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ABOUT THE BEHAVIOR OF REGULAR NAVIER-STOKES
SOLUTIONS NEAR THE BLOW UP

by Eugénie Poulon

Abstract. — In this paper, we present some results about blow up of regular solu-
tions to the homogeneous incompressible Navier-Stokes system, in the case of data in
the Sobolev space Ḣs(R3), where 1

2
< s < 3

2
· Firstly, we will introduce the notion of

minimal blow up Navier-Stokes solutions and show that the set of such solutions is not
only nonempty but also compact in a certain sense. Secondly, we will state an uniform
blow up rate for minimal Navier-Stokes solutions. The key tool is profile theory as
established by P. Gérard [11].

1. Introduction

We consider the Navier-Stokes system for incompressible fluids evolving in
the whole space R3. Denoting by u the velocity, a vector field in R3, by p in R
the pressure function, the Cauchy problem for the homogeneous incompressible
Navier-Stokes system is given by

(1)





∂tu+ u · ∇u−∆u = −∇p
div u = 0

u|t=0 = u0.
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356 E. POULON

Throughout this paper, we will adopt the useful notation NS(u0) to mean
the maximal solution of the Navier-Stokes system, associated with the initial
data u0.

Definition 1.1. — Let s in R. The homogeneous Sobolev space Ḣs(R3) is
the space of tempered distributions u over R3, the Fourier transform of which
belongs to L1

loc(R3) and satisfies

‖u‖Ḣs
def
=

(∫

R3

|ξ|2s|û(ξ)|2dξ
) 1

2

<∞.

It is known that Ḣs(R3) is an Hilbert space if and only if s < 3
2 . We will

denote by (·|·)Ḣs(R3), the scalar product in Ḣs(R3). From now on, for the sake
of simplicity, it will be an implicit understanding that all computations will be
done in the whole space R3.

Before stating the results we prove in this paper, we recall two fundamental
properties of the incompressible Navier-Stokes system. The first one is the
conservation of the L2 energy. Formally, let us take the L2 scalar product with
the velocity u in the equation. We get

(2)
1

2

d

dt
‖u(t)‖2L2 +‖∇u(t)‖2L2 = −

∫

R3

(
u· ∇u(t)|u(t)

)
L2−

∫

R3

(
∇p(t)|u(u)

)
L2 .

Thanks to the divergence free condition, obvious integration by parts implies
that, for any vector field a

(3)
(
u· ∇a|a

)
L2 = 0 =

(
∇p|a

)
L2 .

This gives

(4)
1

2

d

dt
‖u(t)‖2L2 + ‖∇u(t)‖2L2 = 0.

The second property of the system is the scaling invariance. Let us define
the operator:

∀α ∈ R+, ∀λ ∈ R+
∗ , ∀x0 ∈ R3, Λαλ,x0

u(t, x)
def
=

1

λα
u
( t

λ2
,
x− x0

λ

)
.

If α = 1, we note Λ1
λ,x0

= Λλ,x0
.

(5)

It is easy to see that if u is a smooth solution of Navier-Stokes system
on [0, T ]×R3 with pressure p associated with the initial data u0, then, for any
positive λ, the vector field and the pressure

uλ
def
= Λλ,x0 u and pλ

def
= Λ2

λ,x0
p

is a solution of Navier-Stokes system on the interval [0, λ2T ] × R3, associated
with the initial data

u0,λ = Λλ,x0 u0.
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ABOUT THE BEHAVIOR OF REGULAR NAVIER-STOKES SOLUTIONS 357

This leads to the definition of scaling invariant space, which is a key notion to
investigate local and global well-posedness issues for Navier-Stokes system.

Definition 1.2. — A Banach space X is said to be scaling invariant, if its
norm is invariant under the scaling transformation defined by u 7→ uλ

‖uλ‖X = ‖u‖X

The first main result on incompressible Navier-Stokes system is due to
J. Leray, who proved in [19] in 1934 that given an initial data in the energy
space L2, the associated NS-solutions, called weak solutions, exist globally in
time. The key ingredient of the proof is the L2-energy conservation (4). More-
over, such solutions are unique in 2-D; but the uniqueness in 3-D is still an open
problem. One way to adress this question of unique solvability in 3-D is to de-
mand smoother initial data. In this case, we definitely get a unique solution,
but the other side of coin is that the problem is only locally well-posed (and
becomes globally well-posed under a scaling invariant smallness assumption on
the initial data). J. Leray stated such a theorem of existence of solutions, which
he called semi-regular solutions.

Theorem 1.1. — Let an initial data u0 be a divergence free vector field in L2

such that ∇u0 belongs to L2. Then, there exists a positive time T , and a unique
solution NS(u0) in C0([0, T ], Ḣ1) ∩ L2([0, T ], Ḣ2).

Moreover, a constant c1 exists such that if ‖u0‖L2 ‖∇u0‖L2 6 c1, then T can
be chosen equal to ∞.

The reader will have noticed that the quantity ‖u0‖L2 ‖∇u0‖L2 is scaling
invariant under the operator Λλ,x0

. Actually, that is the starting point of many
frameworks concerning the global existence in time of solutions under a scal-
ing invariant smallness assumption on the data. The celebrated first one was
introduced in 1964, by H. Fujita and T. Kato. These authors stated a similar
result as J. Leray, but they demanded less regularity on the data. Indeed, they
proved that for any initial data in Ḣ

1
2 , there exists a positive time T and there

exists a unique solution NS(u0) belonging to C0([0, T ], Ḣ
1
2 ) ∩ L2([0, T ], Ḣ

3
2 ).

Moreover, if ‖u0‖
Ḣ

1
2
is small enough, then the solution is global in time. This

theorem can be proved by a fixed-point argument and the key ingredient of
the proof is that the Sobolev space Ḣ

1
2 is invariant under the operator Λλ,x0 .

In other words, the Sobolev space Ḣ
1
2 has exactly the same scaling as Navier-

Stokes equation. We refer the reader to [1], [7] or [18] for more details of the
proof. But in this paper, we work with initial data belonging to homogeneous
Sobolev spaces, Ḣs with 1

2 < s < 3
2 , which means that we are above the natural

scaling of the equation. The first thing to do is to provide an existence theorem
of Navier-Stokes solutions with data in such Sobolev spaces Ḣs. The Cauchy
problem is known to be locally well-posed; it can be proved by a fixed-point

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



358 E. POULON

procedure in an adequate function space (we refer the reader to the book [18],
from page 146 to 148, of P-G. Lemarié-Rieusset).

We shall constantly be using the following simplified notations:

L∞T (Ḣs)
def
= L∞([0, T ], Ḣs) and L2

T (Ḣs+1)
def
= L2([0, T ], Ḣs+1).

Let us define the relevant function space we shall be working with in the sequel:

Xs
T

def
= L∞T (Ḣs) ∩ L2

T (Ḣs+1), equipped with ‖u‖2XsT
def
= ‖u‖2

L∞T (Ḣs)
+ ‖u‖2

L2
T (Ḣs+1)

.

Theorem 1.2. — Let u0 be in Ḣs, with 1
2 < s < 3

2 . Then there exists a time T
and there exists a unique solution NS(u0) such that NS(u0) belongs to
L∞T (Ḣs) ∩ L2

T (Ḣs+1).
Moreover, let T∗(u0) be the maximal time of existence of such a solution.

Then, there exists a positive constant c such that

(6) T∗(u0) ‖u0‖σsḢs > c, with σs
def
=

1
1
2 (s− 1

2 )
·

Remark 1.1. — As a by-product of the proof of Picard’s Theorem, we get
actually for free the following property: if the initial data is small enough (in
the sense of there exists a positive constant c0, such that T ‖u0‖σsḢs 6 c0), then
a unique Navier-Stokes solution associated with it exists (locally in time, until
the blow up time given by the relation (6)) and satisfies the following linear
control

(7) ∀ 0 6 T 6 c0
‖u0‖σsḢs

, ‖NS(u0)(t, · )‖XsT 6 2 ‖u0‖Ḣs .

Formula (6) invites us to consider the lower boundary, denoted by Aσss , of
the lifespan of such a solution

Aσss
def
= inf

{
T∗(u0)‖u0‖σsḢs | u0 ∈ Ḣs ; T∗(u0) <∞

}
.

Obviously, Aσss exists and is a positive real number and we always have the
formula

(8) T∗(u0)‖u0‖σsḢs > A
σs
s .

Throughout this paper, we make the assumption of blow up, which is still
an open problem. More precisely, we claim the following hypothesis.
Hypothesis H: We consider s in

]
1
2 ,

3
2

[
, such that a divergence-free vector field

u0 exists in Ḣs with a finite the lifespan T∗(u0).

Definition 1.3 (Minimal blow up solution). — We say that u = NS(u0) is a
minimal blow up solution if u0 satisfies

T∗(u0)‖u0‖σsḢs = Aσss .
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In other terms u = NS(u0) is a minimal blow up solution if and only if Aσss is
reached.

Question: Under Hypothesis H, do some minimal blow up solutions exist?
We will prove a stronger result: the set of initial data generating minimal

blow up solutions with blow up time T∗, denoted by Ms(T∗), is not only a
nonempty subset of Ḣs (which, in particular, gives the positive answer to the
question) but also compact in a sense which is given in Theorem 1.3.

Theorem 1.3. — Assuming hypothesis H, for any finite time T∗, the set
Ms(T∗) is non empty and compact, up to translations. This means that for any
sequence (u0,n)n∈N of points in the set Ms(T∗), a sequence (xn)n∈N of points
of (R3)N and a function V inMs(T∗) exist such that, up to an extraction

lim
n→+∞

‖u0,n(·+ xn)− V ‖Ḣs = 0.

The second result of this paper states that the blow up rate of a minimal
blow up solution can be uniformly controlled since we get a priori bound of
these minimal blow up solutions.

Theorem 1.4 (Control of minimal blow up solutions). — Assuming H, there
exists a nondecreasing function Fs : [0, Aσss [→ R+ with limr→Aσss Fs(r) = +∞
such that for any divergence free vector field u0 in Ḣs, generating minimal blow
up solution (it means T∗ (u0)‖u0‖σsḢs = Aσss ), we have the following control on
the minimal blow up solution NS(u0)

∀T < T∗(u0), ‖NS(u0)‖XsT 6 ‖u0‖Ḣs Fs(T
1
σs ‖u0‖Ḣs).

Remark 1.2. — Let us point out that the quantity T
1
σs ‖u0‖Ḣs is scaling

invariant; which is obviously necessary.

The two previous theorems are the analog of results, proved in the case of
the Sobolev space Ḣ

1
2 . We shall not recall all the statements existing in the

literature concerning the regularity of Navier-Stokes solutions in critical spaces,
such as Ḣ

1
2 . We refer for instance the reader to [7] and to the article of C.

Kenig et G. Koch [13], where the authors prove that NS-solutions which remain
bounded in the space Ḣ

1
2 do not become singular in finite time. Concerning

Theorem 1.3, we were largely inspired by the article of W. Rusin and V. Šverák
[23], in which the authors set up the key concept of minimal blow-up for data
in Sobolev space Ḣ

1
2 . Firstly, they defined a critical radius ρ 1

2

ρ 1
2

= sup
{
ρ > 0 ; ‖u0‖

Ḣ
1
2
< ρ =⇒ T∗(u0) = +∞

}
.

Then, they introduced a subsetM of Ḣ
1
2 , which describes the set of minimal-

norm singularities (we speak about minimal norm in the sense of ‖u0‖
Ḣ

1
2
is
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equal to the critical radius ρ 1
2
)

M =
{
u0 ∈ Ḣ

1
2 ; T∗(u0) < +∞ and ‖u0‖

Ḣ
1
2

= ρ 1
2

}
.

Thanks to these definitions, W. Rusin and V. Šverák proved that if there exist
elements in the space Ḣ

1
2 which develop singularities in finite time (we assume

that blow-up occurs), then some of these elements are of minimal Ḣ
1
2 -norm

(and thus, the set M is nonempty) and compact up to translations and di-
lations. It means that for any sequence (u0,n)n∈N of points in the set M, a
sequence (λn, xn)n∈N and a function ϕ inM exist such that, up to an extrac-
tion, we have

lim
n→+∞

‖u0,n − Λλn,xnϕ‖Ḣ 1
2

= 0.

Let us point out that I. Gallagher, G. Koch and F. Planchon generalize in [10]
the result of W. Rusin and V. Šverák to critical Lebesgue and Besov spaces,
such as L3.

Concerning Theorem 1.4, our main source of inspiration is a result es-
tablished by I. Gallagher in [8]. Given an initial data u0 in the open ball
Bρ 1

2

. Then, by definition of ρ 1
2
, NS(u0) is a global solution and thus be-

longs to the space L4(R+, Ḣ
1), thanks to the important paper [9] of I. Gal-

lagher, D. Iftimie and F. Planchon. In this way, the blow up in the ER+
=

L∞(R+, Ḣ
1
2 ) ∩ L2(R+, Ḣ

3
2 )-norm does not occur. Even better: I. Gallagher

proved in [8] the a priori control of the Navier-Stokes solution with data in the
open ball Bρ 1

2

in the sense of there exists a nondecreasing function F defined

from [0, ρ 1
2
[ to R+ such that for any divergence free vector field u0 in the open

ball Bρ 1
2

, we have

‖NS(u0)‖ER+
6 F (‖u0‖

Ḣ
1
2

).

Notation. — We shall denote by C a constant which does not depend on the
various parameters appearing in this paper, and which may change from line
to line. We shall also denote sometimes x . y to mean there exists an absolute
constant C > 0 such that x 6 C y.

The paper is organized in the following way:
In section 2, we recall the fundamental tool of this paper : the profile de-

composition of a bounded sequence in Ḣs. Then, we give the proof of the
compactness of minimal blow up solutions set (Theorem 1.3) and the control
of such solutions (Theorem 1.4). These two results are based on the crucial
Theorem 2.2 about the lifespan of a Navier-Stokes solution associated with a
bounded sequence of Ḣs.

Section 3 is devoted to the proof of Theorem 2.2, thanks to a regularization
process. Firstly, we will see that it is an immediate consequence of Lemma 3.1,
which gives the structure of a Navier-Stokes solution associated with a bounded
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sequence of data in Ḣs. Secondly, we will provide some helpful tools in order
to prove Lemma 3.1.

In section 4, we prove Lemma 3.1, the result on which all others are based
on. This section is the most technical part of the paper. It relies on classical
product and paraproduct estimates, which are collected in Appendix A and B.

Acknowledgements. — I am very grateful to I. Gallagher for fruitful discus-
sions around the question of non-scale invariant spaces and to P. Gérard for
many helpful comments.

2. Profiles theory, compactness result and application

This section is devoted to the proof of Theorems 1.3 and 1.4. Following I.
Gallagher [8], W. Rusin and V. Šverák [23], C. Kenig and G. Koch [13] and
I. Gallagher, G. Koch, F. Planchon [10], we shall use profile decomposition
theory. The original motivation of this theory was the desciption of the defect
of compactness in Sobolev embeddings (see for instance the pionneering works
of P.-L. Lions in [20], [21] and H. Brezis, J.-M. Coron in [6]). Here, we will use
the theorem of P. Gérard [11], which gives, up to extractions, the structure of
a bounded sequence of Ḣs, with s between 0 and 3

2 · More precisely, the defect
of compactness in the critical Sobolev embedding Ḣs ⊂ Lp is descibed in terms
of a sum of rescaled and translated orthogonal profiles, up to a small term
in Lp. That was generalized to other Sobolev spaces Ḣs,p(Rd) with 0 < s < d

p

by S. Jaffard in [12], to Besov spaces by G. Koch in [17] and to general critical
embeddings by H. Bahouri, A. Cohen and G. Koch in [2]. Let us notice the
recent work [4] of H. Bahouri, M. Majdoub and N. Masmoudi concerning the
lack of compactness of the Sobolev embedding of H1(R2) in the critical Orlicz
space L(R2). Then profile decomposition techniques have been applied in many
works of evolution problems such as the high frequency study of finite energy
solutions to quintic wave equations on R3, by H. Bahouri and P. Gérard [3].
C. Kenig and F. Merle investigated in [15] the blow up property for the energy
critical focusing non linear wave equation. Profile techniques turned out to be
also a relevant tool in the study of Schrödinger equations. Notice this kind of
decomposition was stated and developped, independently from [11], by F. Merle
and L. Vega [22] for L2-solutions of the critical non linear Schrödinger in 2D,
in the continuation of the work of J. Bourgain [5]. Then, S. Keraani revisited in
[16] the work of H. Bahouri and P. Gérard [3] in the context of energy critical
non linear Schrödinger equations. C. Kenig and F. Merle investigated in [14]
the global well-posedness, scattering and blow up matter for such solutions in
the focusing and radial case.
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Remark 2.1. — Using notation (5), we can prove easily that the Lp (as well

as Ḣs)-norm is conserved under the transformation u 7→ Λ
3
p

λ,x0
u. It means

‖Λ
3
p

λ,x0
u‖ = ‖u‖.

Theorem 2.1. — Let (u0,n)n∈N be a bounded sequence in Ḣs. Then, up to an
extraction:

– There exists a sequence of vectors fields, called profiles (V j)j∈N in Ḣs.
– There exists a sequence of scales and cores (λn,j , xn,j)n,j∈N, such that, up

to an extraction

∀J > 0, u0,n(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

with limJ→+∞ lim supn→+∞ ‖ψJn‖Lp = 0, and p = 6
3−2s where (λn,j , xn,j)n∈N,j∈N

are sequences of (R∗+×R3)N with the following orthogonality property: for every
integers (j, k) such that j 6= k, we have

either lim
n→+∞

(λn,j
λn,k

+
λn,k
λn,j

)
= +∞ or λn,j = λn,k and lim

n→+∞
|xn,j − xn,k|

λn,j
= +∞.

Moreover, for any J in N, we have the following orthogonality property

(9) ‖u0,n‖2Ḣs =

J∑

j=0

‖V j‖2
Ḣs

+ ‖ψJn‖2Ḣs + ◦(1), when n→ +∞.

A first application of this, is Theorem 2.2 about the lifespan of a NS-solution
associated with bounded data in Ḣs. The proof of it will be given in section 3.

Theorem 2.2. — Let (u0,n) be a bounded sequence of initial data in Ḣs such
that its profiles decomposition is given by

u0,n(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x) with lim

J→+∞
lim sup
n→+∞

‖ψJn‖Lp = 0.

Let us define J1 as the subset of indices j in N, such that the profile V j is
non-zero and such that the associated scale λn,j is identically equal to 1.

If J1 = ∅, then lim infn→+∞ T∗(u0,n) = +∞.
If J1 6= ∅, then lim infn→+∞ T∗(u0,n) > infj∈J1

T∗(V j).

Remark 2.2. — Let us point out some consequences. Firstly, if T∗(V j) = +∞
for any j, then lim infn→+∞ T∗(u0,n) = +∞. Secondly, in the case where J1 is
non empty, the quantity infj∈J1 T∗(V

j) exists and obviously, if |J1| is finite,
we get immediately that infj∈J1

T∗(V j) = minj∈J1
T∗(V j). In the case where

|J1| is infinite, we get the same conclusion. Indeed, according to (9), the series∑
j>0 ‖V j‖2Ḣs are summable (a fortiori if we consider in the summation integers
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belonging to J1), and thus limj→+∞ ‖V j‖Ḣs = 0. Thanks to Inequality (6), we
deduce that limj→+∞ T∗(V j) = +∞ and thus

inf
j∈J1

T∗(V
j) > 0 and inf

j∈J1

T∗(V
j) = min

j∈J1

T∗(V
j).

This result gives us some important information: whenever a sequence of
initial data which satisfies profiles hypothesis (it means a bounded sequence
in Ḣs), we deduce that the lifespan of the NS-solution (associated with such
a sequence of initial data) mainly depends on the lifespan of profiles with a
constant scale. Note that the orthogonality property on scales and cores in The-
orem 2.1 implies either the scales are different (in the sense that
limn→+∞

(
λn,j
λn,k

+
λn,k
λn,j

)
= +∞) or the scales are the same (λn,j = λn,k), the

cores go away from one another, in the sense that limn→+∞
|xn,j−xn,k|

λn,j
= +∞.

In the case where scales are equal to a constant, we shall assume that it is one,
up to rescaling profiles by a fixed constant.

Theorem 2.2 has a key role in the proof of the compactness Theorem 1.3.

2.1. Proof of Theorem 1.3

Proof. — By definition of Aσss , we consider a minimizing sequence (u0,n)n>0

such that
lim

n→+∞
T∗(u0,n) ‖u0,n‖σsḢs = Aσss .

Up to a rescaling process, we can assume that the minimizing sequence (u0,n)n>0

satisfies

(10) lim
n→+∞

‖u0,n‖Ḣs = ρs(T∗) and T∗(u0,n) = T∗ where ρs(T∗)
def
=

As

T
1
σs∗
·

Indeed, consider the sequence (v0,n)n>0 defined as

v0,n(x)
def
=
(T∗(u0,n)

T∗

) 1
2

u0,n

((T∗(u0,n)

T∗

) 1
2

x
)
.

The reader notices that the Navier-Stokes solution associated with such a se-
quence (v0,n) has a lifespan equal to T∗. As ‖v0,n‖σsḢs =

(
T∗(u0,n)

T∗

)
‖u0,n‖σsḢs ,

it seems clear now we can assume (10), by virtue of definition of ρs(T∗). The
sequence (u0,n)n>0 is a bounded sequence in Ḣs and thus we can apply Theo-
rem 2.1. Taking limits when n→ +∞ in (9), we get

∀J > 0, ρ2
s(T∗) >

J∑

j=0

‖V j‖2
Ḣs
.

Let us assume that there are two non-zero profiles at least. Then we should
have

∀j ∈ {0, . . . , J}, ‖V j‖2
Ḣs

< ρ2
s(T∗).
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By definition of ρs(T∗), it means all profiles V j generate solutions whose lifespan
satisfies

(11) T∗(V
j) > T∗, ∀j ∈ {0, . . . , J}.

As T∗(u0,n) = T∗ <∞ for any n, Theorem 2.2 implies that J1 6= ∅: there
exists at least one profile with constant scale. Moreover, thanks to Remark 2.2,
we have infj∈J1

T∗(V j) = minj∈J1
T∗(V j). Combining this with Relation (11)

implies that

T̃
def
= inf

j∈J1

T∗(V
j) > T∗.

By hypothesis on (u0,n)n∈N and thanks to Theorem 2.2, we get a contradiction,
since we have

lim inf
n→+∞

T∗(u0,n) = T∗ > T̃ > T∗.

It means there exists an integer j0 such that the profile, V j0 has a lifespan
which satisfies T j0∗ 6 T∗. In particular, by definition of ρs(T∗), it implies that
‖V j0‖2

Ḣs
> ρ2

s(T∗). And, thanks to the orthogonality property of the Ḣs-norm
(9), we deduce the equality

‖V j0‖2
Ḣs

= ρ2
s(T∗).

Now, we have just to check that T∗ = T j0∗ . We have already proved a first in-
equality: T j0∗ 6 T∗. The other way is given by (8): we have always the following
relation: T j0∗ ‖V j0‖σsḢs > Aσss . Thanks to the result ‖V j0‖σs

Ḣs
= ρσss (T∗) =

Aσss
T∗

,
we get the second inequality: T j0∗ > T∗. Thus, the set Ms(T∗) is non empty
and thus, there exists some minimal Navier-Stokes solutions. The compact-
ness of the set Ms(T∗) is a consequence of the above work. Thanks to (9)
and ‖V j0‖Ḣs = ρs(T∗), we infer that

∀j 6= j0, V
j = 0 and lim

n→+∞
‖ψJn‖2Ḣs = 0.

The above assumption implies in particular that j0 ∈ J1. Indeed, if j0 /∈ J1,
then J1 = ∅ and thus we should have T∗ = +∞, which is absurd. As a result,
there exists a unique integer j0 ∈ J1, such that

u0,n(x) = V j0(x− xn,j0) + ψJn(x).

The property lim
n→+∞

‖ψln‖2Ḣs = 0 implies lim
n→+∞

‖u0,n(·+xj0,n)− V j0‖Ḣs = 0.
�

2.2. Proof of Theorem 1.4

Proof. — Let us consider a critical element u = NS(u0) : T
1
σs∗ (u0)‖u0‖Ḣs = As

by virtue of a rescaling, we can asume that ‖u0‖Ḣs = 1 and thus T
1
σs∗ (u0) = As.
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Let us introduce the following set

N s
T

def
=
{
‖NS(u0)‖XT

∣∣∣ u0 in Ḣs such that ‖u0‖Ḣs = 1 and T < Aσss

}
.

Theorem 1.3 claims that the set N s
T is nonempty. The aim is to prove that

supN s
T is finite for any T . If not, a sequence (u0,n)n>0 in Ḣs exists, such that

for any T < T∗(u0,n), we have

(12) ‖u0,n‖Ḣs = 1, T∗(u0,n) = Aσss and lim
n→+∞

‖NS(u0,n)‖XT =∞.

By hypothesis, the sequence (u0,n)n>0 belongs to the set Ms(T∗). Therefore,
there exist a sequence of cores (xn)n∈N and a function V inMs(T∗) such that,
up to an extraction:

(13) lim
n→+∞

‖u0,n(·+ xn)− V ‖Ḣs = 0.

We can prove easily that, for any T < T∗(V ):

(14) NS(u0,n(·+ xn)) = NS(V ) +Rn with lim
n→+∞

‖Rn‖XT = 0

Indeed, we define
R0,n

def
= u0,n(·+ xn)− V.

Because of (13), the sequence (R0,n)n>0 converges to 0 in Ḣs-norm, for n large
enough. Moreover, the error term Rn satifies the following perturbed Navier-
Stokes system

(15)




∂tRn +Rn · ∇Rn −∆Rn +Rn · ∇NS(V ) +NS(V ) · ∇Rn = −∇p

div Rn = 0
Rn|t=0 = R0,n.

Applying forthcoming Theorem A.7, we infer that, for any T < T∗(V ) and for n
large enough

‖NS(u0,n(·+ xn))‖XT 6 ‖NS(V )‖XT + ◦(1).

As ‖NS(u0,n(·+ xn))‖XT = ‖NS(u0,n)‖XT , we take the limit when n→ +∞ in
the above inequality and thus we get a contradiction with the assumption. �

3. Proof of Theorem 2.2 and tool box for Lemma 3.1

All the previous results are based on Theorem 2.2. In this section, we prove
this theorem, which relies on Lemma 3.1. This last one gives the structure of
the Navier-Stokes solution associated with an initial data which has a profile
decomposition. In others words, we wonder if, given the profile decomposition
of a sequence of data, we get a similar decomposition on the Navier-Stokes
solution itself. Lemma 3.1 gives a positive answer.

Let us recall to the reader that this question has already been studied by
I. Gallagher in [8] in the case of initial data in the Sobolev space Ḣ

1
2 and the
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same author with G. Koch, F. Planchon [10] in others critical spaces (e.g scaled
invariant under the Navier-Stokes transformation). In our case, the difficulty is
that the homogeneous Sobolev space Ḣs is not a scale invariant space under
the natural scaling of the Navier-Stokes equation. To overcome this issue, the
method consists in cutting off frequencies of profiles [3] (such profiles will have
the useful property to belong to any Ḣs, for any s). In particular, profiles scaled
by 0 (resp. ∞) will tend to 0 in some Sobolev spaces (more precisely in Ḣs1

with s1 < s), (resp. Ḣs2 with s2 > s) and therefore, will not perturb the profile
decomposition of the NS-solution.

3.1. Key Lemma and application. — Let (u0,n)n>0 be a bounded sequence of
initial data in Ḣs. Thanks to Theorem 2.1, (u0,n)n>0 can be written as follows,
up to an extraction

u0,n(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x).

according to the orthogonality of scales and cores given by Theorem 2.1, we
sort profiles according to their scales

u0,n(x) =
∑

j∈J1
j6J

V j(x− xn,j) +
∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

(16)

where for any j ∈ J1, for any n ∈ N, λn,j ≡ 1.
We claim we have the following structure lemma of the Navier-Stokes so-

lutions, which proof will be provided in section 4. This lemma highlights the
specific role of profiles with constant-scales.

Lemma 3.1 (Profile decomposition of the Navier-Stokes solution). — Let
(u0,n)n>0 be a bounded sequence of initial data in Ḣs which profile decom-
position is given by

u0,n(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x).

Then, u is a Navier-Stokes solution associated with the bounded sequence u0,n

(e.g u = NS(u0,n)) if and only if the error term RJn defined by

RJn
def
= NS(u0,n) − Uapp,J

n

is a solution of the perturbed Navier-Stokes equation
(17)


∂tR

J
n +RJn.∇RJn −∆RJn +RJn · ∇Uapp,J

n + Uapp,J
n .∇RJn = −F Jn −∇pJn

div RJn = 0
RJn |t=0 = 0,
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where F Jn is a forcing term which will be explicitly detailed in (26) and

Uapp,J
n (t, x)

def
=
∑

j∈J1
j6J

NS(V j)(t, x− xn,j) + et∆
(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)
.

Moreover, the lifespan τJn of the error term RJn satisifies

∀ε > 0, ∃J > 0 ∃nJ > 0 ∀n > nJ , τJn > inf
j∈J1

T∗(V
j)− ε.

Proof of Theorem 2.2. Clearly, Theorem 2.2 is an immediate consequence of
Lemma 3.1. Assume Lemma 3.1 is proved. On the one hand, if there is no non
zero profile with constant scale (e.g J1 = ∅), the “profile decomposition” of the
solution in Lemma 3.1 implies that lim infn→+∞ T∗(u0,n) = +∞. On the other
hand, if J1 6= ∅, the lifespan of sequence NS(u0,n) is given by the lifespan of
profiles, scaled by the constant 1 and T∗(u0,n) > infj∈J1

T∗(V j). This ends the
proof of Theorem 2.2.

3.2. Tool box. — In this subsection, we recall some basic facts about homo-
geneous Besov spaces and we prove some properties we need to the proof of
Lemma 3.1. We refer the reader to [1], from page 63, for a detailed presentation
of the theory and analysis of homogeneous Besov spaces.

Definition 3.1. — Let s be in R, (p, r) in [1,+∞]2 and u in S ′. A tempered
distribution u is an element of the Besov space Ḃsp,r if u satifies

‖u‖Ḃsp,r
def
=
(∑

j∈Z
2jrs ‖∆̇ju‖rLp

) 1
r

<∞,

where ∆̇j is a frequencies localization operator (called Littlewood-Paley oper-
ator), defined by

∆̇ju(ξ)
def
= F−1

(
ϕ(2−j |ξ|)û(ξ)

)
,

with ϕ ∈ D([ 1
2 , 2]), such that

∑
j∈Z ϕ(2−jt) = 1, for any t > 0.

Remark 3.1. — We have the embedding Ḣs ⊂ Ḃs2,2. These spaces coincide
(with equivalent norms) if s < 3

2 ·
The first thing we have to notice is the following: given a bounded sequence of

data in Ḣs (thus we get a profile decomposition of this sequence), Theorem 2.1
implies that the term ψJn(x), (which is bounded in Ḣs), satisfies:

lim
J→+∞

lim sup
n→+∞

‖ψJn‖Lp = 0.

In fact, thanks to an interpolation argument, we can prove that the remaining
term ψJn tends to 0 in certain Besov spaces. That is the point in the following
proposition.
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Proposition 3.2. — For any 0 < θ < 1, let pθ be a positive real number given
by the interpolation relation

1
pθ

= θ
p + 1−θ

2 ·
Then, under the same hypothesis of Theorem 2.1, we have:

lim
J→+∞

lim sup
n→+∞

‖ψJn‖Ḃs(1−θ)pθ,pθ

= 0.

Proof. — Interpolation inequality in the Lebesgue spaces and multiplication
by the factor 2js(1−θ) give

2js(1−θ)‖∆̇jψ
J
n‖Lpθ 6 ‖∆̇jψ

J
n‖θLp

(
2js‖∆̇jψ

J
n‖L2

)1−θ
.

Applying Hölder’s inequality in the above expression, we get

‖ψJn‖Ḃs(1−θ)pθ,pθ

6 ‖ψJn‖θḂ0
p,p
‖ψJn‖1−θḂs2,2

.

Because p is greater than 2, Lp is continuously included in Ḃ0
p,p. Remark 3.1

leads to

(18) ‖ψJn‖Ḃs(1−θ)pθ,pθ

6 ‖ψJn‖θLp‖ψJn‖1−θḢs
.

According toTheorem 2.1, we get the result. �

Let us come back to the profile decomposition of the sequence (u0,n)n>0

and introduce some notations. Let η > 0 be the parameter of rough cutting
off frequencies. We define by uη(x) and ucη(x) the elements which Fourier
transform is given by

(19) ûη(ξ) = û(ξ)1{ 1
η6|ξ|6η} and ûcη(ξ) = û(ξ)

(
1− 1{ 1

η6|ξ|6η}
)
.

From the profiles decomposition (16), we infer, thanks to the orthogonality
property of scales, that among profiles V j such that j belongs to cJ1, there are
profiles with small scales (j ∈ J0) and large scales (j ∈ J∞). These profiles are
cut (according to the parameter η), with respect to notations (19) and we get

u0,n(x) =
∑

j∈J1
j6J

V j(x− xn,j) +
∑

j∈J0
j6J

Λ
3
p

λn,j ,xn,j
V jη (x) +

∑

j∈J∞
j6J

Λ
3
p

λn,j ,xn,j
V jη (x) + ψJn,η(x)

where ψJn,η(x)
def
=

∑

j∈Jc1≡J0∪J∞
j6J

Λ
3
p

λn,j ,xn,j
V jcη(x) + ψJn(x),

(20)

with for any j ∈ J0, limn→+∞ λn,j = 0 and for any j ∈ J∞, limn→+∞ λn,j = +∞.
Firstly, we check the remaining term ψJn,η is still small in Ḃs(1−θ)pθ,pθ -norm, in

the following sense. That is the point of the proposition below.
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Proposition 3.3. — Let 0 < θ < 1. Under the interpolation relation
1
pθ

= θ
p + 1−θ

2 , we have

lim
J→+∞

lim
η→+∞

lim sup
n→+∞

‖ψJn,η‖Ḃs(1−θ)pθ,pθ

= 0.

Proof. — Let 0 < θ < 1. By definition of ψJn,η and thanks to (a+ b)2 . a2 + b2,
we have

‖ψJn,η‖2Ḃs(1−θ)pθ,pθ

.
∥∥∥
∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V jcη(x)

∥∥∥
2

Ḃ
s(1−θ)
pθ,pθ

+ ‖ψJn‖2Ḃs(1−θ)pθ,pθ

.
(21)

The embedding Ḣs ⊂ Ḃs(1−θ)pθ,pθ and the orthogonality of scales and cores imply

‖ψJn,η‖2Ḃs(1−θ)pθ,pθ

.
∥∥∥
∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V jcη(x)

∥∥∥
2

Ḣs
+ ‖ψJn‖2Ḃs(1−θ)pθ,pθ

.
(∑

j∈Jc1
j6J

∥∥Λ
3
p

λn,j ,xn,j
V jcη(x)

∥∥2

Ḣs

∥∥2
+ ◦

J
(1)
)

+ ‖ψJn‖2Ḃs(1−θ)pθ,pθ

.

(22)

By scaling invariance of the norm Ḣs under the transformation u 7→ Λ
3
p

λn,j ,xn,j
u,

we get

‖ψJn,η‖2Ḃs(1−θ)pθ,pθ

.
( ∞∑

j=0

∥∥V jcη(x)
∥∥2

Ḣs
+ ◦

J
(1)
)

+‖ψJn‖2Ḃs(1−θ)pθ,pθ

, when n→ +∞.

For any j > 0, the term
∥∥V jcη(x)

∥∥2

Ḣs
tends to 0 for η goes to +∞, by Lebesgue

Theorem, because of the convergence of the serie. Therefore, applying Lebesgue
Theorem once again, we infer that limη→+∞

∑∞
j=0

∥∥V jcη(x)
∥∥2

Ḣs
= 0. As a result,

we take in first the upper limit of ‖ψJn,η‖2Ḃs(1−θ)pθ,pθ

, when n→ +∞. Then, we take

the limit for η → +∞ and at the last, for J → +∞. Thanks to Proposition 3.2,
Proposition 3.3 is proved. �

As it was already mentionned previously, the point of such rough cutting off
in frequencies is that profiles which are supported in the annulus 1{ 1

η6|ξ|6η},

belong to the Sobolev spaces Ḣs, for any s > 0. In particular, we can look at
such profiles in the Sobolev spaces such as Ḣs1 with s1 < s and Ḣs2 with s2 > s.
That is the point in the following proposition: according to the size of the scale
(either small j in J0 or large j in J∞), profiles, trapped in the annulus, behave
as “remaining terms”, seen from the point of view of solving Navier-Stokes.

Proposition 3.4. — For any η > 0, s1 < s, and j ∈ J0, e.g., limn→+∞ λn,j =

0, then limn→+∞
∥∥∥Λ

3
p

λn,j ,xn,j
V jη (x)

∥∥∥
Ḣs1

= 0.
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For any η > 0, s2 > s, and j ∈ J∞, e.g., limn→+∞ λn,j = +∞, then

limn→+∞
∥∥∥Λ

3
p

λn,j ,xn,j
V jη (x)

∥∥∥
Ḣs2

= 0.

Proof. — Let s1 < s. Let j ∈ J0 and η > 0. Definition of Ḣs1-norm and a
variable change yield

∥∥∥Λ
3
p

λn,j ,xn,j
V jη (x)

∥∥∥
2

Ḣs1 (R3)
=

∫

R3

|ξ|2s1
∣∣∣λn,j3(1− 1

p )V̂ jη (λn,jξ)
∣∣∣
2

dξ

= λ
2(s−s1)
n,j

∫

R3

|ξ|2s1 |V̂ jη (ξ)|2dξ.
(23)

Let us introduce the factor |ξ|. The hypothesis of the ring implies that
∥∥∥Λ

3
p

λn,j ,xn,j
V jη (x)

∥∥∥
2

Ḣs1
= λn,j

2(s−s1)

∫

R3

|ξ|2s |V̂ jη (ξ)|2 1

|ξ|2(s−s1)
dξ

6 (η λn,j)
2(s−s1)‖V j‖2

Ḣs
.

(24)

As λn,j tends to 0; this proves the first part of the proposition. The second
part relies on similar arguments and thus the proof is omitted. �

4. Proof of Lemma 3.1

Given a bounded sequence (u0,n) in Ḣs which profile decomposition is given
by Theorem 2.1, we search sequences associated solutions NS(u0,n), under the
form of

NS(u0,n) = Uapp,J
n +RJn, where

Uapp,J
n

def
=
∑

j∈J1
j6J

NS(V j)(t, · −xn,j) + et∆
(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)
,

(25)

Note that if J1 = ∅, the approximation term Uapp,J
n is reduced to the linear

part

Uapp,J
n = et∆

(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)
.

Plugging this decomposition into the Navier-Stokes equation leads to the fol-
lowing perturbed equation on the error term RJn
(26)


∂tR

J
n +RJn.∇RJn −∆RJn +RJn · ∇Uapp,J

n + Uapp,J
n .∇RJn = −F Jn −∇pJn

div RJn = 0
RJn |t=0 = 0,
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where the forcing term F Jn is given by F Jn =
∑4
`=1 F

J,`
n , with

F J,1n =
∑

06j,k6J1;j 6=k
NS(V j)(t, · −xn,j)· ∇NS(V k)(t, · −xn,k),

F J,2n = et∆
(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)
· ∇
(
et∆
(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

))
,

F J,3n = et∆
(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)
· ∇
(∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
)
,

F J,4n =
(∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
)
· ∇
(
et∆
(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

))
.

(27)

Let us admit for a while the two following propositions.

Proposition 4.1. — With notations (37), the sequence Uapp,J
n is bounded in

the space Xs
T , uniformly in J and η,

‖Uapp,J
n ‖XsT <∞, ∀T < T̃

def
= inf

j∈J1

T∗(V
j).

Once again, we use the convention that infj∈J1
T∗(V j) = +∞ if J1 is empty.

Proposition 4.2. —

lim
J→+∞

lim sup
n→+∞

‖F Jn ‖2L2
T (Ḣs−1)

= 0.

Completion of the proof of Lemma 3.1. Let ε0 > 0. Let T0 be the time defined
by

T0
def
= sup

{
0 < T < T̃ | ‖RJn(t)‖2

L∞T (Ḣs)
6 ε0

}
.

Therefore, for any T < T0 6 T̃ , Theorem A.7 implies
(28)

‖RJn‖2XsT . ‖F
J
n ‖2L2

T (Ḣs−1)
exp

(
ε

2
2s−1

0 T̃ + T̃ s−
1
2 ‖Uapp,J

n ‖2XsT + T̃ ‖Uapp,J
n ‖

4
2s−1

L∞T (Ḣs)

)
.

Combining Propositions 4.1 and 4.2, Lemma 3.1 is proved. Therefore, to com-
plete the proof, we shall prove the two above propositions.

Proof of Proposition 4.1. — By definition of Uapp,J
n and virtue of (a+ b)

2

6 2
(
a2 + b2

)
, we have

(29)

‖Uapp,J
n ‖2XsT 6 2

(∥∥∥
∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
∥∥∥

2

XsT

+
∥∥∥et∆

(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)∥∥∥
2

XsT

)
.
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Let us focus for a moment on the heat term et∆
(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)
.

It is well-known that an Ḣs-energy estimate on the heat equation implies
that

∥∥et∆u
∥∥2

XsT
6 ‖u0‖2Ḣs , for any u solution associated with data u0 in Ḣs. As

a result, we get
∥∥∥et∆

(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)∥∥∥
2

XsT

6
∥∥∥
∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

∥∥∥
2

Ḣs
.

Therefore, profile decomposition yields, up to triangular and Young’s inequalites
∥∥et∆

(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)∥∥2

XsT
6
∥∥∥u0,n −

∑

j∈J1
j6J

V j(· −xn,j)
∥∥∥

2

Ḣs

6 2
∥∥u0,n

∥∥2

Ḣs
+ 2

∥∥∥
∑

j∈J1
j6J

V j(· −xn,j)
∥∥∥

2

Ḣs
.

Let us recall a consequence of Theorem 2.1

(30) ∀η > 0,
∥∥∥
∑

j∈J1
j6J

V j(· −xn,j)
∥∥∥

2

Ḣs
=
∑

j∈J1
j6J

∥∥V j
∥∥2

Ḣs
+ ◦(1), when n→ +∞.

Thanks to the orthogonality relation (9), the term
∑

j∈J1
j6J

∥∥V j
∥∥2

Ḣs
satisfies

∑
j∈J1
j6J

∥∥V j
∥∥2

Ḣs
6
∥∥u0,n

∥∥2

Ḣs
+ ◦(1), for n large enough. As a result,

(31) ∀η > 0,
∥∥∥et∆

(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(x) + ψJn(x)

)∥∥∥
2

XsT

.
∥∥u0,n

∥∥2

Ḣs
+ ◦(1),

when n→ +∞. Now, let us come back to (29). Thanks to the previous estimate
(31), we infer that

∀η > 0, ‖Uapp,J
n ‖2XsT .

∥∥∥
∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
∥∥∥

2

XsT

+
∥∥u0,n

∥∥2

Ḣs
+ ◦(1),

when n→ +∞.
We admit for a while the following statement, for any T < T̃

def
= infj∈J1 T∗(V

j)
and η > 0.
(32)∥∥∥
∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
∥∥∥

2

XsT

6
∑

j∈J1
j6J

∥∥NS(V j)(t, · )
∥∥2

XsT
+ ◦(1), when n→ +∞.
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Therefore, we have for any T < T̃
def
= infj∈J1

T∗(V j)

∀η > 0, ‖Uapp,J
n ‖2XsT 6 C

(∑

j∈J1
j6J

∥∥NS(V j)
∥∥2

XsT
+
∥∥u0,n

∥∥2

Ḣs
+ ◦(1)

)
,

when n→ +∞.
As NS(V jη ) solves NS-equation with initial data V jη belonging to Ḣs and

since the time T is far away from the blow up time, we infer that each term in
the right-hand side is bounded, uniformly in J and η. Now let us prove (30).
Clearly we have, thanks to the translations invariance of the Ḣs-norm
∥∥∥
∑

j∈J1
j6J

V j(· −xn,j)
∥∥∥

2

Ḣs
=
∑

j∈J1
j6J

∥∥V j(· −xn,j)
∥∥2

Ḣs

+ 2
∑

(j,k)∈J1×J1
j 6=k

(
V j(· −xn,j)

∣∣V k(· −xn,k)
)
Ḣs

=
∑

j∈J1
j6J

∥∥V j
∥∥2

Ḣs

+ 2
∑

(j,k)∈J1×J1
j 6=k

(
|D|sV j(· −xn,j)

∣∣ |D|sV k(· −xn,k)
)
L2 ,

where |D| =
√
−∆. The orthogonality of cores (e.g., limn→∞ |xn,j − xn,k| = +∞)

implies in particular that the term |D|s V k(x+ (xn,j − xn,k)) weakly converges
to 0 in L2 and thus (notice that |D|s V jη (x) belongs to L2, by hypothesis)

∀η > 0, ∀(j, k) ∈ J1×J1, lim
n→∞

∫

R3

|D|s V j(x) |D|s V k(x+(xn,j−xn,k)) dx = 0,

which ends up the proof of statement (30). Concerning statement (32), the
proof is similar. Let ε > 0. As for any T 6 T̃ − ε, NS(V jη ) belongs to the

space Xs
T

def
= CT (Ḣs) ∩ L2

T (Ḣs+1). In particular, the map t ∈ [0, T̃ − ε] 7→
NS(V j)(t, · ) belongs to Ḣs. Previous computations hold and, by virtue of
translation invariance of the Ḣs-norm, we get for any t < T̃ and η > 0,

(33)
∥∥∥
∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
∥∥∥

2

Ḣs
=
∑

j∈J1
j6J

∥∥NS(V j)(t, · )
∥∥2

Ḣs

+ 2
∑

(j,k)∈J1×J1
j 6=k

(
|D|sNS(V j)(t, · −xn,j)

∣∣ |D|sNS(V k)(t, · −xn,k)
)
L2 .
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Then, for any t in [0, T̃ − ε], we get
∥∥∥
∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
∥∥∥

2

L∞T (Ḣs)
6
∑

j∈J1
j6J

∥∥NS(V j)(t, · )
∥∥2

L∞T (Ḣs)
+ 2

∑

(j,k)∈J1×J1
j 6=k

Γs,j,kε,n ,

where Γs,j,kε,n is defined by

Γs,j,kε,n
def
= sup

t∈[0,T̃−ε]

(
|D|sNS(V j)(t, · −xn,j)

∣∣ |D|sNS(V k)(t, · −xn,k)
)
L2

= sup
t∈[0,T̃−ε]

∫

R3

|D|sNS(V j)(t, · ) |D|sNS(V k)(t, ·+(xn,j − xn,k)) dx.

(34)

The map ψ : t ∈ [0, T̃ − ε] 7→ |D|sNS(V j)(t, · ) |D|sNS(V k)(t, ·+(xn,j − xn,k))

is continuous on the compact [0, T̃ − ε], with value in L1(R3). Thus, ψ([0, T̃ − ε])
is precompact in the Lebesgue space L1(R3) and thus can be covered by a
finite open ball with an arbitrarily radius α > 0. Let α be a positive ra-
dius. There exists an integer N , such that for any t ∈ [0, T̃ − ε], ψ(t) belongs
to
⋃N
l=1 B

(
ψ(tl), α

)
. Thus, for any t belonging to the compact [0, T̃ − ε], there

exists a time tl such that

(35) ‖ψ(t)‖L1(R3) 6 α+ ‖ψ(tl)‖L1(R3).

by virtue of the simple fact
∫
f 6

∫
|f |, we infer that

Γs,j,kε,n 6 α+ ‖ψ(tl)‖L1(R3)

= α+

∫

R3

∥∥∥D|sNS(V j)(tl, · ) |D|sNS(V k)(tl, ·+(xn,j − xn,k))
∣∣∣ dx.

Now, in order to conclude, we notice that Lebesgue theorem combined with
the orthogonality property of cores imply that the right-hand-side tends to 0,
when n tends to +∞ (since we can choose α arbitrarily small) and thus, we
get

∀η > 0, ∀(j, k) ∈ J1 × J1,

lim
n→∞

sup
t∈[0,T̃−ε]

(
|D|sNS(V j)(t, · −xn,j) | |D|sNS(V k)(t, · −xn,k)

)
L2 = 0.

Therefore, we have proved for any T < T̃ and η > 0,
∥∥∥
∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
∥∥∥

2

L∞T (Ḣs)
6
∑

j∈J1
j6J

∥∥NS(V j)(t, · )
∥∥2

L∞T (Ḣs)
+ ◦(1),

when n → +∞. Concerning the L2
T (Ḣs+1)-norm, we write estimate (33) in

Ḣs+1-norm. Then, the L2
T (Ḣs+1)-norm of crossed terms tends to 0, thanks to
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Lebesgue theorem and orthogonality of cores. Details are left to the reader.
Finally, we get (32)
∥∥∥
∑

j∈J1
j6J

NS(V j)(t, · −xn,j)
∥∥∥

2

XsT

6
∑

j∈J1
j6J

∥∥NS(V j)(t, · )
∥∥2

XsT
+ ◦(1), when n→ +∞.

In order to complete the proof of Proposition 4.1, we have to prove that the
term

∑
j∈J1
j6J

∥∥NS(V j)(t, · )
∥∥2

XsT
is bounded, uniformly in J1 (and thus in J)

and η. This will result from Remark 1.1 and the orthogonality of Ḣs-norm (9)
in profile theorem. Indeed, by virtue of profile decomposition of the bounded
sequence (u0,n)n>0 in the Sobolev space Ḣs, we know that

∑
j∈J1
j6J
‖V j‖2

Ḣs
is

bounded. It means that

∀ε > 0, ∃J ∗1 ⊂ J1, with |J ∗1 | <∞ ∀ j ∈ J1 \ J ∗1 , ‖V j‖Ḣs 6 ε.
by virtue of Remark 1.1, we infer that for any j belonging to J1\J ∗1 , the Navier-
Stokes solutions NS(V j) associated with such profiles V j satisfy∥∥NS(V j)(t, · )

∥∥
XsT
6 2

∥∥V j
∥∥
Ḣs

. Therefore, we infer that
∑

j∈J1
j6J

∥∥NS(V j)(t, · )
∥∥2

XsT
6
∑

j∈J∗1
j6J

∥∥NS(V j)(t, · )
∥∥2

XsT
+ 4

∑

j∈J1\J ∗1

‖V j‖2
Ḣs

6
∑

j∈J∗1
j6J

∥∥NS(V j)(t, · )
∥∥2

XsT
+ 4

∑

j∈J1
j6J

‖V j‖2
Ḣs

6
∑

j∈J∗1
j6J

∥∥NS(V j)(t, · )
∥∥2

XsT
+ 4 lim sup

n→+∞
‖u0,n‖2Ḣs .

(36)

As we are not so close to the blow up time (since T < infj∈J1
T∗(V j)), the

term
∑

j∈J∗1
j6J

∥∥NS(V j)(t, · )
∥∥2

XsT
is bounded, uniformly in J1 (since J ∗1 is finite

and depends only on the sequence of profiles V j). Thus, the proof of Proposi-
tion 4.1 is complete. �

Proof of Proposition 4.2. — In order to prove the smallness result on the forc-
ing term, we shall need to use the regularization process mentionned in the tool
box of the previous section. Let us recall that we get an approximation of the
Navier-Stokes solution associated with such a data, under the form of

NS(u0,n) = Uapp,J
n +RJn, where

Uapp,J
n (t, · ) def

=
∑

j∈J1
j6J

NS(V j)(t, · −xn,j) + et∆
(∑

j∈Jc1
j6J

Λ
3
p

λn,j ,xn,j
V j(· ) + ψJn(· )

)
,

(37)
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As already mentionned in (20), profiles are sorted with respect of the size of
scales. Moreover, we cut off frequencies of profiles with small and big scales and
therefore, decomposition (37) can be rewritten as follows

Uapp,J
n (t, · ) def

=
∑

j∈J1
j6J

NS(V j)(t, · −xn,j) + et∆
(
U0
n,η + U∞n,η + ψJn,η(· )

)
,

(38)

with U0
n,η

def
=
∑

j∈J0
j6J

Λ
3
p

λn,j ,xn,j
V jη ; U∞n,η

def
=
∑

j∈J∞
j6J

Λ
3
p

λn,j ,xn,j
V jη

and ψJn,η
def
=
∑

j∈J0
j6J

Λ
3
p

λn,j ,xn,j
V jcη +

∑

j∈J∞
j6J

Λ
3
p

λn,j ,xn,j
V jcη + ψJn .

(39)

Let us point out that the main point is that, by virtue of Proposition 3.4,
the terms U0

n,η and U∞n,η are small in the sense that, for any δ > 0, for any
η > 0, limn→+∞ ‖U0

n,η‖Ḣs−δ = 0 and limn→+∞ ‖U∞n,η‖Ḣs+δ = 0. We recall a
basic property due to divergence free condition: for any vector field u, smooth
enough and divergence-free,

(40) u · ∇v = div(u⊗ v)·

The property (40) provides us another expression of the exterior force term F Jn

F Jn = IJ,1n,η + IJ,2n,η + IJ,3n .(41)

where

IJ,1n,η = div
((

2
∑

j∈J1
j6J

NS(V j)(t, · −xn,j) + et∆
(
U0
n,η + U∞n,η + ψJn,η(x)

))

⊗ et∆
(
U0
n,η + U∞n,η

))
.

IJ,2n,η = div
((

2
∑

j∈J1
j6J

NS(V j)(t, · −xn,j) + et∆
(
U0
n,η + U∞n,η + ψJn,η(x)

))

⊗ et∆ψJn,η

)
.

IJ,3n = F J,1n =
∑

06j,k6J1;j 6=k
NS(V j(t, · −xn,j))· ∇NS(V k)(t, · −xn,k).

(42)
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Concerning IJ,1n,η, we apply (49) of Proposition A.5, for any δ > 0, such that
s+ δ < 3

2 ,

‖IJ,1n,η‖L2
T (Ḣs−1) 6 C T

1
2 (s− 1

2 )
(
T
−δ
2 ‖U0

n,η‖Ḣs−δ + T
δ
2 ‖U∞n,η‖Ḣs+δ

)

×
∥∥∥2
∑

j∈J1
j6J

NS(V j)(t, · −xn,j) + et∆
(
U0
n,η + U∞n,η + ψJn,η

)∥∥∥
XsT

6 C T 1
2 (s− 1

2 )
(
T
−δ
2 ‖U0

n,η‖Ḣs−δ + T
δ
2 ‖U∞n,η‖Ḣs+δ

)

×
(

2 ‖Uapp,J
n ‖XsT +

∥∥et∆
(
U0
n,η + U∞n,η + ψJn,η

)∥∥∥
XsT

)
.

(43)

From (31), we infer that

‖IJ,1n,η‖L2
T (Ḣs−1) 6 C T

1
2 (s− 1

2 )
(
T
−δ
2 ‖U0

n,η‖Ḣs−δ + T
δ
2 ‖U∞n,η‖Ḣs+δ

)

×
(
‖Uapp,J

n ‖XsT + ‖u0,n‖Ḣs + ◦(1)
)
, when n→ +∞.

Propositions 3.4 and 4.1 implies that IJ,1n,η tends to 0 when n tends to infinity

∀ε > 0, ∃ñ1(ε, J, η), ∀n > ñ1(ε, J, η),
∥∥∥IJ,1n,η

∥∥∥
L2
T (Ḣs−1)

6 ε.

Concerning IJ,2n,η, we apply the estimate (48) of Proposition A.5

‖IJ,2n,η‖L2
T (Ḣs−1) 6 C T

1
2 (s− 1

2 ) ‖ψJn,η‖Ḃs(1−θ)pθ,pθ

×
∥∥∥2
∑

j∈J1
j6J

NS(V j)(t, · −xn,j) + et∆
(
U0
n,η + U∞n,η + ψJn,η

)∥∥∥
XsT

6 C T 1
2 (s− 1

2 ) ‖ψJn,η‖Ḃs(1−θ)pθ,pθ

(
‖Uapp,J

n ‖XsT + ‖u0,n‖Ḣs + ◦(1)
)
,

(44)

when n→ +∞. Thanks to Proposition 3.3, we infer

∀ε > 0, ∃J̃(ε), ∀J > J̃(ε), ∃η̃(J), ∃ñ2(J),∀η > η̃(J), ∀n > ñ2(J),

‖IJ,2n,η‖L2
T (Ḣs−1) 6 ε.

Concerning IJ,3n,η, the argument relies on the approximation Lemma A.6 ap-
plied with σ = s

2 + 3
4 , which proof is given in Appendix A. For the sake of

simplicity, we note:

Φj = NS(V j) and Φk = NS(V k).
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As Φj and Φk belong to the space L∞T (Ḣs)∩L2
T (Ḣs+1), an interpolation argu-

ment implies they belong to the space L4
T (Ḣ

s
2 + 3

4 ). Indeed, we have

‖u‖
Ḣ
s
2

+ 3
4
6 ‖u‖

1
2 (s+ 1

2 )

Ḣs
‖u‖

1
2 ( 3

2−s)
Ḣs+1

.

Then, by integrating in time, we deduce that

‖u‖4
L4
T (Ḣ

s
2

+ 3
4 )
6 T s− 1

2 ‖u‖2(s+ 1
2 )

L∞T (Ḣs)
‖u‖3−2s

L2
T (Ḣs+1)

.

Thanks to the divergence-free condition, we have ‖Φj .∇Φk‖2
Ḣs−1 = ‖Φj ⊗ Φk‖2

Ḣs

and thus

‖Φj .∇Φk‖2
L2
T (Ḣs−1)

=

∫ T

0

‖Φj ⊗ Φk‖2
Ḣs

6
∫ T

0

‖(Φj − Φjε)⊗ Φk‖2Ḣs +

∫ T

0

‖Φjε ⊗ (Φk − Φkε)‖2
Ḣs

+

∫ T

0

‖Φjε ⊗ Φkε‖2Ḣs .

As s
2 + 3

4 <
3
2 , a product rule in Sobolev spaces implies

(45) ‖u v‖Ḣs 6 C(s) ‖u‖
Ḣ
s
2

+ 3
4
‖v‖

Ḣ
s
2

+ 3
4
·

Therefore, we infer that :

‖Φj .∇Φk‖2
L2
T (Ḣs−1)

.
∫ T

0

‖(Φj − Φjε)‖2
Ḣ
s
2

+ 3
4
‖Φk‖2

Ḣ
s
2

+ 3
4

+

∫ T

0

‖Φjε‖2
Ḣ
s
2

+ 3
4
‖Φk − Φkε‖2

Ḣ
s
2

+ 3
4

+

∫ T

0

‖Φjε ⊗ Φkε‖2Ḣs .

Finally, Cauchy-Schwarz inequality and approximation Lemma A.6 yield

‖Φj .∇Φk‖2
L2
T (Ḣs−1)

. ε2‖Φk‖2
L4
T (Ḣ

s
2

+ 3
4 )

+ ε2‖Φj‖2
L4
T (Ḣ

s
2

+ 3
4 )

+ ‖Φjε ⊗ Φkε‖2L2
T (Ḣs)

.

To conclude, we have to prove that ‖Φjε ⊗ Φkε‖2L2
T (Ḣs)

tends to 0, for ε
small enough. This will come from the orthogonality of cores. By definition,
Φjε (resp. Φkε) is an approximation of Φj (resp. Φk). Because of translations
by cores, we define Φj,nε (t, x − xn,j) (resp. Φk,nε (t, x − xn,k)) as an approxi-
mation of Φj(t, x − xn,j) (resp. Φk(t, x − xn,k)). As Φj,nε and Φk,nε are com-
pactly supported and concentrated around xn,j and xn,k, the divergence of cores
(limn→+∞ |xn,j − xn,k| = +∞) implies they are supported on disjoint compact
sets. Therefore, the term ‖Φjε ⊗ Φkε‖2L2

T (Ḣs)
converges to 0, for n large enough.

In other words, we have

∀ε > 0, ∃ñ(ε), ∀n > ñ(ε),
∥∥∥NS(V j(t, · −xn,j))· ∇NS(V k)(t, · −xn,k)

∥∥∥
L2
T (Ḣs−1)

6 ε

|J1|
.
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Therefore, we infer that, ∀ε > 0, ∃ñ(ε), ∀n > ñ(ε),
(46)

∥∥∥IJ,3n,η

∥∥∥
L2
T (Ḣs−1)

=

∥∥∥∥∥∥∥∥

∑

06j,k6J ;j 6=k
(j,k)∈J 2

1

NS(V j(t, · −xn,j))· ∇NS(V k)(t, · −xn,k)

∥∥∥∥∥∥∥∥
L2
T (Ḣs−1)

6 ε.

This concludes the proof of Proposition 4.2. �

Appendix A. Product and paraproduct estimates

In this section, we give some typical product estimates, in which frequency
splitting allows for a much finer control of the product. The main tool is the
homogeneous paradifferential calculus. For a detailed presentation of it, we
refer the reader to [1], page 85. We recall two fundamental statements (see for
instance Theorem 2.47 and 2.52 in [1]) about continuity of the homogeneous
paraproduct operator T , and the remainder operator R. We shall constantly
be using these two theorems in the sequel.

Theorem A.1. — There exists a constant C such that for any real number s
and any (p, r) in [1,∞]2, we have for any (u, v) in L∞ × Ḃsp,r,

‖Tuv‖Ḃsp,r 6 C
1+|s| ‖u‖L∞ ‖v‖Ḃsp,r

Moreover, for any (s, t) in R×] − ∞, 0[, (p, r1, r2) in [1,∞]3, and (u, v) in
Ḃt∞,r1 × Ḃsp,r2 , we have

‖Tuv‖Ḃs+tp,r
6 C1+|s+t|

−t ‖u‖Ḃt∞,r1 ‖v‖Ḃsp,r2 with
1

r

def
= min

{
1,

1

r1
+

1

r2

}
·

Theorem A.2. — A constant C exists which satisfies the following properties.
Let (s1, s2) be in R2 and (p1, p2, r1, r2) in [1,∞]4. Let us assume that

1

p

def
=

1

p1
+

1

p2
6 1 and

1

r

def
=

1

r1
+

1

r2
6 1.

If s1 + s2 is positive, then we have for any (u, v) in Ḃs1p1,r1 × Ḃs2p2,r2 ,

‖R(u, v)‖
Ḃ
s1+s2
p,r

6 C1+|s1+s2|

s1 + s2
‖u‖Ḃs1p1,r1

‖v‖Ḃs2p2,r2
.

A lot of results of continuity may be deduced from the two above theorems.
For instance, we can state the lemma below.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



380 E. POULON

Lemma A.3 (Product rule in Ḣs). — Let u and v be two functions in Ḣs with
− 3

2 < s < 3
2 , then

‖uv‖Ḣs 6 C(s)
(
‖u‖Ḣs ‖v‖Ḣ 3

2
+ ‖u‖

Ḣ
3
2
‖v‖Ḣs

)

and ‖uv‖Ḣs 6 C(s) ‖u‖
L∞ ∩ Ḣ 3

2
‖v‖Ḣs .

This lemma can be deduced from Theorems 2.47 et 2.52 in [1] (p. 87 and 88).

Remark A.1. — Let us point out an interpolation inequality: by definition
of s we have

(47) ‖u‖
Ḣ

3
2
6 C‖u‖s−

1
2

Ḣs
‖u‖

3
2−s
Ḣs+1

.

Therefore, combining this with Lemma A.3, we get the result following which
is a frequent use in this article.

Corollary A.4. — Let u and v be in Ḣs with 1
2 < s < 3

2 , then

‖uv‖Ḣs 6 C(s)
(
‖u‖Ḣs ‖v‖

s− 1
2

Ḣs
‖v‖

3
2−s
Ḣs+1

+ ‖u‖s−
1
2

Ḣs
‖u‖

3
2−s
Ḣs+1

‖v‖Ḣs
)
.

Proposition A.5. — Let 0 < θ < 1. Under the interpolation relation
1
pθ

= θ
p + 1−θ

2 ,

(48) ‖u⊗ et∆r0‖L2
T (Ḣs) 6 C T

1
2 (s− 1

2 )‖u‖XsT ‖r0‖Ḃs(1−θ)pθ,pθ

.

(49) For any
1

2
< α <

3

2
, ‖u ⊗ et∆r0‖L2

T (Ḣs) 6 C T
1
2 (α− 1

2 )‖u‖XsT ‖r0‖Ḣα .

Proof. — Let us start by proving the first inequality. Bony’s paraproduct
decomposition implies

u⊗ et∆r0 = Tet∆r0u+R(et∆r0, u) + Tu(et∆r0).

The first two terms can be estimated in Ḣs-norm easily. Thanks to Theo-
rem A.1, we have

‖Tet∆r0(u)‖Ḣs=Ḃs2,2 6 C‖e
t∆r0‖

Ḃ
s− 3

2∞,∞
‖u‖

Ḃ
3
2
2,2

.

Let us recall that 1
pθ

is defined by 1
pθ

= θ
p + 1−θ

2 , for any θ in ]0, 1[.
A classical result due to Bernstein’s inequality gives the following embedding

Ḃ
s(1−θ)
pθ,∞ ↪→ Ḃ

s− 3
2∞,∞.

Therefore we infer that

‖Tet∆r0(u)‖L2
T (Ḣs) . ‖et∆r0‖L∞T (Ḃ

s(1−θ)
pθ,∞ )

‖u‖
L2
T (Ḣ

3
2 )
.

On the one hand, thanks to the hypothesis 1
2 < s < 3

2 , we recover the Navier-
Stokes solution u in Xs

T -norm by an interpolation argument.
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As ‖u‖
Ḣ

3
2
. ‖u‖s−

1
2

Ḣs
‖u‖

3
2−s
Ḣs+1

, we get

‖u‖2
L2
T (Ḣ

3
2 )

=

∫ T

0

‖u‖2s−1

Ḣs
‖u‖3−2s

Ḣs+1
dt . ‖u‖2s−1

L∞T (Ḣs)
T s−

1
2 ‖u‖3−2s

L2
T (Ḣs+1)

. T s− 1
2 ‖u‖2XsT .

(50)

On the other hand, the simple embedding `pθ (Z) ⊂ `∞(Z) implies

‖et∆r0‖L∞T (Ḃ
s(1−θ)
pθ,∞ )

6 ‖r0‖Ḃs(1−θ)pθ,∞
6 ‖r0‖Ḃs(1−θ)pθ,pθ

.

Finally, we have proved the proposition for the first two terms

‖R(et∆r0, u)‖L2
T (Ḣs) + ‖Tet∆r0(u)‖L2

T (Ḣs) . T
1
2 (s− 1

2 ) ‖r0‖Ḃs(1−θ)pθ,pθ

‖u‖XsT .

The last term Tu(et∆r0) is more delicate. Note that, here, as we work locally
in time, low frequencies do not play a major role, unlike high frequencies. As a
result, we have to handle low and high frequencies separately. It is natural to
split them according to their size: either the frequencies are low (in the sense
that

√
T2j 6 C) or the frequenties are high (in the sense that

√
T2j > C).

Firstly, let us observe that

‖Tu(et∆r0)‖L2
T (Ḣs) = ‖Tu(et∆r0)‖L2

T (Ḃs2,2) =
(

2js‖∆̇jTu(et∆r0)‖L2
T (L2)

)
`2(Z)

.

We split, according to low and high frequencies

‖Tu(et∆r0)‖L2
T (Ḣs) 6

(
2js‖∆̇jTu(et∆r0)‖L2

T (L2)1{
√
T2j6C}

)
`2(Z)

+
(

2js‖∆̇jTu(et∆r0)‖L2
T (L2)1{

√
T2j>C}

)
`2(Z)

.
(51)

A classical result in Littlewood Paley theory gives the following estimates

∆̇jTu(et∆r0) =
∑

|j−j′|64

Ṡj′−1u ∆̇j′(e
t∆r0).

Therefore, Hölder’s inequality yields

‖∆̇jTu(et∆r0)‖L2 6
∑

|j−j′|64

‖Ṡj′−1u‖Lqθ ‖∆̇j′(e
t∆r0)‖Lpθ with

1

2
=

1

pθ
+

1

qθ
.

In particular, Bernstein’s inequality implies

‖Ṡj′−1u‖Lqθ 6
j′−2∑

j′′=−∞
‖∆̇j′′u‖Lqθ

.
j′−2∑

j′′=−∞
2

3j′′( 1
2− 1

qθ
)‖∆̇j′′u‖L2 =

j′−2∑

j′′=−∞
2
j′′( 3

pθ
−s)

2j
′′s‖∆̇j′′u‖L2 .
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Applying Young’s inequality, we infer there exists for any t, a sequence (cj(t))j∈Z
belonging to the sphere of `qθ (Z), such that

‖Ṡj′−1u‖Lqθ 6 C cj′(t) 2
j′( 3

pθ
−s) ‖u(t)‖Ḃs2,qθ .

As qθ > 2, `2(Z) is included in `qθ (Z), which implies that

‖Ṡj′−1u‖Lqθ 6 C cj′(t) 2
j′( 3

pθ
−s) ‖u(t)‖Ḃs2,2 .

Therefore, we have

‖∆̇jTu(et∆r0)‖L2 .
∑

|j−j′|64

cj′(t)2
j′( 3

pθ
−2s+θ s)‖u(t)‖Ḃs2,2 2sj

′(1−θ)‖∆̇j′(e
t∆r0)‖Lpθ .

As j and j′ are equivalent, we can write

‖∆̇jTu(et∆r0)‖L2 . cj(t)2j(
3
pθ
−2s+θ s)‖u(t)‖Ḃs2,2 2js(1−θ)‖∆̇j(e

t∆r0)‖Lpθ .
(52)

On the other hand, we have (see for instance Lemma 2.4 of [1])

(53) ‖∆̇j′(e
t∆r0)‖Lpθ . e−t2

2j′‖∆̇j′r0‖Lpθ .

As e−t2
2j′ 6 1, integration in time yields

‖∆̇j′(e
t∆r0)‖LpθT (Lpθ ) . T

1
pθ ‖∆̇j′r0‖Lpθ .

The above result combined with Hölder’s inequality in time implies

2js‖∆̇jTu(et∆r0)‖L2
T (L2)

. 2
j( 3
pθ
−s+θ s)‖u(t)‖L∞T (Ḣs)‖cj(t)‖LqθT T

1
pθ 2js(1−θ) ‖∆̇jr0‖Lpθ .

Therefore, as far as the low frequencies are concerned (
√
T2j 6 C), we have

2js‖∆̇jTu(et∆r0)‖L2
T (L2)1{

√
T2j6C} . T

− 1
2 ( 3
pθ
−s+θ s)‖u(t)‖L∞T (Ḣs)‖cj(t)‖LqθT

× T
1
pθ 2js(1−θ) ‖∆̇jr0‖Lpθ .

Applying Hölder’s inequality for the `2(Z)-norm, we have
(

2js‖∆̇jTu(et∆r0)‖L2
T (L2)1{

√
T2j6C}

)
`2(Z)

6 T−
1
2 ( 3
pθ
−s+θ s)+ 1

pθ ‖u(t)‖L∞T (Ḣs)

×
(
‖cj(t)‖LqθT

)
`qθ (Z)

‖r0‖Ḃs(1−θ)pθ,pθ

.
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Clearly, we have
(
‖cj(t)‖LqθT

)
`qθ (Z)

6 T
1
qθ . Besides, we have

−1

2

(
3

pθ
− s+ θ s

)
+

1

pθ
+

1

qθ
= −1

2

(
3

pθ
− s+ θ s− 1

)

= −1

2

(
3θ

p
+

3(1− θ)
2

− s+ θ s− 1

)

= −1

2

(
3θ

2
− θ s+

3(1− θ)
2

− s+ θ s− 1

)

=
1

2

(
s− 1

2

)
·

As a result, we infer that
(

2js‖∆̇jTu(et∆r0)‖L2
T (L2)1{

√
T2j6C}

)
`2(Z)

6 T 1
2 (s− 1

2 ) ‖u(t)‖L∞T (Ḣs)‖r0‖Ḃs(1−θ)pθ,pθ

.

This completes the proof in the case of low frequencies. For the high fre-
quencies, we need to use the smoothing effect of the heat flow. Thanks to (53),
we infer

(54) ‖∆̇j′(e
t∆r0)‖LpθT (Lpθ ) . 2

−2j′
pθ ‖∆̇j′r0‖Lpθ .

We write an estimate for 2js‖∆̇jTu(et∆r0)‖L2
T (L2)1{

√
T2j>C}. We come back to

(52), we integrate in time, applying Hölder’s inequality

2js‖∆̇jTu(et∆r0)‖L2
T (L2) . 2

j( 1
pθ
−s+θ s) ‖u(t)‖L∞T (Ḣs) ‖cj(t)‖LqθT

× 2
j
(

(1−θ)s+ 2
pθ

)
‖∆̇j(e

t∆r0)‖LpθT (Lpθ ).
(55)

High frequencies hypothesis implies

2js‖∆̇jTu(et∆r0)‖L2
T (L2)1{

√
T2j>C} . T

− 1
2 ( 1
pθ
−s+θ s)‖u(t)‖L∞T (Ḣs)‖cj(t)‖LqθT

× 2
j((1−θ)s+ 2

pθ
) ‖∆̇j(e

t∆r0)‖LpθT (Lpθ ).

Thanks to (54), we infer

2js‖∆̇jTu(et∆r0)‖L2
T (L2)1{

√
T2j>C} . T

− 1
2 ( 1
pθ
−s+θ s)‖u(t)‖L∞T (Ḣs)‖cj(t)‖LqθT

× 2j((1−θ)s) ‖∆̇jr0‖Lpθ .

(56)

Once again, we apply Hölder’s inequality for the `2(Z)-norm and we have
(

2js‖∆̇jTu(et∆r0)‖L2
T (L2)1{

√
T2j>C}

)
`2(Z)

. T−
1
2 ( 1
pθ
−s+θ s)+ 1

qθ ‖u(t)‖L∞T (Ḣs)‖r0‖LpθT (Ḃ
(1−θ)s
pθ,pθ

)
.
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Then, the simple computation − 1
2

(
1
pθ
− s+ θ s

)
+ 1

qθ
= 1

2

(
s− 1

2

)
implies

(
2j‖∆̇jTu(et∆r0)‖L2

T (L2)1{
√
T2j>C}

)
`2(Z)

. T 1
2 (s− 1

2 ) ‖u(t)‖L∞T (Ḣs)‖r0‖Ḃs(1−θ)pθ,pθ

.

This ends the proof for the case of high frequencies and therefore the first
inequality of the proposition is proved.

Now, let us prove the second inequality, which proof is very close to the
previous one. We give only outlines. Thanks to Bony’s decomposition, we have

u⊗ et∆r0 = Tet∆r0u+R(et∆r0, u) + Tu(et∆r0).

The first two terms can be estimated in Ḣs-norm easily, thanks to mapping of
paraproduct in the Besov spaces (cf Theorem A.1)

‖Tet∆r0u‖Ḃs2,2 6 C‖e
t∆r0‖

Ḃ
α− 3

2∞,∞
‖u‖

Ḃ
s+ 3

2
−α

2,2

.

On the one hand, Bernstein’s Lemma and obvious embedding `2(Z) ⊂ `∞(Z)
ensure that

Ḃα2,2 ↪→ Ḃ
α− 3

2
∞,2 ↪→ Ḃ

α− 3
2∞,∞ and thus ‖et∆r0‖

Ḃ
α− 3

2∞,∞
. ‖et∆r0‖Ḃα2,2 .

On the other hand, as s 6 s+ 3
2−α 6 s+1, u belongs to Ḃs+

3
2−α

2,2 . Interpolation
argument yields

‖u‖
Ḃ
s+ 3

2
−α

2,2

6 C ‖u‖
Ḣs+

3
2
−α 6 ‖u‖α−

1
2

Ḣs
‖u‖

3
2−α
Ḣs+1

.

By integration in time and thanks to Hölder’s inequality, we have

‖u‖2
L2
T (Ḣs+

3
2
−α)
6
∫ T

0

‖u(t, · )‖2α−1

Ḣs
‖u(t, · )‖3−2α

Ḣs+1
dt

6 Tα− 1
2 ‖u‖2α−1

L∞T (Ḣs)
‖u‖3−2α

L2
T (Ḣs+1)

.

Finally, we get
‖u‖

L2
T (Ḣs+

3
2
−α)
6 T 1

2 (α− 1
2 ) ‖u‖XsT .

Therefore, we deduce an estimate of the term ‖Tet∆r0(u)‖L2
T (Ḣs) and

‖R(et∆r0, u)‖L2
T (Ḣs).

‖Tet∆r0u‖L2
T (Ḣs) 6 T

1
2 (α− 1

2 ) ‖u‖XsT ‖r0‖Ḣα ,

‖R(et∆r0, u)‖L2
T (Ḣs) 6 T

1
2 (α− 1

2 ) ‖u‖XsT ‖r0‖Ḣα .

Now, in order to estimate the last term ‖Tu(et∆r0)‖L2
T (Ḣs), we shall need

splitting, according low and high frequencies (e.g
√
T 2j 6 1 or

√
T 2j > 1).
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That is exactly the same computations as in the proof of the first inequality of
the proposition

‖∆̇jTu(et∆r0)‖L2 .
∑

|j−j′|64

‖Ṡj′−1u‖Lp‖∆̇j′(e
t∆r0)‖

L
3
s
.

Thanks to the property ‖Ṡj′−1u‖Lp . ‖u‖Lp and the equivalence between j
and j′, we get

‖∆̇jTu(et∆r0)‖L2 . ‖u‖Lp‖∆̇j(e
t∆r0)‖

L
3
s
.

by virtue of Sobolev embedding and integration in time

2js ‖∆̇jTu(et∆r0)‖L2
T (L2) 6 2js ‖u‖L∞T (Ḣs) ‖∆̇j(e

t∆r0)‖
L2
T (L

3
s

) .

Concerning low frequencies (e.g
√
T 2j 6 1), we combine (53) with the rough

boundary e−t2
2j 6 1 and we get

2js ‖∆̇jTu(et∆r0)‖L2
T (L2) 1{

√
T2j6C} . 2js ‖u‖L∞T (Ḣs) ‖∆̇j(r0)‖

L2
T (L

3
s )

. 2js ‖u‖L∞T (Ḣs) 2−j(α+s− 3
2 ) 2j(α+s− 3

2 ) ‖∆̇j(r0)‖
L2
T (L

3
s )

. 2−j(α−
3
2 ) ‖u‖L∞T (Ḣs) 2j(α+s− 3

2 ) T
1
2 ‖∆̇j(r0)‖

L
3
s
.

Hypothesis of low frequencies implies
(57)(

2js ‖∆̇jTu(et∆r0)‖L2
T (L2) 1{

√
T2j6C}

)
`2(Z)

. T 1
2 (α− 1

2 ) ‖u‖L∞T (Ḣs) ‖r0‖
Ḃ
α+s− 3

2
3
s
,2

.

As far as high frequencies are concerned (e.g
√
T 2j > 1), (53) combining

with the integration of the term e−t2
2j

on [0, T ], gives

2js ‖∆̇jTu(et∆r0)‖L2
T (L2) 1{

√
T2j>C} . 2js ‖u‖L∞T (Ḣs) 2−j‖∆̇j(r0)‖

L
3
s

. 2j(s−1) ‖u‖L∞T (Ḣs) 2−j(α+s− 3
2 ) 2j(α+s− 3

2 ) ‖∆̇j(r0)‖
L

3
s

. 2−j(α−
1
2 ) ‖u‖L∞T (Ḣs) 2j(α+s− 3

2 ) ‖∆̇j(r0)‖
L

3
s
.

Hypothesis of high frequencies gives
(58)(

2js ‖∆̇jTu(et∆r0)‖L2
T (L2) 1{

√
T2j>C}

)
`2(Z)

. T 1
2 (α− 1

2 ) ‖u‖L∞T (Ḣs) ‖r0‖
Ḃ
α+s− 3

2
3
s
,2

.

Combining (57) and (58) with the fact that Ḃα2,2 is embedded in Ḃα+s− 3
2

3
s ,2

, we
get finally

(59) ‖Tu(et∆r0)‖L2
T (Ḣs) . T

1
2 (α− 1

2 ) ‖u‖L∞T (Ḣs) ‖r0‖Ḣα .
This completes the proof of the second inequality of the proposition. �

Now, let us state an approximation lemma.
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Lemma A.6. — Let 0 < σ < 3
2 and ε > 0. Let a be an element of L4

T (Ḣσ).
Then, there exists a constant C > 0, there exists a family of compactly supported
functions, aε, which satisfies for any positive T

lim
ε→0
‖a− aε‖L4

T (Ḣσ) = 0 and(60)

‖aε‖L4
T (Ḣσ) 6 C ‖a‖L4

T (Ḣσ).(61)

The proof of this approximation lemma is classical and results from cut off
in physical space and then in frequency space.

Here we prove a general theorem about an estimate in the Xs
T -space of a

solution of a perturbed Navier-Stokes system. The method is standard: the first
step consists in establishing an Ḣs-energy estimate. Then, some computations
on scalar-product terms lead to an inequality on which we can apply Gronwall’s
lemma. In particular, we apply this theorem to prove that the map u0 7→
T∗(u0) is a lower semi-continous function on Ḣs.

Theorem A.7. — Let q be an element belonging to the space Xs
T and let r be

a solution of the following perturbed Navier-Stokes system


∂tr + r.∇r −∆r + r · ∇q + q.∇r = −f −∇p

div r = 0
r|t=0 = r0.

Let ε0 > 0. Let T0 be the time defined by

T0
def
= sup

{
0 < T < T̃ (q) | ‖r(t)‖2

L∞T (Ḣs)
6 ε0

}
.

Then, for any t 6 T0, we have

‖r‖2XsT .
(
‖r0‖2Ḣs + ‖f‖2

L2
T (Ḣs−1)

)
exp

(
ε

2
2s−1

0 T̃ + T̃ s−
1
2 ‖q‖2XsT + T̃ ‖q‖

4
2s−1

L∞T (Ḣs)

)
.

Proof. — A Ḣs scalar-product, time integration and triangular inequality
yield

‖r‖2
X̃sT

def
= ‖r‖2

Ḣs
+ 2

∫ t

0

‖r(t′)‖2
Ḣs+1dt

′

6 ‖r0‖2Ḣs + 2

∫ t

0

∣∣((r · ∇r) | r
)
Ḣs

∣∣ dt′ + 2

∫ t

0

∣∣((q · ∇r) | r
)
Ḣs

∣∣ dt′

+ 2

∫ t

0

∣∣((r · ∇q) | r
)
Ḣs

∣∣ dt′ + 2

∫ t

0

∣∣(f | r
)
Ḣs

∣∣ dt′.

(62)

We assess each term in the right-hand side; the divergence-free condition
implies ∣∣((r · ∇r) | r

)
Ḣs

∣∣ 6 ‖r · ∇r‖Ḣs−1 ‖r‖Ḣs+1

6 ‖r ⊗ r‖Ḣs ‖r‖Ḣs+1 ·
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Thanks to Corollary A.4, we infer that
∣∣((r · ∇r) | r

)
Ḣs

∣∣ 6 C(s) ‖r‖s+
1
2

Ḣs
‖r‖

5
2−s
Ḣs+1
·

Then, integrating in time and applying Young’s inequality
(
ab 6 ap

p + bp
′

p′ , with
1
p + 1

p′ = 1
)
yields

∫ t

0

∣∣((r · ∇r) | r
)
Ḣs

∣∣ dt′ 6 C(s)

∫ t

0

‖r‖s+
1
2

Ḣs
‖r‖

5
2−s
Ḣs+1

dt′

6 C(s)

∫ t

0

‖r‖2
2s+1
2s−1

Ḣs
dt′ +

1

12

∫ t

0

‖r‖2
Ḣs+1dt

′.

(63)

Now we have to estimate
∫ t

0

∣∣((r · ∇q) | r
)
Ḣs

∣∣ dt′ and
∫ t

0

∣∣((q · ∇r) | r
)
Ḣs

∣∣ dt′.
Actually, thanks to the divergence-free condition, it is exactly the same estimate
and we get

∣∣((r · ∇q) | r
)
Ḣs

∣∣ 6 ‖r · ∇q‖Ḣs−1 ‖r‖Ḣs+1

6 ‖r ⊗ q‖Ḣs ‖r‖Ḣs+1 .

Once again, Corollary A.4 gives
∫ t

0

∣∣((r · ∇q) | r
)
Ḣs

∣∣ dt′ 6 C(s)

∫ t

0

‖r‖Ḣs‖q‖
s− 1

2

Ḣs
‖q‖

3
2−s
Ḣs+1

‖r‖Ḣs+1dt
′

+ C(s)

∫ t

0

‖q‖Ḣs ‖r‖
s− 1

2

Ḣs
‖r‖

5
2−s
Ḣs+1

dt′.

Young’s inequality implies

∫ t

0

∣∣((r · ∇q) | r
)
Ḣs

∣∣ dt′ 6 C(s)

∫ t

0

‖r‖2
Ḣs
‖q‖2s−1

Ḣs
‖q‖3−2s

Ḣs+1
dt′

+ C(s)

∫ t

0

‖q‖
4

2s−1

Ḣs
‖r‖2

Ḣs
dt′ +

2

12

∫ t

0

‖r‖2
Ḣs+1dt

′.

(64)

Same arguments give an estimate of exterior force term
∫ t

0

∣∣(f | r
)
Ḣs

∣∣dt′ 6
∫ t

0

‖f‖Ḣs−1 ‖r‖Ḣs+1 dt
′

6 C

∫ t

0

‖f‖2
Ḣs−1dt

′ +
1

12

∫ t

0

‖r‖2
Ḣs+1dt

′.

(65)

Combining Inequalities (62), (63), (64) and (65), we get

‖r‖2
X̃sT
6 ‖r0‖2Ḣs + C

∫ t

0

‖f‖2
Ḣs−1dt

′ + 2

∫ t

0

6

12
‖r‖2

Ḣs+1dt
′

+ C(s)

∫ t

0

‖r‖2
Ḣs

(
‖r‖

4
2s−1

Ḣs
+ ‖q‖2s−1

Ḣs
‖q‖3−2s

Ḣs+1
+ ‖q‖

4
2s−1

Ḣs

)
dt′.

(66)
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Let us introduce the time T0 defined by

T0
def
= sup

{
0 < T < T̃ | ‖r(t)‖2

L∞T (Ḣs)
6 ε0

}
.

Therefore, for any t 6 T0, we have

‖r‖2XsT
def
= ‖r‖2

Ḣs
+

∫ t

0

‖r(t′)‖2
Ḣs+1dt

′

. ‖r0‖2Ḣs +

∫ t

0

‖f‖2
Ḣs−1dt

′

+

∫ t

0

‖r‖2
Ḣs

(
ε

2
2s−1

0 + ‖q‖2s−1

Ḣs
‖q‖3−2s

Ḣs+1
+ ‖q‖

4
2s−1

Ḣs

)
.

Thanks to Gronwall’s lemma, we infer that for any T < T0 6 T̃

‖r‖2XsT .
(
‖r0‖2Ḣs + ‖f‖2

L2
T (Ḣs−1)

)
exp

(
ε

2
2s−1

0 T̃ + T̃ s−
1
2 ‖q‖2XsT + T̃ ‖q‖

4
2s−1

L∞T (Ḣs)

)
.

This concludes the proof Theorem A.7. �

Proposition below is well-known and can be seen as a consequence of The-
orem A.7. We perturb a data by a small term and we are interesting in the
consequence on the lifespan of the Navier-Stokes solution associated with such
a perturbed data. The lifespan of perturbed Navier-Stokes solution can not
decrease too much, compared to the lifespan of the non-perturbed one. More
precisely, we have the following proposition.

Proposition A.8. — The map u0 7→ T∗(u0) is a lower semi-continous func-
tion on Ḣs, e.g.,

∀ε > 0,∃α > 0, ∀v0 in Ḣs such that ‖v0‖Ḣs < α, then T∗(u0+v0) > T∗(u0)−ε.
Moreover, (under notations of Theorem A.7), a constant C > 0 exists such that
for any T 6 T∗(u0)− ε

(67) ‖NS(u0 + v0)−NS(u0)‖2XsT
6 C ‖v0‖2Ḣs × exp

(
ε

2
2s−1

0 T + T s−
1
2 ‖NS(u0)‖2XsT + T ‖NS(u0)‖

4
2s−1

L∞T (Ḣs)

)
.

Proof. — Let u0 and v0 two elements in Ḣs. We operate a small perturbation
of the data u0 by v0 (the aim is to quantify this smallness condition) and
we want to prove that the lifespan of the perturbed Navier-Stokes solution
NS(u0 + v0) can not be much less than the lifespan of NS(u0). The process is
standard. We introduce an error term R defined by

R(t, x) = NS(u0 + v0)−NS(u0).
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Classical computations imply that R is solution of the following perturbed
Navier-Stokes system

(68)




∂tR+R · ∇R−∆R+R · ∇NS(u0) +NS(u0) · ∇R = −∇p

div R = 0
R|t=0 = v0.

Let ε0 > 0. Let us introduce the time T0 defined by

T0 := sup
{

0 < T < T∗(u0) | ‖R(t)‖2
L∞T (Ḣs)

6 ε0

}
.

Thanks to Theorem A.7, we infer that for any T 6 T0

‖R‖2XsT 6 C ‖v0‖2Ḣs exp
(
ε

2
2s−1

0 T + T s−
1
2 ‖NS(u0)‖2XsT + T ‖NS(u0)‖

4
2s−1

L∞T (Ḣs)

)
.

(69)

The above expression gives the smallness condition on ‖v0‖Ḣs . Indeed, suppose
that v0 satifies
(70)

C ‖v0‖2Ḣs exp
(
ε

2
2s−1

0 T + T s−
1
2 ‖NS(u0)‖2XsT + T ‖NS(u0)‖

4
2s−1

L∞T (Ḣs)

)
6 ε0.

Therefore, the error term R, keeps on living until the time T∗(u0)− ε, for any
ε > 0. This concludes the proof of the proposition. �
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