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ON THE GROUP OF REAL ANALYTIC
DIFFEOMORPHISMS

 T TSUBOI

A. – The group of real analytic diffeomorphisms of a real analytic manifold is a rich
group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the n-dimensional
torus, its identity component is a simple group. For U(1) fibered manifolds, for manifolds admitting
special semi-free U(1) actions and for 2- or 3-dimensional manifolds with nontrivial U(1) actions, we
show that the identity component of the group of real analytic diffeomorphisms is a perfect group.

R. – Le groupe des difféomorphismes analytiques réels d’une variété analytique réelle est
un groupe riche. Il est dense dans le groupe des difféomorphismes lisses. Herman a montré que, pour
le tore de dimension n, sa composante connexe de l’identité est un groupe simple. Pour les variétés
U(1) fibrées, pour les variétés admettant une action semi-libre spéciale de U(1), et pour les variétés de
dimension 2 ou 3 admettant une action non-triviale de U(1), on montre que la composante de l’identité
du groupe des difféomorphismes analytiques réels est un groupe parfait.

1. Introduction and statement of the result

Let Diffω(M) denote the group of real analytic diffeomorphisms of a real analytic
manifold M . The group Diffω(M) is an open subset of the space of real analytic maps
Mapω(M,M) with the C1 topology. The group Diffω(M) with the C1 topology has a
manifold structure modelled on the spaceXω(M) of real analytic vector fields onM . Hence
Diffω(M) is locally contractible (see Proposition 11.9). It is well-known that Diffω(M) is
dense in the group Diff∞(M) of smooth diffeomorphisms in theC1 topology (See Corollary
11.8). Hence Diffω(M) is a huge complicated group.

Let Diffω(M)0 denote the identity component of Diffω(M). For the n-dimensional torus
Tn, Herman [10] in 1974 showed that Diffω(Tn)0 is a simple group. For 30 years since then,
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there are no new results on the simplicity of the groups of real analytic diffeomorphisms.
However, Herman conjectured and we may still conjecture that for any compact connected
manifold M , the identity component Diffω(M)0 of the group of real analytic diffeomor-
phisms is simple.

Now, in this paper, we change the question. If an infinite group is simple, then it is per-
fect. Hence we may ask a weaker question and may try to show the perfectness of the group
of real analytic diffeomorphisms. Note that, in the case of the group of smooth diffeomor-
phisms, the perfectness implies the simplicity ([5], see also [2]), however, we cannot apply this
argument to the group of real analytic diffeomorphisms.

For this question, our present results are as follows.

T 1.1. – Let M be a real analytically U(1) fibered real analytic closed manifold.
Then the identity component Diffω(M)0 of the group of real analytic diffeomorphisms of M is
a perfect group.

We consider other manifolds with well-understood U(1) actions. Let N be a compact
(n − 1)-dimensional manifold with boundary ∂N . Let M be the n-dimensional manifold
obtained fromN ×U(1) by identifying {x}×U(1) to a point for x ∈ ∂N . ThisM has a real
analytic structure with the obvious real analytic U(1) action. We call this U(1) action a spe-
cial semi-free U(1) action. Spheres and direct products with spheres admit special semi-free
U(1) actions.

T 1.2. – Let M be a real analytic manifold which admits a special semi-free U(1)

action. Then the identity component Diffω(M)0 of the group of real analytic diffeomorphisms
of M is a perfect group.

If the dimension of M is 2 or 3, we can show the perfectness of Diffω(M)0 if M admits a
nontrivial U(1) action.

T 1.3. – Let M be a real analytic manifold of dimension 2 or 3 which admits a
nontrivial U(1) action. Then the identity component Diffω(M)0 of the group of real analytic
diffeomorphisms of M is a perfect group.

These theorems are shown in the following way.
First, we show the perfectness of the group of orbit preserving diffeomorphisms for the

U(1) bundles (Theorem 2.2) and a similar result for the orbit preserving diffeomorphisms
for the manifolds admitting special semi-free U(1) actions (Theorem 5.1). These theorems
for orbit preserving diffeomorphisms are proved by using the famous Arnold theorem [1] for
the Diophantine rotations and a similar Theorem 5.3 for the rotations of concentric circles,
which we prove in Section 10. We also need certain explicit orbitwise actions of elements of
SL(2; R), and the existence of such nice actions gives the restriction to the U(1) actions for
which we can show our results by now.

To show our main theorems, we perturb the given U(1) action by real analytic diffeo-
morphisms and obtain finitely many U(1) actions such that the tangent space TxMn of
any point x of the manifold Mn is spanned by the generating vector fields of the resultant
U(1) actions.
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For n = dim(Mn) and U(1) actions generated by the vector fields ξ1, . . . , ξn, we have

the determinant ∆ = det(ξij) with respect to an orthonormal frame
∂

∂xj
for a real analytic

Riemannian metric on Mn, where ξi =
n∑
j=1

ξij
∂

∂xj
(i = 1, . . . , n).

On the open set where ∆ 6= 0, a diffeomorphism sufficiently close to the identity can be
written as a composition of orbit preserving diffeomorphisms. In fact, we show that for real
analytic diffeomorphisms f such that f − id are divisible by a certain power of ∆, f can be
written as a composition of orbit preserving real analytic diffeomorphisms. This is done by
an inverse mapping theorem for real analytic maps with singular Jacobians (Theorems 6.7
or 6.12).

Now we need to decompose a real analytic diffeomorphism sufficiently close to the
identity as a composition of real analytic diffeomorphisms which satisfy the assumption of
Theorems 6.7 or 6.12. This is done by using the regimentation Lemma 7.1, which replaces
the fragmentation lemma ([2], [13]) for the smooth diffeomorphisms.

Then we use the perfectness of the group of orbit preserving diffeomorphisms of U(1)

bundles (Theorem 2.2) or a similar theorem (Theorem 5.1) for manifolds admitting special
semi-free actions, to show our main theorems (Section 8).

Our method can treat the real analytic manifolds with a little more general U(1) actions.
We say that two elements of a group are homologous if they represent the same element in the
abelianization of the group. In Section 9, we show that, if the manifold admits a nontrivial
U(1) action, any real analytic diffeomorphism isotopic to the identity is homologous to a
diffeomorphism which is an orbitwise rotation (Proposition 9.1). Then we show Theorem
1.3 by showing Propositions 9.2, 9.3 and Theorem 9.4.

We think that Diffω(M)0 is perfect if M admits a nontrivial U(1) action. But for the mo-
ment we need a structure theorem for the orbifold M/U(1) in the construction of a nice
multi-section outside of a codimension 2 suborbifold to show that orbitwise rotations are
homologous to zero.

2. Orbit preserving diffeomorphisms of U(1) bundles

As we mentioned, for the n-dimensional torus Tn, Herman [10] in 1974 noticed that the
result of Arnold [1] implies Diffω(Tn)0 is a simple group. Hence it is perfect.

We note that Herman’s proof ([10]) uses the fact that the commutator subgroup
[Diffω(Tn)0,Diffω(Tn)0] of Diffω(Tn)0 is its dense subgroup. In fact, for the group
Diff∞(M) of C∞ diffeomorphisms of a smooth manifold M , its identity component
Diff∞(M)0 is perfect by the result of Thurston ([20], [2]). Since Diffω(M) is dense in
Diff∞(M), the commutator subgroup [Diffω(M)0,Diffω(M)0] is dense in Diffω(M)0.

For the real analytic diffeomorphisms of Tn, Arnold [1] already noticed the followings.

T 2.1 (Arnold[1]). – Let α ∈ Rn satisfy the Diophantine condition. For a real
analytic family Φ(w) (w ∈W) of analytic diffeomorphisms of Tn close to the identity, there is
an analytic family (ψ(w), λ(w)) ∈ Diffω(Tn)0 × Tn such that

Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)−1,
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where R∗ denotes the rotation by ∗ on Tn = Rn/Zn.

Here a real vector α ∈ Rn is said to satisfy the Diophantine condition if there exist posi-
tive real numbers C and β such that |α • `−m| ≥ C‖`‖−β for any ` ∈ Zn \ {0} and m ∈ Z.

Since Rλ can be written as a commutator in

PSL(2; R)n = PSL(2; R)× · · · × PSL(2; R)

depending real analytically on λ,Φ(w) can be written as a product of 2 commutators depend-
ing real analytically on w ∈W .

This means that for a compact manifold N and the product N × Tn with the product
foliation F = ({∗} × Tn) (∗ ∈ N ), the group Diffω(F)0 is a perfect group, where Diffω(F)

denotes the group of real analytic diffeomorphisms mapping each fiber of the projection
N × Tn −→ N to itself and the subscript 0 denotes the identity component.

We first generalize the perfectness result for the group of orbit preserving diffeomorphisms
of a U(1) bundle.

T 2.2. – Let p : M −→ B be a real analytic principal U(1) bundle over a closed
manifoldB. Let Diffω(F) denote the group of real analytic diffeomorphisms mapping each fiber
of the projection p : M −→ B to itself. The identity component Diffω(F)0 of Diffω(F) is a
perfect group.

3. Proof of Theorem 2.2

Proof of Theorem 2.2 for trivial U(1) bundles. – Theorem 2.2 for the trivial U(1) bun-
dle is just a reformation of Arnold’s Theorem 2.1. In this case, M = B × U(1) and
F = ({∗} × U(1))∗∈B . An element of Diffω(F)0 is written as the real analytic family Φ(w)

(w ∈ B) of real analytic diffeomorphism of U(1). It is enough to show that Φ(w) near the
identity can be written as a product of commutators.

Take a Diophantine rotation Rα in the direction of the fibers of the U(1) bundle. The
element Φ(w) near the identity is written as

Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)−1.

Here, λ(w) is determined uniquely by the condition that the rotation number of
R−λ(w) ◦ (Rα ◦ Φ(w)) coincides with that of Rα, α mod 1. In the proof in [1] of Arnold’s
Theorem 2.1, the conjugating diffeomorphism ψ(w) is obtained uniquely so that the base
point 1 ∈ U(1) is fixed (ψ(w)(1) = 1). Thus ψ(w) (w ∈ B) is a real analytic family of real
analytic diffeomorphisms. In the expression Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)−1, Rλ(w)

can be written as a product of two commutators in Mapω(B,SL(2,R)) by the following
Lemma 3.1. Thus Theorem 2.2 for trivial U(1) bundles is shown.

L 3.1. – A rotation

(
X −Y
Y X

)
(X2 + Y 2 = 1) close to the identity can be written

as a product of 2 commutators using products of rotations and diagonal matrices.
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