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MULTIPLE ZETA VALUES AND PERIODS
OF MODULI SPACES M0,n

 F C. S. BROWN

A. – We prove a conjecture due to Goncharov and Manin which states that the periods
of the moduli spaces M0,n of Riemann spheres with n marked points are multiple zeta values. We
do this by introducing a differential algebra of multiple polylogarithms onM0,n and proving that it is
closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula
iteratively to reduce each period integral to multiple zeta values.

We also give a geometric interpretation of the double shuffle relations, by showing that they are two
extreme cases of general product formulae for periods which arise by considering natural maps between
moduli spaces.

R. – Nous démontrons une conjecture de Goncharov et Manin qui prédit que les périodes
des espaces de modulesM0,n des courbes de genre 0 avec n points marqués sont des valeurs zêta mul-
tiples. Nous introduisons une algèbre différentielle de fonctions polylogarithmes multiples sur M0,n

dans laquelle il existe des primitives. L’idée principale est d’appliquer une version de la formule de
Stokes récursivement pour réduire chaque intégrale de périodes à une combinaison linéaire de valeurs
zêta multiples.

Nous donnons également une interprétation géométrique des double relations de mélange pour les
valeurs zêta multiples. En considérant des applications naturelles entre les espaces des modules, on
déduit des formules de produit générales entre leurs périodes. Les doubles relations de mélange s’ob-
tiennent comme deux cas particuliers de cette construction.

1. Introduction

Let n = ` + 3 ≥ 4, and letM0,n denote the moduli space of curves of genus 0 with n
marked points. There is a smooth compactificationM0,n, defined by Deligne, Knudsen and
Mumford, such that the complement

M0,n\M0,n
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is a normal crossing divisor. Let A,B ⊂ M0,n\M0,n denote two sets of boundary divisors
which share no irreducible components. In [27], Goncharov and Manin show that the relative
cohomology group

(1.1) H`(M0,n\A,B\B ∩A)

defines a mixed Tate motive which is unramified over Z.

On the other hand, let n1, . . . , nr ∈ N, and suppose that nr ≥ 2. The multiple zeta value
ζ(n1, . . . , nr) is the real number defined by the convergent sum

(1.2) ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 . . . knrr

.

Its weight is the quantity n1 + · · ·+ nr, and its depth is the number of indices r. We will say
that the period 2iπ has weight 1. A very general conjecture [25] claims that the periods of
any mixed Tate motive unramified over Z are multiple zeta values. In the case of the motives
(1.1) arising from moduli spaces, this says the following. Consider a real smooth compact
submanifoldXB ⊂M0,n of dimension `, whose boundary is contained inB and which does
not meetA. It represents a class inH`(M0,n, B). Let ωA ∈ Ω`(M0,n\A) denote an algebraic
form with singularities contained in A. In [27], Goncharov and Manin conjectured that the
integral

(1.3) I =

∫
XB

ωA

is a linear combination of multiple zeta values, and proved that every multiple zeta value can
occur as such a period integral. In this paper, we develop some general methods for comput-
ing periods and prove this conjecture as an application.

T 1.1. – The integral I is a Q[2πi]-linear combination of multiple zeta values of
weight at most `.

This theorem thus lends weight to the conjecture on the periods of all mixed Tate motives
which are unramified over Z.

The rough idea of our method is as follows. The set of real pointsM0,n(R) is tesselated
by a number of open cells Xn which can naturally be identified with a Stasheff polytope, or
associahedron. First consider the case where the domain of integration in (1.3) is a single cell
Xn (this actually suffices for the version of the conjecture considered in [27]). The key is then
to apply a version of Stokes’ theorem to the closed polytopeXn ⊂M0,n(R). Since each face
of Xn is itself a product of associahedra Xa × Xb, we repeatedly take primitives to obtain
a cascade of integrals over associahedra of smaller and smaller dimension. In order to do
this, we need to construct a graded algebra L(M0,n) of multiple polylogarithm functions on
M0,n in which primitives exist. At each stage of the induction, the dimension of the domain
of integration decreases by one, and the weight of the integrand increases by one. At the final
stage, we evaluate a multiple polylogarithm at the point 1, and this gives a linear combination
of multiple zeta values. This gives an effective algorithm for computing such integrals. Our
approach also works in greater generality, and our results should extend without difficulty,
for example, to the case of configuration spaces related to other Coxeter groups.
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1.1. General overview

This paper is essentially a study of the de Rham theory of the motivic fundamental group
ofM0,n. Previously, the focus has mainly been on the projective line minus roots of unity,
and in particularM0,4

∼= P1\{0, 1,∞} ([13], [14], [25, 26], [45]). The advantage of consider-
ing the moduli spacesM0,n is that we can bring to bear the full richness of their geometry.
We show, for example, that the double shuffle relations for multiple zeta values are just two
special cases of generalised product relations arising naturally from functorial maps between
moduli spaces.

An essential part of this work is devoted to multiple polylogarithms, which are functions
first defined by Goncharov for all n1, . . . , n` ∈ N by the power series:

(1.4) Lin1,...,n`(x1, . . . , x`) =
∑

0<k1<···<k`

xk1
1 . . . xk``
kn1

1 . . . kn``
, where |xi| < 1.

By analytic continuation, they define multi-valued functions onM0,n, where n = `+3. One
of our main objects of study in this paper is the larger setL(M0,n) of all homotopy-invariant
iterated integrals onM0,n. It forms a differential algebra of multi-valued functions onM0,n,
in which the set of functions (1.4) is strictly contained. From the point of view of differen-
tial Galois theory, L(M0,n) defines a maximal unipotent Picard-Vessiot theory onM0,n. We
then define the universal algebra of multiple polylogarithms B(M0,n) to be a modified ver-
sion of Chen’s reduced bar construction. It is a differential graded Hopf algebra which is an
abstract algebraic version of L(M0,n). One of our key results states that the de Rham coho-
mology of B(M0,n) is trivial. From this we deduce the existence of primitives in L(M0,n).
We also need to understand the regularised restriction of polylogarithms to the faces of Xn.
This requires a canonical regularisation theorem, and amounts to studying what happens
when singularities of an iterated integral collide. We are thus led to work on certain blow-ups
ofM0,n, described below. It follows that the structure of L(M0,n), and hence the function
theory of multiple polylogarithms, is intimately related to the combinatorics of the associa-
hedron.

1.2. Detailed summary of results

In Section 2, we review some aspects of the geometry of the moduli spacesM0,n, and study
certain blow-ups obtained from them. Let S denote a set with n elements, each labelling a
marked point on the projective line P1, and writeM0,S = M0,n. A dihedral structure on S
is an identification of S with the set of edges (or vertices) of an unoriented n-gon. For each
such dihedral structure δ, we embedM0,S in the affine space A`, where ` = n− 3, and blow
up parts of the boundary in A`\M0,S to obtain an intermediary space

M0,S ⊂M δ
0,S ⊂M0,S ,

whereM δ
0,S is an affine scheme defined over Z. We prove that the set ofM δ

0,S , for varying δ,
forms a set of smooth affine charts onM0,S . In order to define them, we introduce dihedral
coordinates, which are one of the key tools used throughout this paper. These are functions

uij :M0,S → P1\{0, 1,∞}, where {i, j} ∈ χS,δ,
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indexed by the set of chords χS,δ in the n-gon defined by δ. Together, they define an embed-
ding (uij)χS,δ :M0,S → An(n−3)/2, and the schemeM δ

0,S is the Zariski closure of the image
of this map. For example, in the case n = 5, we can identifyM0,S = {(t1, t2) ∈ P1 × P1 :

t1t2(1− t1)(1− t2)(t1 − t2) 6= 0, t1, t2 6=∞}. The pentagon (S, δ) has five chords, labelled
{13, 24, 35, 41, 52} (fig. 1), and we have

u13 = 1− t1, u24 =
t1
t2
, u35 =

t2 − t1
t2(1− t1)

, u41 =
1− t2
1− t1

, u52 = t2.

The schemeM δ
0,5 is then defined by the five cyclically symmetric equations in A5:

u13 + u24u52 = 1, u24 + u35u13 = 1, . . . , u52 + u13u14 = 1.

F35F13

F52

F24

F41

t2

t1
5

1

0 1

1

4 3

2

(t1, t2) 7→ (u13, u24, u35, u41, u52)

F 1. Dihedral coordinates onM0,5. The schemeM δ
0,5 (right) is defined to

be the Zariski closure of the image of the embedding {uij} :M0,5 ↪→ A5 defined by
the set of dihedral coordinates, which are indexed by chords in a pentagon (middle).
This map has the effect of blowing up the points (0, 0) and (1, 1). A cellXS,δ is given
by the region 0 < t1 < t2 < 1 (left). After blowing-up it becomes a pentagon with
sides Fij = {uij = 0}.

Now consider the set of real pointsM0,S(R). There is a bounded cell XS,δ ⊂ M0,S(R) de-
fined by the region {0 < uij < 1}. One shows thatM0,S(R) is the disjoint union of the open
cells XS,δ of dimension ` = n− 3, as δ runs over the set of dihedral structures on S, so a di-
hedral structure corresponds to choosing a connected component ofM0,S(R). The closure
of the cell XS,δ satisfies

(1.5) XS,δ = {0 ≤ uij ≤ 1} ⊂M δ
0,S(R),

andM δ
0,S\M0,S is the union of all divisors meeting the boundary ofXS,δ. ThereforeXS,δ is

a convex polytope, and its boundary divisors give an explicit algebraic model of the associa-
hedron. It is well-known that the combinatorics of the associahedron is given by triangula-
tions of polygons. But because dihedral coordinates are already defined in terms of polygons,
the main combinatorial properties of the associahedron, and its dihedral symmetry, follow
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