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DELIGNE-LUSZTIG RESTRICTION
OF A GELFAND-GRAEV MODULE

 O DUDAS

A. – Using Deodhar’s decomposition of a double Schubert cell, we study the regular
representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties
associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a
shifted Gelfand-Graev module.

R. – À l’aide de la décomposition de Deodhar d’une double cellule de Schubert, nous étu-
dions les représentations régulières des groupes finis de type de Lie apparaissant dans la cohomologie
des variétés de Deligne-Lusztig associées à des tores. Nous en déduisons que la restriction de Deligne-
Lusztig d’un module de Gelfand-Graev est un module de Gelfand-Graev décalé.

Introduction

Let G be a connected reductive algebraic group defined over an algebraic closure F of a
finite field of characteristic p. Let F be an isogeny of G such that some power is a Frobenius
endomorphism. The finite group G = GF of fixed points under F is called a finite group of
Lie type. We fix a maximal torus T contained in a Borel subgroup B with unipotent radical
U, all of which assumed to beF -stable. The corresponding Weyl group will be denoted byW .

In an attempt to have a complete understanding of the character theory of G, Deligne
and Lusztig have introduced in [7] a family of biadjoint morphisms Rw and ∗Rw indexed by
W , leading to an outstanding theory of induction and restriction between G and any of its
maximal tori. Roughly speaking, they encode, into a virtual character, the different repre-
sentations occurring in the cohomology of the corresponding Deligne-Lusztig variety. Un-
fortunately, the same construction does not give enough information in the modular setting,
and one has to work at a higher level. More precisely, for a finite extension Λ of the ring Z`
of `-adic integers, Bonnafé and Rouquier have defined in [4] the following functors (see §1.3
for the notation):
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and

Rẇ : Db(ΛTwF -mod) −→ Db(ΛG-mod)

∗Rẇ : Db(ΛG-mod) −→ Db(ΛTwF -mod)

between the derived categories of modules, which generalize the definition of Deligne-
Lusztig induction and restriction.

In this article we study the action of the restriction functor on a special class of repre-
sentations: the Gelfand-Graev modules, which are projective modules parametrized by the
G-regular characters of U (see §1.4). More precisely, we prove in Section 3 the following re-
sult:

T. – Let ψ : U −→ Λ× be a G-regular linear character, and denote by Γψ the
associated Gelfand-Graev module of G. Then, for any w in W , one has

∗RẇΓψ ' ΛTwF [−`(w)]

in the derived category Db(ΛTwF -mod).

This result was already known for some specific elements of the Weyl group. In the case
wherew is the trivial element, the Deligne-Lusztig functor ∗Rẇ comes from a functor defined
at the level of module categories, and the result can be proved in a completely algebraic set-
ting (see [6, Proposition 8.1.6]). But more interesting is the case of a Coxeter element, studied
by Bonnafé and Rouquier in [5]. Their proof relies on the following geometric properties for
the corresponding Deligne-Lusztig variety X(w) (see [17]):

(?)
• X(w) is contained in the maximal Schubert cell Bw0B/B;

• the quotient variety U\X(w) is a product of Gm’s.

Obviously, one cannot expect these properties to hold for any element w of the Weyl group
(for instance, the variety X(1) is a finite set of points whose intersection with any F -stable
Schubert cell is non-trivial). However, it turns out that for the specific class of representations
we are looking at, we can restrict our study to a smaller variety which will be somehow a good
substitute for X(w).

Let us give some consequences of this theorem, which are already known but can be
deduced in an elementary way from our result. From the quasi-isomorphism one can first
obtain a canonical algebra homomorphism from the endomorphism algebra of a Gelfand-
Graev module to the algebra ΛTwF . Tensoring by the fraction fieldK of Λ, it can be shown
that we obtain the Curtis homomorphism KCurw : EndKG(KΓψ) −→ KTwF , thus giving
a modular and conceptual version of this morphism (see [3, Theorem 2.7]).

The character-theoretic version of the theorem is obtained in a drastic way, by tensoring
the quasi-isomorphism by K and by looking at the induced equality in the Grothendieck
group of the category of ΛTwF -modules. Applying the Alvis-Curtis duality gives then a new
method for computing the values of the Green functions at a regular unipotent element (see
[7, Theorem 9.16]). This is the key step for showing that a Gelfand-Graev character has a
unique irreducible component in each rational series E(G, (s)G∗F∗ ).

Beyond these applications, our approach aims at understanding each of the cohomology
groups of the Deligne-Lusztig varieties, leading to concentration and disjointness properties,
in the spirit of Broué’s conjectures. For example, by truncating by unipotent characters, one
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can deduce that the Steinberg character is concentrated in the cohomology group in middle
degree. This result was already proved in [10, Proposition 3.3.15], by a completely different
method, since their proof relies on the computation of eigenvalues of Frobenius. By refining
our method, we should be able to deal with some other unipotent characters and enlarge the
scope of our result.

This paper is divided into three parts: in the first section, we introduce the basic notations
about the modular representation theory of finite groups of Lie type. Then, we focus on an
extremely rich decomposition for double Schubert cells, introduced by Deodhar in [9]. To
this end, we shall use the point of view of [18] and the Bialynicki-Birula decomposition, since
it is particularly adapted to our case. This is the crucial ingredient for proving the main theo-
rem. Indeed, we show in the last section that the maximal piece of the induced decomposition
on X(w) satisfies the properties (?), and that it is the only one carrying regular characters in
its cohomology.
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1. Preliminaries

1.1. Cohomology of a quasi-projective variety

Let Λ be a commutative ring and H a finite group. We denote by ΛH-mod the abelian
category of finitely generated ΛH-modules, and byDb(ΛH-mod) the derived category of the
corresponding bounded complexes. From now on, we assume that Λ is a finite extension of
the ring Z` of `-adic integers, for a prime ` different from p. To any quasi-projective variety X

defined over F and acted on byH, one can associate a classical object in this category, namely
the cohomology with compact support of X, denoted by RΓc(X,Λ). It is quasi-isomorphic
to a bounded complex of modules which have finite rank over Λ.

We give here some quasi-isomorphisms we shall use in Section 3. The reader will find
references or proofs of these properties in [4, Section 3] and [7, Proposition 6.4] for the third
assertion. The last one can be deduced from [13, Exposé XVIII, 2.9].

P 1.1. – Let X and Y be two quasi-projective varieties acted on by H. Then
one has the following isomorphisms in the derived category Db(ΛH-mod):

(i) The Künneth formula:

RΓc(X×Y,Λ) ' RΓc(X,Λ)
L
⊗ RΓc(Y,Λ)

where
L
⊗ denotes the left-derived functor of the tensor product over Λ.
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(ii) The quotient variety H\X exists. Moreover, if the order of the stabilizer of any point of
X is prime to `, then

RΓc(H\X,Λ) ' Λ
L
⊗ΛH RΓc(X,Λ).

(iii) If the action ofH on X is the restriction of an action of a connected group and if the order
of the stabilizer of any point of X in H is prime to `, then

RΓc(X,Λ) ' Λ
L
⊗ΛH RΓc(X,Λ).

(iv) Let π : Y −→ X be an H-equivariant smooth morphism of finite type. If the fibers of π
are isomorphic to affine spaces of constant dimension n, then

RΓc(Y,Λ) ' RΓc(X,Λ)[−2n].

IfN is a finite group acting on X on the right and on Y on the left, we can form the amal-
gamated product X ×N Y, as the quotient of X × Y by the diagonal action of N . Assume
that the actions ofH andN commute and that the order of the stabilizer of any point for the
diagonal action of N is prime to `. Then X ×N Y is an H-variety and we deduce from the
above properties that

(1) RΓc(X×N Y,Λ) ' RΓc(X,Λ)
L
⊗ΛN RΓc(Y,Λ)

in the derived category Db(ΛH-mod).

1.2. Algebraic groups

We keep the basic assumptions of the introduction: G is a connected reductive algebraic
group, together with an isogeny F such that some power is a Frobenius endomorphism. In
other words, there exists a positive integer δ such that F δ defines a split Fq-structure on G

for a certain power q of the characteristic p. For any F -stable algebraic subgroup H of G,
we will denote by H the finite group of fixed points HF .

We fix a Borel subgroup B containing a maximal torus T of G such that both B and T

are F -stable. They define a root sytem Φ with basis ∆, and a set of positive (resp. negative)
roots Φ+ (resp. Φ−). Note that the corresponding Weyl group W is endowed with an action
ofF , compatible with the isomorphismW ' NG(T)/T. Therefore, the image byF of a root
is a positive multiple of some other root, which will be denoted by φ−1(α), defining thus a
bijection φ : Φ −→ Φ. Since B is also F -stable, this map preserves ∆ and Φ+. We will also
use the notation [∆/φ] for a set of representatives of the orbits of φ on ∆.

Let U (resp. U−) be the unipotent radical of B (resp. the opposite Borel subgroup
B−). For any root α, we denote by Uα the corresponding one-parameter subgroup and
uα : F −→ Uα an isomorphism of algebraic groups. Note that the groups U and U−

are F -stable whereas Uα might not be. However, we may, and we will, choose the family
(uα)α∈Φ such that the restriction to Uα of the action of F satisfies F (uα(ζ)) = uφ(α)(ζ

q◦α)

where q◦α is some power of p defined by the relation F (φ(α)) = q◦α α. We define dα to be the
length of the orbit of α under the action of φ and we set qα = q◦αq

◦
φ(α) · · · q

◦
φdα−1(α). Then

Uα is stable by F dα and UFdα
α ' Fqα .

Let us consider the derived group D(U) of U. For any total order on Φ+, the product
map induces the following isomorphism of varieties:
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