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COMPACT DOMAINS WITH PRESCRIBED CONVEX BOUNDARY
METRICS IN QUASI-FUCHSIAN MANIFOLDS

BY DMITRIY SLUTSKIY

ABSTRACT. — We show the existence of a convex compact domain in a quasi-Fuchsian
manifold such that the induced metric on its boundary coincides with a prescribed
surface metric of curvature K > —1 in the sense of A. D. Alexandrov.

This result extends the existence part of the classical result by Alexandrov and
Pogorelov on the realization of a convex domain with a prescribed boundary metric
in H® in the case where H? is replaced by a quasi-Fuchsian manifold and therefore the
topology of a convex domain is not trivial.

REsuME (Domaines convezes compacts avec des métriques de bord prescrites dans les
variétés quasi-fuchsiennes). — Nous montrons Iexistence d’un tel domaine compact
convexe dans une variété quasi-fuchsienne que la métrique induite sur son bord coincide
avec une métrique prescrite de courbure K > —1 au sens de A. D. Alexandrov.

Ce résultat étend la partie d’existence d’un résultat classique par Alexandrov et
Pogorelov sur la réalisation d’un domaine convexe avec une metrique de bord prescrite
dans H3 dans le cas ou H® est remplacé par une variété quasi-fuchsienne et donc la
topologie d’un domaine convexe n’est pas triviale.
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1. Introduction

The problem of existence and uniqueness of an isometric realization of a
surface with a prescribed metric in a given ambient space is classical in the
metric geometry. Initially stated in the Euclidean case, it can be posed for
surfaces in other spaces, in particular, in hyperbolic 3-space H?.

One of the first fundamental results in this theory is due to A. D. Alexandrov.
It concerns the realization of polyhedral surfaces in the spaces of constant
curvature.

As in [22], we denote by M™(K) the m-dimensional complete simply con-
nected space of constant sectional curvature K. So, M3(K) stands for spherical
3-space of curvature K in the case K > 0; M3(K) stands for hyperbolic 3-space
of curvature K when K < 0; and in the case K = 0, M3(K) denotes Euclidean
3-space.

Then the result of A. D. Alexandrov reads as follows:

THEOREM 1.1 ([3]). — Let h be a metric of constant sectional curvature K with
cone singularities on a sphere S? such that the total angle around every singular
point of h does not exceed 2w. Then there exists a closed convex polyhedron
in M3(K) equipped with the metric h which is unique up to the isometries
of M?(K). Here we include the doubly covered conver polygons, which are
planar in M3(K), in the set of convex polyhedra.

Later, A. D. Alexandrov and A. V. Pogorelov proved the following statement
in H3 [19]:

THEOREM 1.2. — Let h be a C*-reqular metric of sectional curvature which
is strictly greater than —1 on a sphere S%. Then there exists an isometric
immersion of the sphere (S?,h) into hyperbolic 3-space H3 which is unique up
to the isometries of H3. Moreover, this immersion bounds a convexr domain
in H3.

DEFINITION 1.1 ([15, p. 30], [17, p. 11]). — A discrete finitely generated sub-
group I'r C PSLy(R) without torsion and such that the quotient H?/T'r has
a finite volume, is called a Fuchsian group.

Given a hyperbolic plane P in H? and a Fuchsian group I'p C PSLy(R)
acting on P, we can canonically extend the action of the group I'r on the
whole space H?.

Here we recall another result on the above-mentioned problem considered for
a special type of hyperbolic manifolds, namely, for Fuchsian manifolds, which
is due to M. Gromov [12]:

THEOREM 1.3. — Let S be a compact surface of genus greater than or equal
to 2, equipped with a C* -regular metric h of sectional curvature which is greater
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than —1 everywhere. Then there exists a Fuchsian group T'r acting on H3, such
that the surface (S, h) is isometrically embedded in H3 /T k.

REMARK 1.4. — The hyperbolic manifold H3 /T from the statement of The-
orem 1.3 is called Fuchsian. Note also that the limit set A(T'r) C O, H? of a
Fuchsian group I'r is a geodesic circle in projective space CP* regarded as the
boundary at infinity 0o H? of the Poincaré ball model of hyperbolic 3-space H?.

In 2007 F. Fillastre [9] proved a polyhedral analog of Theorem 1.3, i.e., when
h is a hyperbolic metric with cone singularities of angle less than 27 (the term
“hyperbolic” means for us “of constant curvature equal to —1 everywhere”).

DEFINITION 1.2 ([13]). — A compact hyperbolic manifold M is said to be
strictly convex if any two points in M can be joined by a minimizing geodesic
which lies inside the interior of M. This condition implies that the intrinsic
curvature of M is greater than —1 everywhere.

In 1992 F. Labourie [13] obtained the following result which can be consid-
ered as a generalization of Theorems 1.2 and 1.3:

THEOREM 1.5. — Let M be a compact manifold with boundary (different from
the solid torus) which admits a structure of a strictly convexr hyperbolic man-
ifold. Let h be a C*-reqular metric on OM of sectional curvature which is
strictly greater than —1 everywhere. Then there exists a convex hyperbolic met-
ric g on M which induces h on OM :

g|aM = h.

Recall that the limit set A(Tr) C O5H® of a Fuchsian group I'r acting
on H? is the intersection of some hyperbolic plane with the boundary at infinity
of the hyperbolic 3-space H3, i.e., a circle (in the Poincaré and Klein models of
the hyperbolic 3-space).

Particular examples of the varieties considered in Theorem 1.5 are the quasi-
Fuchsian manifolds.

DEFINITION 1.3 ([15, p. 120]). — A quasi-Fuchsian manifold is a quasiconfor-
mal deformation space QH (I'r) of a Fuchsian group I'r C PSLy(R).

In other words, a quasi-Fuchsian manifold is a quotient H?/T'yr of H* by
a discrete finitely generated group I'yp C PSLy(R) of hyperbolic isometries
of H? such that there is a Fuchsian group I'r of isometries of H? such that
the limit set A(T'yr) C 9sH? of Ty is a Jordan curve which can be obtained
from the circle A(T'r) C 0o,H? by a quasiconformal deformation of 9., H?. The
group I'yr is called quasi-Fuchsian.

In geometric terms, a quasi-Fuchsian manifold is a complete hyperbolic man-
ifold homeomorphic to § x R, where S is a closed connected surface of genus
at least 2, which contains a convex compact subset.
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Let us also recall the A. D. Alexandrov notion of curvature which does not
require a metric of a surface to be regular.

Let X be a complete locally compact length space and let dx(:,-) stand
for the distance between points in X. For a triple of points p,q,7 € X a
geodesic triangle A(pqr) is a triple of geodesics joining these three points. For a
geodesic triangle A(pgr) C X we denote by A(pgr) a geodesic triangle sketched
in M?(K) whose corresponding edges have the same lengths as A(pgr).

DEFINITION 1.4 ([22, p. 7]). — X is said to have curvature bounded below by
K iff every point z € X has an open neighborhood U, C X such that for
every geodesic triangle A(pgr) whose edges are contained entirely in U, the
corresponding geodesic triangle A(pG7) sketched in M?(K) has the following
property: for every point z € gr and for Z € ¢ with dx(q, 2) = da2(x) (4, 2)
we have

In 2016 F. Fillastre, I. Izmestiev, and G. Veronelli [10] proved that for every
metric on the torus with curvature bounded from below by —1 in the Alexan-
drov sense there exists a hyperbolic cusp with convex boundary such that the
induced metric on the boundary is the given metric.

Our main goal is to prove the following extension of Theorem 1.5:

THEOREM 1.6. — Let M be a compact connected 3-manifold with boundary of
the type S x [—1,1] where S is a closed connected surface of genus at least 2.
Let h be a metric on OM of curvature K > —1 in the Alexandrov sense. Then
there exists a hyperbolic metric g in M with a convex boundary OM such that
the metric induced on OM is h.

In particular, the following result proved in [23] immediately follows from
Theorem 1.6.

THEOREM 1.7. — Let M be a compact connected 3-manifold with boundary of
the type S x [—1, 1] where S is a closed connected surface of genus at least 2. Let
h be a hyperbolic metric with cone singularities of angle less than 2w on OM
such that every singular point of h possesses a neighborhood in OM which does
not contain other singular points of h. Then there exists a hyperbolic metric g
in M with a convex boundary OM such that the metric induced on OM is h.

The idea of the proof of Theorem 1.7 is given in [25].
Theorem 1.7 can also be considered as an analog of Theorem 1.1 for the
convex hyperbolic manifolds with polyhedral boundary.

DEFINITION 1.5 ([7]). — A pleated surface in a hyperbolic 3-manifold M is
a complete hyperbolic surface S together with an isometric map f: S — M
such that every s € S is in the interior of some geodesic arc which is mapped
by f to a geodesic arc in M.
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A pleated surface resembles a polyhedron in the sense that it has flat faces
that meet along edges. Unlike a polyhedron, a pleated surface has no corners,
but it may have infinitely many edges that form a lamination.

REMARK 1.8. — The surfaces serving as the connected components of the
boundary OM of the manifold M from the statement of Theorem 1.7, which
are equipped by assumption with hyperbolic polyhedral metrics, do not nec-
essarily have to be polyhedra embedded in M: these surfaces can be par-
tially pleated, i.e., the universal covers in H? of these surfaces can contain
pleated 2-dimensional domains situated between several pairwise nonintersect-
ing geodesics which are also geodesics in H?.

DEFINITION 1.6 ([16]). — Let M be the interior of a compact manifold with
boundary. A complete hyperbolic metric g on M is convex co-compact if M
contains a compact subset K which is convex: any geodesic segment ¢ in (M, g)
with endpoints in K is contained in K.

In 2002 J.-M. Schlenker [21] proved uniqueness of the metric g in Theo-
rem 1.5. Thus, he obtained

THEOREM 1.9. — Let M be a compact connected 3-manifold with boundary
(different from the solid torus) which admits a complete hyperbolic convez co-
compact metric. Let g be a hyperbolic metric on M such that OM is C*° -reqular
and strictly convex. Then the induced metric I on OM has curvature K > —1.
Each C*°-regular metric on OM with K > —1 is induced on OM for a unique
choice of g.

It would be natural to conjecture that the metric g in the statements of
Theorems 1.6 and 1.7 is unique. The methods used in their demonstration do
not presently allow to attack this problem.

At last, recalling that the convex quasi-Fuchsian manifolds are special cases
of the convex co-compact manifolds, we can guess that Theorems 1.6 and 1.7
remain valid in the case when M is a convex co-compact manifold. It would
be interesting to verify this hypothesis in the future.

2. Construction of a quasi-Fuchsian manifold containing a compact
convex domain with a prescribed Alexandrov metric
of curvature K > —1 on the boundary

A compact connected 3-manifold M of the type & x [—1,1] from the state-
ment of Theorem 1.6, where S is a closed connected surface of genus at least 2,
can be regarded as a convex compact 3-dimensional domain of an unbounded
quasi-Fuchsian manifold M° = H?/T' g where I'gr stands for a quasi-Fuchsian
group of isometries of hyperbolic space H®. Note that the boundary M of such
domain M consists of two distinct locally convex compact 2-surfaces in M°.
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Thus, the metric h from the statement of Theorem 1.6 is a pair of Alexandrov
metrics of curvature K > —1 at every point defined on a couple of compact
connected surfaces of the same genus as M, and our aim is to find such quasi-
Fuchsian subgroup I'gr of isometries of hyperbolic space H? and such convex
compact domain M C M° that the induced metric of its boundary M coin-
cides with h.

The main idea of the proof of Theorem 1.6 is

(1) to approximate the Alexandrov metric A by a sequence {hp}nen of
C*°-regular metrics for which the Labourie-Schlenker Theorem 1.9 is
applicable, and therefore, there are such quasi-Fuchsian groups I',, of
isometries of H? and such convex compact domains M,, in the quasi-
Fuchsian manifolds M2 = H3 /T, that the induced metrics of the bound-
aries O M,, of the sets M,, are exactly h,, n € N;

(2) to find a sequence of positive integers ny o ® such that the sub-

sequences of groups {I'y, }ken and of domains {M,,, }ren converge (the
types of convergence will be specified later);

(3) and to show that the induced metric on the boundary of the limit domain
M coincides with h.

For convenience, let us introduce new notation of some entities that we con-
sidered before: we redefine the domain M and the quasi-Fuchsian manifold
M?° by the symbols M, and M2, correspondingly. Also, let us denote the
connected components of the boundary M, of the limit domain M, by St
and S, and the induced metrics on the surfaces S& and S by hl and h,
respectively. Therefore, to define the metric A from the statement of Theo-
rem 1.6 means to give a pair of Alexandrov metrics hl and hZ, of curvature

K > —1 at every point.

2.1. Construction of sequences of metrics converging to the prescribed metrics

DEFINITION 2.1. — We say that a sequence of metrics {h,, },en on a compact
surface S converges to a metric h if for any € > 0 there exists such N(¢) € N
that all integers n > N (e) and for any pair of points z and y on S the following
inequality holds:

(2.1) d, (2,9) — da(e,y)| < e.

First, we shall learn to approximate an Alexandrov metric of curvature
K > —1 on a compact connected surface by a sequence of hyperbolic poly-
hedral metrics (i.e., of sectional curvature —1 everywhere except at a discrete
set of points with conic singularities of angles less than 27). Next, we shall learn
to approximate any hyperbolic polyhedral metric by a sequence of C*°-regu-
lar metrics of curvature K > —1. Thus, we will be able to find a sequence
of C*°-regular metrics of curvature K > —1 on a compact connected surface
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converging to the given metric of curvature K > —1 at every point in the
Alexandrov sense.

2.1.1. Construction of a sequence of hyperbolic polyhedral metrics converging
to a metric in the Alexandrov sense. — A. D. Alexandrov in [3] developed
a way to approximate an Alexandrov metric of curvature K > 0 on a com-
pact connected surface by a sequence of Euclidean polyhedral metrics. Re-
cently T. Richard [20, Annex A] adapted the Alexandrov method to the case
of Alexandrov metrics of curvature K > —1.

Here we give a more detailed description of what T. Richard proved in the
annex of his PhD thesis.

In terms of [20, Annex A] let us recall the following definition due to A. D. Ale-
xandrov.

DEFINITION 2.2. — Let (X, d) be an Alexandrov compact surface of curvature
K > —1 everywhere. A triangulation T of (X,d) is a family of geodesic tri-
angles {T;};c; with disjoint interiors each homeomorphic to an open disk and
such that the family {7;};c; covers X. Note that in this definition two trian-
gles can have edges intersecting in more than one point that do not coincide
though.

T. Richard verifies that the following proposition proved in [3, Section 6,
p. 88| is valid for an Alexandrov surface of curvature K > —1.

LEMMA 2.1 (Lemma A.1.2 in [20]). — For every ¢ > 0, (X,d) admits a tri-
angulation (in the Alexandrov sense) by convex triangles whose diameters are
inferior to €.

After T. Richard let us fix ¢ > 0, denote by 7; a triangulation of (X,d)
provided by Lemma 2.1, and construct a polyhedral surface with hyperbolic
faces (X.,d.) as it follows: for every triangle T € 7. we associate a compar-
ison triangle T sketched on a hyperbolic plane H? (= M?(—1)) such that all
corresponding edges of T and T have equal lengths, then we glue together the
collection of hyperbolic comparison triangles following the same combinatorics
as that of 7, and thus we obtain a polyhedral surface X..

We must note the following property of X:

LEMMA 2.2 (Lemma A.2.1 in [20]). — (X.,d.) has curvature K > —1 every-
where in the Alexandrov sense.

REMARK 2.3. — By construction, the curvature of X, is equal to —1 every-
where with the exception of vertices of the triangles forming X.. Therefore,
Lemma 2.2 means that the above mentioned vertices are conic singularities of
angles < 27 of the hyperbolic polyhedral metric on X.,.
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At last, T. Richard [20, pp. 87-91] proves that for any € > 0 there exists
a real number &' > 0 (depending only on (X,d) and verifying the property
¢’ — 0 as € — 0) such that for any pair of points v and w in X and for a pair
of corresponding points ¥ and @ in X, the following inequality holds:

(2.2) \d. (5, @) — d(v,w)] < €',

T. Richard calls this way of convergence of hyperbolic polyhedral surfaces
(X.,d.) to the Alexandrov surface (X,d) as ¢ — 0 a Gromov-Hausdorff con-
vergence.

Let us rewrite the results of T. Richard described above in the language
developed in Section 2. We consider an Alexandrov compact surface (X, d) as
a topological surface S endowed with a metric h of curvature K > —1 in the
Alexandrov sense and we note that the construction of a hyperbolic polyhedral
surface X, based on a triangulation 7; of (X,d) (= (S,h)) is equivalent to a
construction of a hyperbolic polyhedral metric h. on S as follows: leaving the
lengths of all edges of the triangulation 7. unchanged, we replace the metric
h restricted on the interior of each triangle T' € 7. by a hyperbolic metric
(i-e., of curvature —1 everywhere) inside T'. Thus, the inequality (2.2) becomes
equivalent to the following one:

|dp. (v, w) — dp (v, w)| < €
for all pairs of points v and w in S (compare it with (2.1)).

Therefore, choosing a sequence of positive real numbers ,, — 0 as n — oo
and then applying the argument of T. Richard for each ¢,, we state

LEMMA 2.4. — Let S be a closed compact surface endowed with a metric h of
curvature K > —1 in the Alexandrov sense, there exists a sequence of hyperbolic
polyhedral metrics {hy}nen converging to h (hereinafter we mean by default the
convergence of metrics in the sense of inequality (2.1)).

2.1.2. Construction of a sequence of C*-regular metrics converging to a hy-
perbolic polyhedral metric. — In this section, we prove the following

LEMMA 2.5. — Let S be a surface with a hyperbolic polyhedral metric h. Then
there is a sequence of C™-regular metrics {hy}nen with sectional curvatures
strictly greater than —1 everywhere, converging to the metric h.

First, let us state two preliminary results.

LEMMA 2.6. — Let S be a surface with a hyperbolic polyhedral metric h. Then
there is a sequence of C™-regular metrics {hy,}nen with sectional curvatures
greater than or equal to —1 everywhere, converging to the metric h.

To prove Lemma 2.6, we construct small conic surfaces in H*® whose in-
duced metrics coincide with the restrictions of the metric h on neighborhoods
of the conic singularities of h, and then we convolute these conic surfaces with
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C*°-smooth functions as in [11]. A full explanation of this idea is given in [23,
Lemma 3.10] (see also [24]).

Also, a direct calculation shows the validity of the following statement (see
[23, Lemma 3.11] and also [24] for the detailed proof).

LEMMA 2.7. — Consider a regular metric surface (S,h), where S stands for
a 2-dimensional surface, h is a metric provided on S, and Kp(z) denotes the
sectional curvature of (S,h) at a point x € S. If we consider another metric
surface (S, g), where the metric g = Ah is a multiple of h and A > 0 is a positive
constant, then the sectional curvature Ky(x) of (S, g) at a point x € S is related
to Kp(z) as follows:

(2.3) K,(z) = %Kh(x).

We are now ready to give a demonstration of Lemma 2.5.

Proof. — Let h be a hyperbolic polyhedral metric on a closed compact surface
S of genus g. By Lemma 2.6, there is a sequence of C*°-smooth metrics {fi, } nen
on S, with sectional curvature > —1 everywhere, converging to h as n — oo.

Next, let us choose a monotonically decreasing sequence of real numbers

An —— 1 and let us define the metrics h,, def Anhi, on S8, n € N. Thus, by

n—oo

Lemma 2.7, the sectional curvatures of the metrics h,,, n € N are strictly greater
than —1 everywhere on S, and, by construction, the sequence of C*°-smooth
metrics {h, }nen converges to h as n — co. |

2.2. Convergence of convex surfaces in a compact domain in H3. — Let h} and
h be two metrics of curvature K > —1 in the Alexandrov sense everywhere
on a closed compact surface S of genus g. To be able to apply the Labourie-
Schlenker Theorem 1.9, we shall construct two sequences of C*°-regular metrics
of curvature strictly greater than —1, converging to %, and h_ . By Lemma 2.4,
there are two sequences of hyperbolic polyhedral metrics {i;} },en and {A;, }rnen
on 8, converging to hX, and h as n — co. Also, by Lemma 2.5, for each
n € N there are sequences {i,, }ren and {A, , }ren of C*-smooth metrics of
curvature K > —1 everywhere’ on S, convergfng to the hyperbolic polyhedral
metrics A} and i, respectively, as k — oo. Thus, we are now able to extract
sequences of C*°-smooth metrics {h;} },,en and {h;, }nen of curvature K > —1,
converging to the Alexandrov metrics A%, and hZ, respectively (where h} €
{1y xInen and by € {h,  Jren, n € N).

By the Labourie-Schlenker Theorem 1.9, for each n € N there is a unique
compact convex domain M,, of a quasi-Fuchsian manifold M, with hyperbolic

metric g, such that the induced metrics of the components S;" and S, of the

boundary OM,, Lof

00

STUS,; are equal to bl and h,, (see also Fig. 2.1). It means
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FIGURE 2.1. The surfaces S;f and S;, in the quasi-Fuchsian
manifold M?.

that, for each n € N there exist isometric embeddings fg+ : (S, h}) — M¢ and
fs- (S, hy) — M5, such that fo+(S) = S;F C M, and fg-(S) =S, C M5,

As M? can be retracted by deformation on S and S, , we conclude that
their fundamental groups are homomorphic:

1 (SF) = m (M) =~ 7 (S)).
Also, by construction,
11 (SF) = w1 (S) = mi(S,).
Hence, for all n € N
(2.4) m1(M;) ~ m1(S).

Since the manifolds M;, n € N, are hyperbolic, their universal cover-
ings Mv% are actually copies of hyperbolic 3-space H3. Moreover, as each
MC¢ is quasi-Fuchsian, there exists a holonomy representation p,, : 71 (M?) —
(M) (= Z(H3)) of the fundamental group of M¢ in the group of isometries
of the universal covering M2 (= H?3) such that MS = M2 /[pn(71(M2))] =
H3/[pn(m1(MS))] and the limit set A, C dcH? of p,(m1(M?2)) is homotopic
to a circle. By (2.4), we can also speak about the holonomy representation p‘,f :
m(S) =T (Mv;)(: Z(H?3)) of the fundamental group of S in the group of isome-
tries of the universal covering /{/lvfb(: H3) such that pS(71(S)) = pp(m1(M2)).
Thus we have that M2 = M2 /[pS (m1(S))] = H3/[pS (1(S))] and the limit set
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A,s of p3(m1(S)) is just A,,, n € N. We also suppose that 71 (S) is generated
by the elements {v1,...,v}.

FIGURE 2.2. The universal coverings S; and S, in the
Kleinian model K2 of hyperbolic space H?.

Inside /T/l/fl (= H3), n € N, we can find a convex set M, serving as a universal
covering of the domain M, C M2, ie., such that M, = M,/[pS(m1(S))],
and a pair of convex surfaces g,i‘ and g; serving as universal coverings of
the surfaces S;F € M2 and S, C M (see Fig. 2.2), i.e., such that S =
S} /10 (m1(8))] and S;; = S, /[0S (m1(S))]. By construction, OM,, = S US;
and the boundaries at infinity 0,0 M, = aoo@f = &X,g; = A,s. Indeed, since
for every n € N the surfaces ST C H® and S; C H3 are invariant under
the action of the group pS (m1(S)) of isometries of H3, we have that the limit
sets 8oo§: and &)og; of g,‘f and g; , respectively, are subsets of the limit
set A,s of H? under the action of the group p5(m1(S)). On the other hand,
given a point at infinity zo, € Apg, there is a point z € H? and a sequence
{7j}jen C m1(S) such that the sequence of points {3 (v;).2}jen C H? tends
t0 200 as j goes to co. Consider some points 21 € 5;{ and 2~ € 5;. Let df and
d; stand for the hyperbolic distances dgs(z,21) and dgs(z,27). The elements
p5 (), j € N, are isometries of H®. Hence, dys (oS (v;)-2, 05 (v;).27) = dF
and dys(pS (74).2, p5 (74).27) = dy for all j € N. Therefore, the sequences of
points {p3 (vj).2" }jen C S and {pS(v;).2" }jen C S, also converge to 2o
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as j — 00, and 50, Zoo € 00oS; and zs € 9x0S,. Thus, As C S} and
Ay CS,.

Denote by p, : Mn — M, the projection of Mn on M,, n € N. By
construction, 8§ = p,(S;) and S; = p,(S;;), n € N.

For every n € N we lift the metric g,, of the manifold M,, to the metric g, of
the universal covering M,, in such a way that for any v € 71(S) and for x € M,
and & € M, satisfying the relation x = p, (&), we have §,(Z) = p,*gn(z),
i.e., the metric §,(Z) € T:M, is a pull-back of the metric g,(z) € T3 M,,.
We have already remarked that, since g, is hyperbolic, g, is hyperbolic too.
Denote by lNL,J[ the restriction of the metric g, on the surface g;f and by iL; the
restriction of the metric g, on the surface g’; , n € N. By construction, the
metric i} is the lift of A, from the surface S;' to its universal covering S;7 and
the metric h;, is the lift of h;, from S; to S, n € N.

DEFINITION 2.3. — The diameter ¢ of a set S with a metric h is the following

quantity: ¢ def sup{dp (u,v)|u,v € S} where dp(u,v) stands for the distance
between points v and v in the metric h.

LEMMA 2.8. — There ezists a positive constant ds < oo which bounds from
above the diameters 6, and &, of the surfaces (S,h;}) and (S,h;;) for alln € N.

Proof. — Recall the way of construction of the metric h" on S, n € N.

First we applied Lemma 2.4, and thus obtained the sequence of hyperbolic
polyhedral metrics {%] } ey converging to the Alexandrov metric AL . Every
metric ;! is obtained from A1, by choosing a geodesic triangulation on (S, k)
and by replacing the metric h}, of curvature K > —1 in the interior of each
triangle by a hyperbolic plane metric (i.e., of curvature K = —1) while keeping
the lengths of the edges of a considered triangulation unchanged. Therefore,
by construction, the length of any curve on S measured in the metric i} does
not exceed the corresponding length measured in hZ,.

Next, for each n € N we constructed the sequence of C'*°-regular metrics
{h: « }ken of curvature K > —1 converging to the hyperbolic polyhedral metric
I by applying Lemma 2.5, and the metric k' belongs to the set {h:,k}keN
The application of Lemma 2.5 consists of two stages. The first step is the
construction of a sequence of C*°-regular metrics {ﬁ;k}keN of curvature K >
—1 converging to 7 due to Lemma 2.6, smoothing the conic singularities
of A by convolution. This procedure does not increase the distance between
any two points on the surface S. At the second stage, we considered a sequence
of positive real numbers {\x }ren decreasing to 1 and then, by multiplying the

metric ﬁ:’k by the constant A, (> 1), we obtained the metric /", for each k € N
and for every n € N, and thus, we increased all distances on S by v/ Ag.
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Since A1 > A\ for every k € N, the distances on & measured in the metric
h;\r def A1hL are not smaller than the corresponding distances measured in the

metrics Al for all n € N. Similarly, the distances on & measured in the metric

hy W h, are not smaller than the corresponding distances measured in the

metrics h,, for all n € N.
The diameters 6y and ) of the surfaces (S,h)) and (S,h;) are finite

numbers because S is compact. We can pose ds = max(éj\r, 9y)- O

LEMMA 2.9. — There exists a positive constant dpq < 0o such that for each
n € N and for every pair of points u € S;f C M2 and v € S, C M, the
distance dg, (u,v) between u and v in the manifold M, is less than .

Proof. — By Theorem 3.1 in Section 3, the distances o> between the sur-
faces S§ and S, n € N, are uniformly bounded by a constant os. Also, by
Lemma 2.8, the diameters of ;" and S, are both bounded by a constant ds
which does not depend on n. Hence, our assertion is valid if we take d( to be
equal to os + 26s. O

G. McShane remarked that the existence of a constant d 4 > 0 which serves
as a common upper bound for the distances between the boundary components
ST and S;; of the domains M,,, n € N does not guarantee that the diameters
of M,, are uniformly bounded from above.

Indeed, J. Brock in his PhD thesis (see also [6]) studied the following exam-
ple.

Given a pair of homeomorphic Riemann surfaces X and Y of finite type
and a “partial pseudo Anosov” mapping class ¢, by the Ahlfors-Bers simulta-
neous uniformization theorem there is a sequence of quasi-Fuchsian manifolds
{Q(¢"X,Y)}>2 ;. The diameters of each of the boundary components of the
convex hull of Q(¢"X,Y) is uniformly bounded in n and so is the distance
between the two boundary components but the diameter of the convex hull
of Q(¢"X,Y) goes to infinity because of a “cusp growing there” as n — oo.

However, the diameters of the domains M,,, n € N do not play a role in the
demonstration of Theorem 1.6; only the distances between the surfaces S;" and
S, , n € N, are of importance here.

Let us now return to the proof of Theorem 1.6.

Let us fix an arbitrary point z € S, which is not, however, a point of

singularity for the metrics h} and h__ on S, and let us denote z;" of Is+ (x) €

S c Mg and z;, def fs-(z) € S, € Mj, n € N. Denote also the distance
between the points z;7 and z,, in M2 by 6%, n € N. By Lemma 2.9, 0% <
for all n € N. B B

Let us consider two copies ST and S~ of the universal covering of the surface

S with the projections p™ : St — Sand p S~ — S and let us fix some points
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it € 8T and 2~ € 8§~ such that p* (i) = z and p~ (=) = . Without loss of
generality we may think that the fundamental group 7 (S) acts on St and S
in the sense that S ~ 8t /m;(S) and S ~ 8~ /m1(S). For every n € N we fix an
arbitrary pair of points #} € S € MS(= H?) and & € S, C M3 verifying
the conditions p,(Z;}) = z;} and p,(Z,) = =z,, and such that the distance
in M7 between 7} and #; is equal to of;. The functions fg+ : S — S, and
fs- + & = &, defined above induce the canonical bijective developing maps
fgg : 8t — 8t and f§; : §~ — 8 with the properties fg;r (Z%) = &} and
fgg (Z7) = Z,, and such that for any v € m1(S) it is true that fgi (v.2T) =
p5(7).&} and fs- (v.87) = p5(7).3;, neN.

REMARK 2.10. — The above-mentioned property of developing maps holds for
any points §* € ST, §~ € S~ and for every v € m1(S):

fsr (v ™) =pS(7)-f5: (37) and  fs-(v.57) =p5(v)-f5- @), neN.

Let the metrics ﬁj\' and fL; on the universal coverings St and S~ of the
surface S be the pull-backs of the metrics hi and h) on S defined in the proof
of Lemma 2.8. We are now able to construct the Dirichlet domains At C &+
and A~ C 8~ of S with respect to the metrics h; and h, based in the points

it €St and 3 € &, respectively. In what follows we will work with the
fundamental domains AT C ST and A= C S~ of S.

LEMMA 2.11. — For each n € N the domains A} ef fgz(AJr) c S cm

and A, ef fé:; (A7) C gn_ C H? are included in the hyperbolic balls B(Z;,ds)

and B(Z,, ,0s) of radius 6s centered at the points T,7 and Z, respectively.

Proof. — Tt suffices to prove this statement for the domain A

Assume that the surface ST is equipped with the metric B;\r It follows
from the definition of the Dirichlet domain that the distance from any point
z € At C 8t to the center Z+ of At is not greater than the diameter of the
surface (S, hl) which is less than or equal to ds (see the proof of Lemma 2.8).
Recall that the developing map f; 5+ St — S can be viewed as the identical

application from one copy of the surface S+t equipped with the metric iL;\'— to
another copy of S+ equipped with the metric fNL;‘L‘ Also, by the construction
made in the proof of Lemma 2.8, all distances on the surface S measured in
the metric A, do not exceed the corresponding distances on S in the metric
hy. Hence, this property is valid for the pull-backs hit and fL;\r on St of the
metrics iLjL' and kY on S. Therefore, the distance from any point v € A =
fg:f (AT) C SF to the center & = fg;r (Z1) of A} is not greater than 4.
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To complete the proof we remark that for any couple of points vy, vs € g;l" the
distance between them in the hyperbolic metric of 3-space H® does not exceed
the distance between v; and v in the induced metric i) on the 2-surface g':{ :
dps (v1,v2) < d;l:;(vl,’llz). ]

Denote by AT C S* the union of AT with all “neighbor” fundamental
domains of S of the form v.A™ for all v € 71(8S) such that clAT Ncly. AT #£ 0.
Similarly we define the set A~ C S™.

LEMMA 2.12. — For eachn € N the domains A f fg: (AT) c 8} c HB and

5; def fg;(z_) C gn_ C H3 are included in the hyperbolic balls B(%;,,30s)

and B(Z,,,30s) of radius 36s centered at the points T} and T, correspondingly.

Proof. — It suffices to prove this statement for the domain E;L*‘

First, by Lemma 2.11, the domain A is inscribed in the ball B(Z;,ds).
Similarly, for each v € m(S) the domain p$(7).A; (isometric to A)) is in-
scribed in the ball B(pS(7).Z}, s). Note that A is the union of AT with the
domains of the form pS(v).A} such that clA} N clpS (v).AF # 0, where v €
71(S). Thus, the set A is contained in the union Up of the ball B(i;, s) and
all balls of the type B(pS (7)., ds) such that B(pS (v).2},6s)NB(&,,6s) # 0.
Clearly, Up lies entirely inside the ball B(Z;,, 3ds). |

The following statement is an immediate corollary of Lemmas 2.9 and 2.12.

LEMMA 2.13. — For each n € N the domains A} f fng (AT) c §F c H3

and ﬁ; def fg;(z_) C g; C H3 are both included in the hyperbolic balls
) a

B(Z;},30s + 6m) and B(Z,,30s + 0pm) of radius 30s + daq centered at the
points T} and T, .

It is high time to identify the universal coverings /\7‘7’1 (which are copies
of H®) by supposing that the points ! coincide for all n € N. Let us tem-
porarily forget the 3-dimensional domains ./Wn of hyperbolic space H? in order
to concentrate our attention on the study of properties of the sequences of
surfaces {S} }nen and {S; Inen-

Recall the statement of the classical Arzela-Ascoli Theorem.

THEOREM 2.14 (Theorem 7.5.7 in [8], p. 137). — Suppose F' is a Banach space
and E a compact metric space. In order that a subset H of the Banach space
Cr(E) of continuous functions from E to F be relatively compact, necessary
and sufficient conditions are that H be equicontinuous and that, for each x € E
the set H, of all f(x) such that f € H be relatively compact in F'.

We will apply it in the following
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LEMMA 2.15. — There exist subsequences of functions {f§+ (At S H3}ren
i
and {f5- : A~ — H3}ren that converge to continuous functions fg+ : AT —
o <
H3 and fs- A7 — H? correspondingly.

Proof. — It suffices to find a converging subsequence of the sequence of func-
tions {fgrf C AT S H3},en. To this purpose we will apply the Arzela-Ascoli
Theorem 2.14. _

Let us equip the domain A+ c 8t with the restriction ;NL;”E N of the metric
ﬁ;\r Consider the domain (3+,B;\r|£ +) as a compact metric space E from
the statement of Theorem 2.14; hyperbolic space H? as a Banach space F; the
sequence of functions { f 5+ A+ - H3} ey in the space of continuous functions
from (AT, izj\r|£+) to H? as the set H C Cp(E).

By Lemma 2.13, the images A} = fgg (AT) c SF C H? of the maps fgfi’
n € N, are all included in the ball B(Z;,3ds + ) (recall that we identified all
points ;7 € H?, n € N). Thus, for each z € E the set H, is relatively compact
in F.

As it was already done in the proof of Lemma 2.11, we consider every de-
veloping map fs+ A+ — SF as the inclusion of the domain AT equipped

with the metric ﬁ/\ |x. to the surface ST with the metric A+, n € N. So, for

n’
any € > 0 if we pose ¢ := ¢ then for every pair of points z,y € Af such that
djt (z,y) < 6 it is true that dms(f51(2), fr (y)) < djy (Far (@), f5: (y)) < e
(recall that, by construction, distances measured in the metric hj\' are not
smaller than the corresponding distances measured in the metric h;}), n € N.
Thus, the functions { fa+ AT — H3},en are equicontinuous.
Therefore, by the Arzela-Ascoli Theorem 2.14, there exists a subsequence of
functions {fz+ : AT — H?}ren that converges to some continuous function
T
far + AT — H3. Similarly we obtain that there exists a subsequence of

functions { fg;k : A~ — H3}ren that converges to some continuous function

foo AT —H3. O

ASSUMPTION 1. — Further we assume that the sequences of functions { f§+ :
A+ = H3},cy and {fg, : A= = H3},en converge to continuous functions
fz A+ — H3 and fs - A~ — H3.

2.3. Convergence of the holonomy representations { Pn}neN and of the develop-
ing maps {f~+ St — H3},.cy and {fs : 8~ — H3}nen. — Now we
need to derive several properties of the holonomy representations pS (71(S)),
n € N.
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LEMMA 2.16. — Given two points y',y? € H? together with orthogonal bases
{e!,e?, €3} and {&',é?,&3} of the tangent spaces T,nH? and T,2H3, there is a
unique isometry ¥ € Z(H?) such that y* = 9.y* and &' = d,9(e?), i =1,...,3.

Proof. — Following Chapter 1, § 1.5 in [1, p. 13] let us recall the construction
of the hyperboloid model I¥ of hyperbolic space H3. Denoting the coordinates
in space R* by zg, z1, T2, x3, we introduce the Minkowski scalar product in R*
by the formula

(2.5) (z,y)m = —Zoyo + Z1Y1 + TaY2 + T3Y3,

which turns R* into a pseudo-Euclidean vector space, denoted by R31.

A basis {u®, u!,u?,u3} C R®! is said to be orthonormal if (u®,u®)y = —1,
(u¥,u¥)pr = 1 for i # 0, and (u’,u’)pr = O for i # j. For example, the standard
basis

eowee={(§).())-()-() )

is orthonormal.
Each pseudo-orthogonal (i.e., preserving the above scalar product) transfor-
mation of R3! takes an open cone of time-like vectors

C={zecR> :(z,2)y <0}
consisting of two connected components
¢t={re€:20>0}, € ={rec:z<0}

onto itself. Denote by O(3,1) the group of all pseudo-orthogonal transforma-
tions of space R3!, and by O’(3,1) its subgroup of index 2 consisting of those
pseudo orthogonal transformations which map each connected component of
the cone € onto itself.

Using notation developed in § A.1 [5, p. 1] we remind that the manifold

B ={zecR> :(z,2)py = 1,20 > 0}

with the metric induced by the pseudo-Euclidean metric (2.5) is called the hy-
perboloid model I? of hyperbolic space H?, and the restrictions of the elements
of O'(3,1) on I? form the group Z(H?) of all isometries of H?.

Again, by Chapter 1, § 1.5 in [1, p. 13], for any = € I3 we can naturally
identify the tangent space T,I% with the orthogonal complement of the vector
r in space R®! which is a 3-dimensional Euclidean space (with respect to
the same scalar product). If {u!,u? 43} is an orthonormal basis in it, then
{z,u!,u? 4} is an orthonormal basis in the space R31.

Obviously, the vector €® of the standard basis (2.6) R3! lies in I3 and the
vectors {e!, €%, €3} defined in (2.6) form an orthonormal basis of the tangent
space T.oI3. Also, according to a fact mentioned in the previous paragraph,
the sets of four vectors {y!,e!,e? e} C R>! and {y?,¢é!,é2,63} C R®! from
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the statement of Lemma 2.16 are orthonormal bases of R3!. Define the linear
transformations ¥, and J2 of R3! determined by their 4 x 4-real matrices
M? def (y*, e, e?,e3) and MY def (y?,él,e2,é3) with the columns consisting of
the coordinates of the corresponding vectors in the standard basis of R®!. A
direct calculation shows the transformations ¥; and ¥, send the standard base
to the orthonormal bases {y*, e, e?,e3} and {y?,é!, €2, &3} of R®!, respectively.
Moreover, we know that the vectors €®, y!', and y? belong to the upper cone
€*. Hence, ¥; and ¥, are elements of the group O’(3,1), and we can take the
transformation ¥ from the statement of Lemma 2.16 to be equal to ¥o[d;] 7.

]
DEFINITION 2.4. — Given a sequence of hyperbolic isometries {¢9,, € Z(H?)},en
determined by points y},y2 € H? and orthogonal bases {el,e2,e3}, {él,é2,¢e3

of the tangent spaces 1)1 H? and Ty H?3, we say that the isometries {9, }nen
converge to an isometry 9., € Z(H?) in the sense of Lemma 2.16 if the se-
quences of base points {y}},en, {y2 }nen converge to points yl ,y2 € H? and
the sequences of orthogonal bases {el,e2,e3},en, {€L,62,é3},en converge to
orthogonal bases {el,, €2, 3}, {€l,, 62,83 } of the tangent spaces T;; H® and
Ty2 H?3, and the above-mentioned limits define uniquely the isometry ¥o,. De-
note a convergence of isometries in the sense of Lemma 2.16 by ¢, = ¥
as m — oo.

DEFINITION 2.5. — We say that hyperbolic isometries {8, € Z(H?)},en con-
verge to an isometry ¥, € Z(H3) in a “weak” sense if for any point y € H?
the sequence {¥,,.y}nen converges to the point J..y € H® as n — oco. Denote
a “weak” convergence of isometries by 9, — Voo

LEMMA 2.17. — Given a collection of hyperbolic isometries {9, € T(H3)} |,
Yy = oo as n — o0 if and only if ¥, —— V.
n—o0

Proof. — A hyperbolic isometry ¢ : H> — H® which sends any y € H3 to
the point 9.y € H? can be interpreted as a linear transformation of Minkowski
space R31 as it was mentioned in the proof of Lemma 2.16. Therefore, 9(y)
depends continuously on y € H?3.

Suppose that ¥, = ¥, as n — o0o. By construction, a transformation ¢ €
Z(H?3) from Lemma 2.16 depends continuously on the parameters y!,y? € H?,
{e',e?, €3} C T,,H3, and {e*,é2,é®} C T,2H>. Hence, for any point y € H? the
sequence {¥,,.y}nen converges to the point ¥...y € H3 as n — oo, which means
that the convergence of the isometries {¥,}nen in the sense of Lemma 2.16
implies also the “weak” convergence of these isometries to 9.

Suppose now that ¢,, —— ¥.,. Being a linear transformation of Minkowski
n—oo

space R31, the hyperbolic isometries {¢,, € Z(H3)}22; are represented in the
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standard basis of R*! by the 4 x 4-real matrices M %~ 2o (99, 9L, 92 ,93), where

9k k=0,1,2,3, are the columns of M.

Let Py def (1,0,0,0)T € I3 ¢ R%!. The “weak” convergence of the isometries

{9, }nen at the point Py means that MV».Py —— MP=.Py, i.e.,

n—oo

(2.7) 90— 90 .

n—oo

Let P, % (v/2,1,0,0)” € I* ¢ R®!. The “weak” convergence of the isometries

{9, }nen at the point P; means that M7».P, —— MY~ .Py, ie., V209 +

n—0o0

9L —— V299 +9%, . Taking into account (2.7), we obtain that 9, —— 1.

Similarly we get that 92 —— 92  and 92 —— 9¥3,. Thus, the “weak”

n—oo n—oo
convergence of the isometries {0, }neny t0 Yo as n — oo implies also their
convergence in the sense of Lemma 2.16. O

LEMMA 2.18. — For each n € N let a pazr of surfaces §+ and S C ]HI3
(which are the images of developing maps fs+ St > S+ and fs— : —
S ) be invariant under the actions of a quasi-Fuchsian group pS (7r1( )) of
isometries of H3. Suppose in addition that the restrictions of the developmg
maps {f8+ At - H3},en and {fsf A — H3 tnen on the domains A+ C

St and A- C & deﬁned in Section 2.2 converge to continuous functions
fs* A+ — H® and fsf A~ — H3. Then there is a sequence of positive
integers my —— oo such that the morphisms {p5_: m(S) — T(H*)}ren

k—oo
converge to a morphism pS, : m(S) — Z(H3) in the sense of Lemma 2.16,
, for every v € w1(S) there exists a hyperbolic isometry which we denote
by pS,(v) such that pS, (v) = pS.(+) as k — .

Proof. — First, we prove that there is a sequence of positive integers ny P
—00

oo such that for any generator ~; of the group 71 (S) together with its inverse
element ’yi_l € m(S), i = 1,...,1, the subsequences of isometries p;fk () =

pS,(7i) and p3, (v71) = pS (v t) converge as k — oo.

Indeed, since for any i = 1,...,1 points #*, 7;,.#%, and ; '.&" lie inside
AT C 8* by construction, and because of convergence of the developing
maps {fz+ : AT — H?},en to a continuous function fgzr : AT — H3, we
know that the sequences of points Z,} (= fs+ (1)) — zr (= f§+ (@h)),
P (1)-&8 (= p3 (v0)-Fp (@) = fgp (33.81)) —— poo(%) L= 03 () fax (@)
= fg1 (vi-37)), and [p3 ()] 75 (= b7 )~f3; (@) = far (v 1 31) ——
(03, (7))~ 8L (= p5, (7 1)-Fae (8F) = far (771 &)) converge in HE.
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Also we know that for each n € N and for every ¢ = 1,...,l, the dif-

ferential di p5(v:) sends an orthonormal base {e}” et el'} of the tangent
space T~+H3 to an orthonormal base {&, ey, én"} of T S (7). s H® (recall
that, by constructions all the points Z}, n € N coincide). Since the sub-
sequences {e;’i}neN, {é?’i}neN, j = 1,2,3, i = 1,...,1, of unitary vectors
are bounded, there exists a sequence of positive integers ny k—> oo such
that the pairs of subsequences of orthonormal bases {e*"*, eh*"*, e3*"*} 1oy and
{eret enet et }keN converge all together (i = 1,...,1) ensemble to orthonor-
mal bases {e Lex” es') and {657, 65°°, e5” Z} Hence, by Lemma 2.16,
there exists a hyperbohc isometry that we denote by pS (7:) which sends
the point Z} to the point pS (v;).#L defined above and which differential

dz+ p5,(7i) sends an orthonormal base {3 37" e3>} of the tangent space

Tyt H? to an orthonormal base {&7* 2 e, i és” ’} of T DS ()5 H?3 such that

Pa, (1) = 0, (7.) as k — oc.

Secondly, we derive that for any element 7 € m1(S) the subsequences of
isometries pfk (7) = pS.(y) converges as k — oco. Indeed, every v € m;(S) can
be decomposed in a product of generators of 71 (S) together with their inverse
elements, for which the demanded convergence has already been shown. |

ASSUMPTION 2. — Further we assume that the sequence of holonomy repre-
sentations {pS : m1(S) — Z(H?)},en (where the groups pS (71 (S)) of isometries
of H? are quasi-Fuchsian) converges to a holonomy representation p3 : 71 (S) —
Z(H3) (where pS. (m1(S)) is a discrete group of isometries of H?) in the sense
of Lemma 2.16 as n — oo.

Let us now prove the following property of the functions f§+ c At > HB
and f, 5= A~ — H3 with respect to the group of isometries pS (71 (S)) of space
HE.

REMARK 2.19. — If for a pair of points gf’,ﬂ;’ € AT there exists a transfor-
mation v+ € 7;(S) such that 77 = 4.4, then the following equality holds:
(2.8) Fe (@) = (V") Fae (57)-

Similarly, if for a pair of points ¢; ,9, € A~ there exists a transformation
v~ € m1(S) such that g5 =+~ .97, then

fg;o (g;) = Pfo(Vf)-fg; (gl_)

Proof. — Tt suffices to prove the formula (2.8).
By Remark 2.10, the relation
(2.9) Fsr@3) = pn(v")-Fsr @)

is valid for all n € N.
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By Assumption 1, the sequence { f§+ (75 ) }nen C H? converges to the point
f§+ (§5) € H3. Hence, taking into account the formula (2.9) we see that in
order to prove the equality (2.8) we need to demonstrate the convergence of

the sequence {,oﬁ(’y‘*).fﬂr (7)) }nen C H3 to the point pS, (fy“‘).fgjo (#), ie.,
fixing € > 0, we ought to find such ng € N that
(2.10)

Vn >mng  the inequality dys(p5(v)-far (1), 05 (7F)-Fss (31)) <& holds.

First, by the above-mentioned Assumption 1, the sequence {f 5+ (71 ) Inen C

H? converges to the point f§;z (g;7) € H3. Therefore,
(2.11)
Iny € N:Vn >ny the inequality st(fgff @), fg:o @) < % is valid.

Also, by Assumption 2, pS (v+) = p3 (yF) asn — oco. Hence, by Lemma 2.17,
the sequence of points {p§(v").f5+ (77 )} nen C H? converges to the point

PS5, (v5).fse (B7) € HP, e,
(2.12) 3ng € N:Vn >ny the inequality
digs (05 (7). fs (), % (0)-F52 @) <
Applying the triangle inequality, we get:
dass (o3 (v F)-Fr (1), % ()-S5 (51))

is true.

N ™

2.13
(Sst)(pf(W)-fg;(ﬂT ), 05 (vF)-F5e (7)) + dus (05 (vF)-Fgo (3, 0% (vF)- F (5))-
The fact that pS(yT) is an isometry of H® implies the equality:
(2.14)  dws (o5 (V1) Far (), p5 (VD) Fae () = dus (5 (5), Fse (G))-
Therefore, substituting (2.14) in (2.13), we obtain:

dws (5 (V) Far (50), 05, (V) Fa () <

(2.15)  dus (Far (G, Fax B)) + dus (05 (vD)-Fse @), 05 (7 - Fe @)
Hence, by (2.15), (2.11), and (2.12), we conclude that it is sufficient to pose
nog = max(ni, ng) to satisfy the condition (2.10). O

Now we are able to extend the functions f§+ : A+t — H® and fg, CAT >
H3 to the whole domains St and S~. Let us do 1t as follows: for arbitrary
points g+ € S+ and TS S~ we find such pomts yA and y, in the fundamen-

tal domams AT c At c St and A~ C A C &~ of the surface S and such
elements v*,7y~ € m1(S) that §© = v*.g% and §~ = v7.7,, then we define
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e ~ def e ~ 3 ~ def N 7 Jo
fse @)= p3(v") - for (GA) and f5- (§7) = p3,(v7)-f5= (9a)- By construc-
tion, the surfaces St L7 5t (S*) and S Lf 7o 3 (S8~ are invariant under the

actions of the group p3 (m1(S)) of isometries of S,
Repeating almost literally the demonstration of Remark 2.19, we can prove

LEMMA 2.20. — The sequences of developing maps {f§+ (St > H3},en and
{fg, : 8 > H3},en converge to continuous functions f§+ : 8T — H3 and
fg_ 18 — H3.

Finally, we show

REMARK 2.21. — The boundaries at infinity 60053‘0 C OuoH3 and 80050_0 -
OsoH3 of the surfaces g’;g and go_o coincide with the limit set A s of the
group pS (m1(S)). Moreover, the group p3 (m1(S)) of isometries of H® from
Lemma 2.18 is quasi-Fuchsian.

Proof. — By Lemma 2.20, the sequences of surfaces {§+}n€N and {S }nen
bounding the convex connected hyperbolic domains {M }nen converge to the
surfaces §+ and S in H3. Hence, the sets {Mn}neN converge to a con-
vex connected hyperbolic domain M . Moreover, the boundaries at infin-
ity {aooé“;}neN and {08, }nen converge to the curves 0o S C OsoH3 and
aooggo C OsH?®. Indeed, our surfaces in the Poincaré disk model of H3 con-
sidered as Euclidean surfaces inside a unitary ball converge together with their
boundaries.

Recall that, by the Labourie-Schlenker Theorem 1.9, for each n € N the
curves Oy, S+ and Oy, S coincide with the limit set A s of the quasi-Fuchsian
holonomy representations pS (71 (S)) which is homotopic to a circle in 9,,H?.
On the other hand, by Assumption 2, p$(71(S)) = pS (71(S)) as n — oo,
which implies that the sequence of the limit sets {A,s }nen converges to the
limit set A,s (see, for instance, [14, p. 323]).

Thus, the boundaries at infinity 9,8, and 85S5, of the surfaces S and

8% coincide with the limit set A,s of the group pfo(ﬂ'l (S)). Furthermore,
we conclude that the boundary 3./\/(00 of the domain /\/loo consists of the sur-
faces .S+ and S , and the boundary at infinity O ./\/iOO of /\/loo also coincides

with Apm

Since the surfaces gjo and ggo are topological disks embedded in H?2, their
common boundary at infinity is homotopic to a circle. Therefore, by definition,
the group pS (m1(S)) is quasi-Fuchsian. O
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Note that the domain Mvoo which appeared during the demonstration of Re-
mark 2.21, is invariant under the actions of the quasi-Fuchsian group pS_ (71 (S))
of isometries of H?.

2.4. Adaptation of a classical theorem of A. D. Alexandrov to the hyperbolic case

Recall a classical result due to A. D. Alexandrov:

THEOREM 2.22. — If a sequence of closed conver surfaces F,, converges to a
closed convex surface F and if two sequences of points X, and Y, on F, con-
verge to two points X and Y of F, respectively, then the distances between the
points X,, and'Y,, measured on the surfaces F,, converge to the distance between
the points X and Y measured on F, i.e., dx(X,Y) = lim, . oodz, (Xn, Ya).

For the proof of Theorem 2.22 in Euclidean 3-space see Theorem 1 in Sec. 1 of
Chapter III [3]. An adaptation of this proof of Theorem 2.22 to the hyperbolic
case is given in [23] (see also [24]). Another proof of Theorem 2.22 in hyperbolic
space H? is given by A. D. Alexandrov in his paper [2, Theorem 3] (in Russian).
We will largely use this result in Section 2.5.

2.5. Induced metrics of the surfaces §+ and § —. — Return to consideration
of the family of convex domains {M }o° , with the boundaries M, = =S, St US .
(see Sections 2.2 and 2.3) in hyperbolic space H3. Assume in addition that the
marked points Z;} € S,‘f ,m=1,...,00, are all identified with an arbitrary point
Oy € K3.

Consider a ball B C H3 centered at Oy of a sufficiently big hyperbolic radius
p (it will be enough to put p = 90s + drq, where the constants ds and dpq are

defined in Lemmas 2.8 and 2.9). Define the convex compact hyperbolic sets
def

MB ' M, N B, and denote by S ¥ OMBENSF and S; & oMBEN Sy
the intersections of the boundary OM?E of the domain MZ with the surfaces
St and 87, n=1,...,00. By construction, the sets 3;’{ and 3; defined in
Lemma 2.12 are subsets of S; and & correspondingly, n = 1,.. ., cc.

REMARK 2.23. — The ball B is taken big enough in order to provide the
following property: for an arbitrary pair of points AT, BT € 3;‘ there exists
a path (T C A connecting AT and B* which is shorter than any path ¢+ C
OM?B connecting AT and Bt and such that £+ N (3MB \ &) # 0. Similarly,
for points A=,B~ € A there exists a path (— C A connecting A~ and B~
which is shorter than any path ¢~ C OMB connectmg A~ and B~ and such
that £~ N (OME\ S;) # 0. For this purpose, radius p = 995 + ¢ of the ball
B is sufficient although not optimal.

Recall that, by Lemma 2.20, the sequences of developing maps { f gt St -

H3},en and {f§; : 85 > H3},en converge to continuous functions fg;,o
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St — H3 and fg; : 8~ — H3, and the images of the maps fg‘i and fgg
are convex surfaces g;f and gﬁ[ respectively, n = 1,...,00. Therefore, by
construction, the surfaces {A} }nen and {A; },en converge to AL and AL,
and moreover, the sequence of closed convex nondegenerate surfaces {9M5B}, o
converges to the closed convex nondegenerate surface OM?E in H3. Applying
the hyperbolic version of Theorem 2.22 to the family of surfaces {OMB}, cn
which converges to OM5E we conclude that the sequence of induced metrics
on OM?E tends to the induced metric on IME as n — oco. In particular, given
any two sequences of points A and B, in 3;‘; C OMB converging to two
points AY and B in 3;“0 C OMB, respectively, the distances between the
points A" and B; measured on the surfaces OMPE converge to the distance
between the points AL and B measured on OM?E | ie.,

(2'16) dBMEO(A;vB:o) = hmn%ooda./\/lf (A:7B:)

By Remark 2.23, the distance between the points A} and B;" measured on 9M5
is equal to the distance between these points measured on S*, also, by con-

struction, S} is a convex subset of the surface S;7 with the induced metric A,
therefore

(217) daMf(A:L—aB'rT) = dﬁi (A7—~1_7B7—:—)7
n=1,...,00. Substituting (2.17) in (2.16), we get:
dj+ (AL, BY) = lim,, oo d; 1 (A, BY).

Hence, the sequence of the induced metrics ﬁ,f of the surfaces 5; restricted on
the sets A converges to the induced metric hZ, of the surface ST restricted
on A% asn — oco. By analogy, the sequence of the induced metrics {A;, |3~ }nen
converges to the induced metric h |- .

In Sections 2.2 and 2.3 we constructed the surfaces gj{ and g; to be invari-
ant under the actions of the discrete group p¢ (m1(S)) of isometries of H® for

eachn =1,...,00. Hence, the induced metrics l~z+ and l~f on the surfaces g’;{
and S , respectlvely7 are periodic with respect to the group p; S (my (8)), n =
1,...,00. We have just proved that the metrics k" and h;, _converge to ht and

h correspondlngly, in the nelghborhoods A+ C SJr and A C S of the fun-
damental domains A} C 8 and A; C S of the surfaces SJr and S;, . Since,
by Assumption 2 and Remark 2.21, the sequence of quasi-Fuchsian groups
{05 (71(8)) }nen converges to a quasi-Fuchsian group pS. (71(S)) of isometries
of H3, we now conclude that the metrics INLI and INz; converge to iz; and lNL;O
everywhere on g,‘{ and <S~'; as n — 0o.
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To complete the proof of Theorem 1.6 let us consider the convex compact
hyperbolic domain Mo, % Moo /[0, (71(8))] with the boundary

OMee © SHUSL E (8L /105, (m(8))]) | (S /105, (m1(S))])

in the unbounded hyperbolic manifold M2, o H3/[pS (71(S))]. The metric
A on the universal covering S1, of the boundary component SF, of the domain
M. induces the metric hZ, on the compact surface S&. We have recently
showed that the pull-backs E: of the metrics h;} (see Section 2.2) converge to
the pull-back h}, of the metric A} . Hence, the sequence of metrics {A} }nen
tends to the metric ivzjo as n — oo. But in the very beginning of Section 2.2
the C*°-smooth metrics {h;} },en were constructed in order to approximate
the Alexandrov metric h,. Therefore, the induced metric b}, on SF, coincides
with the prescribed metric h},. Similarly we obtain that the metric on the
surface S is exactly hZ.

We sum up that the convex hyperbolic bounded domain M, with the
boundary OM,, = St U S, in the quasi-Fuchsian manifold MS, was con-
structed in such a way that the induced metrics of the boundary components
8% and S coincide with the prescribed Alexandrov metrics h}, and h,. The-
orem 1.6 is proved. O

3. Distance between boundary components of a convex compact
domain in a quasi-Fuchsian manifold.

Consider a sequence of convex bounded domains M, with the upper bound-
aries S;7 and the lower boundaries S,; in quasi-Fuchsian manifolds Mg, such
that for all n the convex regular metric surfaces S;' and S;; with the induced
metrics b and h,,, respectively, are topologically the same surface S.

DEFINITION 3.1. — The distance d(K, £) between subsets  and L of a set

N is defined as follows: d(K, L) ef inf{dy (u,v)|u € K,v € L}, where dy (u,v)

stands for the distance between points v and v in V.

In this section, we prove the following result which is essentially used in the
demonstration of Theorem 1.7 from the first part of this paper:

THEOREM 3.1. — Let the metrics b} tend to some metric hl, (correspondingly,
h; tend to h>_ ) as n goes to co. Then there is a common upper bound for the
distances between S, and S;; in M, which does not depend on n.

The proof of Theorem 3.1 is essentially based on
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THEOREM 3.2. — Given a convex bounded domain M with the upper boundary
ST and the lower boundary S~ in a quasi-Fuchsian manifold M°. If the met-
ric surface S* possesses two homotopically different nontrivial closed simple
intersecting curves ¢; and c5 of the lengths I and I, and S~ possesses two
homotopically different nontrivial closed simple intersecting curves c; and cy
of the lengths I{ and l; such that ¢i and c;, as well as c; and c; , are homo-
topically equivalent pairs of curves in M, then the distance d(S*,S™) between
ST and S~ is bounded from above by the constant

21+
d(8*,87) <max{<lf+l1 —I—lnll_l) <l+—|—l1 +In— )
1

2l
+
1
215 205
(l;+l;+lnl_2> <l+—|—l_—|—ln lf)
12 l2
(l
2
3

2

2arcosh coshl+cosh l —i—arcoshei
€

2arcosh | coshi; cosh

€3

ely (l+)2
2arcosh | coshlZ cosh <l§Ir + arcoshgiz2

)

17 (1—)2
Iy +arcoshe(121)> ,

2arcosh

Ly -
coshl; cosh| I3 + arcoshez(;)> },
€3 i
where the symbol €3 stands for the Margulis constant of hyperbolic space H?>
(this constant will be defined shortly).

This result is of independent interest as well. Note that we do not require
the regularity of surface metrics in Theorems 3.1 and 3.2.
Let us show how Theorem 3.2 implies Theorem 3.1.

Proof of Theorem 8.1. — Consider two homotopically different nontrivial
closed curves c¢; and co on the surface S such that they intersect each other
but do not intersect with the singular points of the metrics h}, and hZ, on S.
Since the sequence of metrics {h;} },en converges to the metric hl, the lengths
lf’" of the curve ¢; € S measured in the metrics b, n € N, tend to the length
lf’oo > 0 of ¢; measured in the metric h}, as n — oo. The converging sequence
of the positive real numbers {lf”n}neN is bounded from below by a real number
w] > 0 and from above by a real number Q} > 0. Similarly, the lengths 17"
of the curve ¢; € S measured in the metrics b, n € N, are bounded from
below by some w; > 0 and from above by some Q; > 0; the lengths l; ™ of
the curve c; € S measured in the metrics b}, n € N, are bounded from below
by some w; > 0 and from above by some Q7 > 0; and the lengths I,"" of the
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curve ¢z € S measured in the metrics h,;, n € N, are bounded from below by
some w, > 0 and from above by some Q5 > 0.

By Theorem 3.2, the distance d(S;" ,S; ) between the surfaces S;f and S,
in the quasi-Fuchsian manifold M;, is uniformly bounded from above for any
neN:

20 20,
d(S:[,S;)<max{< T T ) (Q++Q +ln>
<Q+ (Q+ + Q5 + In 2 )

2arcosh coshQ+cosh <Q —|—arcosh

2arcosh coshQ cosh

)2
2arcosh coshQ+cosh Q+ + arcosh

)

)
)

e (Q;)?
2arcosh coshQ2 cosh (Q + arcosh) } O
E .

Our aim now is to demonstrate Theorem 3.2. We will widely use the Margulis
lemma to prove this fact. In the most general case the Margulis lemma reads
as follows [5, Theorem D.1.1, p. 134]:

GENERAL MARGULIS LEMMA. — For every m € N there exists a constant
em > 0 such that for any properly discontinuous subgroup T' of the group Z(H™)
of isometries of H™ and for any x € H™, the group I'._ (z) generated by the
set Fe (x) = {y €T :dgm(z,v(x)) < en} is almost-nilpotent, where dgm (-, -)
stands for the distance in hyperbolic space H™.

If we restrict the General Margulis Lemma to the case of the quasifuchsian
isometries of hyperbolic 3-space H? which is interesting to us, then the lemma
can be rewritten in this way [18, Theorem B, p. 100]:

MARGULIS LEMMA. — There is a universal constant €3 > 0 such that for any
properly discontinuous subgroup T' of the group Z(H3) of isometries of H3 if two
closed simple intersecting curves 41 and o of the manifold H3 /T have lengths
less than €3, then 71 and 42 are homotopically equivalent in H®/T.

Hence, the main idea of the proof of Theorem 3.2 is to find a pair of closed
simple intersecting curves inside M of lengths less than the Margulis constant
€3 and such that they are not homotopically equivalent once the distance be-
tween ST and S~ is big enough. Then, by the Margulis lemma, the curves
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under consideration ought to be homotopically equivalent, which leads us to a
contradiction. Let us now give a more detailed plan of the proof of Theorem 3.2:

FIGURE 3.1. The cylinders Cyl; and Cyl, in the manifold M°.

e Suppose that the curves cf' and cg' intersect at a point PT (this point
is not necessarily unique), and the curves ¢ and c¢; intersect at a point
P~. We will construct cylinders Cyl; and Cyl, in M that realize ho-
motopies between ¢ and ¢; and between cj and c; correspondingly.
Then the intersection of Cyl; and Cyl, contains a (curved) line with
ends Pt and P~. Denote the midpoint of this line by P™id,

e We will find a constant based on I, I, l;‘, 5, and €3, and we will
construct curves on Cyl; and Cyl, (see Fig. 3.1) passing through P™id
such that if the distance between ST and S~ is greater than the constant
mentioned above then both constructed curves are shorter than e3.

3.1. Construction of the cylinders Cyl, and Cyl,. — We consider a quasifuch-
sian manifold M°. By definition, it means that M° is a quotient H3/I'° where
I'° is a quasifuchsian subgroup of the group Z(H?) of isometries of hyperbolic
3-space. Note that I'° is homomorphic to the fundamental group m; (M?°).
Denote by -, the closed geodesic of M° homotopically equivalent to cf
and c¢;. Similarly, denote by 2 the closed geodesic of M° homotopically

TOME 146 — 2018 — N° 2



BOUNDARY METRICS OF CONVEX COMPACT DOMAINS 337

equivalent to c; and c¢; . By abuse of notation, we denote by v; and v, the
elements of m; (M?°) corresponding to the closed geodesics under consideration.
The universal covering of the domain M C M° is a convex simply connected
subset M of H3. Denote by 4; and 7, the isometries of H? corresponding to
the elements 1 and ~ys of w1 (M?°).

FIGURE 3.2. Construction of fundamental domains of the
cylinders Cyl; and Cyl, in the Poincaré model of H?®.

Let us now consider any single point ﬁg‘ € H? serving as a pre-image of PT €
cf' N c; in the universal covering M. Among all the points in the pre-image
of P~ € ¢j Nc; in M, we choose P~ € H? to be the closest to P, (in case there

are several points realizing the minimal distance to P, we choose one of them
f def . def .

arbitrarily). Denote ]Bf def '71.]33', ]31_ & '71.]30_, ]3;' = 72.]35', 132_ = 72.]50_
(recall that for every point T € H3 and for every 4 € Z(H?3) the symbol 7.7
stands for the image of T' under the isometry 7). Then we set the unions of flat
hyperbolic triangles Aﬁd‘ ﬁo_ P UAPF P ﬁo_ and Aﬁd‘ ﬁo_ Py UAPS Py 150_
in H3 to be fundamental domains of the cylinders Cyl; and Cyl, (see Fig. 3.2).

The fundamental domain & C H® of the curve ¢ has the same length [}
as ¢f. We can choose & to connect ﬁ0+ and ]SfL . Hence, the length of the

straight (hyperbolic) segment }30+ 131+ is less than or equal to ;. Similarly,
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ds (Py , Pr) < 1y, dus(Py, By) < 13, and dgs(Py, Py) < ;. Also, by
construction, the midpoints P0 mid Pm‘d, and Pmld of the segments P P
]Bf ]31_ , and 15;' 152_ serve as pre-images of the midpoint P™4 of the segment
P+ P~ lying in the intersection Cyl; N Cyl,.

Evidently, Cyl; and Cyl, can be prolonged to realize homotopies between
the pairs of closed curves (¢, c;) and (cj, c; ) as it was announced in our plan,
but it will not be needed further.

Let us study properties of the cylinders constructed alike Cyl; and Cyl,.

3.2. Properties of the cylinders of the type Cyl
DEFINITION 3.2. — A cylinder Cyl, is said to be of the type Cyl if and only if

Cyl, possesses

1) a fundamental domain FD(Cyl)) = ©f ARTR- Qt UAQTQ R~ con-

structed of two totally geodesic triangles in H? such that ds (Q+, @_) =
dys (R, R™), and

2) the hyperbolic isometry 4 € 7 (H3) sending the geodesic segment Rt R~
to the geodesic segment Q*Q and such that for every point Rﬁ
{3.R~ |3 € ()} the inequality dgs (R, R™) < dgs (R, éﬂ_) holds true
(here and below the symbol (%) stands for the group generated by the
element 7). Note that Q~ € {%.E‘Hﬁ € ()} by construction.

FIGURE 3.3. The quadrilaterals RTR-Q+tQ~ in H3 and
R+R-Q+Q~ in H2.

Remark that the metric of Cyl, induced from the ambient space is hyper-
bolic.  Let us flatten FD(Cyl,) and obtain a hyperbolic quadrilateral
RTR~Q*Q~ C H? isometric to FD(Cyl,) such that the vertices with tildes
in H? correspond to the vertices of the same name but without tildes in H?
(see Fig. 3.3).
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The quadrilateral RT R~ Q" Q™ serves as a fundamental domain of Cyl,, in its
universal covering in H2. Denote by xr and Xq the hyperbolic straight lines
in H? containing the segments R* R~ and QT Q™ correspondingly. Remark
that the connected domain of H? between X r and xq is actually a fundamental
domain of the unbounded hyperbolic cylinder Cylj containing Cyl,. We will
call it FD(Cyly). Indeed, the fundamental group 71 (Cylg) = Z. Hence, Cylg
possesses a closed geodesic x° and there is a hyperbolic straight line x in H?
serving as a lift of x° and related to the isometry ¥ of H? such that Cylj =
H2/{x). We show the existence of such geodesic x in the following

LEMMA 3.3. — Consider two nonintersecting geodesics xr and x¢ in H? which
are not asymptotic, with marked points R € xg and Q) € xg. There is a unique
hyperbolic straight line x in H? such that the angles of intersection of x with xr

and xq are equal, and moreover, if we denote R’ def xrNx and Q' ef XQ NX,
then dgz (R, R') = du2(Q, Q') and the points R and Q lie in the same half-plane
with respect to x.

Proof. — Let us consider the Beltrami-Klein model K? of the hyperbolic plane
H2. Recall that K2 is a unit disk in the Euclidean plane R? and all geodesics
of K2 are restrictions of Euclidean straight lines on this disk. Without loss of
generality the geodesics xg C K2 and xg C K? can be taken symmetric with
respect to the axis Oz of the cartesian coordinate system on R?, both at an
arbitrary distance ¢ from Oz. Let yg lie in the upper half-space of R? with
respect to Oz and xq lie in the lower half-space of R? with respect to Oz. At
last we fix arbitrary points R € xg and Q € xq-

By construction, every geodesic in K? passing through the origin O of the
cartesian coordinate system on R? either intersects xg and yq at the same
angle or does not intersect them. Let us consider a family @, of such geodesics
R.Q; lying between the straight lines OR and OQ where R, € xgr, @+ € X0,
7 stands for the hyperbolic distance between R and R, and the line OQ € @,
corresponds to the value 7 of the parameter 7.

Note that

e R and @ lie in the same half-plane with respect to any R, Q, € ®..

e As 7 grows up monotonically from 0 to 7, the distance dy2(Q, Q) de-
creases monotonically from dgz (@, @+) to 0. Hence, there exists a unique
7o € [0, 7] such that dyz(R, R.,) = di2(Q, Qr, )-

We choose x to be R, ,Q-, € . x is unique since 7y is unique. O

REMARK 3.4. — Let Set(R™) ef {xs-R~|xy € (X)} (by construction, @~ €
Set(R™)). Then for every point Ry € Set(R™) the inequality dy=(R*, R7) <
dg2 (R*, R;) holds true.
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Proof. — By construction, dgs(R*, R™) = dg2(R*,R™), and the surfaces
(X).R*R~Q+*Q~ C H? (which is the union U)Zue(i) X4-RTR-QT Q™ of the
quadrilaterals x3.R* R~ Q1 Q™ isometric to RT R~ Q7T Q™) and (x).FD(Cyl,) C
H? are isometric in their intrinsic metrics. Evidently, for any points fl and
f2 in (). FD(Cyly) it is true that dgs(T1,T2) < % pp g, (T, T2), where
dl(r)%)AFD(Cylo)(.’ -) stands for the intrinsic metric of (x).F D(Cyly). At last, the
part 2) of the definition of a cylinder Cyl, of the type Cyl allows us to conclude
that Remark 3.4 is valid. |

REMARK 3.5. — Let R'Q’ be a segment of the geodesic y C H? between xr
and x¢ serving as a fundamental domain of x° C Cylg on x (here R’ € xg and
Q' € x@)- Then either Q' C RTR~QTQ~ or RQ'NRTR-QTQ~ = 0.

Proof. — Recall that the points RT and Q1 are pre-images in H? of the same
point on Cyl,, and one can be obtained from another by applying an isometry
of H? which is an element of the group (¥) preserving the straight hyperbolic
line . Hence, Rt and Q7 lie in one half-plane of H? with respect to x and, by
consequence, the segment RTQ™ does not intersect x. Similarly, R~ Q™ Ny = 0.

We conclude that if RTQT and R~Q~ lie in the same half-plane of H? with
respect to x then R'Q' N RTR~=QTQ~ = (. Otherwise, if RTQ* and R—Q~
lie in different half-planes with respect to x, then R'Q’ ¢ RTR~Q+tQ~. O

3.3. h-neighborhood of a geodesic in H2. — In this section, we study hyper-
bolic quadrilaterals of one special type and half-neighborhoods of geodesics
containing one of the sides of our quadrilaterals which are inscribed in and
circumscribed about these quadrilaterals. Properties of these objects will be
largely used in obtaining bounds on a possible size of cylinders of the type Cyl.

The object of our interest is a quadrilateral OrOgRQ C H? with the sides
dg2(OrOq) =1, dy2(R, Q) =U’, and dy=(Or, R) = dy=2(Og, Q) = K/, such that
the edges OrR and Og(@ are perpendicular to OrOg. Draw a curve v, at a
distance h < h' from the geodesic containing OrOg such that ~y, intersects
OrR and OgQ at points T and 1" correspondingly. Denote a segment of 7,
between OrR and OgQ by TT' , and the hyperbolic length of TT' by .

A direct calculation shows that

REMARK 3.6. — The following relation holds true:

l;, = lcoshh.

REMARK 3.7. — If h = b/ then T and T” coincide with R and Q, TT intersects
ORrO@RQ as a solid body only at its ends R and @, and, evidently, I > '
(any path connecting two points can not be shorter then a geodesic segment
between them).
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REMARK 3.8. — Suppose that &’ > I'. If b < b/ — ' then TT" C OrOoRQ
and I, < I'.

Proof. — Consider hyperbolic balls By (R) and By (Q) of the radius I’ with the
centers R and @). These balls contain the segment RQ. Also, By (R) and By (Q)

—

are perpendicular to OgrR and OgQ correspondingly. By construction, 77" is
perpendicular to OrR and OgQ as well. Moreover, TT' is a convex curve.
Hence, TT" lies outside the interior of By (R) and By (Q) for h < h/—I’. It means
that the geodesic segment R(@) does not intersect Zl/’il\”, and TT' C OrO@RQ.
Denote by OROQI/“T’ the convex domain in H? bounded by the segments
ORT, OrOq, OqQT’ and the curve TT'. By construction, the orthogonal pro-
jection of RQ onto OROQﬁ is TT". Since the orthogonal projection on the
boundary of a convex hyperbolic domain is contracting [4, p. 9] (see also [7,
I1.1.3.4, p. 124]), we get 1, <1'. O

Also, we need

LEMMA 3.9. — Let us consider a quadrilateral OrOgRQ as in Section 3.3
with the fized length lrg of the edge RQ). There is a constant

elRQl%Q
€3
such that if the length hrg of the sides OgrR and OgQ is greater than h{L
then the length of the path T/RITQ at distance hr def hrg/2 from OrOg con-
necting the midpoints Tr and Tg of OrR and OgQ is smaller than the Margulis

constant €3.

ROt = | RrQ + arcosh

int ™

Proof. — Denote by lp the length of OrOg. Once lrq is fixed, suppose that
hrqg can be arbitrarily big, in particular, bigger than [rg.
There are points T € OgrR and Ty, € OqQ at distance hy from Og and

Oq correspondingly, such that the length of the path @ as in Section 3.3
is equal to €3. By Remark 3.6,

(3.1) locoshh/y = e3.
Indeed, if 7% and T¢, do not exist then
(3.2) lo > es.
By Remarks 3.6 and 3.8 applied to the quadrilateral OrOgRQ,
(3.3) locosh(hrg — lrg) < lrg.
Mixing (3.2) and (3.3), we get
escosh(hrg — lrg) < lrQ,
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l
hrg <lgg + arcosh <
€3

which leads us to a contradiction with the unboundedness of hgrg.
The length of T/R?Q is less than the length e3 of T}T, é when the inequality
h
(3.4) by > hT( = %Q)
is satisfied, which is equivalent to the validity of

h
coshhf > cosh%,
and, by (3.1), is also equivalent to
h
(3.5) €3 5 coshEQ.
Io 2

Due to the following property of the hyperbolic cosine: cosh2z = cosh?z +
sinh?z, we see that

cosh? (h%) < coshhpg.

Hence, the validity of the formula

&3

(3.6) coshhprg < 2
o)
implies the validity of (3.5).

Let us exclude lp from (3.6) using (3.3).

At first, we perform a series of modifications of (3.3). By the formula for
the hyperbolic cosine of the sum of two angles, we get

lrg

lo’

Then, as sinhz > 0 for each > 0, and because coshz > sinhz and coshz > 0
for all z € R, we obtain

coshhrgcoshlrg — sinhhpggsinhigpg <

l
coshhrg(coshlrg — sinhlgg) < %,
o)

and the definitions of the hyperbolic sine and cosine,

T _ 7T T —x
(3.7) sinhz = ce-° and coshx = i’
2 2
imply
lRQl
coshhprg < ¢ hRQ
lo

It means that the validity of the formula

elrQ lRQ 8%
3.8 — < =
38) b 1
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implies the validity of (3.6). We rewrite the condition (3.8) in a more convenient
form:

2
(3.9 lo < Tralng’
By (3.3), we know that

lRQ

l .
0= cosh(hrg — lrg)

Hence, the validity of
lRQ < E%
COSh(hRQ — lRQ) elrQ ZRQ
implies the validity of (3.8).
We can now conclude that the condition
hRQ > port

int

obtained from (3.10) implies (3.4). O

(3.10)

3.4. Fundamental domains of Cyl; and Cyl, in H2. — Following the con-
struction of a fundamental domain of a cylinder of the type Cyl in H? from Sec-
tion 3.2, we define for the cylinder Cyl; its fundamental domain Py" Py P P, C
H?2, where H? is just a copy of the hyperbolic plane H2. We denote by xp,
and xp, the hyperbolic straight lines in H? containing the segments P0+ P, and
P;f P correspondingly. Following the content of Section 3.3, we find the hyper-
bolic segment OyO; C H? corresponding to the element 7; of the fundamental
group m1(M?°) (see Section 3.1) with the points Og € xp, and O; € xp,.

Similarly, we define the quadrilateral P;f P, P,” P, C H3 to be a fundamen-
tal domain of the cylinder Cyl,, where H32 is another copy of H2. Denote by x p,
and xp, the geodesics in H3 containing Py P,” and P,f P, correspondingly. We
also find the hyperbolic segment OyOy C H3 corresponding to v, € m1(M°)
with the points Og € xp, and Oz € xp,.

An attentive reader has already remarked the following abuse of notation:
the geodesic x p, with the points P;", Py, and Oy on it lie both in H? and H3
as if these copies H? and H3 of the hyperbolic plane intersect at xp,. It is very
logical since the segment PO+ Py C xp, corresponds to the segment PTP~ in
the intersection of the cylinders Cyl; and Cyl, related to H? and HZ.

We are now prepared to prove Theorem 3.2. In order to do this, according
to Remark 3.5 we must consider two separate situations.

Situation 1. — If for both cylinders Cyl; and Cyl, their fundamental domains
PPy PP C H2 and Py Py P Py C H? contain the segments OpO; and
0004 correspondingly (see Fig. 3.4), then the distance between the surfaces
ST and 8~ from the statement of Theorem 3.2 is bounded from above due to
the Margulis lemma.
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Indeed, recall that P™ is the midpoint of the segment PP~ C Cyl,;NCyl,,
then the midpoints P4, Pmid and PRid of the segments PO+ Py C xp,,
PP C xp,, and Py Py C xp, are the pre-images of P™d in P;" Py PP C
H? or Py Py Py Py C H2. Following the content of Section 3.3, we construct
the paths Pidpmid ¢ H?2 and PPdPRd C HZ connecting PMd with Pmid
and P4 and lying at distance dg: (P9, Op) from OpO; and OgOz. We will
demonstrate that, once the distance between ST and S~ (consequently, the
hyperbolic length of P*P~) is bigger then a constant depending on I}, 1],
I35, and I; (see Section 3.1 for definitions), then two intersecting homotopi-

—

cally different curves in M with fundamental domains PiridPmid ¢ Hf and

—

Pppid pmid © HZ have the lengths less than the Margulis constant e3, which is
impossible.

FIGURE 3.4. The quadrilateral PJ‘PJP;'P[, i =1,2, in Sit-
uation 1.

Situation 2. — If for at least one of the cylinders Cyl; or Cyl, the correspond-
ing segment OpO; or OyOy does not intersect Py Py P;" P, or Pt Py Py Py
(see Fig. 3.5), then we will prove that the hyperbolic length of the segment
PtP~ C Cyl; N Cyl, (and, hence, the distance between ST and §) is neces-
sarily bounded by a constant depending on either I;” and I;, or I and [ .

It is now time to study

3.5. Distance between boundary components of a cylinder of the type Cyl. —

Let a quadrilateral Rf Ry Rf Ry C H? with h def dp2(R$, Ry) = du=(R), Ry),
I+ € dye (RE, RY), and 1~ % dy=(Ry, R]) be a fundamental domain in H2 of
a cylinder Cyl; of the type Cyl. Denote by xr, and x g, the hyperbolic straight
lines in H? containing the segments Rar Ry and RfRf correspondingly. Then,
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FIGURE 3.5. The quadrilateral P," P, P;" P, i = 1,2, in Sit-
uation 2.

by Lemma 3.3 applied to the points R(T € XR, and RIL € XR, there is a a unique
hyperbolic straight line yo C H? intersecting x g, at a point Og, xr, at a point
O1, such that Ry and R; lie in the same half-plane with respect to xo, h* def
dm2(RF,00) = duz(R;,01), and the angles of intersection Z(Xo XR,) and
Z(x0,XR,) are equal to some « € (0,7/2). Denote also h~ dH2 (Ry,00) =
de (Rl ; 01) and lo dIHP (Oo, 01)

Let the hyperbolic isometry Yo of H? send Oy to O; leaving the geodesic

Xxo invariant. Note that Yo sends also R+ to R+ and Ry to R;. We define

points R; def X5.RY, Ry def X5.Ry , and 0, Xo Oy for i € Z, where the

symbol &, stands for the isometry Yo applied i times when i is a positive
integer, and for the inverse isometry )’(51 applied —i times when i < 0. De-
note by x g, the hyperbolic straight line containing the segment R+RZ_ ,1EZ.
Construct the curves v Lef Usez R RS, and v = UlEZR R, of the ge-
odesic segments R R} ; and R R;,,, i € Z. Remark that for each i € Z
the quadrilateral R; R; R}, | R;. 1 C H? serves as a fundamental domain of the
cylinder Cyl, in H?, and the connected domain between the curves v, and v_
of the hyperbolic plane is a universal covering of Cyl, in H2. By construction,
dyz (R, R;) = h, du2(R;",0;) = ht, du=(R;,0;) = h~, d= (R}, H_1) =1t
dHQ(R;vR;-l) = l_7 Z(XOaXR,-) = aQ, 1€ Z.

Let us construct a family of hyperbolic straight lines Xj_ passing through RJr
and orthogonal to xp, ¢ € Z. Define the points of intersection OJr X@ N XO,

T, Lef Xi Nv_, i € Z. Note that, by construction, the connected sets =;°
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bounded by X;:-l’ vy, x:r, and v_ are fundamental domains of the cylinder
Cyl, in H?, i € Z.

REMARK 3.10. — The geodesic segment R;‘HR; 1 lies inside the fundamental
domain Ej C H? of a cylinder Cyl, of the type Cyl; on the other hand, the
geodesic segment R T, lies inside the fundamental domain R;' R; R}, | R;. 1 C
H? of the same cylinder Cyl,, i € Z.

Proof. — Since for every integer i the hyperbolic straight lines X;'F are or-
thogonal to the geodesic xo corresponding to the closed geodesic x° of the un-
bounded cylinder Cylg = H?/(xo) which contains Cyl, (see also Section 3.2),
the projection on Cyl, of a path £ C E:r connecting any point P* of the upper
boundary 0= Nvy (= R R}, ) of Ef with any point P’ of its lower boundary
0= Nv_ does not make a full turn around Cyl,.

Let us fix i € Z. As E C H? is a fundamental domain of Cyl,, the lower
boundary O] Nv_ of Ef must contain at least one and at most two points of
the family {R; € H?|j € Z} corresponding to one point on Cyl,. Consider the
point R;,, of this family. By Remark 3.4, the length of the segment R;Q_IR; 118
the smallest one among the lengths of all the segments RiHRj_, j € Z. Hence,
the projection on Cyl, of R;F_HR; 1 does not make a full turn around Cyl,
(otherwise, there would be a path shorter than R;Q_IR; 1 among the segments
RZ_IR;7 j € Z). Since a € (0,m/2), we conclude that RS R, C E;.
Similarly, R} Ry C Ef . Hence, R} T;” C R} R; R}, R ;. O

Similarly, we construct a family of hyperbolic straight lines x; passing
through R, and orthogonal to xo, ¢ € Z, and define the points of intersection
O, def X; NXos Ti+ def X; Nv4, @ € Z. By construction, the connected sets
E; bounded by x;_, V4, X; , and v_ are fundamental domains of the cylinder
Cyly in H? and, by analogy with Remark 3.10, the following statement holds
true.

REMARK 3.11. — The geodesic segment R; R; lies inside the fundamental
domain E; C H? of a cylinder Cyl of the type Cyl; on the other hand, the ge-
odesic segment R, T} | lies inside the fundamental domain R; Ry R, | R;,, C
H? of the same cylinder Cyl,, i € Z.

Also, define hJOr def de(Rj', O;"), ho def dg2(R; ,0; ), and note that
dyz2 (Oi,Oi—H) = dpe (Oj_,O;:_l) = dpe (OZ_, Oz_—i-l) =lp,t € 7.

3.5.1. Consideration of Situation 1. — In this section, we demonstrate

LEMMA 3.12. — Let a cylinder of the type Cyl contain a closed geodesic and
possess a fundamental domain Rf Rf Ry Ry C H?. Define by It and I~ the
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lengths of the sides RS‘RT and Ry Ry, and by h the length of RS‘RO_ and
Ri"Rl_. Then the condition

el” (l+)2
h > 2max {arcosh [coshlJrcosh (lJr + arcosh2>] ,

€3

_ e (102
arcosh [coshl™ cosh| [ +arcosh€72 .
3

(3.11)

guarantees that there is a path in Rf Rf Ry Ry connecting the midpoints of Rf Ry
and RTRI_, and such that its length is smaller than the Margulis constant 3.

As we consider Situation 1, we suppose that O; € R; R for i € Z and,
consequently,

(3.12) h=h"+h".

For all i € Z, let us denote the midpoint of the segment RjRZ-_ by R™d the
midpoints of R} O; and R; O; by R™I* and R™~, the midpoints of RO}
and R; O; by O™9% and O, Denote the distances from the points R
to the straight hyperbolic line xo by d, from R;md+ to xo by dt, from R?”d_
to xo by d~ and note that, by construction, the distances from the points
O;md"’ to xo are equal to hg /2 and from the points O?“d_ to xo are equal
to hg /2,1 € Z.

Denote by ¥ a curve in H? at distance d from xo and passing through the
points R™ for all 4 integers; by )ZE a curve in H? at distance d* from xo and
passing through the points R?“‘”; by X a curve in H? at distance d~ from
xo and passing through the points R?“d_; by )23 a curve in H? at distance
h$ /2 from xo and passing through the points O™9F; by Xo a curve in H? at
distance h,/2 from xo and passing through the points O;md_, i€Z.

REMARK 3.13. — In the notation defined above, the inequalities
h hg
(3.13) dt < 70 and d~ < 70
hold true.
Proof. — Define by Rg‘id+ the orthogonal projection of the point Rg‘id+ on

xo C H? and consider the hyperbolic triangles AOyOf Ry and AOORgnid+R6“id+.
Recall that dg=(R§,0F) = hd, dm= (RFYT, RMIT) = dt, d= (RS, 00) = A,
dz (R§™F, 00) = /2, ZR§ 0605 = ZR§™T O R = a, and 20007 Ry
= LOgRYT RpIT = 1/2.
Applying Hyperbolic Law of Sines to AOyOd Rf and AOoﬁg‘id+Rg’id+, we
obtain the formulas
sin o sin &

sinthOr " sinhht
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and
sin « sin 5

sinhd*t sinh % ’

or, after simplification,

(3.14) sinhhy, = sin asinhh™

and

(3.15) sinhd™ = sin asinh%.
Note that when the formula

(3.16) sinhd™ < sinh%

holds true, the first relation in (3.13) is satisfied.
By (3.15), (3.16) is equivalent to
ht hy
(3.17) sin asinh7 < sinh70.
Due to the following property of the hyperbolic sine: sinh2x = 2sinhzcoshz,
from (3.14) we get

h hy ht Rt
(3.18) 281nh70cosh70 = 2sin asinh7cosh7

As hzg < h™T by construction and the function coshz is monotonically increasing
for z > 0, then it is true that cosh(h(;/2) < cosh(h?/2) and, by (3.14), we
obtain

hy ht ht ht
(3.19) sinh7ocosh7 > sin asinhTCosh7.

Simplifying (3.19), we see that the condition (3.17) is satisfied. Hence, the first
inequality in (3.13) holds true.

The validity of the second relation in (3.13) we prove by the same method.

O

Together with constructions made above, Remark 3.13 means geometrically
that the curve x lies inside the connected domain of the hyperbolic plane
bounded by the curves )ZE and X which is embedded into the connected do-
main bounded by )25 and X, which is embedded, in its turn, into the connected
domain bounded by v, and v_.

By Remark 3.6, the length of the path R;“idR;‘jri‘f connecting the points R4

and er-‘j_i‘li on the curve Y is [= locoshd, the length of the path Rf‘id+Rﬁ?+ C
)ZE connecting the points R?‘id+ and Rﬁ?"‘ is IAE = lpcoshd™, the length
of the path R;nideﬁ‘lif C Xp connecting the points R?‘id* and R;‘j_i‘lif is
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l; = [pcoshd™, the length of the path O?‘id+0;n+if+ C )ZJOF connecting the
points O™+ and Oﬁ‘f+ is fg = locosh(hy/2), and the length of the path
OM4=0"{~ C %g connecting the points O™~ and O}~ is I5 = locosh(hg/2),
1€ Z.

Assume that R4 ¢ R;‘ O, i € Z. According to Remark 3.13, we have
(3.20) lo <I<if<ih<it

Otherwise R™4 € R 0;, i € Z and

(3.21) lo<Ii<lyp<ip<Ii™

(remind that we consider Situation 1). Hence, if we prove that for h big
enough lg < e3 and [, < €3, then | < €3 and the projection of the path

—

RPidRmid  H? on the cylinder Cyly is a closed curve which is shorter than
the Margulis constant £3 and which passes through the midpoint R™ of the
segment Rt R~ C Cyl, corresponding to R R, C H?, i € Z.

First, fixing [t let us find a condition on A+ which will guarantee f“OL to be
less than e3.

By Remark 3.10, the geodesic segment Rar T, lies inside the fundamental
domain R§ Ry R Ry C H2. Hence, the point Oy of intersection of Rj T, with
Xxo belongs to the geodesic segment OyO;.

Denote lg+ g, «© di2(OF , Op) and consider the right-angled triangle AOyOf Ry .
Hyperbolic Pythagorean Theorem implies:

(3.22) coshh™ = coshhgcoshloaroo.

Since OOOS' C 00, the inequality logoo < lp holds true and, together
with (3.22) gives us
coshh™ < coshhgcoshlo,
and, by (3.20),
coshh™ < coshhgcoshlJr,
or, in other form,
coshh™
coshl*

It means that, once we take At to satisfy the condition

(3.23) coshh} >

A 1+)2
(3.24) coshht > coshl™cosh <l+ + arcoshei2)>,
3
then, according to (3.23),
it l+ 2
hzg > 1T+ arcosh#,
€3
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and, by Lemma 3.9 applied to the quadrilateral OS‘ OfLRS' RT, we conclude that
(3.25) I <es.

Similarly, if we take h™ to verify the inequality

el’ (l_)2
(3.26) coshh™ > coshl™ cosh (l_ + arcoshg),
3
then
(3.27) Ig < es.

Finally, let the condition (3.11) be satisfied. Supposing A™ > h~, we have

Rpidpmid c OFOf RE R and, by (3.12), the inequality (3.24) holds true,
which implies (3.25) and, due to (3.20), leads as to the validity of the condition

(3.28) [ <es

On the other hand, if ™ < h™ then RP4RMd C O7 O] Ry Ry and, by (3.12),
the inequality (3.26) holds true, which implies (3.27) and, due to (3.21), leads
as to the validity of (3.28).

Lemma 3.12 is proved.

3.5.2. Consideration of Situation 2. —

LEMMA 3.14. — Let a cylinder of the type Cyl do not contain a closed geodesic
and possess a fundamental domain R{ R Ry Ry C H2. Define by It and 1~
the lengths of the sides R§ RY and Ry Ry, and by h the length of R§ Ry and
RYR;. Then

20t 20~
h < max{(ﬁ'—}—l_ +lnl>, (l++l_ +lnl+>}.

Lemma 3.14 can be proved in the same spirit as Lemma 3.12. For the
detailed arguments see [23] (and also [24]).

3.6. Finalizing the proof of Theorem 3.2. — Consider some points P+ € ¢ Ncy
and P~ € ¢; Ncy. As in Section 3.1, construct the cylinders Cyl; and Cyl,
of the type Cyl homotopically equivalent to the pairs of curves (cf,cl_) and
(cf,c5 ), with the upper boundaries of the lengths I and I, with the lower
boundaries of the lengths [ and [, , and such that the hyperbolic geodesic
segment P* P~ C M° lies in the intersection Cyl; N Cyl,.
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If Situation 2 is realized for at least one of the cylinders Cyl; and Cyl,, than
Lemma 3.14 implies that

217 Iy
d(8*,87) < max{(lf' +1; +In l11>’ <lf‘ +I1 +1n l+>

o 2l . 21y
12 +l2 —|—1n7_ 5 12 +l2 —|—lnT .
12 l2

Otherwise, Situation 1 is realized for both cylinders Cyl; and Cyl, and, once
we suppose

d(81,87) < 2max {arcosh coshl; cosh <l+ + arcosh )
~ ) l1_
arcosh |coshl{ cosh( I7 + arcosh

arcosh |coshl} cosh ( 15 + arcosh

r l
arcosh | coshl; cosh <l2 + arCOShezs(22)> }7
L 3 -

by Lemma 3.12, there are curves cur; C Cyl; and cury C Cyl, with the lengths

less than the Margulis constant €3, both passing through the midpoint of the

segment P+ P~. Thus, we come to a contradiction with Margulis Lemma.
Theorem 3.2 is proved. O
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