̃+
∞
ρS∞(γi) sends an orthonormal base {e∞,i1 , e∞,i2 , e∞,i3 } of the tangent space

Tx̃+
∞
H3 to an orthonormal base {ê∞,i1 , ê∞,i2 , ê∞,i3 } of TρS∞(γi).x̃

+
∞
H3 such that

ρSnk(γi)⇒ ρS∞(γi) as k →∞.
Secondly, we derive that for any element γ ∈ π1(S) the subsequences of

isometries ρSnk(γ)⇒ ρS∞(γ) converges as k →∞. Indeed, every γ ∈ π1(S) can
be decomposed in a product of generators of π1(S) together with their inverse
elements, for which the demanded convergence has already been shown. �

Assumption 2. — Further we assume that the sequence of holonomy repre-
sentations {ρSn : π1(S)→ I(H3)}n∈N (where the groups ρSn(π1(S)) of isometries
ofH3 are quasi-Fuchsian) converges to a holonomy representation ρS∞ : π1(S)→
I(H3) (where ρS∞(π1(S)) is a discrete group of isometries of H3) in the sense
of Lemma 2.16 as n→∞.

Let us now prove the following property of the functions f̃S̃+
∞

: ∆̂+ → H3

and f̃S̃−∞ : ∆̂− → H3 with respect to the group of isometries ρS∞(π1(S)) of space
H3.

Remark 2.19. — If for a pair of points ỹ+
1 , ỹ

+
2 ∈ ∆̂+ there exists a transfor-

mation γ+ ∈ π1(S) such that ỹ+
2 = γ+.ỹ+

1 , then the following equality holds:

(2.8) f̃S̃+
∞

(ỹ+
2 ) = ρS∞(γ+).f̃S̃+

∞
(ỹ+

1 ).

Similarly, if for a pair of points ỹ−1 , ỹ
−
2 ∈ ∆̂− there exists a transformation

γ− ∈ π1(S) such that ỹ−2 = γ−.ỹ−1 , then

f̃S̃−∞(ỹ−2 ) = ρS∞(γ−).f̃S̃−∞(ỹ−1 ).

Proof. — It suffices to prove the formula (2.8).
By Remark 2.10, the relation

(2.9) f̃S̃+
n

(ỹ+
2 ) = ρSn(γ+).f̃S̃+

n
(ỹ+

1 )

is valid for all n ∈ N.
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By Assumption 1, the sequence {f̃S̃+
n

(ỹ+
2 )}n∈N ⊂ H3 converges to the point

f̃S̃+
∞

(ỹ+
2 ) ∈ H3. Hence, taking into account the formula (2.9) we see that in

order to prove the equality (2.8) we need to demonstrate the convergence of
the sequence {ρSn(γ+).f̃S̃+

n
(ỹ+

1 )}n∈N ⊂ H3 to the point ρS∞(γ+).f̃S̃+
∞

(ỹ+
1 ), i.e.,

fixing ε > 0, we ought to find such n0 ∈ N that
(2.10)
∀n > n0 the inequality dH3(ρSn(γ+).f̃S̃+

n
(ỹ+

1 ), ρS∞(γ+).f̃S̃+
∞

(ỹ+
1 )) < ε holds.

First, by the above-mentioned Assumption 1, the sequence {f̃S̃+
n

(ỹ+
1 )}n∈N ⊂

H3 converges to the point f̃S̃+
∞

(ỹ+
1 ) ∈ H3. Therefore,

(2.11)
∃n1 ∈ N : ∀n > n1 the inequality dH3(f̃S̃+

n
(ỹ+

1 ), f̃S̃+
∞

(ỹ+
1 )) <

ε

2
is valid.

Also, by Assumption 2, ρSn(γ+)⇒ ρS∞(γ+) as n→∞. Hence, by Lemma 2.17,
the sequence of points {ρSn(γ+).f̃S̃+

∞
(ỹ+

1 )}n∈N ⊂ H3 converges to the point
ρS∞(γ+).f̃S̃+

∞
(ỹ+

1 ) ∈ H3, i.e.,

(2.12) ∃n2 ∈ N : ∀n > n2 the inequality

dH3(ρSn(γ+).f̃S̃+
∞

(ỹ+
1 ), ρS∞(γ+).f̃S̃+

∞
(ỹ+

1 )) <
ε

2
is true.

Applying the triangle inequality, we get:

dH3(ρSn(γ+).f̃S̃+
n

(ỹ+
1 ), ρS∞(γ+).f̃S̃+

∞
(ỹ+

1 ))

(2.13)
≤ dH3(ρSn(γ+).f̃S̃+

n
(ỹ+

1 ), ρSn(γ+).f̃S̃+
∞

(ỹ+
1 )) + dH3(ρSn(γ+).f̃S̃+

∞
(ỹ+

1 ), ρS∞(γ+).f̃S̃+
∞

(ỹ+
1 )).

The fact that ρSn(γ+) is an isometry of H3 implies the equality:

(2.14) dH3(ρSn(γ+).f̃S̃+
n

(ỹ+
1 ), ρSn(γ+).f̃S̃+

∞
(ỹ+

1 )) = dH3(f̃S̃+
n

(ỹ+
1 ), f̃S̃+

∞
(ỹ+

1 )).

Therefore, substituting (2.14) in (2.13), we obtain:

dH3(ρSn(γ+).f̃S̃+
n

(ỹ+
1 ), ρS∞(γ+).f̃S̃+

∞
(ỹ+

1 )) ≤

(2.15) dH3(f̃S̃+
n

(ỹ+
1 ), f̃S̃+

∞
(ỹ+

1 )) + dH3(ρSn(γ+).f̃S̃+
∞

(ỹ+
1 ), ρS∞(γ+).f̃S̃+

∞
(ỹ+

1 )).

Hence, by (2.15), (2.11), and (2.12), we conclude that it is sufficient to pose
n0 = max(n1, n2) to satisfy the condition (2.10). �

Now we are able to extend the functions f̃S̃+
∞

: ∆̂+ → H3 and f̃S̃−∞ : ∆̂− →
H3 to the whole domains S̃+ and S̃−. Let us do it as follows: for arbitrary
points ỹ+ ∈ S̃+ and ỹ− ∈ S̃− we find such points ỹ+

∆ and ỹ−∆ in the fundamen-
tal domains ∆+ ⊂ ∆̂+ ⊂ S̃+ and ∆− ⊂ ∆̂− ⊂ S̃− of the surface S and such
elements γ+, γ− ∈ π1(S) that ỹ+ = γ+.ỹ+

∆ and ỹ− = γ−.ỹ−∆, then we define
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f̃S̃+
∞

(ỹ+)
def
= ρS∞(γ+).f̃S̃+

∞
(ỹ+

∆) and f̃S̃−∞(ỹ−)
def
= ρS∞(γ−).f̃S̃−∞(ỹ−∆). By construc-

tion, the surfaces S̃+
∞

def
= f̃S̃+

∞
(S̃+) and S̃−∞

def
= f̃S̃−∞(S̃−) are invariant under the

actions of the group ρS∞(π1(S)) of isometries of H3.
Repeating almost literally the demonstration of Remark 2.19, we can prove

Lemma 2.20. — The sequences of developing maps {f̃S̃+
n

: S̃+ → H3}n∈N and
{f̃S̃−n : S̃− → H3}n∈N converge to continuous functions f̃S̃+

∞
: S̃+ → H3 and

f̃S̃−∞ : S̃− → H3.

Finally, we show

Remark 2.21. — The boundaries at infinity ∂∞S̃+
∞ ⊂ ∂∞H3 and ∂∞S̃−∞ ⊂

∂∞H3 of the surfaces S̃+
∞ and S̃−∞ coincide with the limit set ΛρS∞ of the

group ρS∞(π1(S)). Moreover, the group ρS∞(π1(S)) of isometries of H3 from
Lemma 2.18 is quasi-Fuchsian.

Proof. — By Lemma 2.20, the sequences of surfaces {S̃+
n }n∈N and {S̃−n }n∈N

bounding the convex connected hyperbolic domains {M̃n}n∈N converge to the
surfaces S̃+

∞ and S̃−∞ in H3. Hence, the sets {M̃n}n∈N converge to a con-
vex connected hyperbolic domain M̃∞. Moreover, the boundaries at infin-
ity {∂∞S̃+

n }n∈N and {∂∞S̃−n }n∈N converge to the curves ∂∞S̃+
∞ ⊂ ∂∞H3 and

∂∞S̃−∞ ⊂ ∂∞H3. Indeed, our surfaces in the Poincaré disk model of H3 con-
sidered as Euclidean surfaces inside a unitary ball converge together with their
boundaries.

Recall that, by the Labourie-Schlenker Theorem 1.9, for each n ∈ N the
curves ∂∞S̃+

n and ∂∞S̃−n coincide with the limit set ΛρSn of the quasi-Fuchsian
holonomy representations ρSn(π1(S)) which is homotopic to a circle in ∂∞H3.
On the other hand, by Assumption 2, ρSn(π1(S)) ⇒ ρS∞(π1(S)) as n → ∞,
which implies that the sequence of the limit sets {ΛρSn}n∈N converges to the
limit set ΛρS∞ (see, for instance, [14, p. 323]).

Thus, the boundaries at infinity ∂∞S̃+
∞ and ∂∞S̃−∞ of the surfaces S̃+

∞ and
S̃−∞ coincide with the limit set ΛρS∞ of the group ρS∞(π1(S)). Furthermore,
we conclude that the boundary ∂M̃∞ of the domain M̃∞ consists of the sur-
faces S̃+

∞ and S̃−∞, and the boundary at infinity ∂∞M̃∞ of M̃∞ also coincides
with ΛρS∞ .

Since the surfaces S̃+
∞ and S̃−∞ are topological disks embedded in H3, their

common boundary at infinity is homotopic to a circle. Therefore, by definition,
the group ρS∞(π1(S)) is quasi-Fuchsian. �
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Note that the domain M̃∞ which appeared during the demonstration of Re-
mark 2.21, is invariant under the actions of the quasi-Fuchsian group ρS∞(π1(S))
of isometries of H3.

2.4. Adaptation of a classical theorem of A. D. Alexandrov to the hyperbolic case

Recall a classical result due to A. D. Alexandrov:

Theorem 2.22. — If a sequence of closed convex surfaces Fn converges to a
closed convex surface F and if two sequences of points Xn and Yn on Fn con-
verge to two points X and Y of F , respectively, then the distances between the
points Xn and Yn measured on the surfaces Fn converge to the distance between
the points X and Y measured on F , i.e., dF (X,Y ) = limn→∞dFn(Xn, Yn).

For the proof of Theorem 2.22 in Euclidean 3-space see Theorem 1 in Sec. 1 of
Chapter III [3]. An adaptation of this proof of Theorem 2.22 to the hyperbolic
case is given in [23] (see also [24]). Another proof of Theorem 2.22 in hyperbolic
space H3 is given by A. D. Alexandrov in his paper [2, Theorem 3] (in Russian).
We will largely use this result in Section 2.5.

2.5. Induced metrics of the surfaces S̃+
∞ and S̃−∞. — Return to consideration

of the family of convex domains {M̃n}∞n=1 with the boundaries ∂M̃n = S̃+
n ∪S̃−n

(see Sections 2.2 and 2.3) in hyperbolic space H3. Assume in addition that the
marked points x̃+

n ∈ S̃+
n , n = 1, . . . ,∞, are all identified with an arbitrary point

OH ∈ K3.
Consider a ball B̂ ⊂ H3 centered at OH of a sufficiently big hyperbolic radius

ρ̂ (it will be enough to put ρ̂ = 9δS + δM, where the constants δS and δM are
defined in Lemmas 2.8 and 2.9). Define the convex compact hyperbolic sets
MBn

def
= M̃n ∩ B̂, and denote by Ŝ+

n
def
= ∂MBn ∩ S̃+

n and Ŝ−n
def
= ∂MBn ∩ S̃−n

the intersections of the boundary ∂MBn of the domain MBn with the surfaces
S̃+
n and S̃−n , n = 1, . . . ,∞. By construction, the sets ∆̂+

n and ∆̂−n defined in
Lemma 2.12 are subsets of Ŝ+

n and Ŝ−n correspondingly, n = 1, . . . ,∞.

Remark 2.23. — The ball B̂ is taken big enough in order to provide the
following property: for an arbitrary pair of points A+, B+ ∈ ∆̂+

n there exists
a path ζ+ ⊂ ∆̂+

n connecting A+ and B+ which is shorter than any path ξ+ ⊂
∂MBn connecting A+ and B+ and such that ξ+ ∩ (∂MBn \ Ŝ+

n ) 6= ∅. Similarly,
for points A−, B− ∈ ∆̂−n there exists a path ζ− ⊂ ∆̂−n connecting A− and B−
which is shorter than any path ξ− ⊂ ∂MBn connecting A− and B− and such
that ξ− ∩ (∂MBn \ Ŝ−n ) 6= ∅. For this purpose, radius ρ̂ = 9δS + δM of the ball
B̂ is sufficient although not optimal.

Recall that, by Lemma 2.20, the sequences of developing maps {f̃S̃+
n

: S̃+ →
H3}n∈N and {f̃S̃−n : S̃− → H3}n∈N converge to continuous functions f̃S̃+

∞
:

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



332 D. SLUTSKIY

S̃+ → H3 and f̃S̃−∞ : S̃− → H3, and the images of the maps f̃S̃+
n

and f̃S̃−n
are convex surfaces S̃+

n and S̃+
n respectively, n = 1, . . . ,∞. Therefore, by

construction, the surfaces {∆̂+
n }n∈N and {∆̂−n }n∈N converge to ∆̂+

∞ and ∆̂−∞,
and moreover, the sequence of closed convex nondegenerate surfaces {∂MBn}n∈N
converges to the closed convex nondegenerate surface ∂MB∞ in H3. Applying
the hyperbolic version of Theorem 2.22 to the family of surfaces {∂MBn}n∈N
which converges to ∂MB∞ we conclude that the sequence of induced metrics
on ∂MBn tends to the induced metric on ∂MB∞ as n→∞. In particular, given
any two sequences of points A+

n and B+
n in ∆̂+

n ⊂ ∂MBn converging to two
points A+

∞ and B+
∞ in ∆̂+

∞ ⊂ ∂MBn , respectively, the distances between the
points A+

n and B+
n measured on the surfaces ∂MBn converge to the distance

between the points A+
∞ and B+

∞ measured on ∂MB∞, i.e.,

(2.16) d∂MB∞(A+
∞, B

+
∞) = limn→∞d∂MBn (A+

n , B
+
n ).

By Remark 2.23, the distance between the pointsA+
n andB+

n measured on ∂MBn
is equal to the distance between these points measured on Ŝ+

n ; also, by con-
struction, Ŝ+

n is a convex subset of the surface S̃+
n with the induced metric h̃+

n ,
therefore

(2.17) d∂MBn (A+
n , B

+
n ) = dh̃+

n
(A+

n , B
+
n ),

n = 1, . . . ,∞. Substituting (2.17) in (2.16), we get:

dh̃+
∞

(A+
∞, B

+
∞) = limn→∞dh̃+

n
(A+

n , B
+
n ).

Hence, the sequence of the induced metrics h̃+
n of the surfaces S̃+

n restricted on
the sets ∆̂+

n converges to the induced metric h̃+
∞ of the surface S̃+

∞ restricted
on ∆̂+

∞ as n→∞. By analogy, the sequence of the induced metrics {h̃−n |∆̂−n }n∈N
converges to the induced metric h̃−∞|∆̂−∞ .

In Sections 2.2 and 2.3 we constructed the surfaces S̃+
n and S̃−n to be invari-

ant under the actions of the discrete group ρSn(π1(S)) of isometries of H3 for
each n = 1, . . . ,∞. Hence, the induced metrics h̃+

n and h̃−n on the surfaces S̃+
n

and S̃−n , respectively, are periodic with respect to the group ρSn(π1(S)), n =

1, . . . ,∞. We have just proved that the metrics h̃+
n and h̃−n converge to h̃+

∞ and
h̃−∞, correspondingly, in the neighborhoods ∆̂+

n ⊂ S̃+
n and ∆̂−n ⊂ S̃−n of the fun-

damental domains ∆+
n ⊂ S̃+

n and ∆−n ⊂ S̃−n of the surfaces S+
n and S−n . Since,

by Assumption 2 and Remark 2.21, the sequence of quasi-Fuchsian groups
{ρSn(π1(S))}n∈N converges to a quasi-Fuchsian group ρS∞(π1(S)) of isometries
of H3, we now conclude that the metrics h̃+

n and h̃−n converge to h̃+
∞ and h̃−∞

everywhere on S̃+
n and S̃−n as n→∞.
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To complete the proof of Theorem 1.6 let us consider the convex compact
hyperbolic domainM∞ def

= M̃∞/[ρS∞(π1(S))] with the boundary

∂M∞ def
= S+

∞ ∪ S−∞
def
=
(
S̃+
∞/[ρ

S
∞(π1(S))]

)⋃(
S̃−∞/[ρS∞(π1(S))]

)

in the unbounded hyperbolic manifold M◦∞
def
= H3/[ρS∞(π1(S))]. The metric

h̃+
∞ on the universal covering S̃+

∞ of the boundary component S+
∞ of the domain

M∞ induces the metric h̆+
∞ on the compact surface S+

∞. We have recently
showed that the pull-backs h̃+

n of the metrics h+
n (see Section 2.2) converge to

the pull-back h̃+
∞ of the metric h̆+

∞. Hence, the sequence of metrics {h+
n }n∈N

tends to the metric h̆+
∞ as n → ∞. But in the very beginning of Section 2.2

the C∞-smooth metrics {h+
n }n∈N were constructed in order to approximate

the Alexandrov metric h+
∞. Therefore, the induced metric h̆+

∞ on S+
∞ coincides

with the prescribed metric h+
∞. Similarly we obtain that the metric on the

surface S−∞ is exactly h−∞.
We sum up that the convex hyperbolic bounded domain M∞ with the

boundary ∂M∞ = S+
∞ ∪ S−∞ in the quasi-Fuchsian manifold M◦∞ was con-

structed in such a way that the induced metrics of the boundary components
S+
∞ and S−∞ coincide with the prescribed Alexandrov metrics h+

∞ and h−∞. The-
orem 1.6 is proved. �

3. Distance between boundary components of a convex compact
domain in a quasi-Fuchsian manifold.

Consider a sequence of convex bounded domainsMn with the upper bound-
aries S+

n and the lower boundaries S−n in quasi-Fuchsian manifolds M◦n, such
that for all n the convex regular metric surfaces S+

n and S−n with the induced
metrics h+

n and h−n , respectively, are topologically the same surface S.

Definition 3.1. — The distance d(K,L) between subsets K and L of a set
N is defined as follows: d(K,L)

def
= inf{dN (u, v)|u ∈ K, v ∈ L}, where dN (u, v)

stands for the distance between points u and v in N .

In this section, we prove the following result which is essentially used in the
demonstration of Theorem 1.7 from the first part of this paper:

Theorem 3.1. — Let the metrics h+
n tend to some metric h+

∞ (correspondingly,
h−n tend to h−∞) as n goes to ∞. Then there is a common upper bound for the
distances between S+

n and S−n inM◦n which does not depend on n.

The proof of Theorem 3.1 is essentially based on
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Theorem 3.2. — Given a convex bounded domainM with the upper boundary
S+ and the lower boundary S− in a quasi-Fuchsian manifoldM◦. If the met-
ric surface S+ possesses two homotopically different nontrivial closed simple
intersecting curves c+1 and c+2 of the lengths l+1 and l+2 , and S− possesses two
homotopically different nontrivial closed simple intersecting curves c−1 and c−2
of the lengths l−1 and l−2 such that c+1 and c−1 , as well as c

+
2 and c−2 , are homo-

topically equivalent pairs of curves inM, then the distance d(S+,S−) between
S+ and S− is bounded from above by the constant

d(S+,S−) < max

{(
l+1 + l−1 + ln

2l+1
l−1

)
,

(
l+1 + l−1 + ln

2l−1
l+1

)
,

(
l+2 + l−2 + ln

2l+2
l−2

)
,

(
l+2 + l−2 + ln

2l−2
l+2

)
,

2arcosh

[
coshl+1 cosh

(
l+1 + arcosh

el
+
1 (l+1 )2

ε2
3

)]
,

2arcosh

[
coshl−1 cosh

(
l−1 + arcosh

el
−
1 (l−1 )2

ε2
3

)]
,

2arcosh

[
coshl+2 cosh

(
l+2 + arcosh

el
+
2 (l+2 )2

ε2
3

)]
,

2arcosh

[
coshl−2 cosh

(
l−2 + arcosh

el
−
2 (l−2 )2

ε2
3

)]}
,

where the symbol ε3 stands for the Margulis constant of hyperbolic space H3

(this constant will be defined shortly).

This result is of independent interest as well. Note that we do not require
the regularity of surface metrics in Theorems 3.1 and 3.2.

Let us show how Theorem 3.2 implies Theorem 3.1.

Proof of Theorem 3.1. — Consider two homotopically different nontrivial
closed curves c1 and c2 on the surface S such that they intersect each other
but do not intersect with the singular points of the metrics h+

∞ and h−∞ on S.
Since the sequence of metrics {h+

n }n∈N converges to the metric h+
∞, the lengths

l+,n1 of the curve c1 ∈ S measured in the metrics h+
n , n ∈ N, tend to the length

l+,∞1 > 0 of c1 measured in the metric h+
∞ as n→∞. The converging sequence

of the positive real numbers {l+,n1 }n∈N is bounded from below by a real number
ω+

1 > 0 and from above by a real number Ω+
1 > 0. Similarly, the lengths l−,n1

of the curve c1 ∈ S measured in the metrics h−n , n ∈ N, are bounded from
below by some ω−1 > 0 and from above by some Ω−1 > 0; the lengths l+,n2 of
the curve c2 ∈ S measured in the metrics h+

n , n ∈ N, are bounded from below
by some ω+

2 > 0 and from above by some Ω+
2 > 0; and the lengths l−,n2 of the
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curve c2 ∈ S measured in the metrics h−n , n ∈ N, are bounded from below by
some ω−2 > 0 and from above by some Ω−2 > 0.

By Theorem 3.2, the distance d(S+
n ,S−n ) between the surfaces S+

n and S−n
in the quasi-Fuchsian manifold M◦n is uniformly bounded from above for any
n ∈ N:

d(S+
n ,S−n ) < max

{(
Ω+

1 + Ω−1 + ln
2Ω+

1

ω−1

)
,

(
Ω+

1 + Ω−1 + ln
2Ω−1
ω+

1

)
,

(
Ω+

2 + Ω−2 + ln
2Ω+

2

ω−2

)
,

(
Ω+

2 + Ω−2 + ln
2Ω−2
ω+

2

)
,

2arcosh

[
coshΩ+

1 cosh

(
Ω+

1 + arcosh
eΩ+

1 (Ω+
1 )2

ε2
3

)]
,

2arcosh

[
coshΩ−1 cosh

(
Ω−1 + arcosh

eΩ−1 (Ω−1 )2

ε2
3

)]
,

2arcosh

[
coshΩ+

2 cosh

(
Ω+

2 + arcosh
eΩ+

2 (Ω+
2 )2

ε2
3

)]
,

2arcosh

[
coshΩ−2 cosh

(
Ω−2 + arcosh

eΩ−2 (Ω−2 )2

ε2
3

)]}
. �

Our aim now is to demonstrate Theorem 3.2. We will widely use the Margulis
lemma to prove this fact. In the most general case the Margulis lemma reads
as follows [5, Theorem D.1.1, p. 134]:

General Margulis Lemma. — For every m ∈ N there exists a constant
εm ≥ 0 such that for any properly discontinuous subgroup Γ of the group I(Hm)
of isometries of Hm and for any x ∈ Hm, the group Γεm(x) generated by the
set Fεm(x) = {γ ∈ Γ : dHm(x, γ(x)) ≤ εm} is almost-nilpotent, where dHm(·, ·)
stands for the distance in hyperbolic space Hm.

If we restrict the General Margulis Lemma to the case of the quasifuchsian
isometries of hyperbolic 3-space H3 which is interesting to us, then the lemma
can be rewritten in this way [18, Theorem B, p. 100]:

Margulis Lemma. — There is a universal constant ε3 > 0 such that for any
properly discontinuous subgroup Γ of the group I(H3) of isometries of H3 if two
closed simple intersecting curves γ̃1 and γ̃2 of the manifold H3/Γ have lengths
less than ε3, then γ̃1 and γ̃2 are homotopically equivalent in H3/Γ.

Hence, the main idea of the proof of Theorem 3.2 is to find a pair of closed
simple intersecting curves insideM of lengths less than the Margulis constant
ε3 and such that they are not homotopically equivalent once the distance be-
tween S+ and S− is big enough. Then, by the Margulis lemma, the curves
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under consideration ought to be homotopically equivalent, which leads us to a
contradiction. Let us now give a more detailed plan of the proof of Theorem 3.2:

S+

S−

M◦

Cyl2
Cyl1

P mid

c+1

c−1

c+2

c−2

Figure 3.1. The cylinders Cyl1 and Cyl2 in the manifoldM◦.

• Suppose that the curves c+1 and c+2 intersect at a point P+ (this point
is not necessarily unique), and the curves c−1 and c−2 intersect at a point
P−. We will construct cylinders Cyl1 and Cyl2 in M that realize ho-
motopies between c+1 and c−1 and between c+2 and c−2 correspondingly.
Then the intersection of Cyl1 and Cyl2 contains a (curved) line with
ends P+ and P−. Denote the midpoint of this line by Pmid.

• We will find a constant based on l+1 , l−1 , l+2 , l−2 , and ε3, and we will
construct curves on Cyl1 and Cyl2 (see Fig. 3.1) passing through Pmid

such that if the distance between S+ and S− is greater than the constant
mentioned above then both constructed curves are shorter than ε3.

3.1. Construction of the cylinders Cyl1 and Cyl2. — We consider a quasifuch-
sian manifoldM◦. By definition, it means thatM◦ is a quotient H3/Γ◦ where
Γ◦ is a quasifuchsian subgroup of the group I(H3) of isometries of hyperbolic
3-space. Note that Γ◦ is homomorphic to the fundamental group π1(M◦).

Denote by γ1 the closed geodesic of M◦ homotopically equivalent to c+1
and c−1 . Similarly, denote by γ2 the closed geodesic of M◦ homotopically
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equivalent to c+2 and c−2 . By abuse of notation, we denote by γ1 and γ2 the
elements of π1(M◦) corresponding to the closed geodesics under consideration.
The universal covering of the domainM ⊂M◦ is a convex simply connected
subset M̃ of H3. Denote by γ̃1 and γ̃2 the isometries of H3 corresponding to
the elements γ1 and γ2 of π1(M◦).

H3

P̃+
0

P̃−
0

P̃+
2

P̃−
2P̃−

1

P̃+
1

(γ̃2)
−1.P̃+

0

(γ̃2)
2.P̃+

0

Figure 3.2. Construction of fundamental domains of the
cylinders Cyl1 and Cyl2 in the Poincaré model of H3.

Let us now consider any single point P̃+
0 ∈ H3 serving as a pre-image of P+ ∈

c+1 ∩ c+2 in the universal covering M̃. Among all the points in the pre-image
of P− ∈ c−1 ∩c−2 in M̃, we choose P̃−0 ∈ H3 to be the closest to P̃+

0 (in case there
are several points realizing the minimal distance to P̃+

0 , we choose one of them
arbitrarily). Denote P̃+

1
def
= γ̃1.P̃

+
0 , P̃−1

def
= γ̃1.P̃

−
0 , P̃+

2
def
= γ̃2.P̃

+
0 , P̃−2

def
= γ̃2.P̃

−
0

(recall that for every point T ∈ H3 and for every γ̃ ∈ I(H3) the symbol γ̃.T
stands for the image of T under the isometry γ̃). Then we set the unions of flat
hyperbolic triangles 4P̃+

0 P̃
−
0 P̃

+
1 ∪4P̃+

1 P̃
−
1 P̃

−
0 and 4P̃+

0 P̃
−
0 P̃

+
2 ∪4P̃+

2 P̃
−
2 P̃

−
0

in H3 to be fundamental domains of the cylinders Cyl1 and Cyl2 (see Fig. 3.2).
The fundamental domain c̃+1 ⊂ H3 of the curve c+1 has the same length l+1

as c+1 . We can choose c̃+1 to connect P̃+
0 and P̃+

1 . Hence, the length of the
straight (hyperbolic) segment P̃+

0 P̃
+
1 is less than or equal to l+1 . Similarly,
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dH3(P̃−0 , P̃
−
1 ) ≤ l−1 , dH3(P̃+

0 , P̃
+
2 ) ≤ l+2 , and dH3(P̃−0 , P̃

−
2 ) ≤ l−2 . Also, by

construction, the midpoints P̃mid
0 , P̃mid

1 , and P̃mid
2 of the segments P̃+

0 P̃
−
0 ,

P̃+
1 P̃
−
1 , and P̃+

2 P̃
−
2 serve as pre-images of the midpoint Pmid of the segment

P+P− lying in the intersection Cyl1 ∩ Cyl2.
Evidently, Cyl1 and Cyl2 can be prolonged to realize homotopies between

the pairs of closed curves (c+1 , c
−
1 ) and (c+2 , c

−
2 ) as it was announced in our plan,

but it will not be needed further.
Let us study properties of the cylinders constructed alike Cyl1 and Cyl2.

3.2. Properties of the cylinders of the type Cyl

Definition 3.2. — A cylinder Cyl0 is said to be of the type Cyl if and only if
Cyl0 possesses

1) a fundamental domain FD(Cyl0)
def
= 4R̃+R̃−Q̃+ ∪ 4Q̃+Q̃−R̃− con-

structed of two totally geodesic triangles in H3 such that dH3(Q̃+, Q̃−) =

dH3(R̃+, R̃−), and
2) the hyperbolic isometry γ̃ ∈ I(H3) sending the geodesic segment R̃+R̃−

to the geodesic segment Q̃+Q̃− and such that for every point R̃−] ∈
{γ̃].R̃−|γ̃] ∈ 〈γ̃〉} the inequality dH3(R̃+, R̃−) ≤ dH3(R̃+, R̃−] ) holds true
(here and below the symbol 〈γ̃〉 stands for the group generated by the
element γ̃). Note that Q̃− ∈ {γ̃].R̃−|γ̃] ∈ 〈γ̃〉} by construction.

H2

R̃+

Q̃−

Q̃+

R̃−

H3

R+

Q+

Q−

R−

The

Figure 3.3. The quadrilaterals R̃+R̃−Q̃+Q̃− in H3 and
R+R−Q+Q− in H2.

Remark that the metric of Cyl0 induced from the ambient space is hyper-
bolic. Let us flatten FD(Cyl0) and obtain a hyperbolic quadrilateral
R+R−Q+Q− ⊂ H2 isometric to FD(Cyl0) such that the vertices with tildes
in H3 correspond to the vertices of the same name but without tildes in H2

(see Fig. 3.3).
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The quadrilateral R+R−Q+Q− serves as a fundamental domain of Cyl0 in its
universal covering in H2. Denote by χR and χQ the hyperbolic straight lines
in H2 containing the segments R+R− and Q+Q− correspondingly. Remark
that the connected domain of H2 between χR and χQ is actually a fundamental
domain of the unbounded hyperbolic cylinder Cyl◦0 containing Cyl0. We will
call it FD(Cyl◦0). Indeed, the fundamental group π1(Cyl◦0) = Z. Hence, Cyl◦0
possesses a closed geodesic χ◦ and there is a hyperbolic straight line χ in H2

serving as a lift of χ◦ and related to the isometry χ̄ of H2 such that Cyl◦0 =
H2/〈χ̄〉. We show the existence of such geodesic χ in the following

Lemma 3.3. — Consider two nonintersecting geodesics χR and χQ in H2 which
are not asymptotic, with marked points R ∈ χR and Q ∈ χQ. There is a unique
hyperbolic straight line χ in H2 such that the angles of intersection of χ with χR
and χQ are equal, and moreover, if we denote R′ def

= χR ∩χ and Q′ def
= χQ ∩χ,

then dH2(R,R′) = dH2(Q,Q′) and the points R and Q lie in the same half-plane
with respect to χ.

Proof. — Let us consider the Beltrami-Klein modelK2 of the hyperbolic plane
H2. Recall that K2 is a unit disk in the Euclidean plane R2 and all geodesics
of K2 are restrictions of Euclidean straight lines on this disk. Without loss of
generality the geodesics χR ⊂ K2 and χQ ⊂ K2 can be taken symmetric with
respect to the axis Ox of the cartesian coordinate system on R2, both at an
arbitrary distance ζ from Ox. Let χR lie in the upper half-space of R2 with
respect to Ox and χQ lie in the lower half-space of R2 with respect to Ox. At
last we fix arbitrary points R ∈ χR and Q ∈ χQ.

By construction, every geodesic in K2 passing through the origin O of the
cartesian coordinate system on R2 either intersects χR and χQ at the same
angle or does not intersect them. Let us consider a family Φτ of such geodesics
RτQτ lying between the straight lines OR and OQ where Rτ ∈ χR, Qτ ∈ χQ,
τ stands for the hyperbolic distance between R and Rτ , and the line OQ ∈ Φτ
corresponds to the value τ̂ of the parameter τ .

Note that

• R and Q lie in the same half-plane with respect to any RτQτ ∈ Φτ .
• As τ grows up monotonically from 0 to τ̂ , the distance dH2(Q,Qτ ) de-

creases monotonically from dH2(Q,Qτ̂ ) to 0. Hence, there exists a unique
τ0 ∈ [0, τ̂ ] such that dH2(R,Rτ0) = dH2(Q,Qτ0).

We choose χ to be Rτ0Qτ0 ∈ Φτ . χ is unique since τ0 is unique. �

Remark 3.4. — Let Set(R−)
def
= {χ̄].R−|χ̄] ∈ 〈χ̄〉} (by construction, Q− ∈

Set(R−)). Then for every point R−] ∈ Set(R−) the inequality dH2(R+, R−) ≤
dH2(R+, R−] ) holds true.
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Proof. — By construction, dH3(R̃+, R̃−) = dH2(R+, R−), and the surfaces
〈χ̄〉.R+R−Q+Q− ⊂ H2 (which is the union

⋃
χ̄]∈〈χ̄〉 χ̄].R

+R−Q+Q− of the
quadrilaterals χ̄].R+R−Q+Q− isometric toR+R−Q+Q−) and 〈χ̄〉.FD(Cyl0) ⊂
H3 are isometric in their intrinsic metrics. Evidently, for any points T̃1 and
T̃2 in 〈χ̄〉.FD(Cyl0) it is true that dH3(T̃1, T̃2) ≤ dint

〈χ̄〉.FD(Cyl0)(T̃1, T̃2), where
dint
〈χ̄〉.FD(Cyl0)(·, ·) stands for the intrinsic metric of 〈χ̄〉.FD(Cyl0). At last, the

part 2) of the definition of a cylinder Cyl0 of the type Cyl allows us to conclude
that Remark 3.4 is valid. �

Remark 3.5. — Let R′Q′ be a segment of the geodesic χ ⊂ H2 between χR
and χQ serving as a fundamental domain of χ◦ ⊂ Cyl◦0 on χ (here R′ ∈ χR and
Q′ ∈ χQ). Then either R′Q′ ⊂ R+R−Q+Q− or R′Q′ ∩R+R−Q+Q− = ∅.

Proof. — Recall that the points R+ and Q+ are pre-images in H2 of the same
point on Cyl0, and one can be obtained from another by applying an isometry
of H2 which is an element of the group 〈χ̄〉 preserving the straight hyperbolic
line χ. Hence, R+ and Q+ lie in one half-plane of H2 with respect to χ and, by
consequence, the segment R+Q+ does not intersect χ. Similarly, R−Q−∩χ = ∅.

We conclude that if R+Q+ and R−Q− lie in the same half-plane of H2 with
respect to χ then R′Q′ ∩ R+R−Q+Q− = ∅. Otherwise, if R+Q+ and R−Q−
lie in different half-planes with respect to χ, then R′Q′ ⊂ R+R−Q+Q−. �

3.3. h-neighborhood of a geodesic in H2. — In this section, we study hyper-
bolic quadrilaterals of one special type and half-neighborhoods of geodesics
containing one of the sides of our quadrilaterals which are inscribed in and
circumscribed about these quadrilaterals. Properties of these objects will be
largely used in obtaining bounds on a possible size of cylinders of the type Cyl.

The object of our interest is a quadrilateral OROQRQ ⊂ H2 with the sides
dH2(OROQ) = l, dH2(R,Q) = l′, and dH2(OR, R) = dH2(OQ, Q) = h′, such that
the edges ORR and OQQ are perpendicular to OROQ. Draw a curve γh at a
distance h < h′ from the geodesic containing OROQ such that γh intersects
ORR and OQQ at points T and T ′ correspondingly. Denote a segment of γh
between ORR and OQQ by T̂ T ′, and the hyperbolic length of T̂ T ′ by lh.

A direct calculation shows that

Remark 3.6. — The following relation holds true:

lh = lcoshh.

Remark 3.7. — If h = h′ then T and T ′ coincide with R and Q, T̂ T ′ intersects
OROQRQ as a solid body only at its ends R and Q, and, evidently, lh′ > l′

(any path connecting two points can not be shorter then a geodesic segment
between them).
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Remark 3.8. — Suppose that h′ > l′. If h ≤ h′ − l′ then T̂ T ′ ⊂ OROQRQ
and lh < l′.

Proof. — Consider hyperbolic balls Bl′(R) and Bl′(Q) of the radius l′ with the
centers R and Q. These balls contain the segment RQ. Also, Bl′(R) and Bl′(Q)

are perpendicular to ORR and OQQ correspondingly. By construction, T̂ T ′ is
perpendicular to ORR and OQQ as well. Moreover, T̂ T ′ is a convex curve.
Hence, T̂ T ′ lies outside the interior ofBl′(R) andBl′(Q) for h ≤ h′−l′. It means
that the geodesic segment RQ does not intersect T̂ T ′, and T̂ T ′ ⊂ OROQRQ.

Denote by OROQT̂ T ′ the convex domain in H2 bounded by the segments
ORT , OROQ, OQT ′ and the curve T̂ T ′. By construction, the orthogonal pro-
jection of RQ onto OROQT̂ T ′ is T̂ T ′. Since the orthogonal projection on the
boundary of a convex hyperbolic domain is contracting [4, p. 9] (see also [7,
II.1.3.4, p. 124]), we get lh < l′. �

Also, we need

Lemma 3.9. — Let us consider a quadrilateral OROQRQ as in Section 3.3
with the fixed length lRQ of the edge RQ. There is a constant

hort
int = lRQ + arcosh

elRQ l2RQ
ε2

3

.

such that if the length hRQ of the sides ORR and OQQ is greater than hort
int

then the length of the path T̂RTQ at distance hT
def
= hRQ/2 from OROQ con-

necting the midpoints TR and TQ of ORR and OQQ is smaller than the Margulis
constant ε3.

Proof. — Denote by lO the length of OROQ. Once lRQ is fixed, suppose that
hRQ can be arbitrarily big, in particular, bigger than lRQ.

There are points T ′R ∈ ORR and T ′Q ∈ OQQ at distance h′T from OR and

OQ correspondingly, such that the length of the path T̂ ′RT
′
Q as in Section 3.3

is equal to ε3. By Remark 3.6,

(3.1) lOcoshh′T = ε3.

Indeed, if T ′R and T ′Q do not exist then

(3.2) lO > ε3.

By Remarks 3.6 and 3.8 applied to the quadrilateral OROQRQ,

(3.3) lOcosh(hRQ − lRQ) < lRQ.

Mixing (3.2) and (3.3), we get

ε3cosh(hRQ − lRQ) < lRQ,
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hRQ < lRQ + arcosh
lRQ
ε3

,

which leads us to a contradiction with the unboundedness of hRQ.
The length of T̂RTQ is less than the length ε3 of T̂ ′RT

′
Q when the inequality

(3.4) h′T > hT

(
=
hRQ

2

)

is satisfied, which is equivalent to the validity of

coshh′T > cosh
hRQ

2
,

and, by (3.1), is also equivalent to

(3.5)
ε3

lO
> cosh

hRQ
2
.

Due to the following property of the hyperbolic cosine: cosh2x = cosh2x +
sinh2x, we see that

cosh2
(hRQ

2

)
≤ coshhRQ.

Hence, the validity of the formula

(3.6) coshhRQ <
ε2

3

l2O

implies the validity of (3.5).
Let us exclude lO from (3.6) using (3.3).
At first, we perform a series of modifications of (3.3). By the formula for

the hyperbolic cosine of the sum of two angles, we get

coshhRQcoshlRQ − sinhhRQsinhlRQ <
lRQ
lO

.

Then, as sinhx > 0 for each x > 0, and because coshx > sinhx and coshx > 0
for all x ∈ R, we obtain

coshhRQ(coshlRQ − sinhlRQ) <
lRQ
lO

,

and the definitions of the hyperbolic sine and cosine,

(3.7) sinhx =
ex − e−x

2
and coshx =

ex + e−x

2
,

imply

coshhRQ <
elRQ lRQ
lO

.

It means that the validity of the formula

(3.8)
elRQ lRQ
lO

<
ε2

3

l2O
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implies the validity of (3.6). We rewrite the condition (3.8) in a more convenient
form:

(3.9) lO <
ε2

3

elRQ lRQ
.

By (3.3), we know that

lO <
lRQ

cosh(hRQ − lRQ)
.

Hence, the validity of

(3.10)
lRQ

cosh(hRQ − lRQ)
<

ε2
3

elRQ lRQ

implies the validity of (3.8).
We can now conclude that the condition

hRQ > hort
int

obtained from (3.10) implies (3.4). �

3.4. Fundamental domains of Cyl1 and Cyl2 in H2. — Following the con-
struction of a fundamental domain of a cylinder of the type Cyl in H2 from Sec-
tion 3.2, we define for the cylinder Cyl1 its fundamental domain P+

0 P
−
0 P

+
1 P
−
1 ⊂

H2
1, where H2

1 is just a copy of the hyperbolic plane H2. We denote by χP0

and χP1
the hyperbolic straight lines in H2

1 containing the segments P+
0 P
−
0 and

P+
1 P
−
1 correspondingly. Following the content of Section 3.3, we find the hyper-

bolic segment O0O1 ⊂ H2
1 corresponding to the element γ1 of the fundamental

group π1(M◦) (see Section 3.1) with the points O0 ∈ χP0
and O1 ∈ χP1

.
Similarly, we define the quadrilateral P+

0 P
−
0 P

+
2 P
−
2 ⊂ H2

2 to be a fundamen-
tal domain of the cylinder Cyl2, where H2

2 is another copy of H2. Denote by χP0

and χP2
the geodesics in H2

2 containing P+
0 P
−
0 and P+

2 P
−
2 correspondingly. We

also find the hyperbolic segment O0O2 ⊂ H2
2 corresponding to γ2 ∈ π1(M◦)

with the points O0 ∈ χP0 and O2 ∈ χP2 .
An attentive reader has already remarked the following abuse of notation:

the geodesic χP0
with the points P+

0 , P−0 , and O0 on it lie both in H2
1 and H2

2

as if these copies H2
1 and H2

2 of the hyperbolic plane intersect at χP0
. It is very

logical since the segment P+
0 P
−
0 ⊂ χP0

corresponds to the segment P+P− in
the intersection of the cylinders Cyl1 and Cyl2 related to H2

1 and H2
2.

We are now prepared to prove Theorem 3.2. In order to do this, according
to Remark 3.5 we must consider two separate situations.

Situation 1. — If for both cylinders Cyl1 and Cyl2 their fundamental domains
P+

0 P
−
0 P

+
1 P
−
1 ⊂ H2

1 and P+
0 P
−
0 P

+
2 P
−
2 ⊂ H2

1 contain the segments O0O1 and
O0O2 correspondingly (see Fig. 3.4), then the distance between the surfaces
S+ and S− from the statement of Theorem 3.2 is bounded from above due to
the Margulis lemma.
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Indeed, recall that Pmid is the midpoint of the segment P+P− ⊂ Cyl1∩Cyl2,
then the midpoints Pmid

0 , Pmid
1 , and Pmid

2 of the segments P+
0 P
−
0 ⊂ χP0 ,

P+
1 P
−
1 ⊂ χP1

, and P+
2 P
−
2 ⊂ χP2

are the pre-images of Pmid in P+
0 P
−
0 P

+
1 P
−
1 ⊂

H2
1 or P+

0 P
−
0 P

+
2 P
−
2 ⊂ H2

2. Following the content of Section 3.3, we construct
the paths ̂Pmid

0 Pmid
1 ⊂ H2

1 and ̂Pmid
0 Pmid

2 ⊂ H2
2 connecting Pmid

0 with Pmid
1

and Pmid
2 , and lying at distance dH2(Pmid

0 , O0) from O0O1 and O0O2. We will
demonstrate that, once the distance between S+ and S− (consequently, the
hyperbolic length of P+P−) is bigger then a constant depending on l+1 , l−1 ,
l+2 , and l−2 (see Section 3.1 for definitions), then two intersecting homotopi-
cally different curves in M with fundamental domains ̂Pmid

0 Pmid
1 ⊂ H2

1 and
̂Pmid

0 Pmid
2 ⊂ H2

2 have the lengths less than the Margulis constant ε3, which is
impossible.

χO

χP0

χPi

α

O0 Oi

H2

P+
0 P+

i

P−
0

P−
i

Figure 3.4. The quadrilateral P+
0 P
−
0 P

+
i P
−
i , i = 1, 2, in Sit-

uation 1.

Situation 2. — If for at least one of the cylinders Cyl1 or Cyl2 the correspond-
ing segment O0O1 or O0O2 does not intersect P+

0 P
−
0 P

+
1 P
−
1 or P+

0 P
−
0 P

+
2 P
−
2

(see Fig. 3.5), then we will prove that the hyperbolic length of the segment
P+P− ⊂ Cyl1 ∩ Cyl2 (and, hence, the distance between S+ and S−) is neces-
sarily bounded by a constant depending on either l+1 and l−1 , or l+2 and l−2 .

It is now time to study

3.5. Distance between boundary components of a cylinder of the type Cyl. —
Let a quadrilateral R+

0 R
−
0 R

+
1 R
−
1 ⊂ H2 with h def

= dH2(R+
0 , R

−
0 ) = dH2(R+

1 , R
−
1 ),

l+
def
= dH2(R+

0 , R
+
1 ), and l− def

= dH2(R−0 , R
−
1 ) be a fundamental domain in H2 of

a cylinder Cyl0 of the type Cyl. Denote by χR0
and χR1

the hyperbolic straight
lines in H2 containing the segments R+

0 R
−
0 and R+

1 R
−
1 correspondingly. Then,
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χO

χP0

χPi

α

O0 Oi

H2

P+
iP+

0

P−
0 P−

i

Figure 3.5. The quadrilateral P+
0 P
−
0 P

+
i P
−
i , i = 1, 2, in Sit-

uation 2.

by Lemma 3.3 applied to the points R+
0 ∈ χR0

and R+
1 ∈ χR1

there is a a unique
hyperbolic straight line χO ⊂ H2 intersecting χR0 at a point O0, χR1 at a point
O1, such that R+

0 and R+
1 lie in the same half-plane with respect to χO, h+ def

=
dH2(R+

0 , O0) = dH2(R+
1 , O1), and the angles of intersection ∠(χO, χR0

) and
∠(χO, χR1

) are equal to some α ∈ (0, π/2). Denote also h− def
= dH2(R−0 , O0) =

dH2(R−1 , O1) and lO
def
= dH2(O0, O1).

Let the hyperbolic isometry χ̄O of H2 send O0 to O1 leaving the geodesic
χO invariant. Note that χ̄O sends also R+

0 to R+
1 and R−0 to R−1 . We define

points R+
i

def
= χ̄iO.R

+
0 , R

−
i

def
= χ̄iO.R

−
0 , and Oi

def
= χ̄iO.O0 for i ∈ Z, where the

symbol χ̄iO stands for the isometry χ̄O applied i times when i is a positive
integer, and for the inverse isometry χ̄−1

O applied −i times when i < 0. De-
note by χRi the hyperbolic straight line containing the segment R+

i R
−
i , i ∈ Z.

Construct the curves ν+
def
=
⋃
i∈ZR

+
i R

+
i+1 and ν−

def
=
⋃
i∈ZR

−
i R
−
i+1 of the ge-

odesic segments R+
i R

+
i+1 and R−i R

−
i+1, i ∈ Z. Remark that for each i ∈ Z

the quadrilateral R+
i R
−
i R

+
i+1R

−
i+1 ⊂ H2 serves as a fundamental domain of the

cylinder Cyl0 in H2, and the connected domain between the curves ν+ and ν−
of the hyperbolic plane is a universal covering of Cyl0 in H2. By construction,
dH2(R+

i , R
−
i ) = h, dH2(R+

i , Oi) = h+, dH2(R−i , Oi) = h−, dH2(R+
i , R

+
i+1) = l+,

dH2(R−i , R
−
i+1) = l−, ∠(χO, χRi) = α, i ∈ Z.

Let us construct a family of hyperbolic straight lines χ+
i passing through R+

i

and orthogonal to χO, i ∈ Z. Define the points of intersection O+
i

def
= χ+

i ∩χO,
T−i

def
= χ+

i ∩ ν−, i ∈ Z. Note that, by construction, the connected sets Ξ+
i
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bounded by χ+
i+1, ν+, χ+

i , and ν− are fundamental domains of the cylinder
Cyl0 in H2, i ∈ Z.

Remark 3.10. — The geodesic segment R+
i+1R

−
i+1 lies inside the fundamental

domain Ξ+
i ⊂ H2 of a cylinder Cyl0 of the type Cyl; on the other hand, the

geodesic segment R+
i T
−
i lies inside the fundamental domain R+

i R
−
i R

+
i+1R

−
i+1 ⊂

H2 of the same cylinder Cyl0, i ∈ Z.

Proof. — Since for every integer i the hyperbolic straight lines χ+
i are or-

thogonal to the geodesic χO corresponding to the closed geodesic χ◦ of the un-
bounded cylinder Cyl◦0 = H2/〈χ̄O〉 which contains Cyl0 (see also Section 3.2),
the projection on Cyl0 of a path ξ ⊂ Ξ+

i connecting any point Pu of the upper
boundary ∂Ξ+

i ∩ν+(= R+
i R

+
i+1) of Ξ+

i with any point P l of its lower boundary
∂Ξ+

i ∩ ν− does not make a full turn around Cyl0.
Let us fix i ∈ Z. As Ξ+

i ⊂ H2 is a fundamental domain of Cyl0, the lower
boundary ∂Ξ+

i ∩ ν− of Ξ+
i must contain at least one and at most two points of

the family {R−j ∈ H2|j ∈ Z} corresponding to one point on Cyl0. Consider the
point R−i+1 of this family. By Remark 3.4, the length of the segment R+

i+1R
−
i+1 is

the smallest one among the lengths of all the segments R+
i+1R

−
j , j ∈ Z. Hence,

the projection on Cyl0 of R+
i+1R

−
i+1 does not make a full turn around Cyl0

(otherwise, there would be a path shorter than R+
i+1R

−
i+1 among the segments

R+
i+1R

−
j , j ∈ Z). Since α ∈ (0, π/2), we conclude that R+

i+1R
−
i+1 ⊂ Ξ+

i .
Similarly, R+

i R
−
i ⊂ Ξ+

i−1. Hence, R
+
i T
−
i ⊂ R+

i R
−
i R

+
i+1R

−
i+1. �

Similarly, we construct a family of hyperbolic straight lines χ−i passing
through R−i and orthogonal to χO, i ∈ Z, and define the points of intersection
O−i

def
= χ−i ∩ χO, T+

i
def
= χ−i ∩ ν+, i ∈ Z. By construction, the connected sets

Ξ−i bounded by χ−i+1, ν+, χ−i , and ν− are fundamental domains of the cylinder
Cyl0 in H2 and, by analogy with Remark 3.10, the following statement holds
true.

Remark 3.11. — The geodesic segment R+
i R
−
i lies inside the fundamental

domain Ξ−i ⊂ H2 of a cylinder Cyl0 of the type Cyl; on the other hand, the ge-
odesic segment R−i+1T

+
i+1 lies inside the fundamental domain R+

i R
−
i R

+
i+1R

−
i+1 ⊂

H2 of the same cylinder Cyl0, i ∈ Z.

Also, define h+
O

def
= dH2(R+

i , O
+
i ), h−O

def
= dH2(R−i , O

−
i ), and note that

dH2(Oi, Oi+1) = dH2(O+
i , O

+
i+1) = dH2(O−i , O

−
i+1) = lO, i ∈ Z.

3.5.1. Consideration of Situation 1. — In this section, we demonstrate

Lemma 3.12. — Let a cylinder of the type Cyl contain a closed geodesic and
possess a fundamental domain R+

0 R
+
1 R
−
0 R
−
0 ⊂ H2. Define by l+ and l− the
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lengths of the sides R+
0 R

+
1 and R−0 R

−
1 , and by h the length of R+

0 R
−
0 and

R+
1 R
−
1 . Then the condition

h ≥ 2 max

{
arcosh

[
coshl+cosh

(
l+ + arcosh

el
+

(l+)2

ε2
3

)]
,

arcosh

[
coshl−cosh

(
l− + arcosh

el
−

(l−)2

ε2
3

)]}
.

(3.11)

guarantees that there is a path in R+
0 R

+
1 R
−
0 R
−
0 connecting the midpoints of R+

0 R
−
0

and R+
1 R
−
1 , and such that its length is smaller than the Margulis constant ε3.

As we consider Situation 1, we suppose that Oi ∈ R−i R
+
i for i ∈ Z and,

consequently,

(3.12) h = h− + h+.

For all i ∈ Z, let us denote the midpoint of the segment R+
i R
−
i by Rmid

i , the
midpoints of R+

i Oi and R
−
i Oi by R

mid+
i and Rmid−

i , the midpoints of R+
i O

+
i

and R−i O
−
i by Omid+

i and Omid−
i . Denote the distances from the points Rmid

i

to the straight hyperbolic line χO by d, from Rmid+
i to χO by d+, from Rmid−

i

to χO by d− and note that, by construction, the distances from the points
Omid+
i to χO are equal to h+

O/2 and from the points Omid−
i to χO are equal

to h−O/2, i ∈ Z.
Denote by χ̂ a curve in H2 at distance d from χO and passing through the

points Rmid
i for all i integers; by χ̂+

R a curve in H2 at distance d+ from χO and
passing through the points Rmid+

i ; by χ̂−R a curve in H2 at distance d− from
χO and passing through the points Rmid−

i ; by χ̂+
O a curve in H2 at distance

h+
O/2 from χO and passing through the points Omid+

i ; by χ̂−O a curve in H2 at
distance h−O/2 from χO and passing through the points Omid−

i , i ∈ Z.

Remark 3.13. — In the notation defined above, the inequalities

(3.13) d+ ≤ h+
O

2
and d− ≤ h−O

2

hold true.

Proof. — Define by R̂mid+
0 the orthogonal projection of the point Rmid+

0 on
χO ⊂ H2 and consider the hyperbolic triangles 4O0O

+
0 R

+
0 and 4O0R̂

mid+
0 Rmid+

0 .
Recall that dH2(R+

0 , O
+
0 ) = h+

O, dH2(Rmid+
0 , R̂mid+

0 ) = d+, dH2(R+
0 , O0) = h+,

dH2(Rmid+
0 , O0) = h+/2, ∠R+

0 O0O
+
0 = ∠Rmid+

0 O0R̂
mid+
0 = α, and ∠O0O

+
0 R

+
0

= ∠O0R̂
mid+
0 Rmid+

0 = π/2.
Applying Hyperbolic Law of Sines to 4O0O

+
0 R

+
0 and 4O0R̂

mid+
0 Rmid+

0 , we
obtain the formulas

sinα

sinhh+
O

=
sin π

2

sinhh+
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and
sinα

sinhd+
=

sin π
2

sinhh
+

2

,

or, after simplification,

(3.14) sinhh+
O = sinαsinhh+

and

(3.15) sinhd+ = sinαsinh
h+

2
.

Note that when the formula

(3.16) sinhd+ ≤ sinh
h+
O

2

holds true, the first relation in (3.13) is satisfied.
By (3.15), (3.16) is equivalent to

(3.17) sinαsinh
h+

2
≤ sinh

h+
O

2
.

Due to the following property of the hyperbolic sine: sinh2x = 2sinhxcoshx,
from (3.14) we get

(3.18) 2sinh
h+
O

2
cosh

h+
O

2
= 2 sinαsinh

h+

2
cosh

h+

2

As h+
O ≤ h+ by construction and the function coshx is monotonically increasing

for x ≥ 0, then it is true that cosh(h+
O/2) ≤ cosh(h+/2) and, by (3.14), we

obtain

(3.19) sinh
h+
O

2
cosh

h+

2
≥ sinαsinh

h+

2
cosh

h+

2
.

Simplifying (3.19), we see that the condition (3.17) is satisfied. Hence, the first
inequality in (3.13) holds true.

The validity of the second relation in (3.13) we prove by the same method.
�

Together with constructions made above, Remark 3.13 means geometrically
that the curve χ̂ lies inside the connected domain of the hyperbolic plane
bounded by the curves χ̂+

R and χ̂−R which is embedded into the connected do-
main bounded by χ̂+

O and χ̂−O which is embedded, in its turn, into the connected
domain bounded by ν+ and ν−.

By Remark 3.6, the length of the path ̂Rmid
i Rmid

i+1 connecting the points Rmid
i

and Rmid
i+1 on the curve χ̂ is l̂ = lOcoshd, the length of the path ̂Rmid+

i Rmid+
i+1 ⊂

χ̂+
R connecting the points Rmid+

i and Rmid+
i+1 is l̂+R = lOcoshd+, the length

of the path ̂Rmid−
i Rmid−

i+1 ⊂ χ̂−R connecting the points Rmid−
i and Rmid−

i+1 is
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l̂−R = lOcoshd−, the length of the path ̂Omid+
i Omid+

i+1 ⊂ χ̂+
O connecting the

points Omid+
i and Omid+

i+1 is l̂+O = lOcosh(h+
O/2), and the length of the path

̂Omid−
i Omid−

i+1 ⊂ χ̂−O connecting the points Omid−
i and Omid−

i+1 is l̂−O = lOcosh(h−O/2),
i ∈ Z.

Assume that Rmid
i ∈ R+

i Oi, i ∈ Z. According to Remark 3.13, we have

(3.20) lO ≤ l̂ ≤ l̂+R ≤ l̂+O ≤ l+.
Otherwise Rmid

i ∈ R−i Oi, i ∈ Z and

(3.21) lO ≤ l̂ ≤ l̂−R ≤ l̂−O ≤ l−

(remind that we consider Situation 1). Hence, if we prove that for h big
enough l̂+O < ε3 and l̂−O < ε3, then l̂ < ε3 and the projection of the path
̂Rmid
i Rmid

i+1 ⊂ H2 on the cylinder Cyl0 is a closed curve which is shorter than
the Margulis constant ε3 and which passes through the midpoint Rmid of the
segment R+R− ⊂ Cyl0 corresponding to R+

i R
−
i ⊂ H2, i ∈ Z.

First, fixing l+ let us find a condition on h+ which will guarantee l̂+O to be
less than ε3.

By Remark 3.10, the geodesic segment R+
0 T
−
0 lies inside the fundamental

domain R+
0 R
−
0 R

+
1 R
−
1 ⊂ H2. Hence, the point O+

0 of intersection of R+
0 T
−
0 with

χO belongs to the geodesic segment O0O1.
Denote lO+

0 O0

def
= dH2(O+

0 , O0) and consider the right-angled triangle 4O0O
+
0 R

+
0 .

Hyperbolic Pythagorean Theorem implies:

(3.22) coshh+ = coshh+
OcoshlO+

0 O0
.

Since O0O
+
0 ⊂ O0O1, the inequality lO+

0 O0
≤ lO holds true and, together

with (3.22) gives us
coshh+ ≤ coshh+

OcoshlO,

and, by (3.20),
coshh+ ≤ coshh+

Ocoshl+,

or, in other form,

(3.23) coshh+
O ≥

coshh+

coshl+
.

It means that, once we take h+ to satisfy the condition

(3.24) coshh+ ≥ coshl+cosh

(
l+ + arcosh

el
+

(l+)2

ε2
3

)
,

then, according to (3.23),

h+
O ≥ l+ + arcosh

el
+

(l+)2

ε2
3

,
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and, by Lemma 3.9 applied to the quadrilateral O+
0 O

+
1 R

+
0 R

+
1 , we conclude that

(3.25) l̂+O ≤ ε3.

Similarly, if we take h− to verify the inequality

(3.26) coshh− ≥ coshl−cosh

(
l− + arcosh

el
−

(l−)2

ε2
3

)
,

then

(3.27) l̂−O ≤ ε3.

Finally, let the condition (3.11) be satisfied. Supposing h+ ≥ h−, we have
̂Rmid
0 Rmid

1 ⊂ O+
0 O

+
1 R

+
0 R

+
1 and, by (3.12), the inequality (3.24) holds true,

which implies (3.25) and, due to (3.20), leads as to the validity of the condition

(3.28) l̂ ≤ ε3.

On the other hand, if h+ < h− then ̂Rmid
0 Rmid

1 ⊂ O−0 O−1 R−0 R−1 and, by (3.12),
the inequality (3.26) holds true, which implies (3.27) and, due to (3.21), leads
as to the validity of (3.28).

Lemma 3.12 is proved.

3.5.2. Consideration of Situation 2. —

Lemma 3.14. — Let a cylinder of the type Cyl do not contain a closed geodesic
and possess a fundamental domain R+

0 R
+
1 R
−
0 R
−
0 ⊂ H2. Define by l+ and l−

the lengths of the sides R+
0 R

+
1 and R−0 R

−
1 , and by h the length of R+

0 R
−
0 and

R+
1 R
−
1 . Then

h < max

{(
l+ + l− + ln

2l+

l−

)
,

(
l+ + l− + ln

2l−

l+

)}
.

Lemma 3.14 can be proved in the same spirit as Lemma 3.12. For the
detailed arguments see [23] (and also [24]).

3.6. Finalizing the proof of Theorem 3.2. — Consider some points P+ ∈ c+1 ∩c+2
and P− ∈ c−1 ∩ c−2 . As in Section 3.1, construct the cylinders Cyl1 and Cyl2
of the type Cyl homotopically equivalent to the pairs of curves (c+1 , c

−
1 ) and

(c+2 , c
−
2 ), with the upper boundaries of the lengths l+1 and l+2 , with the lower

boundaries of the lengths l−1 and l−2 , and such that the hyperbolic geodesic
segment P+P− ⊂M◦ lies in the intersection Cyl1 ∩ Cyl2.
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If Situation 2 is realized for at least one of the cylinders Cyl1 and Cyl2, than
Lemma 3.14 implies that

d(S+,S−) < max

{(
l+1 + l−1 + ln

2l+1
l−1

)
,

(
l+1 + l−1 + ln

2l−1
l+1

)
,

(
l+2 + l−2 + ln

2l+2
l−2

)
,

(
l+2 + l−2 + ln

2l−2
l+2

)}
.

Otherwise, Situation 1 is realized for both cylinders Cyl1 and Cyl2 and, once
we suppose

d(S+,S−) < 2 max

{
arcosh

[
coshl+1 cosh

(
l+1 + arcosh

el
+
1 (l+1 )2

ε2
3

)]
,

arcosh

[
coshl−1 cosh

(
l−1 + arcosh

el
−
1 (l−1 )2

ε2
3

)]
,

arcosh

[
coshl+2 cosh

(
l+2 + arcosh

el
+
2 (l+2 )2

ε2
3

)]
,

arcosh

[
coshl−2 cosh

(
l−2 + arcosh

el
−
2 (l−2 )2

ε2
3

)]}
,

by Lemma 3.12, there are curves cur1 ⊂ Cyl1 and cur2 ⊂ Cyl2 with the lengths
less than the Margulis constant ε3, both passing through the midpoint of the
segment P+P−. Thus, we come to a contradiction with Margulis Lemma.

Theorem 3.2 is proved. �
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