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EQUILIBRIUM STATES FOR INTERVAL MAPS:
THE POTENTIAL − t log |Df |

 H BRUIN  M TODD

A. – Let f : I → I be a C2 multimodal interval map satisfying polynomial growth of
the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the
potential ϕt : x 7→ −t log |Df(x)| for t close to 1, and also that the pressure function t 7→ P (ϕt) is
analytic on an appropriate interval near t = 1.

R. – Soit f : I → I une application multimodale de classe C2 dont les dérivées le long
des orbites des points critiques sont à croissance polynomiale, où I est un intervalle. Nous démontrons
l’existence et l’unicité d’un état d’équilibre pour le potentiel ϕt : x 7→ −t log |Df(x)| lorsque t est
proche de 1, et que la fonction de pression t 7→ P (ϕt) est analytique sur un intervalle approprié près
de t = 1.

1. Introduction

Thermodynamic formalism ties potential functions ϕ to invariant measures of a dynam-
ical system (X, f). The aim is to identify and prove uniqueness of a measure µϕ that max-
imises the free energy, i.e., the sum of the entropy and the integral over the potential. In other
words

hµϕ(f) +

∫
X

ϕ dµϕ = P (ϕ) := sup
ν∈Merg

ß
hν(f) +

∫
X

ϕ dν : −
∫
X

ϕ dν <∞
™

whereMerg is the set of all ergodic f -invariant Borel probability measures. Such measures
are called equilibrium states, and P (ϕ) is the pressure. This theory was developed by Sinai,
Ruelle and Bowen [43, 39, 3] in the context of Hölder potentials on hyperbolic dynamical
systems, and has been applied to Axiom A systems, Anosov diffeomorphisms and other sys-
tems too, see e.g. [2, 21] for more recent expositions. Apart from uniqueness, it was shown in
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this context that the density dµϕ
dmϕ

of the invariant measure with respect to ϕ-conformal mea-

sure mϕ is a fixed point of the transfer operator (Lϕh)(x) =
∑
f(y)=x e

ϕ(y) h(y). Moreover,
µϕ is a Gibbs measure, i.e., there are constants K > 0 and P ∈ R such that

1

K
6

µϕ(Cn)

eϕn(x)−nP 6 K

for all n ∈ N, all n-cylinder sets Cn and any x ∈ Cn. Hereϕn(x) := ϕ(fn−1(x))+· · ·+ϕ(x).
We refer to P as the Gibbs constant.

In this paper we are interested in interval maps (I, f) with nonempty set Crit of critical
points. These maps are, at best, only non-uniformly hyperbolic. We say that c is a non-flat
critical point of f if there exists a diffeomorphism gc : R→ R with gc(0) = 0 and 1 < `c <∞
such that for x close to c, f(x) = f(c)±|ϕc(x−c)|`c . The value of `c is known as the critical
order of c. Let `max = max{`c : c ∈ Crit}. We define

H :=
{
f : I → I is C2,#Crit <∞ and all critical points are non-flat

}
.

For f ∈ H, there is a finite partition P1 into maximal intervals on which f is monotone,
called the branch partition. We will assume throughout that ∨nPn generates the Borel
σ-algebra. Note that if f ∈ H has no attracting cycles then ∨nPn generates the Borel
σ-algebra, see [30]. (The C2 assumption precludes wandering sets, which are not very
interesting from the measure theoretic point of view anyway.)

Fix f ∈ H. The potential of our interest throughout is

ϕt : x 7→ −t log |Df(x)|.

The Lyapunov exponent of a measure µ is defined as λ(µ) :=
∫
I

log |Df | dµ. Let
Merg =Merg(f) be the set of all ergodic f -invariant probability measures, and

M+ = {µ ∈Merg : λ(µ) > 0, supp(µ) 6⊂ orb(Crit)} .

Measures µ with supp(µ) ⊂ orb(Crit) are atomic. Atomic measures inMerg must be sup-
ported on periodic cycles. So if supp(µ) ⊂ orb(Crit) and λ(µ) > 0, µ must be supported
on a hyperbolic repelling periodic cycle, and thus the corresponding critical point must be
preperiodic. (Note that for t 6 0 such a situation can produce non-uniqueness of equilib-
rium states, see [25] and Section 7.)

1.1. Historical background

The principal examples of maps in H are unimodal maps with non-flat critical point.
Equilibrium states (in particular of the potential ϕt) have been studied in this case by various
authors [16, 22, 44, 7], using transfer operators. The transfer operator, in combination with
Markov extensions (commonly known as Hofbauer towers), proved a powerful tool for
so-called Collet-Eckmann unimodal maps (i.e., the derivatives along the critical orbit grow
exponentially, see (3) below) for Keller and Nowicki [22], who showed that an appropriately
weighted version of the transfer operator is quasi-compact. To our knowledge, however,
these methods cannot be applied to non-Collet-Eckmann maps.

A less direct approach was taken by Pesin and Senti, results which were announced in
[34], with details given in preprint [33] and the final publication [35]. They used an inducing
scheme (X,F, τ) (where τ is the inducing time and F = fτ ), which is a hyperbolic expanding
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with full, albeit infinitely many, branches, to find a unique equilibrium state µΦt for the lifted
potential Φt. This equilibrium state is then projected to the interval to give a measure µϕt ,
a candidate equilibrium state for the system (I, f, ϕt). The down-side for the more general
case is that µϕt is only an ‘equilibrium state’ within the class of measures that are compatible
to the inducing scheme, i.e., the induced map F = fτ is defined for all iterates µ-a.e. on
X, and the inducing time τ is µF -integrable (here µF is the ‘lift’ of µ, see (4)). A priori, the
‘equilibrium states’ obtained in this way may not be true equilibrium states for the whole
system, and different inducing schemes may lead to different measures µϕt .

In this paper, with preprint versions since 2006, and in a companion paper [10], Hofbauer
tower techniques are used to

– construct inducing schemes as first return maps on the Hofbauer tower;
– identify the class of compatible measures;
– compare various inducing schemes; and
– establish that candidate equilibrium states emerging from a single inducing scheme,

indeed maximise free energy over all measures inM+.

In (versions leading up to) [35], identifying which measures are compatible to an induc-
ing scheme is called the liftability problem. Most of the results in [35] apply only to measures
compatible to a given inducing scheme. Only for specific unimodal maps, called strongly reg-
ular [35, Section 7.2], which are close to the Chebyshev polynomial and satisfy the Collet-
Eckmann condition, is a genuine equilibrium state established. Strongly regular maps allow
an inducing scheme (X,F ) for which the number of branches Xi of inducing time τi = n

increases at an arbitrarily slow exponential rate. This is used to show that measures with suf-
ficiently large entropy are compatible to the inducing scheme, and hence that the obtained
equilibrium state indeed maximises free energy over all ofMerg.

Branch counting arguments for both Collet-Eckmann and non-Collet-Eckmann maps are
given in Section 5 and especially Proposition 4 of this paper. Together with the Hofbauer
tower ideas, this allows us to treat a much wider class of maps than [35]. On the other hand,
for the strongly regular maps in [35], the control of the branch count for their specific induc-
ing scheme enables Pesin and Senti to establish the existence and uniqueness of an equilib-
rium state µt for ϕt and t in a neighbourhood of [0, 1]. Such a neighbourhood V is difficult
to obtain for general interval maps where a priori there is no single inducing scheme to rely
on for all t ∈ V . It should be noted that the results on general multimodal maps in [35, Sec-
tion 8.1] apply only to Collet-Eckmann maps, as condition (23) of that paper shows, as well
as only applying to measures compatible to the inducing scheme.

1.2. Main results

In our main theorems we will assume that f is transitive, i.e., f has a dense orbit. If tran-
sitivity fails and instead the interval decomposes into finitely many transitive cycles of inter-
vals, then our results remain valid for each transitive cycle, but uniqueness of equilibrium
states may fail.

T 1. – Let f ∈ H be transitive with negative Schwarzian derivative and let
ϕt := −t log |Df | for t ∈ R. Suppose that for some C > 0 and β > 2`max − 1,

(1) |Dfn(f(c))| > Cnβ for all c ∈ Crit and n > 1.
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Then there exists t1 < 1 such that the following hold for all t ∈ (t1, 1]:

(a) (I, f, ϕt) has an equilibrium state µϕt ∈M+;
(b) if t1 < t < 1, then µϕt is the unique equilibrium state inMerg and a compatible inducing

scheme with respect to which µϕt has exponential tails;
(c) if t = 1, then there may be other equilibrium states in Merg \ M+. However, for

µϕ1
∈ M+ there is a compatible inducing scheme with respect to which µϕ1

has polyno-
mial tails;

(d) the map t 7→ P (ϕt) is analytic on (t1, 1).

We refer to this situation as the summable case. Note that for t = 1 the measureµϕ1
∈M+

is an absolutely continuous invariant measure (acip). Therefore this result improves on the
polynomial case of [8, Proposition 4.1], since in that theorem the polynomial decay of the
tails was given under the above conditions, but also assuming that the critical points must
all have the same order. Results of [9] enable us to drop this assumption. As was shown in
[8], this tail decay rate implies that the decay of correlations is at least polynomial.

As in the theorem, for t = 1 equilibrium states with zero Lyapunov exponent are possible,
see Section 7 for details. Conversely the following easy lemma shows that for t < 1 this is not
the case.

L 1. – For f ∈ H satisfying (1) and for t < 1, any equilibrium state µ for ϕt must
have λ(µ) > 0.

Proof. – The pressure function t 7→ P (ϕt) is convex, continuous and non-increasing. As
in [9], condition (1) implies the existence of an acip µ1 with λ(µ1) > 0, which is also an
equilibrium state for the potential ϕ1 = − log |Df |. It follows that

(2) P (ϕt) > (1− t)λ(µ1) for all t ∈ R,

so if t < 1 we have P (ϕt) > 0. By [36], we have λ(µ) > 0 for any invariant measure, so
Ruelle’s inequality [38] implies that hµ(f) 6 λ(µ). Thus (for t < 1) equilibrium states have
positive Lyapunov exponent because λ(µ) = 0 implies P (ϕt) = 0.

Notice that for t 6 0, the potential −t log |Df | is upper semicontinuous, and the entropy
function µ 7→ hµ(f) is upper semicontinuous, as explained in [21]. This guarantees the exis-
tence of equilibrium states for (I, f) when t 6 0, regardless of whether (1) holds or not.

A stronger condition than (1) is the Collet-Eckmann condition which states that there exist
C,α > 0 such that

(3) |Dfn(f(c))| > Ceαn for all c ∈ Crit and n ∈ N.

This condition implies that λ(µ) > 0 for every µ ∈Merg, see e.g. [32] (and [12] for the proof
in the multimodal case). In the unimodal case, the difference between Collet-Eckmann and
non-Collet-Eckmann maps can be seen from the behaviour of the pressure function at t = 1,
as follows from [32]. Indeed, if (1) holds but not (3), then there are periodic orbits with Lya-
punov exponents arbitrarily close to 0, and hence P (ϕt) = 0 for t > 1. This is regard-
less of the existence of equilibrium states, which, for t > 1, can only be measures for which
λ(µ) = hµ(f) = 0. This means that the function t 7→ P (ϕt) is not differentiable at t = 1: we
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