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AN ARITHMETIC RIEMANN-ROCH THEOREM
FOR POINTED STABLE CURVES

 G FREIXAS  MONTPLET

A. – Let (O,Σ, F∞) be an arithmetic ring of Krull dimension at most 1, S = SpecO and
(π : X → S;σ1, . . . , σn) an n-pointed stable curve of genus g. Write U = X \∪jσj(S). The invertible
sheaf ωX/S(σ1 + · · ·+ σn) inherits a hermitian structure ‖ · ‖hyp from the dual of the hyperbolic met-
ric on the Riemann surface U∞. In this article we prove an arithmetic Riemann-Roch type theorem
that computes the arithmetic self-intersection of ωX/S(σ1 + · · · + σn)hyp. The theorem is applied to
modular curves X(Γ), Γ = Γ0(p) or Γ1(p), p ≥ 11 prime, with sections given by the cusps. We show
Z′(Y (Γ), 1) ∼ eaπbΓ2(1/2)cL(0,MΓ), with p ≡ 11 mod 12 when Γ = Γ0(p). Here Z(Y (Γ), s) is
the Selberg zeta function of the open modular curve Y (Γ), a, b, c are rational numbers,MΓ is a suitable
Chow motive and ∼ means equality up to algebraic unit.

R. – Soient (O,Σ, F∞) un anneau arithmétique de dimension de Krull au plus 1,
S = SpecO et (π : X → S;σ1, . . . , σn) une courbe stable n-pointée de genre g. Posons
U = X \ ∪jσj(S). Le faisceau inversible ωX/S(σ1 + · · · + σn) hérite une structure hermitienne
‖ · ‖hyp du dual de la métrique hyperbolique sur la surface de Riemann U∞. Dans cet article nous
prouvons un théorème de Riemann-Roch arithmétique qui calcule l’auto-intersection arithmétique
de ωX/S(σ1 + · · ·+ σn)hyp. Le théorème est appliqué aux courbes modulaires X(Γ), Γ = Γ0(p)

ou Γ1(p), p ≥ 11 premier, prenant les cusps comme sections. Nous montrons Z′(Y (Γ), 1) ∼
eaπbΓ2(1/2)cL(0,MΓ), avec p ≡ 11 mod 12 lorsque Γ = Γ0(p). Ici Z(Y (Γ), s) est la fonction zêta
de Selberg de la courbe modulaire ouverte Y (Γ), a, b, c sont des nombres rationnels,MΓ est un motif
de Chow approprié et ∼ signifie égalité à unité près.

1. Introduction

Let (O,Σ, F∞) be an arithmetic ring of Krull dimension at most 1 [22, Def. 3.1.1]. This
means that O is an excellent, regular, Noetherian integral domain, Σ is a finite non-empty
set of monomorphisms σ : O ↪→ C and F∞ : CΣ → CΣ is a conjugate-linear involution of
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C-algebras such that the diagram

CΣ

F∞��O
δ 44jjjjjj
δ
**TTT

TTT

CΣ

commutes. Here δ is induced by the set Σ. Define S = SpecO and let (π : X → S;

σ1, . . . , σn) be an n-pointed stable curve of genus g, in the sense of Knudsen and Mumford
[35, Def. 1.1]. Assume that X is regular. Write U = X \ ∪jσj(S). To X and U we associate
the complex analytic spaces

X∞ =
⊔
σ∈Σ

Xσ(C), U∞ =
⊔
σ∈Σ

Uσ(C).

Notice that F∞ acts on X∞ and U∞. The stability hypothesis guarantees that every con-
nected component of U∞ has a hyperbolic metric of constant curvature−1. The whole fam-
ily is invariant under the action of F∞. Dualizing we obtain an arakelovian –i.e. invariant
underF∞– hermitian structure ‖·‖hyp on ωX/S(σ1+· · ·+σn). Contrary to the requirements
of classical Arakelov theory [23], the metric ‖ · ‖hyp is not smooth, but has some mild singu-
larities of logarithmic type. Actually ‖ · ‖hyp is a pre-log-log hermitian metric in the sense of
Burgos-Kramer-Kühn [8, Sec. 7]. Following loc. cit., there is a first arithmetic Chern class

ĉ1(ωX/S(σ1 +· · ·+σn)hyp) that lives in a pre-log-log arithmetic Chow group ĈH
1

pre(X ). The
authors define an intersection product

ĈH
1

pre(X )⊗Z ĈH
1

pre(X )
·−→ ĈH

2

pre(X )

and a pushforward map

π∗ : ĈH
2

pre(X ) −→ ĈH
1
(S).

This paper is concerned with the class π∗(ĉ1(ωX/S(σ1 + · · ·+ σn)hyp)2).
In their celebrated work [24], Gillet and Soulé –with deep contributions of Bismut– proved

an arithmetic analogue of the Grothendieck-Riemann-Roch theorem. Their theorem deals
with the push-forward of a smooth hermitian vector bundle by a proper and generically
smooth morphism of arithmetic varieties. The associated relative complex tangent bundle
is equipped with a smooth Kähler structure. With the notations above, if n = 0 and g ≥ 2,
then the metric ‖ · ‖hyp is smooth and the arithmetic Grothendieck-Riemann-Roch theorem
may be applied to ωX/S,hyp and the “hyperbolic” Kähler structure on X∞. The result is

a relation between π∗(ĉ1(ωX/S,hyp)2) ∈ ĈH
1
(S) and the class ĉ1(λ(ωX/S), ‖ · ‖Q), where

‖ · ‖Q is the Quillen metric corresponding to our data. However, for n > 0 the singularities
of ‖ · ‖hyp prevent from applying the theorem of Gillet and Soulé.

The present article focuses on the so far untreated case n > 0. We prove an arithmetic
analogue of the Riemann-Roch theorem that relates π∗(ĉ1(ωX/S(σ1 + · · · + σn)hyp)2) and
ĉ1(λ(ωX/S), ‖ · ‖Q). The Quillen type metric ‖ · ‖Q is defined by means of the Selberg zeta
function of the connected components of U∞ (see Definition 2.2). In contrast with the result
of Gillet and Soulé, our formula involves the first arithmetic Chern class of a new hermitian
line bundle ψW . The corresponding invertible sheaf is the pull-back of the so called tauto-
logical psi line bundle on the moduli stackMg,n, by the classifying morphism S → Mg,n.
The underlying hermitian structure is dual to Wolpert’s renormalization of the hyperbolic
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metric [63, Def. 1] (see also Definition 2.1 below). The class ĉ1(ψW ) reflects the appearance
of the continuous spectrum in the spectral resolution of the hyperbolic laplacian. After the
necessary normalizations and definitions given in Section 2, the main theorem is stated as
follows:

T A. – Let g, n ≥ 0 be integers with 2g−2+n > 0, (O,Σ, F∞) an arithmetic ring
of Krull dimension at most 1 and S = SpecO. Let (π : X → S;σ1, . . . , σn) be an n-pointed
stable curve of genus g, with X regular. For every closed point ℘ ∈ S denote by n℘ the number
of singular points in the geometric fiber X℘ and put ∆X/S = [

∑
℘ n℘℘] ∈ CH1(S). Then the

identity

12ĉ1(λ(ωX/S)Q)−∆X/S + ĉ1(ψW )

= π∗
(
ĉ1(ωX/S(σ1 + · · ·+ σn)hyp)2

)
+ ĉ1 (O(C(g, n)))

holds in the arithmetic Chow group ĈH
1
(S).

The theorem is deduced from the Mumford isomorphism onMg,n (Theorem 3.10) and
a metrized version that incorporates the appropriate hermitian structures (Theorem 6.1) (1).
The techniques employed combine the geometry of the boundary ofMg+n,0 –through the
so called clutching morphisms– and the behavior of the small eigenvalues of the hyperbolic
laplacian on degenerating families of compact surfaces. By a theorem of Burger [6, Th. 1.1]
we can replace the small eigenvalues by the lengths of the pinching geodesics. Then Wolpert’s
pinching expansion of the family hyperbolic metric [62, Exp. 4.2] provides an expression of
these lengths in terms of a local equation of the boundary divisor ∂Mg+n,0. This gives a
geometric manner to treat the small eigenvalues. Another consequence of theorems 3.10 and
6.1 is a significant case of the local index theorem of Takhtajan-Zograf [55]–[56] (Theorem
6.8 below).

Natural candidates to which Theorem A applies are provided by arithmetic models of
modular curves, taking their cusps as sections. We focus on the curves X(Γ)/C, where Γ ⊂
PSL2(Z) is a congruence subgroup of the type Γ0(p) or Γ1(p). We assume that p ≥ 11 is a
prime number. If Γ = Γ0(p), we further suppose p ≡ 11 mod 12. These conditions guaran-
tee in particular that Γ0(p) acts without elliptic fixed points and X(Γ) has genus g ≥ 1. To
X(Γ) we attach two kinds of zeta functions:

– let Y (Γ) := X(Γ) \ {cusps} be the open modular curve. Then Y (Γ) is a hyperbolic
Riemann surface of finite type. We denote by Z(Y (Γ), s) the Selberg zeta function of
Y (Γ) (see Section 2). It is a meromorphic function defined over C, with a simple zero
at s = 1;

– let Prim2(Γ) be a basis of normalized Hecke eigenforms for Γ. To f ∈ Prim2(Γ) we
can attach a Chow motiveM(f) over Q, with coefficients in a suitable finite extension
F of Q(µp), independent of f (2). If χ is a Dirichlet character with values in F×, we

(1) In particular, with the formalism of [7, Sec. 4.3], the assumption of regularity of X can be weakened to
π : X → S generically smooth.
(2) The construction ofM(f) amounts to the decomposition of the jacobian Jac(X(Γ)) under the action of the
Hecke algebra. More generally, Deligne [11, Sec. 7] and Scholl [49, Th. 1.2.4] associate a Grothendieck –i.e.
homological– motive to any normalized new Hecke eigenform of weight k ≥ 2, level n and character χ.
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denote by Q(χ) its Artin motive. For instance we may take χ = χf , for the Dirichlet
character χf associated to f ∈ Prim2(Γ). If Sym2 denotes the square symmetrization
projector and (2) the Tate twist by 2, we put

MΓ :=
⊕

f∈Prim2(Γ)

Sym2M(f)⊗Q(χf )(2) ∈ Ob(Mrat(Q)F ).

The motivic L-function ofMΓ, L(s,MΓ), can be defined –with the appropriate defi-
nition of the local factor at p– so that we have the relation

(1.1) L(s,MΓ) =
∏

f∈Prim2(Γ)

L(s+ 2, Sym2f, χf ).

The reader is referred to [9], [11, Sec. 7], [28, Sec. 5], [49] and [52] for details. (3)

Denote by Γ2 the Barnes double Gamma function [3] (see also [47] and [59]).

T B. – Let p ≥ 11 be a prime number and Γ = Γ0(p) or Γ1(p). Assume p ≡ 11

mod 12 whenever Γ = Γ0(p). Then there exist rational numbers a, b, c such that

Z ′(Y (Γ), 1) ∼Q× e
aπbΓ2(1/2)cL(0,MΓ),

where α ∼Q× β means α = qβ for some q ∈ Q× (4).

The proof relies on Theorem A and the computation of Bost [5] and Kühn [37] for the
arithmetic self-intersection number of ωX1(p)/Q(µp)(cusps)hyp. Undertaking the proof of
Bost and Kühn –under the form of Rohrlich’s modular version of Jensen’s formula [45]– and
applying Theorem A to (P1

Z; 0, 1,∞), one can also show the equality

(1.2) Z ′(Γ(2), 1) = 4π5/3Γ2(1/2)−8/3,

where Z(Γ(2), s) is the Selberg zeta function of the congruence group Γ(2). The details are
given in our thesis [19, Ch. 8]. However, our method fails to provide the exact value of
Z ′(PSL2(Z), 1).

To the knowledge of the author, the special values Z ′(Y (Γ), 1) remained unknown. Even
though it was expected that they encode interesting arithmetic information (see [26] and [46]),
it is quite remarkable that they can be expressed in terms of the special valuesL(0,MΓ). The
introduction ofMΓ in the formulation of the theorem was suggested by Beilinson’s conjec-
tures (see [53] for an account) and two questions of Fried [21, Sec. 4, p. 537 and App., Par. 4].
Fried asks about the number theoretic content of the special values of Ruelle’s zeta function
and an interpretation in terms of regulators (5). Also Theorem B may be seen as an analogue
of the product formula for number fields

∏
ν |x|ν = 1. This analogy alone deserves further

study.
So far there have been other attempts of proof of Theorem A. This is the case of [60,

Part II]. The method of loc. cit. seems to lead to an analogous statement up to an unknown
universal constant. The advantage of our approach is that explicit computations –such as
Theorem B and (1.2)– are allowed. Moreover, in contrast with [60, Fund. rel. IV′, p. 280],

(3) The factors L(s+ 2, Sym2f, χf ) have already been studied by Hida [28], Shimura [52] and Sturm [54].
(4) The exponents a, b, c can actually be computed in terms of p.
(5) The Ruelle zeta function R(s) of a hyperbolic Riemann surface is related to the Selberg zeta function Z(s) by
R(s) = Z(s)/Z(s+ 1). For instance, R′(1) = Z′(1)/Z(2).
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