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BILINEAR VIRIAL IDENTITIES AND APPLICATIONS

 F PLANCHON*  L VEGA**

A. – We prove bilinear virial identities for the nonlinear Schrödinger equation, which are
extensions of the Morawetz interaction inequalities. We recover and extend known bilinear improve-
ments to Strichartz inequalities and provide applications to various nonlinear problems, most notably
on domains with boundaries.

R. – On démontre des identités de type viriel bilinéaire pour l’équation de Schrödinger non-
linéaire, qui peuvent être vues comme des extensions des inégalités d’interaction de Morawetz. Ceci
permet de retrouver et d’étendre des raffinements bilinéaires des inégalités de Strichartz, et nous don-
nons également des applications à plusieurs problèmes non-linéaires, notamment sur les domaines à
bord.

1. Introduction

Dispersive estimates are known to be an essential tool in dealing with low regularity well-
posedness issues for the nonlinear Schrödinger equation. Among the most useful ones are
Strichartz inequalities: starting with [26], they were completed by [15] and finally by [19]. As
space-time bounds for solutions to the linear Schrödinger equation in Rn, they are closely
related to the Fourier restriction problem in harmonic analysis, and as such heavily rely on
the use of Fourier transform techniques. Extensions of these inequalities to more compli-
cated geometrical settings have been the subject of intense research over the last decade, to
the point where quoting all possible references would fill this page. It should be noted that
these works are based on appropriate refinements of the Rn case, through Fourier Integral
Operator, FBI, wave packet or any appropriate microlocal generalizations of Fourier analy-
sis (for a notable exception using vector field methods, see [23]). On the other hand, one has
virial type identities, of which the Morawetz identity (proved by Lin-Strauss [21]) is perhaps
the most well-known: such identities have two key features, they are obtained by integration
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by parts and they usually apply to the nonlinear equation. We remark that the local smooth-
ing effect, which came much later and was first observed in the flat case (see [14], [24], [29]),
may be seen as part of this category as well, though proofs usually require a sophisticated “in-
tegration by parts” involving pseudo-differential operators or resolvent methods. A new kind
of inequality was introduced in [12], the Morawetz interaction inequality, which seemed to
have the benefit of both worlds: one may recover a specific, non-sharp Strichartz estimate and
it also applies to the nonlinear equation (providing an essential tool to solve the H1-critical
defocusing NLS in 3D, [13]). Subsequent developments include a curved space version ([17])
and a quartic interaction inequality for NLS on R ([11]).

In the present work, we explore a different direction, which builds upon the understanding
of the local smoothing effect and its fundamentally 1D nature. This naturally leads to a new
set of identities with several interesting consequences:

– in 1D, one recovers, by a simple argument, an identity of [22], which implies the
Fefferman-Stein inequality in its bilinear version; from there the (almost) full set of
Strichartz/maximal function estimates may be derived. More importantly, we get a
nonlinear identity.

– In 2D and higher, one obtains an L2
t,x-based estimate for the charge density. (This

would correspond, w.r.t. scaling, to a sharp Strichartz estimate in 2D.) More interest-
ingly, one may derive from our result Bourgain’s bilinear improvement ([3]).

– All our identities apply to nonlinear equations, and have bilinear versions.
– Nothing but integration by parts is used in the proof: as such, these estimates extend to

domains, provided one may control the boundary terms; in the case of Dirichlet bound-
ary conditions, such control is provided by local smoothing.

– As an application to exterior domains, we improve the well-posedness theory to
H1-subcritical (subquintic) nonlinearities for n = 3.

– Applications to scattering problems are straightforward, and this extends to 3D exte-
rior domains, where no results were available to our knowledge and where we obtain
scattering in the energy class for the defocusing cubic equation.

While presenting this work at Oberwolfach, we learned that similar results (namely a priori
bound (2.9)) have been obtained simultaneously and independently by J. Colliander, M. Gril-
lakis and N. Tzirakis, see [9] and [10]), through a different derivation.

Acknowledgments. – We thank N. Burq for various enlightenments about the Schrödinger
equation on exterior domains, C. Zuily for pointing out an incomplete proof in an earlier
version, as well as the referee for helpful comments and suggestions which greatly improved
the presentation.

2. Main results

2.1. The Schrödinger equation in Rn

Let n ≥ 1, p ∈ R, p ≥ 1, ε ∈ {−1, 0, 1}, and u is a solution to

(2.1) i∂tu+ ∆u = ε|u|p−1u, with u|t=0 = u0.
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We will also need v, solution to

(2.2) i∂tv + ∆v = ε|v|p−1v, with v|t=0 = v0.

Let us define several quantities which will play a key role: for n > 1 and given a function f ,
its Radon transform is

(2.3) R(f)(s, ω) =

∫
x·ω=s

f dµs,ω,

where µs,ω is the induced measure on the hyperplane x · ω = s. We set

(2.4) Iω(ε, u, v) =

∫
x·ω>y·ω

(x · ω − y · ω)|u|2(x)|v|2(y) dxdy.

Remark that a simple computation leads to
(2.5)

∂tIω = i

Ç∫
x·ω>y·ω

ω ·
[
(u∇xū− ū∇xu)(x)|v(y)|2 − (v∇y v̄ − v̄∇yv)(y)|u(x)|2

]
dy dx

å
.

We may now state our first result.

T 2.1. – Let ω ∈ Rn, n > 1, with |ω| = 1, u solution to (2.1). Then, with
x = x⊥ + sω

(2.6)
∫
s

|∂s(R(|u|2))(s, ω)|2 ds+ ε
p− 1

p+ 1

∫
s

R(|u|2)R(|u|p+1) ds

+

∫
s

∫
x⊥·ω=0

∫
y⊥·ω=0

|u(x⊥ + sω)∂su(y⊥ + sω)− u(y⊥ + sω)∂su(x⊥ + sω)|2 dx⊥dy⊥ds

=
1

4
∂2
t Iω(ε, u, u).

In other words, Iω(ε, u, u) is a convex function in time.

In the specific 1D case, one has actually the following identity.

T 2.2. – Let n = 1, u, v two solutions to (2.1), (2.2), then

(2.7) 4

∫
x

|∂x(uv̄)|2 dx+ 2ε
p− 1

p+ 1

∫
x

|u|2|v|p+1 + |v|2|u|p+1 dx = ∂2
t I(ε, u, v).

R 2.1. – Up to a doubling factor, Iω may be recast as a Morawetz interaction
functional (as introduced in [12]),∫

ρ(x− y)|u|2(x)|v|2(y) dxdy,

with ρ(x−y) = |x ·ω−y ·ω|. Hence we have replaced the physical distance |x−y| (which was
the default choice in [12] and subsequent works) by its projection over a specified direction
ω. We chose our definition of Iω as to emphasize trace terms which will later appear in the
proof. In fact, we were led to Iω by considering variations on the local smoothing, and we
will come back to this point in Section 4.2.

In order to turn these bounds into useful nonlinear control, we use
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P 2.2. – Let ω be fixed, then

(2.8) |∂tIω| ≤ ‖u‖2L2
x
‖v‖2

Ḣ
1
2

+ ‖v‖2L2
x
‖u‖2

Ḣ
1
2
.

As a consequence, when ε = 1 (defocusing equation), we have an priori bound,

(2.9)∫
R

∫
Rn
||∇|

3−n
2 (|u|2)|2 dxdt +

∫
R

∫
Rn
||∇|

1−n
2 (|u|

p+3
2 )|2 dxdt . supt∈R‖u‖2L2

x
‖u‖2

Ḣ
1
2
.

R 2.3. – The right-hand side of (2.8) is very clearly not invariant by galilean
transforms. The left-hand side, however, is.

R 2.4. – The a priori estimate (2.9) was obtained simultaneously and indepen-
dently by J. Colliander, M. Grillakis and N. Tzirakis [9, 10], through a direct derivation with

the weight ρ(x) = |x| but with a new commutator argument involving [x,
√
−∆

−(n−1)
] and

the local conservation laws for mass and momentum densities, overcoming the restriction to
dimensions n ≥ 3 from [12].

We now state a more general result: let

(2.10) Iρ(u, v) =

∫
ρ(x− y)|u|2(x)|v|2(y) dxdy.

Then

T 2.3. – Let ρ be a weight function such that its Hessian Hρ is positive; let
(2.11)
F (u, v)(x, y) = v̄(y)∇xu(x) + u(x)∇y v̄(y) and G(u, v)(x, y) = v(y)∇xu(x)− u(x)∇yv(y).

We have

∂2
t Iρ = 4

∫
Hρ(x− y)(F (u, v)(x, y), F (u, v)(x, y)) dxdy

+ ε
p− 1

p+ 1

∫
|v|2(y)(∆xρ)(x− y)|u|p+1(x) dxdy(2.12)

+ ε
p− 1

p+ 1

∫
|u|2(x)(∆xρ)(x− y)|v|p+1(y) dxdy.

Moreover, we may rewrite

(2.13)
∫
Hρ(x− y)(F (u, v)(x, y), F (u, v)(x, y)) dxdy =∫

Hρ(x− y)(G(u, v)(x, y), G(u, v)(x, y)) dxdy +

∫
∆ρ(x− y)∇x(|u|2(x)) · ∇y(|v|2(y))) dxdy.

R 2.5. – Notice that if we make u = v in (2.13) and assume that the Fourier trans-
form of ∆ρ is positive, we can bound each of the two terms in the right-hand side in terms
of the left-hand side.

The above remark used in the particular case ρ(z) = |z ·ω| gives us the following corollary
for the linear equation.
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