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DYNAMICS OF THE DOMINANT HAMILTONIAN

BY VADIM KALOSHIN & KE ZHANG

ABsTrRACT. — It is well known that instabilities of nearly integrable Hamiltonian
systems occur around resonances. Dynamics near resonances of these systems is well
approximated by the associated averaged system, called slow system. Each resonance
is defined by a basis (a collection of integer vectors). We introduce a class of resonances
whose basis can be divided into two well separated groups and call them dominant.
‘We prove that the associated slow system can be well approximated by a subsystem
given by one of the groups, both in the sense of the vector field and weak KAM theory.
As a corollary, we obtain perturbation results on normally hyperbolic invariant cylin-
ders, and the Aubry/Maiie sets. This has applications in Arnold diffusion in arbitrary
degrees of freedom.

REsuME (Dynamique de ’hamiltonien dominant). — Il est bien connu que les in-
stabilités des systémes hamiltoniens presque intégrables interviennent au voisinage des
résonances. La dynamique de ces systémes prés des résonances est bien approchée par
les systémes moyennés associés, appelés systémes lents. Chaque résonance est défi-
nie par une base (une collection de vecteurs entiers). Nous introduisons une classe de
résonances dont la base peut étre divisée en deux groupes bien distincts, que nous ap-
pelons dominantes. Nous prouvons que le systéme lent associé peut étre bien approché
par un sous-systéme donné par ’'un de ces deux groupes, i la fois comme champ de
vecteurs et au sens de la théorie KAM faible. Comme corollaire, nous obtenons des
résultats perturbatifs sur des cylindres invariants normalement hyperboliques, et sur
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518 V. KALOSHIN & K. ZHANG

les ensembles d’Aubry/Maiié. Cela a des applications en diffusion d’Arnold pour un
nombre arbitraire de degrés de liberté.

1. Introduction

Consider a nearly integrable system with n% degrees of freedom
(1.1) H.(0,p,t) = Ho(p) + €H1(0,p,t), 0T, peR™ teT.

We will restrict to the case where the integrable part Hy is strictly convex,
more precisely, we assume that there is D > 1 such that

D™'1d < d3,Ho(p) < D1d

as quadratic forms, where Id denotes the identity matrix.

The main motivation behind this work is the question of Arnold diffusion,
that is, topological instability for the system H.. Arnold provided the first
example in [3], and asks ([1, 2, 4]) whether topological instability is “typical”
in nearly integrable systems with n > 2 (the system is stable when n = 1, due
to low dimensionality).

It is well known that the instabilities of nearly integrable systems occurs
along resonances. Given an integer vector k = (k, k%) € Z™ x Z with k # 0, we
define the resonant submanifold to be T'y = {p € R™ : k- (w(p),1) = 0}, where
w(p) = d,Ho(p). More generally, we consider a subgroup A of Z"*! which does
not contain vectors of the type (0,...,0,k°), called a resonance lattice. The
rank of A is the dimension of the real subspace containing it. Then for a rank
d resonance lattice A, we define

d
Ty =(Tk:keA} =T,
i=1
where {k1,...,kq} is any linear independent set in A. We call such 'y a d-reso-
nance submanifold (d-resonance for short), which is a co-dimension d subman-
ifold of R™, and in particular, an n-resonant submanifold is a single point. We
say that A is irreducible if it is not contained in any lattices of the same rank,
or equivalently, spangA N Z" ! = A.

We now consider the diffusion that occurs along a connected net I'" of
(n — 1)-resonances, which are curves in R™. The main difficulty in proving
Arnold diffusion is in crossing the maximal (n-)resonances, which are inter-
sections of I' with a transveral 1-resonance manifold I'y/. A similar question
is whether one can “switch” at the intersection of two resonant curves (see
Figure 1.1).

For an n-resonance {pp} = I'p, we assume that A is irreducible, and B =
[k1,...,k,] is a basis over Z. The averaging theory of H, near py reduces to
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DYNAMICS OF THE DOMINANT HAMILTONIAN 519

FiGcure 1.1. Diffusion path and essential resonances in n = 3.
The hollow dots requires crossing, while the gray dots requires
switching

the study of a particular slow system defined on T" x R™, denoted H; 5. More
precisely, in an O(+/¢)-neighborhood of pg, the system H. admits the normal
form (see [16], Appendix B)

po.8(@ ) +VeP(p,I,T), ¢eT" IeT" 1e e,

where

(pl=k,(9,t),1<z<n, (p_pO)/\Ezl_flll'i'"'EnITw

Therefore, H. is conjugate to a fast periodic perturbation to H; 5. Note that
our definition depend on the choice of basis B. A basis free definition requires
using a non-standard torus T"*! /w(py)R as the configuration space, and in this
paper we choose to avoid this setting and fix a basis. Such averaged systems
were studied in [24].

When n = 2, the slow system is a 2 degree of freedom mechanical system,
the structure of its (minimal) orbits is well understood. This fact underlies the
results on Arnold diffusion in two and half degrees of freedom (see [23], [24],
[25], [10], [16], [14], [17], [20], [21]). This is no longer the case when n > 2, which
is a serious obstacle to proving Arnold diffusion in higher degrees of freedom.
In [15] it is proposed that we can sidestep this difficulty by using dimension
reduction: using existence of normally hyperbolic invariant cylinders (NHICs)
to restrict the system to a lower dimensional manifold. This approach only
works when the slow system has a particular dominant structure, which is the
topic of this paper.

In order to make this idea specific it is convenient to define the slow system
for any py and any d-resonance d < n. For pg € R”, an irreducible rank d
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520 V. KALOSHIN & K. ZHANG

resonance lattice A, and its basis B = [k1, ..., kq], the slow system is
(1.2) p08(9: 1) = Kpo (1) = Uy s(9), ¢ €T TeT

Suppose the Fourier expansion of Hy is Yy cyms1 hi(p)e?™* (08 then

(1.3) Kpo,B( ) f’ HO( )(.[1];?1+"'+Id]_€d)'(]'1];‘1+-~-+fdkd),

2171’

(14) UPO,B(Sol? R Qod) = - 2 hllk1+“'ldkd (Po) e2ﬂi(llip1+m+ldcpd)'
lezd

The system H 5 is only dynamically meaningful when py € I'y. However, the
more general set up allows us to embed the meaningful slow systems into a nice
space.

In the sequel we fix a rank m < n lattice, called the strong lattice, and
its basis B = [k1,...,kn]. We say an irreducible lattice A > AS* of rank d is
dominated by At if
(1.5) M (A|A®Y) := mln |k| > max |&|,

EEA\Ast ke
where |k| = sup; |k;| is the sup-norm. Given the relation AS* = A, we extend
the basis [ki,...,kmn] of AS to a basis B = [k1,...,kq]| of A, such a basis is
called adapted. Naturally, as M (A|A%*) — oo, we have |k 1], ..., |ka| — o0 for
any adapted basis.

While we have fixed the basis B of A®, the system H,, g strongly depends
on the choice of the adapted basis. To get a meaningful result, we only consider
particular bases that we call k-ordered. Roughly speaking, given x > 1, a basis
[k1,..., k4] is k-ordered if k; is, up to a factor of order &, the vector of smallest
norm in the set A\spany{ki,...,ki—1}. The precise definition of this basis is
given in Section 2.2. We will show that there exists x depending only on B¢,
such that any A < AS* admits a k-ordered basis.

After an ordered basis is chosen, we have two systems H ;o,B“ and HS g,
which we call the strong system and slow system respectively. When the lattices
have a dominant structure (see (1.5)), the slow system H_ s inherits consid-
erable amount of information from the strong system. Indeed let us denote

Hp pse = Ks(Iy,..., I,) — U (o1, ..., 0m),
s =K., 10) = U(er,...,¢a),
under (1.5) and we will show that
(1.6) K*(Iy,...,In) = K(I1, ..., In,0,...,0), [U—U"|c2 «1,

which indicates H 5,5 can be approximated by an extension of H Bt The
variables ;, I;, 1 < i < m are called the strong variables, while ¢;, IZ, m+1<
1 < d are called the weak variables.
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DYNAMICS OF THE DOMINANT HAMILTONIAN 521

Recall that for each convex Hamiltonian H, we can associate a Lagrangian
L = Ly, and the Euler-Lagrange flow is conjugate to the Hamiltonian flow.
Denote by X7  and X7, the Euler-Lagrange vector fields associated to the
Hamiltonians H;O,Bst and H) 5. Since the system for Xlsfag is only defined for
the strong variables (p;,v;), 1 < i < m, we define a trivial extension of Xffag
by setting p; =v; =0, m+1<1i<d.

We show that after performing a coordinate change(® and rescaling trans-
formation in the weak variables, the transformed vector field X7, converges to
that of X3! in some sense. In particular, if X}, admits a normally hyperbolic
invariant cylinder (NHIC), so does Xﬁag. In a separate direction, we also obtain
a limit theorem on the weak KAM solutions by variational arguments. We now
formulate our main results in loose language, leaving the precise version for the
next section.

MAIN RESULT. — Assume that r > n+2(d —m) + 4. Given a fized lattice AS*
of rank m with a fized basis B, there exist k > 1 depending only on B, and
the following hold. FEach rank d,m < d < n irreducible lattice A > AS* admits
a k-ordered basis, under which we have:
1. (Geometrical) As M(A|A*) — oo, the projection of X7, to the strong
variables (p;,v;), 1 < i < m converges to Xf;g uniformly. Moreover,
by introducing a coordinate change and rescaling affecting only the weak
variables (pi,vi), m + 1 < i < d, the transformed vector field of X7,
converges to a trivial extension of the vector field of Xf';g. As a corol-
lary, we obtain that if X%, admits an NHIC, then so does X3, for
sufficiently large M (A|ASY).

2. (Variational) If, in addition, we have r > n + 4(d — m) + 4, then
as M (A|ASY) — oo, the weak KAM solution of H, 5 (of properly chosen
cohomology classes) converges uniformly to a trivial extension of a weak
KAM solution of Hy g, considered as functions on R?. We also obtain
corollaries concerning the limits of Mamne, Aubry sets, rotation vector of
minimal measure, and Peierl’s barrier function. The precise definitions
of these objects will be given later.

The statement that HSO,Bst approximates H;D’B is related to the classical
concept of partial averaging (see for example [5]). The statement minjep\ st |k| >
k| says that the resonances in A is much stronger than the rest of the
resonances in A. Partial averaging says that the weaker resonances contributes
to smaller terms in a normal form.

However, our treatment of the partial averaging theory is quite different from
the classical theory. By looking at the rescaling limit, we study the property

mMaXgepst

1. The coordinate change we perform is known in analytic mechanics as the Routhian
coordinates, which is an half-Lagrangian, half-Hamiltonian setting, see (2.8).
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522 V. KALOSHIN & K. ZHANG

of the averaging independent of the small parameter €. The theory is far from
a simple corollary of (1.6), with the main difficulty coming from the fact that
as M(A|A®) — oo, the quadratic part of the system Hj 5 becomes unbounded.

In [24], John Mather developed a theory of (partial) averaging for the nearly
integrable Lagrangian system, which is dual to our setting. Quantitative esti-
mates on the action of minimizing orbits of the original system versus the slow
system are obtained. Our variational result is related to [24], but different in
many ways. We work with the scaling limit system, and the small parameter
does not show up in our analysis. We also avoid quantitative estimates (in the
statement of the theorem) and obtain a limit theorem for weak KAM solutions.

The formulation of the limit theorem in weak KAM solution requires special
care. A natural candidate is Tonelli convergence (convergence of Lagrangian
within the Tonelli family, see [7]). In our setup, H; z.. and H, g are defined
on different spaces, we need to consider the trivial extension of H ;O,Bst to a
higher dimensional space. The extended Lagrangian is then degenerate and
obviously not Tonelli. Moreover, the standard C? norm of the Lagrangian be-
comes unbounded in the limit process. We nevertheless obtain the convergence
of weak KAM solutions.

While this paper is mainly motivated by Arnold diffusion, the paper is self-
contained and do not relate to the actual diffusion problem. We hope our
treatment of partial averaging and its variational aspects is of independent
interest.

The plan of the paper is as follows. The rigorous formulation of the results
will be presented in Section 2. The choice of a basis is handled in Section 3,
and the estimates of the vector fields, including the geometrical result is in
Section 4. The variational aspect is more involved, and occupies Sections 5 and
6, with some technical estimates deferred to Section 7 . In Appendix A we prove
Theorem 2.4 about existence of normally hyperbolic invariant cylinders stated
in Section 2.4.

An earlier draft of the current paper is available on arxiv ([18]), which also
includes a construction of the diffusion path such that the slow system at
all strong resonances are dominant. We separated this construction from the
current paper and it will appear in a future work.

2. Formulation of results

In order to state our results we establish an additional (filtrated) structure
of the ambient lattice A relative to the strong lattice AS':

A=A, cApiiC-CAg=A,

where each next lattice has rank by one exceeding the previous one, and asso-
ciate to it a decomposition of the potential U into a filtrated sum (2.2).
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2.1. The slow system and the choice of basis. — Recall that a slow system is

;0,8(()071) :KP(),B(I) 7UPO,B(S&)’ SOETd,IERd7

defined for a rank—d irreducible lattice A with ordered basis B = [kq, ..., kd],
and a point py € R™. Let us denote

(2.1) ZB(91, - 0aD) = ) Bk 4otgry (p)e™H 1o Haga),
lezd

where Hi(0,p,t) = > ycpar1 hi(p)e? (@ then (1.4) becomes

Upo,8(9) = —ZB(#,po)-

Let ASt, Bt be the strong lattice and basis, and consider an adapted basis B
of an irreducible lattice A > A5t of rank d. We define the filtration AS* = A,, <
Ami1 © - < Ay = A associated to B by A; = spany{k1,...,k;}, m <i < d.
Then each A; is irreducible of rank <.

Given k > 1, B is called k-ordered if:

1. Form+1<i< n, |k1‘ < FLM(AZ‘|A1‘_1).

2. Form+1<i<j<n, k| <k(l+ k).
The following proposition, proved in Section 3, ensures existence of ordered
bases.

PROPOSITION 2.1. — There is k = k(B%*,d) > 0 such that A admits a K-or-
dered basts.

We split the basis B into the strong and weak component, and introduce the
following notations

B = [ky, ... k] = K5, ..., K1),
B = [kmas1, .. ka] = [0S, ... k3% 1.

Denote also

= (1, 0m)s @ = (Omt1,---,Pa),

= (I,...,I,), I =(In.1,...,1a),
such naming convention will be kept for the whole paper.
Recall that a k-ordered basis B comes with a filtration A,, < --- < A4, with
B; = [k1,...,k;] being a basis of A;. Let us define, for m + 1 < i < d,
UPO,Bi—hBi (9015 SRR 902') = Upo,Bi - UPOyBi—13
As a result, we have

S —
(2 2) HpO,B = KPO,B - Upo,Bst - UPOaBmme+1 - UBd—lde
=t Kpo,8 = Upo i35t — Upg pev k-

Our first theorem gives estimates on Up, B, , 5, under a s-ordered basis.

i—1,
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524 V. KALOSHIN & K. ZHANG

THEOREM 2.2. — Let ASt, B% be the strong lattice and its basis, let m < d < n.
Suppose Hy is C™ with v > n + 2(d —m) + 4, and |Hi|cr = 1. Then there
exists k = K(B%,n) > 1 such that for each rank d irreducible lattice A > A",
there exists a k-ordered basis B such that for 1 <1i < d —m, we have

1V 8.y B o2 < (L[R2l mms,

In particular, ”U;;l,(Bst,BwkHCz — 0 as M(A|AS) — 0.

This theorem is proved in Section 3.

We will call any Hamiltonian that satisfy the conclusions of Theorem 2.2
a dominant Hamiltonian. In the next section, we define an abstract space of
dominant Hamiltonians.

2.2. An abstract space of dominant Hamiltonians. — Define
Qmd = (Zn T x R x C3(T™) x C*(T™F!) x -+ x C*(T?),
(B = [k, .. k], BY = [RYS, . kY, ) po, U UM = (U, UYS,))
and a mapping with
H® Q™% — C*(T x RY),
H (B, BY, po, US*, U™ ) = K, 5(I)

d—m
_USt(<p17"'v<pm) - Z UiWk(QOl?"'a(Pi-f-m)a
i=1

where B = [B**, B"¥] and K, 5 is defined by (1.3).

We equip 2™¢ with the product topology, with a discrete topology on k"%
and the standard norms on other components. The map H?® is smooth in pg,
Ust, Uy, ..., Uk . Let Q™%(B%) be the subset of Q™ with fixed Bt.

We define Q4 (B%) < Q™%(B*") to be the tuple (B™*, pg, US*,U" ) satisfy-
ing the following conditions:

1. Forany 1 <i < j <d—m, |k¥|

<k (1+ \k;"’k|)
2. Foreach 1 <i<d—m, |U|c2 <k

1 k),
Each element in H*(4) is called an (m,d)-dominant Hamiltonian with
constants (k, q). Define

—~ —

p(B™) = _min [k},

1<i<d—m

then in Q74(B*"), we have UM < ku(B"¥)79, i.c., the weak potential U™* :=
SEUNE - 0 as u(BYF) — .
We restate Theorem 2.2 using the new language:
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THEOREM (Theorem 2.2 restated). — Under the assumptions of Theorem 2.2,
there exists a constant k = k(B%,n) > 1, integer vectors BY* = [ky¥*, ... kY ]
with B, BYX forming an adapted basis, such that for ¢ = r—n—2(d—m)—4 > 0
we have

(BY, D, Upy 85t s (Upg B Brnsss - - - » Upo,Ba_y,B4)) € Ut (B™).
The strong Hamiltonian is defined by the mapping
H (ZMTH)™ x R™ x C%(T™) — C*(T™ x R™),
H (B, po, USY) = K, gt (I5) — U (™).
We extend the definition to Q™% by writing
H* (B, BYY, po, U™, U™™) = H*(B*, po, U™).

We will prove all our limit theorems in the space Q4 (B%).

2.3. The rescaling limit. — We fix B*,x > 1 and (B™*,p, U, U™*) € Q4(B*).
Denote
H® = H*(B*, BY, p, U, U™),  H* = H"(p,U™).
We write
H?(p, 1) = K(I) = U™ (¢™) = U™ (™, ™)

2.3
( ) Hst((pst’]-st) — Kst(Ist) _ USt((pSt) _ K(ISt,O) _ USt((pSt),

where U™ = Y9 U»k We will keep using this notation throughout the
paper.

As u(BY¥) — o, we have |[U"%|c2 — 0. However, K (I, I¥¥) is not a
small perturbation of K (I°t,0), in fact, as u(B"%) — oo, K (I, I"*) becomes
unbounded (see (2.5) below).

Let Qo(p) = 02,Ho(p) and Q(p) be the (n+1) x (n+1) matrix [%0 8], then

K(I) = Qpo)(kily + -+ - + kqlg) - (kiIy + -+ - + kqlq).
We write

A B

e K| e

:| 5 A:a?st[stK7B:a?sthkKyc:a%wk[ka’
then

(25)  (A)yy = (KTQE, (B)ij = (k)TQKT™, (C)ij = (k)T QK™ .
Note in particular that A = 0%, ;.. H*". The Hamiltonian equation for H*® reads

O = ATt + BIVE, It = 0,0,
¢k = BT + CT", 1'% = 4,0,
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526 V. KALOSHIN & K. ZHANG
where U = Us* 4 U"X. Then the Euler-Lagrangian vector field XTog 18

st __ st st
(2.6) {gp =5t 0% = A0t U + BOywmiU,

PVE = Wk 0"k = BT 0, U + C0ywieU,
which will be compared to the Euler-Lagrange vector field of H*
(2.7) P =%, % = A0, U,

denoted Xst. To show that the projection of (2.6) converges to (2.7), we only
need to show |Bo,wU| — 0.

For convergence of weak variables, we will need a rescaling. It turns out that
it is better to rescale the I'™¥ variable. Introduce the coordinate change
(2.8)

o - ((pSt,’USt,(ka,IWk) N (sOSt,’USt,QOWk,’UWk), ,ka _ BTA—I,Ust _ éIWk,

where C' = C — BT A~ B which is symmetric and invertible.

This is a “half Lagrangian” setting in the sense that (¢*,v%") is remain
the Lagrangian setup, while (¢™*, I"¥) is in the Hamiltonian format. This is
known in analytic mechanics as the Routhian coordinates. Since the coordinate
change is identity in ¢, V¥ let us compute the Jacobi matrix in the other two
variables:

oo [ 1 0] 0wt I™) [ Id 0
5(Ust,[wk> T |BTA | a(vst,vwk) | _61BTA-1 61|
Thus, it is a diffeomorphism and the transformed vector field is
XS — (¢_1)*Xiag — (D¢)—1Xiag o®d
[ 1d
Id

1d
(2.9) ] _O-1BTA-1 (-1

,Ust
Aay,ch + B&wwkU BT A—1yst — OV BT&Pch + CaipwkU]

USt
" | A0, U + BoywU BTA 0% — CTV% 0w U]
where the last line uses
— C7'BTA™ (A0,4U + BdywU) + C7 (BT 0yt U + COpuiU)
=C' (-BTA™'Bo,wU + Co,mU) = 0,mU

by definition of C. We denote by X®(¢, v, 0¥k I"K) the vector field of
(@ 1)+ X{,,, lifted to the universal cover R™ x R™ x R4™™ x R4~
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Consider the trivial lift of the strong Lagrangian vector field X¢, defined on
the universal cover

(2.10)

5 = v, P = AdyuU,
ngk =0, Jvk — 0,

whose vector field we denote by X5¢(¢t, vt Wk I'"K). We show that X3¢ is a
rescaling limit of X°.

Given1 201 > -+ = 04— > 0, let & = diag{o1,...,04-m}. We define a
rescaling coordinate change ®y, : R?? — R2? by
(211) (I)Z . (stt’vst7 (pwk71—wk) s (gDSt,’USt, E_l(ka, EIWk).

The rescaled vector field for X* is
X* = (951 X° = (D®s) ' X 0 &y,

2.12 -~
( ) XS((pSt,USt,gOWk,IWk) _ (D(I)Z)_IXS((pSt,USt,E_IQOWk,ZIWk),

while X5* is unchanged under the rescaling.

THEOREM 2.3. — Fiz B and k > 1. Assume that ¢ > 2. Then there exists
a constant M = M(B*,D, k,q,d — m) > 1, such that for (B¥¥,p, Ust,U"¥) €
med(lgst)} HS = HS(BSt,BWk,p, Ust’uwk) and HSt = HSt(BSt,p, Ust)’ the fOl-
lowing hold.

For the rescaling parameter o; = |k;"k|’%, uniformly on R™ x R&™™ x
R™ x R¥™ we have

HHWMWM)(XS — X5 g0 < MM(Bwk)f(q,I)’

q—2

IDX* = DX3lco < M p(BY) =5

In particular, Theorem 2.3 implies that as u(B"¥) — o0, the vector field Xs
converges to X5 in the C! topology over compact sets. For applications, our
version is more flexible as it is uniform over the whole space. Theorem 2.3 is
proved in Section 4.1.

2.4. Persistence of normally hyperbolic invariant cylinders. — Our main appli-
cation for Theorem 2.3 is to prove persistence of normally hyperbolic invariant
cylinders (NHICs).

Let W be a manifold. For R > 0, let Bg < R! denote the ball of radius
R at the origin. A 2l-cylinder Ag is defined by Al := x(T' x BL), where
x T x B}i — W is an embedding.

Let ¢; be a C? flow on W, and Ar — W be a cylinder for some R > 0.
We say that AL, is normally hyperbolic (weakly) invariant cylinder (NHWIC)
if there exists ¢y > 0 such that the following hold.

e The vector field of ¢, is tangent to AL, at every z € Ag.
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e For each z € AL, there exists a splitting
T.M = E°(2) ® E°(z) ® E*(z), where E°(z) =T, A,
weakly invariant in the sense that
D¢y, (2)E° (2) = E°(¢p1,2), ifz, ¢roz€ A and o =c¢,s,u.

e There exist 0 < o < 7! < 1 and a C' Riemannian metric g, called an
adapted metric, on a neighborhood of AlR such that whenever z, ¢z €
AL, 1

Doy (2)|E*[, (D (2)|E*) || < e,

[(Dro ()| E) 7, Db ()| B[ < B,
where the norms are taken with respect to the metric g (see e.g., [13]).

The cylinder is called normally hyperbolic (fully) invariant (NHIC) if it sat-
isfies the above conditions, and both A% and JAl; are invariant under ¢;,. A
more common definition of normally hyperbolic (fully) invariant cylinders as-
sumes a spectral radius condition, but our definition is equivalent, see e.g., [9]
Prop.5.2.2.
Moreover:
e If the parameters «, 3 satisfies the bunching condition o < 32, then the
bundles E*, E* are C! smooth.
e When E° E" are smooth, we can always choose the adapted metric g
such that E°, E* and E° are orthogonal.

Recall that Xi’;g, X7 ag denotes the Lagrangian vector fields. Suppose Xffag
admits a normally hyperbolic (fully) invariant cylinder A%, we claim that X7 ag

admits a normally hyperbolic weakly invariant cylinder diffeomorphic to AS* x
(']I‘d—m % Rd—m).

THEOREM 2.4. — Consider a strong lattice B%*, a strong potential Us® € C%(T™),
k > 0,a > 0, and ¢ > 2. Assume that for some 1 <1 < m — 1, the Euler-
Lagrange vector field X3\, of H** = H**(B*,po,U™") admits a 2l-dimensional
NHIC A, , = x*Y(T' x B}, ,), given by the embedding T' x B}, — T™ x R™,
with the parameters 0 < a < 3% < 1.

Then there exists an open set V > A5 such that for any § > 0, there exists
M > 0, such that for any (B, BYX,po, USt) € erfd(BSt) with p(BY%) > M,
H?® = H* (B, BY%, po, USt,UYX), the following hold.

There exists a C' embedding
ns _ (nSt777Wk) . (Tl % Bl) > (Td—m % Rd—m) _ (Tm % Bm) % (Td—m % Rd—m)7

such that A* = n*((T! x BY) x (T9™ x R¥™)) is a 2(1 + d — m)-dimensional
NHWIC under Xi,,. Moreover,

Hnst(zst7zwk) _ Xst(zst)H < 5’ VSt e Tl % Bl, sz c Td—m > Rd—m’
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and any X7, -invariant set contained in V x (T4=™ x R4=™) is contained in A°.

The assumption o < 32 is not necessary, and is assumed for simplicity of
the proof. Nevertheless, the assumption is satisfied in our intended application
and in most perturbative settings. The proof is presented in Appendix A.

2.5. The variational aspect of dominant Hamiltonians. — We will develop a
similar perturbation theory for the weak KAM solutions of the dominant Hamil-
tonian. The weak KAM solution is closely related to some important invariant
sets of the Hamiltonian system, known as the Mather, Aubry and Mane sets.

Preliminaries in weak KAM solutions. In this section we give only enough con-
cepts to formulate our theorem. A more detailed exposition will be given in
Section 5.1. Let

H:TxR* >R
be a C® Hamiltonian satisfying the condition D~'Id < 0%, H(p,I) < D1d. The
associated Lagrangian L : T¢ x R — R is given by

Ly(p,v) = sup{l-v— H(p,I)}.
IeR™

Let ce R? ~ H'(T? R), we define Mather’s alpha function to be
ag(c) = —inf {J(LH —c- v)d,u} ,
w

where the infimum is taken over all Borel probability measures on T? x R that
is invariant under the Euler-Lagrange flow of Ly.

A continuous function u : T? — R is called a (backward) weak KAM solution
to Ly — ¢ - v if for any t > 0, we have

we)= oot () [ Eal50) - e 50 + an(e)dr)

where 7 : [0,t] — T¢ is absolutely continuous. Weak KAM solutions exist and
are Lipschitz (see [12], [7]).

The relation between cohomologies. We now turn to the weak KAM solutions
of dominant Hamiltonians. Given

(BWk,p, USt,uWk) c Qm,d(Bst)’

we write as before H® = H*(Bt, BYK, p, USt, U"X), H* = H3* (B, p,U") and
recall the notations (2.3).
Denote L® = Lys and L5 = Ly, we have

LS(QDSt,SOWk, ’USt,’UWk) _ K(’USt,’UWk) + USt(QDSt) + UWk(QDSt, sOwk)7
LSt(gOSt vst) — KSt(USt) + USt(gDSt)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



530 V. KALOSHIN & K. ZHANG

where K, K® are quadratic functions with (02,K) = (0?,K)~! and (0%, ,. K*) =
(0%, K)~! as matrices.

Given ¢ = (c*,c"%) € R™ x R¥™™ = R? we show that the weak KAM
solution of L® — c- v is related to the weak KAM solution of LS — &- v°*, where
C is defined as

¢=c"t+ A7 Bevk,
A B
BT C
uniquely satisfies

with 0%, K = [ ] as in (2.5). To understand this definition, note that

01 K5(€) = 0t K (™, c™%).

If we view ¢, ¢ as the momentum variable, then their corresponding velocities
have the same strong component.

Semi-continuity of weak KAM solutions. We now state our main variational
results. For v € N, we consider a sequence of dominant Hamiltonians with
u(BYX) — o0, and cohomology classes c, such that the corresponding €, con-
verge. Then the weak KAM solutions has a converging subsequence, and the
limit point is the weak KAM solution of the strong Hamiltonian. This is some-
times referred to as upper semi-continuity.

Fix B*® and x > 1. For v € N, consider

(BY 0o U US™) € QUABY), e = (Eh,c%) e R™ x BT,
write
H) :HS(BSt’BSkvpvastauyk)a L;, :LHga
and let u, be a weak KAM solution of L — ¢, - v.
Denote B, = [B**,B¥¥], K, = K,, 5,, and

2 2 2
AV = aIstIstKy, By = a]stlkaU7CV = a[wklkau-

THEOREM 2.5. — Given pg € R", Ut € C?(T™) and ¢ € R™, assume as
v — 00!

o u(By¥) — 0, p, — po, Ut — Ugt.

o &'+ AJIB, Yk - ¢E.
Then:

1. The sequence {u,} is equi-continuous. In particular, the sequence
{u,(-) — u,(0)} is pre-compact in the C° topology.

2. Let u be any accumulation point of the sequence u,(-) — u,(0). Then
there exists us® : T™ — R such that u(¢, p"%) = ust(p™), i.e, u is
independent of @%k.

3. u® is a weak KAM solution of

= st
LHst(BstwpoyUgt) —C-vU .
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The proof of Theorem 2.5 occupies Sections 4 and 5, with some technical
statements deferred to Section 7.

REMARK. — Theorem 2.2 implies that under an ordered basis, we can express
a slow system as a dominant system with parameters k,q, where ¢ = r —n —
2(d — m) — 4. For Theorem 2.3 we need q > 2, and for Theorem 2.5 we need
q > 2(d — m). Notice that to apply our theorems to the slow system, we need
q > 2(d—m) (or, equiv., r > n+4(d—m)+4) and as stated in our main result.
The additional requirement for Theorem 2.5 is due to the higher requirement
of Proposition 5.3 (see also (7.16)).

Using the point of view in [7], the semi-continuity of the weak KAM solution
is closely related to the semi-continuity of the Aubry and Maife sets. These
properties have important applications to Arnold diffusion. In Section 6 we
develop an analog of these results for the dominant Hamiltonians.

3. The choice of a basis and averaging

In this section we prove Proposition 2.1 and Theorem 2.2.

3.1. The choice of a basis. — Recall that we have a fixed irreducible lattice
Ast = Z+ of rank m < n, and a fixed basis B = {kq,...,k,} for Ast.
For At < A irreducible of rank d, we first construct a filtration ASt = A,,, <
- < Ay = A, with each A; containing the vector with the smallest norm
in A\NAj_1,m+1<i<n.
Explicitly, we define [; = k; for 1 < ¢ < m, and [; with ¢ > m inductively
using the following procedure. Suppose l1,...,[; are defined, let

A; =spang{ly,...,l;} n A, M;11 =min{|k|: k€ A\A;}.

We define [; 1 to be a vector reaching the minimum in the definition of M;1,
i.e|liz1] = Miy1. Then Ay 1 = spang(A; Ul 1) N A. This provides the filtration
as needed.

We have

|ll|=Ml,m<z<d, \lj|<|lz\,m<]<z<d,

but Iy, ...,l; may not form a basis. We turn them into a basis using the fol-
lowing exzplicit procedure (see [28]).
For each i = 1,...,d, define

(31) C; = min{si : Si’lll-i-' : '+3i,i71l1‘71+31‘li €A, s; € RJr, Si,j € R+U{0}}
We define ¢; ;1 using a similar minimization given the value ¢;:
Ciim1 =min{s; ;1 : si1li 4+ sii—1lio1 + cily, sij € RY U {0}}.
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We now define ¢; ; for 1 < j < 4 — 2 inductively as j decreases. Assume that
Cij,---,Cii—1 are all defined, then

Cij—1 = min{s; j_1 :
Sialy + -+ s 5-1lim1 Feigli+ -+ cimilion el € A,
Sidy---ySij—1 € RY U{0}}.
Finally,
ki=ciili+ -+ cii—ilio1 +cl;.
We have the following lemma from the geometry of numbers.

LEMMA 3.1 (see [28]). — Let A = Z"*! be a lattice of rank d < n and let
l1,...,lq be any linearly independent set in A. Let
ki=cialh +- +ciiilicn +eili, i< d.

be defined using the procedure above. Then

1. For each 1 < i < d, ki,...,k; form a basis of spang{ly,...,l;} n A

over Z. In particular, k1,...,kq form a basis of A.
2. Forl<i<dandl <j<i—1, we have
O<Ci7j<1, O0<c <1.

3. If for some m such that 1 < m < d, ly,...,l, already form a basis of
spang{li,...,lm} N A over Z, then kv =11,...,kn = lpn.

Proof. — For the proof of item 1, we refer to [28], Theorem 18. Item 2 and 3
follow from definition and item 1 as we explain below.

For item 2, note that for any k; = ¢; 101 + -+ + ¢ii—1li—1 + ¢;l; € A, we can
always subtract an integer from any c; ; or ¢; and remain in A. If the estimates
do not hold, we can get a contradiction by reducing c; ; or c;.

For item 3, if Iy,...,l,, is a basis (over Z) of spang{ly,...,lm} N A, then all
coefficients of k; = ¢; 101 + - -+ ¢;,i—1l;—1 + ¢;l; € A for i < m must be integers.
Then the constraints of item 2 implies ¢; ; = 0 and ¢; = 1, namely k; =1;. 0O

Proof of Proposition 2.1. — We choose the basis ki,...,k; as described.
Lemma 3.1 implies k; = [; for 1 < i < m. Using

0<c¢y1 <1, 0<e¢q1,; <1,
we get
|k

Since M., 11

[l + -+ L] < k| + o+ k] + Mipga 4+ + M.
< Mg, and M = |ky| + - + |km|, we get
kil <M + (i —m)M; < M + (d —m)M,.
Moreover, for i < j, we have
kil <M+ (d—m)M; < M + (d—m)M; < M + (d —m)|k;|.

<
<
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The proposition follows by taking x = M + (d —m). |

3.2. Estimating the weak potential. — In this section we prove Theorem 2.2.
Assume that H; € C"(T" x R™® x T) with r > n + 2d — 2m + 4. Let the basis
k1,...,kq be chosen as in Proposition 2.1. Recall that

[ 9 pa Z hk 27”k )7
keA

then we have

(ZBi - ZBi—l)(k]- : (97t)7 ooy kg (e,t),p) = ([Hl]Ai - [Hl]Ai—l)(e’p7 t)v

and the norm of [Hy]a, — [Hi]a
of the Fourier series.

,_, can be estimated using standard estimates

LeEMMA 3.2 (c.f. [8], Lemma 2.1, item 3). — Let
9 p’ 2 h 27rzk 0,t)
kezn+1

satisfy |Hi|or = 1, with r = n + 4. There exists a constant C,, depending only
on n, such that for any subset A < Z" ™! with min, 3 |k| = M > 0, we have

H Z s <p)627rik'(0,t) ch < C"M—r+n+4_
keA

Since mingep,\a,_, |k| = M;, we apply Lemma 3.2 to A;\A;_1 to get

(3:2) |[H1]a; — [Hila, oz < CuMmime8,

To estimate Zg, — Zp, ,, we apply a linear coordinate change. Given k1, ..., k;,
we choose lAciH, R lAan € Z™*1 to be coordinate vectors (unit integer vectors)
so that

Pii=ky - ks Eipq - ifnﬂ]
is invertible. We extend (Zp, — Zn,_,)(¢1,...,¢i) trivially to a function of
(¢15-+,Pn+1), then

(25, - 25.) (P [}]) = (W, = a0,

and as a result Zg, — Zp,_, = ([Hi]a, — [H1]a,_,) o (PF)~L. Using the Faa-di
Bruno formula, we have

125, = Zs, s |c2 < cal (PT) TP [[Hla, — [Hilai s o2

for some ¢, > 1 depending on n. We apply the following lemma in linear
algebra:
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LEMMA 3.3. — Given 1 <s<n+1,let P= [kl ks] be an integer matriz
with linearly independent columns. Then there exists ¢, > 1 depending only
on n such that

min |Pv| = min (v vIPTPu) = |(PTP) % = ¢ k|71 [k
1 1

In particular, if s = n + 1, then |[P71| = [(PT)7Y| < cplky] - |kns1-

Proof. — We only estimate |(PTP)7!|. Let a;; = (PTP);; and b;; = (PTP); ;!
then using Cramer’s rule and the deﬁmtlon of the cofactor, we have

|ZJ| dtPTP ZHGSU( )s

o s#i

ij

where o ranges over all one-to-one mappings from {1,...,m}\{i} to {1,...,m}\{j}.
Since P is a nonsingular integer matrix, we have det(PTP) > 1. Moreover,
ai; = kI'kj < n|k;||k;|. Therefore,
13| < 2] [1Eslkos)| < en ([ T1RD (] ] IKsD,
o s#i S#1 s#7J
where ¢, is a constant depending only on n. Using the fact that the norm of

a matrix is bounded by its largest entry, up to a factor depending only on
dimension, by changing to a different c,,, we have

I(PP)~"1 < cosup |Bus| < cosup ([ [ el ([ ul) < en(] [ 1)
s=1

0, 4,3 s#£4 s#j
Its=n+1, then [P~1] = [(PTP)}} = |[(PPT) 1} = |(PT)"}]. O
Proof of Theorem 2.2. — Using Lemma 3.3, there exists a constant ¢, > 0

depending only on n such that
1P = 1P < ealkal - [Kallkiral - knsal-

We have |k1|, ..., |km| < M, |kiy1] = -+ = |kns1] = 1, and from Lemma 3.1,
[Ema1ly -y K | XxM;. Therefore,

[P = (P 7H < endd™x ™ M;™™
Combine with (3.2), we get for xk = x(n, M, x),
||ZBl . ZBi,l HC2 < K:M;T+n+4+2(ifm)

— 4+2(d— _ _
< K)Mi r+n+4+2(d—m) < Ii|kz| r+n+2d 2m+4' 0

4. Strong and slow systems of dominant Hamiltonians

In this section we study the relation between Hamiltonians and the corre-
sponding Lagrangians for dominant systems. We start by comparing the Hami-
tonian vector fields and then compare their Lagrangians.
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4.1. Vector fields of dominant Hamiltonians. — In this section we expand on
Section 2.3 and prove Theorem 2.3. Fix B,k > 1 and let (BYX,p, Ust, ") e
Qrd(B**), we define H**, H* as before (see (2.3)). Recall from (2.4) that

(A)ij = (BTQES,  (B)ij = (BT QEYS,  (C)ij = (B)™)" Q™.

The vector field X * (%, v5t, ¥k I'K) | defined on the universal cover R™ x
R™ x R¥™ x R¥™ is obtained from the Euler-Lagrange vector field via the
non-degenerate coordinate change CI%* = BT A=y — ¢™k (see (2.8)). The
vector field X58(p5t, vt oWk, I"K) is defined as a trivial extension of the Euler-

Lagrange vector field of H®¢, also defined on the universal cover. More explicitly
(see (2.9), (2.10))

,Ust ,Ust
s | AlpstU + BO,wU st | AOpst US*
(41) X° = BT A 148t — C«Iwk ) XL - 0
O U 0
Given1 > 01 = -+ = 04-m > 0, let ¥ = diag{o1,...,04-m}. The rescaling

is @y : R — R24  given by (2.11).
We denote by X*(pt, vt oWk, I'"K) the rescaled X*. Using (4.1), we have
(4.2)
0
(A0 U™  + B0 junc UWk)~(cpSt, r1lpvk)
LBT A1yt — 2CBIVE
E_l(lpwkUWk(goSt, E_IQDWk)

noting that Us* is independent of ¢™¥, so OpwiU = OpwmicU Wk Furthermore,

X — X5t = (O5) X 0dy — X5 =

(4.3) D(X®— X3 = (®g) 'DX® 0 ®y — X5 =

0 0 0 0
2 wk 2 wk 2 wk 2 wky1—1
AR UM + B3, WU 0 A% U + B, WU 0
0 YBTA? 0 -%C%
E—la?gt Wkka 0 Z—laZWk Wkkaz:—l 0
Pty pvkp

The quantities in (4.2) and (4.3) are estimated as follows.

LEMMA 4.1. — Fiz B,k > 1. Assume q > 2. Then there exists a constant
1
M, = Mi(B*,D,k,q,d — m) such that for the parameters o; = |k?k|_%,
uniformly over R™ x R™ x RY™™ x R=™  the following hold.
1. Foranyl<i<mandl <j<d—m, H%kaWkHco, \\&i§t¢kaWk\\oo <
My |k5*|~9 for any 1 <i,j < d—m, Haiykcp U] o

< M, sup{|k}¥| 79, |k;Vk|_‘1}.

w

J
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2. A0 U™ co < My sup{|k}™*| 7}, [[A02. 0 U™ co < My sup,{[ky*|74}.
| Bopwi U™ | co < My sup{[k™ |~ @1}, | BOZ s Ulloo

< My sup,{[k{*[~(7D)}

| B2y US oo < My sup{[k{™*|~ 75 }.

[27102 sy UZ o < My sup, {|k<| 5" }.

|ZBT A co < My sup, {|k¥¥|~ %5 }.

2q—4}

ISCSfco < My sup, {[ky*|~
We first prove Theorem 2.3 using our lemma.

w

29—4
3

N o e

Proof of Theorem 2.3. — Noting that H(ipst’vst)()zs — X3%) is the first and
second line of (4.2), using item 2 and 3 of Lemma 4.1 we get

[T (et ey (X* = X3 < M sup{ [k}~ D} < 2Mu(B™) @Y,
J

where M; isfrom Lemma 4.1.
Since D(X*® — X3*) is bounded, up to a universal constant, the sum of the
norms of all the non-zero blocks in (4.3), using Lemma 4.1 items 4-8, we get

|DX® — DX3| < Msup{[k}¥|~*5" } < 2Mypu(B")~"5". O
J

The rest of the section is dedicated to proving Lemma 4.1.
Proof of Lemma 4.1. — Denote M = |k§t| + - + |kSt|, which depends only
on Bst.

Item 1. — We have

d—m
0T co < 3 [0, Ui oo < 312, o
=1

=i

<k SRR < (d - m)sT R

=2

where the second inequality is due to U;** depending only on (¢V%, ..., ol'k),
and the last two inequalities uses the definition of Q;’f;ld, see Section 2.2. By the
same reasoning, we have

162 i U™ < DU s < (d = m)s?t k™7,
J =
\Iaiyk¢;kaWk\| < D U er < (d = m)stt sup{ [k, k9
I=sup{i,j}

the second and third estimate follows.
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Item 2. — We have

(A0 U )| = | D (k)T QK 0,5 U < mMP| Q0,2 U |
l

m(d —m)M?| Q&+ k|1,
where the last line is due to item 1. Similarly,
(A02u e UY)ij < MP|QU0gst et Ul < (d —m) M2 Q[+ K| .

Since the vector or matrix norm is bounded by the supremum of all matrix
entries, up to a constant depending only on dimension, item 2 follows. In the
sequel, we apply the same reasoning and only estimate the supremum of ma-
trix/vector entries.

Item 3. — Similar to item 2,

|(BOgwiU)s| = | ) (ki) T QE™ 0, U] < (d — m) M |Q[k}™[ |0, U™
l

< (d = m)M|Q|(d — m)s? ™ |k ~(@= Y,
while
(Bt U™ )is| = |(k5)T QR 0% s U™ < (d = m)s®* MQ| k™| =10~V
Item 4. — We have
(B2 i US ™3] = |Z(kft )T QK02 WkUa*1|

< MIQI Y 1Koy 105w U

=5
< M“QH(CI — m)2f{'q+2‘k;‘/k||k;vk|_q|k-\;vk|‘13i
— JQI(d — m)wt iy

where the inequality of the second line uses |k} | < x|k}'™|, item 1 and the
choice of o;.

Item 5. — Using item 1 and choice of 0;, we have
|(Zila?pwk¢wkUWk27 )U| = |U_1‘92wk wkUWk _1‘
< (d- m)n‘”la o; ! sup{|kMe| ¢ |ka\ a3
< (d = m)sT sup{ kYT [kH )
Item 6. — We have
(BBT)y;| = los(k™)T QK| < M| Q| Sgp{\kfkloj} = M|Q| Sl;p{lkfklf%}

and uses |[SBTA-Y| < |SBT|||A~!|, noting that | A~!| depends only on @
and Bt
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Item 7. — Recall C = C — BT A~1B. We have
(ZCE)ij| = los (k™) T QK 0| < (sup o[k} )| Q| < [ Q| sup{|k}™|
j J

2q

=)

Suppose S1, .52 are positive definite symmetric matrices with S; > Ss, for any
veRI™,

vTSv = UT(Sl — Sy + So)v = vl Sy,

we obtain | S;| = ||S2|. Since C —BTA1B > 0, we have XCX —~XBTA™1BY >
0. Apply the observation to the matrices XCY. and X BT A~ BY we get

|2CE| = |=(C - BTA'B)S| < |2C%| + |[EBTA™!BY|| < 2|=C%.
Item 7 follows the previously obtained bound of [ECX| . O
4.2. The slow Lagrangian. — In this section, we derive the form of the slow
Lagrangian in preparation for the variational part. We fix B*,x > 1 and

(BY*,p, U, U™ ) € Q4 (B). Recall the notations of H**, H* from (2.3).
We have

Do) = K(0) + U%H(™) + U™(e ™), L™ o) = R(0) + U™ (),
where 02, K = (02, K)71, 02, Kt = (0% ,..K)~!. Recall the notation

vst

a%IK == [;T g] 9 A = a%stlscK,B == a?stlka,C == a?wkIka.
LEMMA 4.2. — With the above notations we have

1.
L* (v, ) = L (o™, 0™)
(4.4) Lo wk T g—1, sty . A—1(,wk T g1, st wk( st wk
+§(v — BYATWY) - O (0 = BT AT ) + UV (9, ™),
where
C=Cc-BT"A'B.
2. Let c = (c,c%%) e R™ x RI™™. We denote®®

(4.5) c=ct+ A7IBeE, wvk = oWk — BT A1,
then
LS(U,QO) —c-v = LSt(gOSt,’USt) _ E-USt
1 ~ ~ ~
(46) + 5(,wwk _ chk) . Cfl(wwk _ chk)
1 ~
o §cwk . chk + UWk(SOWk,(ﬂSt)~

2. We stress here that no coordinate change is performed: w%k

for vWk — BT A—1yst,

is simply an abbreviation
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Proof. — We have the following identity in the block matrix inverse, which
can be verified by a direct computation.

—1
A B A0 —A-1B] ~_ _
[BTC] —[0 0]+[ Id ]Cl[—BTAlld].

peoren ([ 47 e 3

1 ~
§U5t . A_l’USt + 5(,ka _ BTA_IUSt) . C_l('l)Wk _ BTA_IUSt)

. 1 ~
_ KSt('USt) + 5(,ka o BTA_let) . C_l(UWk _ BTA—lvst)7

and (4.4) follows.
Moreover,

K(,Ust) o (CSt, ka) . (’USt,’UWk)

. 1 ~
_ Kst(,ust) _ (Cst + A—chWk) . ,Ust + 5,wwk . C—lwwk _ CWk . ,ka + A—chwk . ,Ust
— KSt(USt) _ E'USt +

wwk . C—lwwk _ CWk . (,ka _ BTA—I,Ust)

_ KSt(’USt) — -t + wwk . é—lwwk _ (éCWk) . C—lwwk

N R N~ DN

~ ~ ~ ~ 1 ~
_ Kst(,vst> —c- vt 4 (ka — chk) . Cil(’ka — CCWk) — ECWk -Cevk,

We obtain (4.6). O

The Euler-Lagrange flow of L® satisfies the following estimates expressed in
notations of Section 2.3.

LEMMA 4.3. — Fiz B%,k > 1. Assume that ¢ > 1, L* = Lys(gst gwi p yst ywky,

with (BY, p, Us*,U™*) € Q4 (B**). Let v = (v*,7"%) : [0,T] — T satisfy the
Euler-Lagrange equation of L*.

1. There exists a constant My = M1 (B, Q, s, q) such that
[ — A2 U (1) o < My (u(B¥*)) (0~
2. There exists a constant My = Ma(B*, Q, k, q, ||[US||) such that
5% o < Mo.
Proof. — We note that for L®, we have
A% = AU + By U = A0, U + (A8t U™ + B, U™X)
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using that U®! is independent of ¢¥¥. We now use item 2, 3 of Lemma 4.1, to
get item 1.

Since |A0y=U*|| < |A[|U®*|, and ||A| depends only on B* and Q, item 2
follows directly from item 1. O

5. Weak KAM solutions of dominant Hamiltonians and convergence

In this section, we provide some basic information about the weak KAM
solution of the dominant system.

In Section 5.1, we give an overview on the relevant weak KAM theory. Recall
that in Section 4.2, we derive the relation between the slow Lagrangian and the
strong Lagrangian. In Section 5.2, we obtain a compactness result for the strong
component of a minimizing curve. In Sections 5.3-5.5, we prove Theorem 2.5
with some technical statements deferred to Section 7.

5.1. Weak KAM solutions of Tonelli Lagrangian. — For an extensive exposi-
tion of the topic, we refer to [12].
Tonelli Lagrangian. — The Lagrangian function L = L(¢p,v) : T¢ x R? — R is
called Tonelli if it satisfies the following conditions:

1. (smoothness) L is C" with r > 2;

2. (fiber convexity) 02, L is strictly positive definite;
3. (superlinearity) lim,|_o |L(z,v)|/|v] = oo.

The Lagrangians considered in this paper are Tonelli.

Minimizers. — An absolutely continuous curve v : [a,b] — T? is called mini-
mizing for the Tonelli Lagrangian L if

b b .
f L(v,wdt:mgnf L(e, é)dt,

a a

where the minimization is over all absolutely continuous curves ¢ : [a, b] — T¢
with b > a, such that £(a) = v(a), £(b) = v(b). The functional

b
A(y) = J L(y,5)dt

a

is called the action functional. The curve ~ is called an extremal if it is a
critical point of the action functional. A minimizer is extremal, and it satisfies

the Euler-Lagrange equation
d . .
5 G L1, 7)) = 9o L(7,7)-
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Tonelli Theorem and a priori compactness. — By the Tonelli Theorem (cf.
[12], Corollary 3.3.1), for any [a,b] = R with b > a, p,9 € T?, there always
exists a C” minimizer. Moreover, there exists D > 0 depending only on a lower
bound of b — a such that |¥|| < D ([12] Corollary 4.3.2). This property is called
the a priori compactness.

The alpha function and minimal measures. — A measure p on T¢ x R? is

called a closed measure (see [29], Remark 4.40) if for all f € C1(T?),

fdf(w) -vdu(p,v) = 0.

This notion is equivalent to the more well known notion of holonomic measure
defined by Maie ([19]).
For ce H*(T%,R) ~ R%, the alpha function

afe) = ~inf j (L) — ¢ v)du(p,v),

where the minimization is over all closed Borel probability measures. When
L = Ly we also use the notation ag(c). A measure y is called a c-minimizing
if it reaches the infimum above. A minimizing measure always exists, and is
invariant under the Euler-Lagrange flow (c.f [19, 6]). Hence this definition of
the alpha function is equivalent to the one given in Section 2.5, where the
minimization is over invariant probability measures.

Rotation vector and the beta function. — The rotation vector p of a closed
measure 4 is defined by the relation

J(c -v)dp(p,v) =c-p, for all ce H' (T4 R).
For h € H;(T¢,R) ~ R%, the beta function is
pul) = int [ Lig)dxie.v).

p(x)=h

When L = Ly we use the notation S (h). The alpha function and beta function
are Legendre duals:

Br(h) = sup{c-h —ar(c)}.

ceR4

The Legendre-Fenchel transform. — Define the Legendre-Fenchel transform
associated to the beta function

LFsz: Hy (T?,R) — the collection of nonempty,

(5-1) compact convex subsets of H'(T? R),

defined by
LFs(h) ={ce HY(T™,R): Br(h) + ar(c) = c- h}.
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Domination and calibration. — For a € R, a function v : T* — R is dominated
by L + « if for all [a,b] = R and piecewise C* curves v : [0,T] — T¢, we have

b
u(y(b)) — u(r(a)) < f L, 4)dt + a(b— a).

a

A piecewise C! curve v : I — R defined on an interval I = R is called
(u, L, a)-calibrated if for any [a,b] < I,

b
u(y(b)) — u(y(a) = f L(,4)dt + a(b — a).

Weak KAM solutions. — A function u : T¢ — R is called a weak KAM solution
of L if there exists o € R such that the following hold:

1. w is dominated by L + «;
2. for all p € T, there exists a (u, L, a)-calibrated curve v : (—o0,0] — T¢
with v(0) = .

This definition of the weak KAM solution is equivalent to the one given in
Section 2.5 (see [12], Proposition 4.4.8), and the constant o = ar(0), where
ay, is the alpha function.

Peierls’ barrier. — For T > 0, we define the function AL : T¢ x T? — R by
T
hE(p, 1) = min f L(v,7) + ar)dt.
Ll ¥) = min ) (EOsd)+er)

Peierls’ barrier is hz,(p, %) = limz_,o hZ (p,). The limit exists, and the func-
tion hy, is Lipschitz in both variables. Denote hy . = hr—c.y-

Mather, Aubry and Marne sets. — These sets are defined by Mather (see [22]).
Here we only introduce the projected version. Define the projected Aubry and
Maie sets as

Ap(c)={zeT: hp.(z,2) =0}

Ni(c) = {y eT?: min  (hpc(z,y) + hrc(y,2) — hr(z,2)) = O} .

z,z€AL (c)

The Mather set is My (c) = \U,.supp(n) is the closure of the support of all

c-minimal measures. Its projection 7M(c) = M(c) onto T¢ is called the pro-
jected Mather set. Then

ML(C) = .AL(C) c NL(C).
When L = Ly we also use the subscript H to identify these sets.
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Static classes. — For any ¢, € A (c), Mather defined the following equiva-
lence relation:

o~ if hL,c(Qov"/}) + hL,c("/’v 90) = 0.
The equivalence classes, defined by this equivalence relation, are called the static
classes. The static classes are linked to the family of weak KAM solutions, in
particular, if there is only one static class, then the weak KAM solution is
unique up to a constant.

In this section, we provide a few useful estimates in weak KAM theory, and
prove Theorem 2.5. In Section 5.2, we prove a projected version of the a priori
compactness property. We then introduce an approximate version of Lipschitz
property and use it to prove Theorem 2.5.

5.2. Minimizers of strong and slow Lagrangians, their a priori compactness. —
We prove a version of the a priori compactness theorem for the strong compo-
nent.

PROPOSITION 5.1. — Fiz B*, k > 1. For any R > 0,q > 2, there exists M =
M(B%, D, R, k,n) such that the following hold. For any

(B, p, U U™) € QU (B*) n {|U™ |2 < R},

the Lagrangian L® = Ly gse gwk p e yowy, let T = 1, c= (") e R™ x
RI=™ and v = (4%, 4"%) : [0,T] — T¢ be a minimizer of L® — c-v. Then

for ¢ = ¢t + A7 Bc"%, we have
% - Ac] < M.

We first state a lemma on the strong component of the action and relate
minimizers of the slow system with those of the strong one.

LEMMA 5.2. — In the notations of Proposition 5.1 for T > % and c € R?, let
v = (7" : [0,T] — T¢ be a minimizer for the Lagrangian L® — c-v. Then

T T
J (L — - o) (v, 3*)dt < m(inj (L — - v*)(¢, E)dt + 2T | U™ oo,
0 0

where the minimization is over all absolutely continuous ¢ : [0,T] — T™ with
€(0) = 7*(0), ¢(T) = y*(T).
Proof. — Let 45t :[0,T] — T™ be such that

T

T
| @ e o i = min | (@ e o) (6
0 ¢ Jo

with ¢(0) = 75¢(0), ¢(T) = +**(T). Define vy = (ygt,’yg’k) :[0,T] — T, by
W) = 9"(E) — AT By (1) + AT BAgt ().
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Note that
(5.2)
’Yng(O) _ ’YWk(O), ’VSVk(T) _ 'ka(T), ,ygvk _ A—lB;ygt _ ,-}/wk o A—lB;yst.

Using (4.6) and (5.4), we have

1 _
(5.3) L°—c-v+ 50Wk CTlevE = L8 — ot

1 ~ . ~
+ §(ka o BTA—l,Ust o ka) . C(UWk o BTA—l,Ust o ka) + ka
Since v is a minimizer for L® — ¢ - v,
T T
J (L —c-v)(y,7)dt < f (L® — ¢ - v) (0, Y0)dt.
0 0

By (5.3), we have

T T
| @ e v | vk

0 0
T
1 ~ ~ -
+ J 5(;}/wk _ BTA_I".YSt o ka) . C(;ywk _ BTA—I,-}/st _ CWk)dt
0
T

T
< f (L — o) (45, 480 + f U™ (y0(t))dt
0 0

T

1. Cwt Ak A e A

+J 5 (10 = BTATIG = C) - C(3g™ — BTATIAE" — ™) dt.
0

By (5.2), the second and fourth line of the above inequality cancel, therefore,

T T
J (L — - v%%) (", 4"%)dt < J (L% — - ™) (58, 450)dt + 2T\ U ||co. O
0 0
Proof of Proposition 5.1. — First, observe that any segments of a minimizer

is still a minimizer. By dividing the interval [0, 7] into subintervals, it suffice
to prove our proposition for T € [%, 1).
We first produce an upper bound for
T 1 )
min.[ (L —&- v + ~¢- Ae)(¢, ¢)dt.
¢ Jo 2
By completing the squares as in Lemma 4.2, we have
1 1

(5.4) ¥ — ¢ o™ + ¢ Ae= 5(vSt — AC) - A7 (vt — AC) + U (™).
We then take

Co(t) = v**(0) + tAc + %y
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where y € [0,1)¢ is such that (4(0) + TAc+y = v**(T) mod Z™. We then have
éo — Az = Ly, s0

T
1 . 1 — s — s
[ s sea0) oot < o AT oo < dIA™ 10 o
0

using T € [0,1) and |y|? < d.
Using Lemma 5.2, and adding %E - A€ to the Lagrangian to both sides, we
obtain

T
= .S 1 = st 18 W - s
|| @ vt fo a3t < 2T+ d)A U oo
0

< AT + U co + 20U oo
since T' € [1,1).
We now use the above formula to get an L? estimate on (75 — A¢) and use
the Poincaré estimate to conclude. Using the above formula and (5.4), we have

T
f (5 — Ag) - A7 (3 — Aoyt < A + 2|U oo + 2| U] co.
0

Using the fact that A~! is strictly positive definite, we get
[9°¢ — Aclz2 < | A| (AT + 20U o + 2[U™ o) =: M.
Then

2

1 (7 (T

71 (4% — Ac) dt <FJ |4t — Ag|? dt < 4M;.
0

(5.5) 7).

Moreover, from Lemma 4.3,
”’YStH < M2(BSt7 Q7 K,q, R)

The Poincaré estimate gives, for some uniform constant @) > 0,
T

. 1 s _ s
(’YSt — AC) — TJ (’y v AC)dt < H’y tHLoo < QMQ
0 Lo
Combine with (5.5) and we conclude the proof. O

5.3. Approximate Lipschitz property of weak KAM solutions. — The weak
KAM solutions of the slow Hamiltonian is Lipschitz, however, it is not clear if
the Lipschitz constant is bounded as u(B¥¥) — c0. To get uniform estimates,
we consider the following weaker notion.

DEFINITION. — For C,§ > 0, a function u : R — R is called (C,6) approxi-
mately Lipschitz if

lu(z) —u(y)| < Clz —y| +6, =z,yeR"
For u : T4 — R, the approzimate Lipschitz property is defined by its lift to R%.
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In Proposition 5.3 and 5.4 we state the approximate Lipschitz property of a
weak KAM solution in weak and strong angles.

PROPOSITION 5.3. — Fiz B,k > 1. Assume that ¢ > 2(d —m). For R > 0,
there exists a constant M = M(B%*, D, k,q, R) > 0, such that for all
(BY,p, U™, U™) e (B™) n {|U™] < R},
and
5(B™) = Mp(B*) ")
let u = u(¢*t, "k) : T™ x T4™™ — R be a weak KAM solution of
Lags (B, BY®, p, US* U™ ) — ¢ - v.
Then for all ¢** € T™, the function u(¢®,-) is (6,8) approzimately Lipschitz.
PROPOSITION 5.4. — There exists a constant M' = M'(B%*,D,k,q,R) > 0,
let 8" (BY%) = M/ (u(BY*))~G=4t™) and u be the weak KAM solution described
in Proposition 5.3. Then for all o™ € T¢™ the function u(-, p"¥) is (M',§')
approximately Lipschitz.

The proof of these statements are deferred to Section 7.

5.4. The alpha function and rotation vector estimate. — In this section we pro-
vide a few useful estimates in weak KAM theory and prove Theorem 2.5
using Propositions 5.3 and 5.4. Recall that the notations ¢ = (c*t,c%¥), ¢ =
st 4+ A1 Bcevk,

PROPOSITION 5.5. — With these notations we have the following estimate:
1 -
ags(c) — ags () + i(CCWk) VK| < UK go.
Proof. — Let p be a minimal measure for L® —c-v. Let 7 denote the natural

projection from (%%, %k, vst, vVK) to (o, v%t). By Lemma 4.2 we have
—apgs(c) = J(Ls —c-v)du

1 _
= J(LSt —c-v)dpom — §CWk - Cevk
(5.6) )
+ J (2(ka — Cc™) . O Hw"E — Cc™k) + UWk) du
1 .
> —aye () — |UY o — chk -Cevk,

On the other hand, let u** be an ergodic minimal measure for Ls* — ¢- vt. For
an Ls*-Euler-Lagrange orbit °t(¢) in the support of ', and any %% € T¢™,
define

(5.7) " (t) = o + BT A 0% (t) + Cc¥ ¢, teR
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and write v = (y%%, yVK). We take a weak—# limit point u® of the probability
measures =+ (7v,7)|jo,r] a T — +00. Then p* is a closed measure (see Sec-
tion 5.1).

Since on the support of p*, vWk — BTA=1p5t — Cc¥k = 0, we have

—ags(c) < J(Ls —c-v)dp®
1.
_ J(Lst —z- USt)duSt + JUWkdu o §CCWk . Cwk
1~
< —ags(C) + |U|co — §Cch ek, O

The following proposition establishes relations between rotation vectors of
minimal measures of the slow and strong systems.

PROPOSITION 5.6. — Let u® be an ergodic minimal measure of L° —c- v, and
let (p°t, p™*) denote its rotation vector. Then

1, - ~ -

0< 5((](pwk _ BTAflpst _ chk)) . (pwk _ BTAflpst _ chk) < HUWkHCO
and
0< QL pgst (E) =+ ﬂHst (pSt) —C- pSt < HUWkHco.
Proof. — Using (5.6) and the conclusion of Proposition 5.5, we have
U™ co = J(LSt —¢- v + ag«(e))du o

(5.8)

+ J %(C’_l(w - C’ch)) (w — C’ch)d/ﬁ oT.

Note the first of the two integrals is non-negative by definition, we obtain

1 ~ ~ -
0< f 5(wwk — Cc") . C7Hw"k — Ce™)dp® < |UYN| co.
Denote w%k := Skadus = p"k — BT A= 1p%%, and rewrite the left hand side of

the last formula as
%(é_1<@T)Wk _ éCWk)) . (u—)wk _ C«ka) + fc—l(@wk _ éCWk) . (wwk _ u‘;)d,us

+ %J(C’v—l(wwk _ U_JWk)) . (U}Wk _ ’IDWk)d/l,s.

Note that the second term vanishes and the third term is non-negative. There-

fore

1 -~ ~ ~
5(Cr—l(u—ka _ chk)) . (U_JWk _ chk) < ”UWkHCO

which is the first conclusion.
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For the second conclusion, using (5.8), we get
U] o = J(LSt —¢- v + ags(¢))dpor = fLStd,u om —¢-p* + ays=(c).

Using §{ L¥*dpon > By=(p*) we get the upper bound of the second conclusion.
The lower bound holds by definition. O

5.5. Convergence of weak KAM solutions. — We now prove Theorem 2.5. Fix
Bt and x > 1.

For v € N, let (B, p,,Us,Uy*) € Q4(B*) and ¢, = (cf,c}*) be a
sequence satisfying the assumption of the theorem, namely, u(B¥) — o, p, —
po, USt — Ust in C?, and ¢t + A;1B,c¥* — ¢. Let us fix the notations

H;f = HS(BSt7BZVk7pV7UStaM1‘:Vk)a Lys/ = LHﬁa a, = CMHs (cu)y
Hst = HSt(BStapua Ust)v Lit = LHIS}-

Item 1. — Let u, be the weak KAM solution to L} — ¢, - v. We first show the
sequence {u,} is equi-continuous.

Let M* be a constant larger than the constants in both Propositions 5.3
and 5.4. Using both propositions, for any ¢ = (¢, %), ¢ = (¢, Y¥k),

s (9%, ™) =y (U, ™) | < M*[™ — | + 8, ™ — ™| + 26,

where 8, = M*(u(By*))=2-4+m,
Since §, — 0 as v — o, for any 0 < € < 1 there exists M > 0 such that for
all v > M, 36, < §. It follows that if ¢ — 9| < 537% < 1, then

|y (%5, ™) — u, (PF, p™5)| < e.

Since {u, },<nr is a finite family, it is equi-continuous. In particular, there exist
o > 0 such that

(5.9)

luy (@) —u(®)| <e, f1<v<M,p—9|<o.

This proves equi-continuity. Moreover, since u, are all periodic, u, — u,(0)
are equi-bounded, therefore, Ascoli’s theorem applies and the sequence is pre-
compact in the uniform norm.

Item 2. — Let u be any accumulation point of u, — u,(0), without loss of
generality, we assume u, — u,(0) converges to w uniformly. Proposition 5.3
implies that

lim sup(maxu, (¢, ) — minu, (¢*,-)) <2 lim 6, = 0,
v—00 pst v v v—00

therefore, u is independent of %K.
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Item 3. — From item 2, there exists u**(¢®) = lim, _, u, (¢**, p*¥). We show
ust is a weak KAM solution of L' — ¢ - v5'. Recall the notations in (5.9), we
have LS — L in C2.

We first show that u** is dominated by L' —¢-vst. Let €5 : [0,T] — T™ be an
extremal curve of L§'. In the same way as (5.7) in the proof of Proposition 5.5,
we define &, = (€51, £2%) : [a, 6] — T such that &% (a) = £%(a), £(b) = £%()
and £5F — B,?A,jlé — C,¢¥% = 0. Since u, are dominated by L% — ¢, - v + a,
(see (5.9)), we have

b .
un (6, (b)) — uy (6 (a)) < f (LS — ey 0" + 0 (6,6, )dt

a

b
- J (L5 — 2, o) (€, £t

a

b
1=~
+ f (UY5(E,) +ay, — icucffk Vi) dt,

where the equality is due to £ — BT A€, — Ce® = 0. Using the fact that
|UY|co — 0, L — L§, and from Proposition 5.5, a,, — 3 Cycl*-cl'® — apgs(€)
as v — o0, we get

b
(5.10)  wt(EH(b)) — ut (6% (a)) < f (LS — & 0™ & aggee (3))dt.

a

Therefore u** is dominated by L§' — & - v®*.

Secondly, we show that for any ¢S € T™, there exists a (u®*, L', ¢)-calibrated
curve ¥ : (—o0,0] — T™ with v5¢(0) = ¢5*.

Because u, are weak KAM solutions of L} — ¢, - v, for each v there exists
a (u,, LS — ¢, - v, )-calibrated curve v, = (y5¢,4%%) : (—0,0] — T9¢. By
Proposition 5.1, all v5* are uniformly Lipschitz, so there exists a subsequence
that converges in CL_.((—00,0],T%). Assume without loss of generality that
st — 45t since v, = (5%, 7VK) is extremal for L8, we have

d
st = %(A,,I“ + B, I") = A0, US* + B, 0, U .
By our assumption, as i — o, A, — A := 0%, .. L, and by Lemma 4.3

|B[|Uy*]c2 — 0, we have
(511) ;)'/St — AawchSt(fySt),

which is the Euler-Lagrange equation for Lg'.
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On the other hand, since v, are (u,,L: — ¢, - v,a,) calibrated, for any
[a"b] < (_0070]7

b
(30 (8)) = () = [ (L2 =07 4 i)l

a

b b
>f (T — 2, o) (40 >dt+f (U + am, (e) -

a

é sz ~c:’,Vk)(’y,,,f'y,,)dt.

Take the limit again to get

b
WD)~ w0 @) > [ (L e 0+ ama(0) (07

a

Because 7" is an L5* extremal curve (see (5.11)), (5.10) hold for 4**. Combining
with the last displayed formula, (5.10) becomes an equality. Then %' is a
calibrated curve for L® — & - v°* + a s (€), and u®* is a weak KAM solution.

6. The Maiie and the Aubry sets and the barrier function

We prove the following result.

PROPOSITION 6.1. — Fiz B and k > 1. Assume that (BYX, p,, USt, UY*) sat-
isfies the assumptions of Theorem 2.5. Denote HS, H', LS and L%t as in the
previous section (see (5.9)).
1. Any limit point of v, € Nus(c,) is contained in ./\/’ch (€) x Td—™,
2. If Ay (€) contains only finitely many static classes, then any limit point
of v € Az (cy) is contained in A () x x Td=m,
3. Assume that Ags(C) contams only one static class. Let o, = (¢S5, oW%) €
Ag: (c,) be such that g3 — ¢** € At (¢). Then for any ¢ = (4, PvK) e
T,

Vlglgo hrs.c, (@, ) = tht,a(SOStﬂ/’St)-

4. Let (pSt, p¥%) be the rotation vector of any c,-minimal measure of L?.
Then we have

lim (pi'* — BT A1 pst — Ce¥%) = 0,

v—00

and any accumulation point p of p' is contained in the set dags: ().

The proof of item 2 requires additional discussion and is presented in Sec-
tion 6.2. In Section 6.1 we prove item 1, 3 and 4.
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6.1. The Maiie set and the barrier function. — We first state an alternate def-
inition of the Aubry and Maifie sets due to Fathi (see also [6]). Let u be a
weak KAM solution for the Lagrangian L. We define G(L,u) to be the set
of points (p,v) € T? x R% such that there exists a (u, L, az )-calibrated curve
7 : (—00,0] — T4, with (¢,v) = (v(0),7(0)). Let ¢; denote the Euler-Lagrange
flow of L, then

(6.1) - ¢:(G(L,w), A =(I(L,w), Np=|JI(Lw),
t<0 u u

where the union and intersection are over all weak KAM solutions of L. The
Aubry set and Mafie set of c € H' (T4, R) is defined as

AL(C) = ALfc-va NL (C) = NL*C“U'

The projected Aubry and Maiie sets are the projection of these sets to T¢.
We now turn to the setting of Proposition 6.1. Let LS, L8, ¢,, ¢ be as in
the assumption. The strategy of the proof is similar to the one in [7].

LEMMA 6.2. — Let u, be a weak KAM solution of L — ¢, - v. Assume that

Pv; V) € I —C -V, Uy) Sa isfies Pv;, V) = (P,V) = (P a‘PW y Uy U
T L;S/ t st k st ,,wk
")

and u, (%, o%%) — ust (). Then

((pSt,USt) c j—(Lst — - ’USt, ’U,St).

J

Proof. — We first show that (¢,,v,) € G(LS — ¢, - v,u,) implies (¢, v) €
G(Ls* — ¢ - vst, ut). Indeed, there exists 7, : (—0,0] — T¢, each (u,, LS —
¢y v, ars (¢, ))-calibrated, with (7,,4,)(0) = (¢,v). We follow the same line as
proof of item 3 in Theorem 2.5 (Section 5), then by restricting to a subsequence,
3¢ converges in Cf,((—o0,0], T%) to a (u**, L —&-v**, aupyse (€))-calibrated curve
4%, In particular, (v5t,45) — (7°,4°), which implies (¢, v%%) € G(LS* — ¢ -
vst’ ust)‘

Let ¢¥ denote the Euler-Lagrange flow of L%, and ¢5* the flow for LS. Let 7
denote the projection to the strong components (<,05t v5%), then from Lemma 4.3
Y — ¢t uniformly. As a result for a fixed T > 0 and (p,,v,) € Z(LF — ¢, -
v,u, ), we have

(‘pl’avll) (901/’901/ ) it’vyk) EQSZT (E(Li _CV"UauV))a
hence (5%, vSt) — (cpSt,vSt)F % (G(LS* — ¢ v, ut)). Since T > 0 is arbi-
trary, we obtain (¢, v5%) € Z(L$' — ¢ - vS*, ust). O
Proof of Proposition 6.1, part I. — We first prove item 1.
Suppose ¢, € NH5 (cv), then there exists weak KAM solutions u,, of L3 —c, v,
such that (¢,,v,) € (LS — c,, V, Uy ). By Theorem 2.5, after restricting to a

subsequence, we have u, (¢, o"%) — ust (o). By Lemma 6.2, (¢S5, v5t) —
(%, v°) implies (¢, v') € l'(LSt c- vs ,ust) < ,/\/Hst( c).
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For item 3, suppose ¢, = (¢, p3'*) € Ap: (¢, ) satisfies g3 — ™ € Ape ().
Then hrs ¢, (py, ) is a weak KAM solution of L;, —c-v (see [12], Theorem 5.3.6).
By Theorem 2.5, by restricting to a subsequence, there exists a weak KAM
solution u®* of L' — & - v%* such that

Vlglgo hLi,cu (o, ¢Sta ¢Wk) - hLﬁ,cu (¢4,0,0) = u®t (¢St)'

We may further assume that hr; ., (¢,,0,0) — C € R. Since Ap;:(¢) has only
one static class, there exists a constant C; > 0 such that

USt(QZJSt) 4 Cl _ hLSt,E(WSty'(/JSt)~
Using the fact that ¢, € Aps(c,), we get hrs c, (¢u, ) = 0. Taking the limit,
U“(g&St) — 701 — hLSt,E(SOSt»S@St) —C=—_C.

Therefore,
Tim hrg e, (03, 90" 9%, ™) = hpae(0™, ™).
Item 4: Let p, = (p5¢, p%¥) be the rotation vector of minimal measures

of LY — ¢, - v, then from Proposition 5.6,

lim pi% — BJApy = Cuep = 0.
Moreover, assume that pS* — p** € R™, then by taking the limit in the second
conclusion of Proposition 5.6, we get

apg (€) + Bug (p™) —¢-p™ =0,

using the Fenchel duality, p* is a subdifferential of the convex function o Hst

at C. O

6.2. Semi-continuity of the Aubry set. — Our strategy of the proof mostly fol-
low [7].

Given a compact metric space X, a semi-flow ¢; on X, and ¢, T > 0,
an (g,T)-chain consists of zg,...,zy € X and Ty,...,Tny—1 = T, such that
d(¢r,zi,xiv1) < €. We say that «€yy if for any ¢, T > 0, there exists an
(e,T)-chain with g = =z and zxy = y. The relation €y is called the chain
transitive relation (see [11]).

The family of maps ¢; = ¢; defines a semi-flow on the set G(L —c- v, u),
and therefore defines a chain transitive relation. Given ¢, € T¢ and a wea
KAM solution u of L — ¢ - v, we say that o€, if there exists ¢ = (p,v),¥ =
(¢, w) € T? x R such that

@Cx, where X = G(L — c-v,u).

Item 1 in the following proposition is due to Mane, and item 2 is due to
Mather. The version presented here is due to Bernard ([7]).

PROPOSITION 6.3. — Let L be a Tonelli Lagrangian, then:
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1. Let o € Ar(c) and u be a weak KAM solution of L—c-v, we have o€, .
2. Suppose Ar(c) has only finitely many static classes, and there exists a
weak KAM solution u such that o€, p. Then p € Ar(c).

Proposition 6.3 implies that, when Ap(c) has finitely many static classes,
the Aubry set coincides with the set {¢ : ¢€,¢}. We will prove semi-continuity
for this set.

DEFINITION. — Let X be a compact metric space with a semi-flow ¢,. A family
of piecewise continuous curves x, : [0,T,] — X is said to accumulate locally
uniformly to (X, ¢;) if for any sequence S, € [0,T,], the curves z,(t + S,) has
a subsequence which converges uniformly on compact sets to a trajectory of ¢.

LEMMA 6.4 ([7]). — Suppose z, : [0,T,] — X accumulates locally uniformly
to (X, ), ,(0) > z and z,(T,) — y, then zCxy.

Proof of Proposition 6.1, part II. — We prove item 2. Let ¢, = (¢5¢, pV'k) e
Ams(c,) and ¢5f — ¢, we show that ¢ € Apyz(¢). According to Proposi-

tion 6.3, ¢,€,p,. Let ¢, be the unique point in AHS (cv) projecting to ¢,
theil there exists weak KAM solutions u, of L{ — ¢, - v, such that ¢,€¢,
in G(LE — ¢, - v,u,). Fix e, —» 0 and M, — oo, then for each v, there exists

Tv,l < e < Tu,N,,a Tl/,j+1 — TV,j > My,

and a piecewise C! curve v, = (75, 4¥%) : [0,T,] — T4, satisfying
1. v|(T,,;, T, j+1) satisfies the Euler-Lagrange equation of L?;
2. d(((’Yu(TV,jf), ’.}’V(Tuyjf))a ((”YV(TV,ij)a '.YV(TD,J'JF))) <éEy.

Using Lemma, 4.3, the projection of the Euler-Lagrange flow of L to (¢, vs")
converges uniformly over compact interval to the Euler-Lagrange flow of Lg.
This, combined with item 2 and Lemma 6.2, implies that (5%, 45") accumulates
locally uniformly to

(G(L(S)t —c- 'UStv uSt)a ¢S—tt)

where ¢5' is the Euler-Lagrange flow of Lg'. Therefore, ¢! — ¢ impies
¢*€, ™. Using Proposition 6.3 again, we get o™ € Ays (¢). O

7. Technical estimates on weak KAM solutions

In this section we prove Proposition 5.3 and 5.4. For (BYX p, Ust U"¥) e
Qd(B**) n {|U*| < R}, recall the notations H® = H* (B, B¥, p, Us*,U™¥),
H* = M (p,U), L* = Lyo, L = Lys.
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7.1. Approximate Lipschitz property in the strong component. — In this sec-
tion we prove Proposition 5.4 using Proposition 5.3. Proposition 5.3 is proved
in the next two sections.

We first state a lemma of action comparison between an extremal curve and
its “linear drift”.

LEMMA 7.1. — Let L : T? x R* — R be a Tonelli Hamiltonian, T > 1, and
v :[0,T] — T be an extremal curve. Then for any 1 < i < d, h > 0, and a
unit vector f € R?,

T th h T
L Zf A+ —f)dt— | L(v,)dt
JO (7+Tf’y+Tf) L (7, 9)

< @LOLAT) - N+ (1 @D + 15 @D+ TIf - @,051)

Proof. — We compute

Llv+ e hyA+ 30 = Dn3) € 2L 4) - 1 f + 6L A) S
9 h? ) th? 5 t2h?
I - @Dl + 17 (L) + 1 - (D)

It follows from the Euler-Lagrange equation that

. th h d th
o L(v,7) - Tt (%L(%V)T == ((%LT) )

and our estimate follows from direct integration. O

The following lemma establishes a relation between “approximate semi con-
cavity” with approximate Lipschitz property.

LEMMA 7.2. — For C,8 > 0, assume that all ¢ € T? the function u : T* — R
satisfies the following condition: there exists | € R¢ such that

u(p +y) —ulp) <l-y+Cly[* +4, yeR?,
Then || < Vd(C +6), and u is (2v/d(C + 6),8) approzimately Lipschitz.

Proof. — Assume that ! = (I,...,l). Foreach 1 < i < d, we picky = —ei‘;—?‘,
where e; is the coordinate vector in ¢;. Then

0=ulp+e)—ulp) <—|l;|+C+54,

so |lj] < C + 6. As a result || < +/d(C + 6). For any y € [0,1]¢, we have
ly|l < V/d and

u(p +y) —ul(p) < (VA(C +8) + Cly)lyl +6 < 2vd(C +é)|y| +6. D
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Proof of Proposition 5.4. — Since u is a weak KAM solution, for any ¢ € T¢,
let v = (5, 4%%) : (—0,0] — T? be a (u, L* — ¢ - v,ay(c))-calibrated curve
with 4(0) = ¢ = (¢, ¢"*). Then for any T > 0

0
ulg) =ur(=T) + [ (1= v+ (@) )i
_T
Using (4.6), we get
(7.1)
0 1 5
) = ur () + [ (v P a (0)— e O

0
1 ~ ~ -
_|_f 5(,ywk_BTAfl;yst_chk)_Cfl(,ywk_BTAfl;yst_chk)+UWk(7(t))dt'
=T

We now produce an upper bound using a special test curve. Let 5% :
[-T,0] — T™ be such that

0

0
(2 | e 6 —min [ (L a0 e

=T

where the minimum is over all {(—T') = v**(—T) and ¢(0) = 75*(0).
We define ¢ = (€5, ¢%) : [-T,0] — T? as follows.

1. For y e R4,
s s T+t
£t =) + oy
The curve £ is a linear drift over 7§* with h = |y| and f = o (see
Lemma 7.1).
2. Define

EV(t) = 7™ (=T) + BT A€ (t) — %' (=T)) + Ce™ (T + 1).
We note that £V%(—T) = y%¥(—T) and

é'-svk _ BTA_1§St _ éCWk =0.
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Using the fact that v is dominated by L® — ¢ - v + ags(c), we have
0
(@™ +y,67(0)) < uly(~T)) + f (L7 —e-vt o ()& Edt
0
(=T + [ @ e e N
-T
0 1 . . ~
+f 7(§wk _ BTA_1§St _ chk)

T 2
. éfl(éwk _ BTAfléist _ éCWk)dt

1 - 0
+ (opgs (€) — 5cwk SC7eT + f UYk(€)dt
—-T

and note that the third line in the above formula vanishes, using the definition
of £€¥k. Combine with (7.1), we get

u(p™ + y,€7(0)) — u(p™, ™)

e I S U N (e PR e
From (7.2) we get

u(p™ +y,67(0)) —u(e™, o)

e B VA A R e R

Since v§' is an extremal of L' — ¢ - v, the linear drift lemma (Lemma 7.1)

applies. Noting that [ 02, L% < [|[A7Y], [020 L] < |[U*|c2 < R, and
Qist »stL = 0. We obtain from Lemma 7.1 that

0

0
| @ —evnyenénae- [ @t —eviop i
T -T

<Ly + (A7 + U )yl

where | = 0, L5 (v§t(0),4§¢(0)). Note that |A~!| + |Ut|c2 is a constant de-
pending only on B, Q, R.
We now invoke Proposition 5.3 to get

[u(p™ + 3, €7(0)) — u(@™ +y,9™)| < 6EV(0) — ™| + 6 < 24,

where § = M*p(B¥5)~2-9+™ for some M = M*(B*,Q, x, ¢, R). Combine all
the estimates, we get

ug™ + 4, 0") — (@, 0 < Loy + (LA + U] )yl + 26 + 2T
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We note that in Q7% we have |[UV|c2 < S NUFE o2 < (d - m)r(u(BYE)) 9.
We may choose My = M¥(B*,Q, k,q, R), such that
26 + 2| UK < MFp(BYS))~(E-d+m) —. 5",
We now apply Lemma 7.2 to get u(-, p"¥) is
@VA(|ATY| + U o2 +6), )

approximately Lipschitz. Define M’ = 2v/d(|A~Y| + |U*|c2 + M), and the
proposition follows. O

7.2. Filtrated decomposition of the slow Lagrangian. — For the proof of Propo-
sition 5.3, we need a filtrated decomposition of the Lagrangian L® which treat
all ¥ 1 <4 < d — m separately. First, we have the following linear algebra
identity.

LEMMA 7.3. — Let S = [;T g] be a nonsingular symmetric matriz in block

form. Then
Id 0][A B|[ld—A"'B] [A0
~BTA'Wd||BTC||o W | |oC]|
where C = C — BTA-'B. In particular, C is positive definite if S is.

Proof. — The proof is direct calculation. O

We write H*(p,I) = K(I)-U(p) = K(I)=U(¢**)~U"*(¢) and S = 0%, K.
We describe a coordinate change block diagonalizing 0%, K. Write S in the
following block form

S = [de Yd—m

T 2 ] v Xa-m € Mg_1)x(d-1),Yd-m € R¥" ! 24 p € R,
—m —-m

and for each 1 <¢ < d—m — 1, further decompose each X;,; as

Xi i

Xiy1 = [yT Z] , Xi € Mimyiotyx(mti-1),% € R™T 1z e R
Note that in this notation, X1 = 0%, ;.. K = A (see (2.4)).

Define, for 1 <i<d—m,

Idmyict =X 'ys 0
E-| o 1 o |,
0 0 Idg_m—;
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where Id; denote the i x ¢ identity matrix. Then by Lemma 7.3

Id,_ 0] [ X4 _ Idy 1 X' ya
T _ d—1 d—m Yd—m d—1 d—mYd—m
Bwsin =g S [ [ ]

[ Xaem O
B 0 Zd—m ’

where Zg_ = Zd—m — y:{_de__lmyd,m. Moreover, foreach 1 <i<d—m—1,

(73) [Idm+i_1 o] Xt [Idmﬂ»_l —Xilyi]

—yr X1 0 1
[ Tdpgio O] [ X v | [Tdmsicn =Xy [Xa O
C X ] s 0 1 [T loz|
Let
Id, —X;! _
i o X'y .
1 7Xd_myd—m
(7.4) E=F; - -F = )
1
then recursive computation yields
X1
Z -
(7.5) E'SE=E!---EY SE; ,,---E; = , =: 5.
édfm

We summarize the characterization of the Lagrangian in the following lemma.

For v = (vst,v¥k, ..., v%% ) e R™ x RY, we define
(7.6) [v]o = v*%,  |v]i = (@050, 1 <i < d—m.
LEMMA 7.4. — For v,c € R? we denote w = ETv and n = E~'¢, where E is

defined in (7.4). Ezplicitly, we have

st

w st
wwk v 1
(7.7) w=| . | = v —yf Xy vl ,
wvx;k : ’U:}ivi(m - yg—mX(;jm lUJd—m—l
d—m

and
nst _ Cst + A_IBCWk, n= (nst7nwk),c _ (CSt,CWk),
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where A, B are defined in (2.4). Then we have

(7.8) L°(p,v) —c-v
d—m 1 1

- o) 3y (Gl - s - La O + UG
i=1

REMARK. — This is a finer version of Lemma 4.2. In particular, the strong

component L — 0t - v5* is identical to the L® — ¢ - v*%, defined in Lemma 4.2.

Proof. — Formula (7.7) can be read directly from the Definition (7.4) and
w = ETv. To show 7t = ¢** + A~ Bc“, we compute

(0] | ] = 8n=sme = s |10 | 41 £ | o]

The first block of the above equation yields An** = Ac** + BcVK, hence 7%t =
ct + A1 Bevk,
We now prove (7.8). We have
1
Lé(p,v) —c-v = 5vTS*1v —cly+ U + U™k
1

= 5(E’—%)S*l(ETv) —(E7'e)T(ETv) + US* + UK
1 st A*l st st st st & 1 z—1 wk wk wk wk
= 5w . w> —n - w +U +Z 521 (wi ) - N w; Ui .
im1

In the above formula, the first group is equal to L5 — 7t . 9%t noting wst = v*t.
Moreover

1 1 1

SF )P = wl = SET (Wl = E™)? - SRS, 1<i<d-m,
and (7.8) follows. O

We derive some useful estimates.

LEMMA 7.5. — There exists M* = M*(B%,Q, x,q) > 1 such that, for
LS = L'Hs (BWk,p, Ust,ust), (BWk,p, USt,Z/{St) c Q;nqd,
the following hold.

1. For each 1 < i < d—m, we have Z HU;VkHW < M*|kye| .
2. For each1 <i<d-— Z1<M*‘k:vk|2i'
Proof. — For item 1, note that for each j > i, |ka| < ,.@‘kwk| hence

U7 ] en < IR0 < R
Item 1 holds for any M* > (d — m)x!+4.
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For item 2, inverting (7.3) we get

-1 _ |:Idm+i1 _Xilyi] [Xi_l 0 ] [ Idpm s 0]

i+1 = 0 1 0 z ' |—vh. X 41

Denote f = (0,...,0,1) € T™*% then

Ty, _ ¢T Idp g1 *Xi_lyi X;l 0 Idp s 0 =1
f X’H»lf*f |: 0 1 0 2;1 _y;“,;]_Xi__yll 1 fizz .

Moreover, using the definition (see (1.3))
S = 07K = [kt R Ry k) QR KRS RS,
we have
Xipq =[RSt kS RS kZ"k]TQ[kﬁt Co kSRR L ]
R R R BT Qo R R R B = PTQoP,

where k is the first n components of k. We have assumed Q¢ = D~ 'Id for D > 1.
By Lemma 3.3, there exists a constant ¢,, > 1 depending only on n such that

X4 = (min o7 Xi110) " = (min o7 PQoP)~" < D|P|?

[v]=1 lvl=1

< Dealk2 - RSP RH2 - B[P < Dea ™ R,

where M = |k5*| + - -+ + |k5t| depend only on BSt. O
7.3. Approximate Lipschitz property in the weak component. — In this section

we prove Proposition 5.3. We fix (BY*, p, U, Uf*") € Q73 {|U*"||c> < R}, and
write L® = Lys (BYS, p, USt, U™).
For c € R, we define

(79) Lz,i(<p5t7 (p‘lNka sy @ZVk, vStv UXVka o 7UZVk) = Li,z(LQDJ“ leZ)

~N (1 B 1
= LSt(@St7USt)—nSt~USt+Z (sz Nwl — zmy™)? - izj(nfk)Q + U;Vk(@)> ;
j=1

then

(7.10) L%(p,v) —c-v

d—m
S > W = W 1 W. W
- el ol + 3 (55 W - s - Gur - Ure) )
j=it+1

Our proof of Proposition 5.3 follows an inductive scheme. Following our no-
tational convention, denote e;”k = €;4m, which is the coordinate vector of w?k.
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LEMMA 7.6. — Letu:T?% — R be a weak KAM solution of L® —c-v. Then for
1
Sa—m = 2(25 0, [UF5 ]l 02) 2,
we have u 18 dq_m-semi-concave and dq_,,-Lipschitz in wglfm

Proof. — First we have

-1
m’

2 2 k 2 2
02wk Lwe L° = 0% pwk Uf,m, 02wk we L° =0, 0:wic pWK L® _Zd

Pd—mPd—m Pd—mPd—m Pd—mVd—m Va—mVd=m

The first two equality follows directly from the definition, while the last one
uses (7.7) and (7.8).

For any ¢ € T%, let v : (—o0,0] — T% be a (u, L*, c¢)-calibrated curve with
~7(0) = ¢. Then for any T > 0

0
u(y) = uG(=T)) + | (L5 =+ ane (@), )ik

Using the definition of the weak KAM solution,

0
th . h
u(p+ hef«"k) < u(y(-T)) +J (L°—c-v+ags(c))(v+ ?e}’{ljm, v+ feglfm)dt.
-7

Substract the two estimates, and apply Lemma 7.1 to L® — ¢ v + ags(c)
and -y, we get

ulp + he?™) — u(p) < Oy L*(5(0),3(0)) = ca_m)h
S 1 S S
(1 i+ 18 e L n+:r||a§)wE oy |) W
< @y L (5(0)),4(0) — %, ) + (580/T + |UFE, s T) 2

1

Take T = (Za-m|U3%,,lc2) "%, and write I = O L*(3(0)),%(0) — ¥, we
get

1
u(p + hel) —u(p) < lh + §6d_mh2'

The semi-concavity estimate follows. Using the fact that u is Z¢ periodic, we
take h = /|| to get |I| < 184—m. Therefore for |h| < 1,

1 1
[ulep + hei™) = u(@)| < (50a-m + 50a-mh)h < da-mh-
This is the Lipschitz estimate. O

We now state the inductive step.
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PROPOSITION 7.7. — Let u : T — R be a weak KAM solution of L* — ¢ - v.
Assume that for a given 1 <i < d—m—1, u is (6;,0;) approzimately Lipschitz
incp;"k foralli+1<j<d—m. Then for

d—m % d—m
o; = <21,1 Z |U;Vk|c2> , 0 = \/8(60’1' +4 Z (Sj),
j=i j=i+1
we have u s (8;,0;) approzimately Lipschitz in (pf’k.
Proof. — The proof is very similar to the proof of Proposition 5.4, but uses

the finer decomposition in this section.
Since u is a weak KAM solution, then given any ¢ € T¢, there exists a
calibrated curve 7 : (—0,0] — T? with 7(0) = ¢. Then for any T > 0

0
u(p) = u(y(-T)) + J (L° —c v+ ags(c))(y,¥)dt.
-T
Let he R, x e RY and a C! curve ¢ : [-T,0] — T? satisfies

E(-T) =~(-T), £(0) =+ he™ +x,
then
(7.11)

0
u(p + he™ +x) < u(v(=T)) + LT(LS — v+ ag(e) (€ E)dt

0
<ut(=T) + | (= cov s am(@) At

0

0 . )
o[ weened - [ @-c v
0

0 .
)+ | @ -ened - [ @ -6

-7
We will first give the precise definition of £, then estimate (7.11), before finally
obtain the desired estimate.

Definition of . — Recall the Lagrangian L7 ; : T+t x R™T% — R defined
in (7.9). Let £ : [-T,0] — T™*% be an L7 ; minimizing curve satisfying the
constraint

C(=T) = 7i(=T), ¢(0) = |~]:(0),
where |-|; is defined in (7.6). For h € R, we define ¢ in the following way.

wk

1. The first m + ¢ components of £ is ¢ with an added linear drift in e},

more precisely,
(712) [€)i(t) = ¢(0) + Trer

TOME 146 — 2018 — N° 3



DYNAMICS OF THE DOMINANT HAMILTONIAN 563

2. We define the other components inductively. For i < j < d —m, suppose
€151 () = (€5,&7%, ..., €™,)(t) has been defined. We define

.
&) =25 +yy X5 EL 1 () — yf X ] (1)
For each ¢ < j < d — m, we have

gwk = (—T),
(7.13) {§Wk TX KJ = ,y;vk — ].TXfll’.Yijl.

We define x = £(0) — ¢ — hel¥, and note that from (7.12),
Ixli = [£]:(0) — |7]:(0) — he}™ = 0.

Action comparison. — We now compute
(7.14)
0 ) 0
| @b | wo-cona
-T -T
0

O .
:f Laﬁhkmﬁ—f L2 (o 13 )t
T T

d—m 0
£ 3 [ e - mrew)a
jfi+1 =T
Jr — Z ~—1J w _1LéJj—1 B 2j,’7;vk)2
_(’Yj - TX [ 15 -1 = Zim; )2)
0 - 0 d—m
<[ mdléna [ ok ioasor S 034,
- - Jj=i+1

In the above formula, the equality is due to (7.10). Moreover, observe that from
(7.13), the third line of the above formula vanishes. The inequality follows by
replacing Uj‘-"’k with its upper bound ||U]‘-”kHCo.

We now have
0

0 .
| matehéod = |zt bloa

0 . 0 .
- [ dggoa- [ e da
Y -7
0 . 0 .
| mcOde— | rzak Ll
0

0
< | mudehdoi— | rzcda
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noting that ¢ is minimizing for L7 ;.
Since ¢ is minimizing and hence extremal for L7 ;, from the definition of §
in (7.12), Lemma 7.1 applies. Hence

0

[ renga- [

. 1 d—m ;
L (Gt <1 h+ (T DN k(ﬂ) R,
j=i
where | = 0y, (L ;)(¢(0), ¢(0)). As in the proof of Lemma 7.6, we choose T' =

1
2

(5202 103 e ) 7 we get
(7.15)

0 0 d—m 3
| zelglépde | 12t < Lhsoih? o~ ( ) U}”‘Im> -
-7 -T Jj=1
Combine with (7.14), and use the upper bound Zj;ﬁl HUJ‘-”kHCo < Zj;;" HUJ‘-”kHCz,
we get

0

0
f(ﬁ—a@@@ﬁ—f(H—u@@dWékh+mW+%@
—-T =

Estimating the weak KAM solution. — Combine the last formula with (7.11),
we get
u(p + hel™ + x) —u(p) <1-h+a;h? + 0.
Since |x|; = 0, using the inductive assumption,
d—m
lu(p + hel™ + x) — u(p + hel™ )| < 2 Z d;.
j=i+1l
Therefore
d—m
u(p + hel™) —u(p) <1-h+o:h? +20; + 2 2 d;.
j=i+1
We now use Lemma 7.2 to get for

d—m
6; = 2\/8(30'1' + 2 Z éj),
j=it1
u is (d;, ;) approximately Lipschitz in X, O
Proof of Proposition 5.3. — We have shown by induction that for all 1 <
i < d—m, uis (6;,06;) approximately Lipschitz in ¥, where §; are defined

inductively in Lemma 7.6 and Proposition 7.7.
By Lemma 7.5, foreach 1 <t <d—m

o5 = (77 H|UFS|02) 7 < M*[kyK| -2 +i-m,
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Then §q_rm = 204_m < M*|kYX, |~3+9=™ For each 1 < i < d —m, we have
(7.16)

d—m
0; = 60’1+4 Z 6[2 m Z (6[)2 M|kwk‘fg+d m
j=1i+1 j=t
For any ¢"¥, 4%k € T4~™ and ¢ € T™,
d—m d—m
u(e™, ™) —u(et, ") < D) Sl =i+ D b
i=1 i=1
Since Z;tlm i < (d—m)M*(6+/d)* ™ (u(B"¥))~2 4™ the proposition follows
by replacing M* by (d — m)M*(6y/d)"~"™. O

Appendix A. Normally hyperbolic invariant manifolds

In this section we state a version of the center manifold theorem and prove
Theorem 2.4. While the central manifold theorem is classical, we need an ver-
sion whose center direction is a non-compact set equipped with a Riemannian
metric. This is done in the first two subsections. In the last subsection, we
perform a reduction on our system H*® from (2.3) to apply the central manifold
theorem.

A.1. Normally hyperbolic invariant manifolds via isolation block. — We state
an abstract theorem on existence of normally hyperbolic invariant manifolds
for a smooth map F', based on construction of Conley’s isolating block (see
McGehee, [26]).

We introduce a set of notations. We have three components x € R* )y €
R¥ z € Q¢ < R¢ , where Q¢ is a (possibly unbounded) convex set. We assume
that ¢ admits a C' complete Riemannian metric g. We also consider a Rie-
mannian metric on the product space W = R*® x R* x Q¢ by taking the tensor
product of g and ¢, and the standard Euclidean metric on R*, R".

Fix some r > 0 and let D® < R® and D" < R* be closed balls of radius r at
the origin in R® and R* (r is considered fixed and we omit the dependence).
Denote D¢ = D* x Q¢, D¢ = D% x Q°¢, and D = D¢ x D".

Consider a C*! smooth map

F:D=D°xD"xQ°—>R°xR" x Q°,
we state a set of conditions guaranteeing the set
W(F)={ZeD:F*(Z)e D for all k> 0},
called the center-stable manifold, is a graph i.e.,
W(F) ={(X,Y)e D** x D" : w**(X) =Y}
for a C' function w*°
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[C1] s F (D% x D¥) < D<.
[C2] F maps D*¢ x 0D* into D*¢ x R*¥\D" and is a homotopy equivalence.

The first two conditions guarantee a topological isolating block: F' stretches
D®¢ x B" along the unstable component D* and is a weak contraction along
the center-stable component D*C.

Now we state the cone conditions. For some p > 0

Cu(Z) = {v = (v°v°,v") € TzD : plo*|* = [v°|* + [v°]?}.
Note that
(CH(2))° = {v = (v°,0°,0") € Tz D : = (J0°)* + [0°]?) = 0" |*} =: C524(2).
Let us also define
K (z1,91,21) = {(T2,y2,22) : prllya — v1|* = lz2 — 21| + dist(z1, 22)°},

where the distance is induced by the Riemannian metric g.
We assume there exist 4 > 1 and x > 1 with the property that for any
Z1,Zy € D such that Z, € K¥(Z;) we have

[C3] F(Z2) € K}/ (F(Z1))-

[C4] |mu(F(Z2) — F(Z1))] = X|7u(Z2 — Z1)].
PROPOSITION A.1. — (Lipschitz center-stable manifold theorem) Suppose F
satisfies conditions [C1-C4], then W*5¢(F) is given by the graph of a Lipschitz
function

W(F) = {(z,y,2) € D : w*(z,2) = y}.
Moreover, for if W3¢(F) is C*, we have
T, W*(F) e C’Z‘ll(Z).
In order to obtain the center-unstable manifold, consider the involution I :

(z,y,2) — (y,7,2) and assume inv(F) = I o F~! o I~! satisfies the same
conditions.

THEOREM A.2. — Assume that F' and inv(F') satisfy the conditions [C1-C4],
there exists a C* function w®: M — D such that

We(F) i= W(F) 0 W"(F) = {(2,,2) € D : w°(2) = (z,y)}.
Proof. — Proposition A.1 implies the existence of Lipschitz functions w"¢ :
D% — D and w®° : D3¢ — D, with

WH(F) = {z = w*(y,2)}, W(F) = W*(inv(F)) = {y = w**(z, 2)}.

Then standard arguments (see Theorem 5.18 in [27]) implies these functions
are C!. The fact that u > 1 and

T,W™*(F) e C3,(Z), TzW“(F)eC.(Z)

implies W*¢(F') and W"¢(F') intersect transversally, and W*¢(F') n W*¢(F) is
a graph over the center component M. O
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A.2. Existence of Lipschitz invariant manifolds. — We prove Proposition A.1.
Let V be a collection of sets I' = D satisfying the following conditions:

(a) m, ' = D™,

(b) Zy € Kl’j(Zl) for all Z1, Z, € T', where m, is the projection to the unstable
component.

These conditions ensures m, : ' — D" is one-to-one and onto, therefore,
I is a graph over D“. Moreover, condition (b) further implies that the graph
is Lipschitz. In particular, each T' € V is a topological disk.

LEMMA A3. — LetT' eV, then F(T') n D e V.

Proof. — By [C4] for any Z; and Z; we have that F'(Z2) belongs to the cone
K7,y of F(Z1). Thus, it suffices to show that D" < my(F(I') n D). The proof

is by contradiction. Suppose there is Z, € B* such that Z, ¢ m,(F(T)).
We have the following commutative diagram

or A,
(A1) | myoF | myoF,
R“\D" <5 R"\{Z,}

From [C2] and using the fact that B® and Q° are contractible, 7, o F|T' is a
homotopy equivalence. Note that is is a homotopy equivalences, and m, o F'|T is
a homeomorphism onto its image. Let h and g be the homotopy inverses of
7y © F|OT and g, then h o go (m, o F') defines a homotopy inverse of i;. As a
result I" is homotopic to oI, this is a contradiction. O

Proposition A.1 follows from the following statement.

PROPOSITION A.4. — The mapping s, : W(F) — D¢ is one-to-one and
onto, therefore, it is the graph of a function ws. Moreover, w*® is Lipschitz
and

T,W*(F) € (CL(2))° = C.(2), Z e W*(F).

Proof. — For each X € D¢, we define 'y = (m,.) 1X, clearly T'x € V. We
first show I'x nW*°(F') is nonempty and consists of a single point. Assume first
that T'x n W3¢(F) is empty. Then by definition of W5¢(F), there is n € N such
that F"(I'x)nD = @. However, by Lemma A.3, (|, F*(I'x)nD € Vis always
nonempty, a contradiction. We now consider two points Z, Zy € W*¢(F') with
TuZ1 = Ty Zo. Note that F¥(Z,), F¥(Z;) € D for all k > 0, and Z, € Kﬁ(Zl),
by [C4] we have

2> |m(F*(Z1) — F*(Z2))| = X*|mu(Z1 — Zo)]
for all k, which implies Z; = Z,.
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The last argument actually shows Z ¢ K;(Z1) for all Z1, Z, € W*¢(F). For
any € > 0, for Z; = (X1,Y1), Z2 = (X2,Ys) € W*¢(F) with dist(X;, X5) small,
we have |Y; — Y| < p~2dist(Xy, X5). This implies both the Lipschitz and the
cone properties in our proposition. (|

A.3. NHIC for the dominant system. — We prove Theorem 2.4 in this section.
First, an overview of notations.

1. The strong Hamiltonian is H5" = H5(pg, B, U*) defined on T™ x R™,
and its associated Lagrangian vector field is X** (see (2.7)). We denote
the time—1-map of X** by G and lift it to the universal cover R™ x R™
without changing its name.

2. The vector field X! is extended trivially to (T™ x R™) x (T4~™ x R4—™)
(see (2.10)). The time—1-map is denoted Go, and we have Gy = G§¥ x Id.
We will also lift it to the universal cover with the same name.

3. The slow Hamiltonian is H* = H*(B%, BYX, po, Us*,U"*), and consider
its Lagrangian vector field X7 ag-

We apply a coordinate change (¢, v5t, oWk vWk) = (%, v, Wk TWk)
as in (2.8), and a rescaling @y as defined in (2.12). The new vector
field is denoted X* = (<I>§1)*(<I>_1)*ijag (see (2.9), (2.12)). We denote
its time—1-map G, which is considered a map on the Euclidean space
R™ x R™ x RI™™ x R4—™,

4. Below we also use notations from Section 2.4.

By Theorem 2.3, we have:

COROLLARY A.5. — Assume that (BY*, po, U**,U™*) € Q4(B=*), then for any
81 > 0, there exists M > 0 such that for all (BYX, po, USt, U™ ) with u(BY*) >
M, uniformly on R™ x R™ x R¥™™ x R4™™  we have

HHw,st,vst)(G — GQ)H < 51, HDG — DG()H < 6.

By assumption, the Hamiltonian flow H5', (and hence G§') admits an NHIC
x*(T" x Bt,,) with exponent a, 3, where x*" is an embedding. We use local
coordinates in a tubular neighborhood to simplify the setting. (See also the left
block of (A.3) below)

LEMMA A.6. — There exist a tubular neighborhood N(ASY)  T™ x R™ of AS
and a C* diffeomorphism
h**: BP! x B x (T x Bi,,) — N(A)
such that:
1. 1%4(0,0,2) = x*(2), in particular, h**(CS) = h*({0} x {0} x (T! x
Bi+a)) = Asat‘
2. For the map F§* := (h*) o G5! o (hS%)~1:
(a) C5 is an NHIC for F§' with the same exponents a, 3.
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(b) The associated stable/unstable bundles take the form
E* =R'x {0} x {0}, E“=1{0} xR"x {0}.

In particular, DFS' is a block diagonal matriz in the blocks corre-
sponding to the three components.

(c) Let go denote the Euclidean metric. Then there exists a Riemannian
metric g on T! x Bha such that the tensor metric go ® go ® ¢
on Bt x Bl x (T! x B, ) is an adapted metric for the NHIC CS*.

Proof. — We use the bundles E¥, E*, and the parametrization x** of AS' to
build a coordinate system for the normal bundle to AS*, which is diffeomorphic
to the tubular neighborhood. We then pull back the adapted metric of AS® using
this map to CS. O

Denote Q%K = R¥~™ x R4~™ and consider the trivial extension
h: B x B x ((T' x By, ,) x Q"%) — N(ASF) x Q¥&

by h(z,y, (2%, 2%%)) = (Bt (z,y, 25), 27%). Define the following maps
(A.2) Fo=ht'oGooh=(F*1d), F=h1'0Goh.
See diagram below, where “” denote standard embeddings, Q' = T! x B!,
and O - denotes the (unperturbed) map of the given space.
(A.3)

At — s N(AS) c (T™ x R™) O G —— (T™ x R™) x Q" (5 Gy

xﬂ hﬂ hI
Qf —— BMUx BPUx QS O R —— Bl x B x (5 x Q) O .
Finally, to apply Theorem A.2, we lift Q' to the universal cover R! x B! ta
and the maps Fy, F' to the covering space without changing their names, namely
F,Fy: B! x Bl x (50 x Q"6 .
5t , x QK is our center component and is denoted by . While the maps
are defined on unbounded regions, we keep in mind that Fy = (F3*,Id) where
F3' is defined on a compact set B} x B! x (T! x B!, ).
We still need one reduction to apply Theorem A.2. Recall that Q3¢ = R x
Bha. Write Fy = (F§, FY, F§), define
(A4) L(z,y,2) = (D2F; (0,0, 2) -z, Dy F(0,0,y) - y, F5(0,0, 2))
this is the linearized map at (0,0, z) (we used Fy(0,0, z) = (0,0, F§), and DFy is
block diagonal from Lemma A.6). since Fy = (F3*,Id) and F3' is defined over
a compact set, we obtain as r — 0,

(A5)  |L—Fy| =o(r), |DL— DFy| =o0(1)on B! x B.L x (5% x Q"k).
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Moreover, since Fy preserves {0} x {0} x 09, we get
(A.6) L(B! x B! x Q) c R! x R! x 0Q.

Namely, the linearized map L preserves the boundary of the center component.
Finally, we modify the map F so that it also fixes the center boundary. Let
p be a standard mollifier satisfying

p(fv,y, (ZStvsz)) = P(ZSt) =0 2t e Qf)t
Dy, (%, 27%)) = () =1 2% € 3\t

a/2’
Let
(A7) F=F(1-p)+Lp,
we have:
LEMMA A.7. — For any p > 1, € > 0, and ro > 0, there exist 61 > 0 and

0 <r <o such that if G and Gy satisfy
HH(ipstwvst)(G — Go)H < 51, HDG — DG()H < (51,
then the map F, defined by (A.2), (A.4), and (A.7), satisfies conditions [C1]-

[C4] with the parameters ji and x = a™! —e on Bl x Bl x Q. The same hold
for the map inv(F).

Proof. — First of all, from Lemma A.6, DFy(0,0, 2) = diag{D,F§,D,F},D,F§}
with

(A-8) | DS | [(Dy )M < o, IDFS |, I(D-F§)7H < B

Recall that Fy = (F§',1d) where F§® is defined over a compact set. Therefore,
for sufficiently small r > 0, we have

I Fo(z,y,2)| < (a+e)|z], [T,DFo(z,y,2)| = (a+e) |yl
hence
I, Fy(B'. x BL x Q) Béaﬂ)r, |TL, Fo(BL x BL x Q)| = (o + €)~'r.
Since |~ Fol < (1 — o) (F — Fo)| + Ip(L — )|
HH(m,y) (F - FO)H < CHH(goSt,uSt)(G - GO)H < 0517
and |L — Fy| = o(r), by choosing 61,7 small enough, we get
I, F(B. x B! x Q) c B., |,F(B.xaB. x Q)| >r

The first half of the above formula, combined with (A.6), gives [C1], and the
second half gives [C2].

We now prove the cone conditions [C3] and [C4]. We first show the map F' is
well approximated by the linearized map DFy(0,0, z). Given any € > 0, we use
Corollary A.5 to choose d; so small such that

| D(F—Fo) |+ Mzse (F=Fo) || dpll < CID(G=Go) [ +[Mpet vt (G—=Go) [ dp]| < /2
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By (A.5), we can choose 7 such that for 0 < r < rq,
ID(Fo — L)| + [Fo — L[| dpl < €/2

on Bl x Bl x (¢ x Q¥K). Then from F = F + (L — F)p, and the fact that p
depends only on 2% gives

< ||D(F — Fo)| + |D(Fo — L) | + (st (F = Fo)|| + | Tost (Fo — L) )| dp|| < e.

Consider (z1,y1,21), (T2,¥2,22) € BL x BL x Q, denote (Ax,Ay,Az) =
(x2,y2, 22) — (z1,y1,21) and d = ||Az| + |Ay| + dist(z1, z2). For d small enough

‘|F~‘(x27y2722) - F(Jf'hylyzl) - DF0(07072)(A$7A:U7AZ>H

= | L(z2, 92, 22) = L{x1,51,21) + (F = L) (2,93, 22) — (F = L) (1,91, 21)
— DFy(0,0, 21)(Az, Ay, Az)||

< |D(F — L)(21,y1,21)|d < ed.

To prove [C3], we first show the linear map preserves the unstable cone. For
any 1> 1 and (Vg, vy, v2) € T(gy 4y ,20) BL X BL x Q with plo? |2 = [0 + [v®|?,
let (v}, v],v,) = DFy(0,0, 2)(vs, vy, v;), we have

x) YY) vz

plogl? = pa™ oy |? = a7 (Jvs | + [v2]?)
_ B
> o (Jvgl* + BIvLI%) = = (zl® + L))
In other words, for any u > 1, we have DFy(0, 0, z)C;j c Cgu/ﬂ'
Coming to the non-linear map F', for (x1,y1,21), (T2,y2,22) € BL x BL x Q,
let (z,y., 7)) = F(z;,yi,2:), and (Az,Ay,Az) , (Az',Ay’,Az") be the cor-
responding difference. If (x2,y2,22) € Ky¥(21,41,21), then p|Ay|? > [Az|* +
dist(21, 22)%. In particular, dist(z1,22)? < pl|Ay|?> < wr?. When r is small
enough
(Ad!, Ayf, AZ') — DF(0,0, 1) (Ax, Ay, Az)| < ed.

Furthermore, assume 7 is so small that (1 — €)dist(z,2") < [Az],0,2,) < (1 +
e)dist(z, 2'), where |Az|(0,0,,) is measured using the local Riemannian metric.
We drop the subscript from now on. Using the linear calculation, there exists
a uniform constant C' > 1 such that

plAY|? = g(HAw’H2 +[AZ]?) — Ce*d?

B
> ~(|A2']* + [AZ[*) — C(1 + p)e*| Ay|®

Q

>(1- 6)g(IIAI'H2 +dist (21, 25)%) — C*(1 + p)e* | Ay'[1%,
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noting that |DE~1|, |DF| are uniformly bounded. When e is small enough,
we get u|Ay|? > |Az|? + dist(2], 25)2. Thus, [C3] is proven.

[C4] follows directly from | (Az’, Ay’, Az')—DFy(0,0, z1)(Az, Ay, Az)| < ed
and (A.8). The proof for inv(F) is identical and is omitted. O

Proof of Theorem 2.4. — For any 6 > 0, we choose 0 < r < §/C and p > 1,
where C is a constant specified later. Apply Lemma A.7, there exists M >
0 such that whenever u(B"%) > M, the map F associated to H® (B¢, BY,
po, US,UYX) satisfies [C1]-[C4] on B! x Bl x (25t x Q%K). As a result, we
obtain a function w® : QS* x Q%K — Bm~! x B™~! guch that

W€ = Graph(w®) = {(z,y, (2°,2"9)) : (z,y) = w(*", 2"%)}
is invariant under F', and is the maximally invariant set on B~ x Bm™~t x

st x QK. Since F' = F on whenever 2% € 0,

Bm—tx Bl x ta/Q x QK is also F invariant and hence is contained in W¢.
We now consider the map

¢S x QYE S (R™ x R™) x (RE™ x RE™™),

(zSt,sz) N h(wc(ZSt,sz),ZSt,sz)7

any F' invariant set in U; :=

then ¢(Q8F x Q") is weakly invariant for the vector field X*, and maximally
invariant on the set Us := h(BT~! x BM~1 x Q8¢ x QWk).
Finally, inverting the coordinate changes, we obtain for

775:‘1)0@20(:, ns:QBtXQWk—)RmXRmXRd_mXRd_m,
7% (¢ x Q%K) is weakly invariant for Xing = (®)4(P5)4X*, and maximally

invariant on Uz = @ o &5 (U,).
Since h is identity in the weak component

Uy = BY(B™ ! x B™1 x Q) x Qv
The coordinate changes ® and ®x does not change (pt,vt), therefore,
Us = ®0®x(Va) = hH(B™ ! x B 1 x Q) x Q¥F = V x vk,
Moreover, using the fact that h*[(}qoyx0st = Xx*|ast, and [w®|co < r for
small enough r we have for some C > 0, uniformly over all zVk
[P (we (%, 2™9), 2%) = x* (z*) [ < Cr

Since h(z,y,z%, 2%%) = (h%(z,y, 2%%), 2%%), we get [pst 1 — x| co < Cr,
where we abuse notation by writing x*(2%¢, 2V%) = 2°(z%"). Finally, since ®, &5,
are identity in ¢, v%*, we have

”H<psc’vsc(1) o®Py o C — XStHCo = ‘|H¢sc,vsc< — XStHco < Cr.
We obtain [ILpse peen® — %[ < 6. O
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