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DUALITY OF SCHRAMM-LOEWNER EVOLUTIONS

 J DUBÉDAT

A. – In this note, we prove a version of the conjectured duality for Schramm-Loewner
Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal
SLEκ, κ > 4, and appropriate versions of SLEκ̂, κ̂ = 16/κ.

R. – On démontre dans cette note une version de la dualité conjecturée pour les évolutions
de Schramm-Loewner, en établissant des identités en distribution exactes entre certains arcs de SLEκ

chordal, κ > 4, et des versions appropriées de SLEκ̂, κ̂ = 16/κ.

1. Introduction

Schramm-Loewner Evolutions (or SLE), introduced by Schramm in 1999, are probability
distributions, parameterized by κ > 0, on non-self traversing curves (the trace) connecting
two boundary points in a planar, simply connected domain. They are characterized by a
conformal invariance condition and a domain Markov property. See [7, 12, 16] for general
SLE background.

The geometric properties of the trace vary with the parameter κ. In particular, when
κ ≤ 4, the trace is a.s. a simple curve; this is no longer the case if κ > 4 ([12]). The trace
stopped at some finite time is then distinct from its boundary. The duality conjecture for
SLE, roughly stated, is that a boundary arc of SLEκ is locally absolutely continuous w.r.t.
to (some version) of SLEκ̂, κ̂ = 16/κ. This was suggested by Duplantier. In the case
(κ, κ̂) = (8, 2), this follows from the exact combinatorial relation between Loop-Erased
Random Walks and Uniform Spanning Trees and the identification of their scaling limits
in terms of SLE ([8]). In the case (κ, κ̂) = (6, 8/3), it follows from the locality/restriction
framework ([6]). An approach based on a relation with the free field has been proposed
by Sheffield. A precise duality conjecture is stated in [1] and elaborated on in [3]; we prove
slightly different versions here.
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In [3], it is shown that duality shares common features with reversibility and the ques-
tion of defining multiple SLE strands in a common domain. This local commutation prop-
erty states that two SLE strands can be grown in a domain to a positive size, in a way that
does not depend on the order in which the SLE’s are growing. Such systems of commuting
SLE’s are classified in [3]; in particular, two versions of SLEκ, SLEκ̂ can commute only if
κ̂ ∈ {κ, 16/κ}.

While it is rather easy to check directly the local commutation identities implied by re-
versibility and some duality conjectures, the crucial difficulty consists in working backward
and proving reversibility or duality from these local identities. One may think of this as a
“local to global” problem.

Decisive progress was achieved by Zhan in [18], where he proves reversibility of chordal
SLEκ, κ ≤ 4, i.e. that the range of the trace of an SLEκ in D going from x to y has the
same distribution as the range of the trace of SLE going from y to x in D. This was previ-
ously known for κ ∈ {2, 8/3, 4, 6, 8}. The argument involves a sequence of couplings of an
SLEκ(D,x, y) with an SLEκ(D, y, x), such that each coupling in the sequence is absolutely
continuous w.r.t. the trivial (independent) coupling, and the limiting coupling is exact (the
ranges of the two traces are identical). The fact that similar techniques may be used to prove
duality is also mentioned in [18]. The present article stems in part from an effort to clarify
and extend this “local to global” argument.

After the present work appeared as a preprint, the manuscript [17] was brought to our
attention. There, as here, ideas and techniques from [3, 18] are combined to obtain a certain
number of duality identities, with some overlap with those stated here (in Proposition 10).
Subsequently, a different construction of duality identities was given in [4], via the free field;
this allows to establish “strong duality” identities, in which the conditional law of an SLE

given a boundary arc is also specified. Such identities were first conjectured in [1].

Let γ, γ̂ be traces of two SLE’s satisfying the local commutation condition. Then, forU, V
disjoint open subsets of the domain, one has a coupling of (γ, γ̂) which is “correct” on the
time set {(s, t) : s ≤ τ, t ≤ τ̂}, where τ , τ̂ are stopping times for the two SLE’s, such that
γτ ⊂ U , γ̂ τ̂ ⊂ V . We construct a coupling of (γ, γ̂), which is “correct” on the time set
{(s, t) : γ[0,s] ∩ γ̂[0,t] = ∅}. See Theorem 6 for a precise statement.

The duality identities follow from applying Theorem 6 to appropriate pairs of commut-
ing SLE’s, together with some a priori geometric information on the traces. Plainly, many
identities may be generated in this fashion.

The identities considered here involve variants of SLEκ: the SLEκ(ρ) processes
(ρ = ρ1, . . . , ρn). They satisfy a domain Markov property when keeping track of n marked
points z1, . . . , zn (in addition of the origin and the target of chordal SLE). The influence
of zi on the SLE trace is quantified by the real parameter ρi; this influence is attractive for
ρi < 0 and repulsive for ρi > 0.

Let us consider a chordal SLE in the upper half-plane H, going from 0 to infinity. In the
phase 4 < κ < 8, a boundary point, say 1, is “swallowed”, i.e. gets disconnected from infinity
by the trace at a random time τ1 when the trace hits some point in (1,∞). The boundary arc
straddling 1 is the boundary arc seen by 1 at time τ−1 .
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T 1. – Consider a chordal SLEκ in (H, 0,∞), 4 < κ < 8; let D be the leftmost
visited point on (1,∞). Conditionally on D, the boundary arc straddling 1 is distributed as an
SLEκ̂(− κ̂2 , κ̂− 4, κ̂− 2) in (H, D,∞, 0, 1, D+), stopped when it hits (0, 1).

In the phase κ ≥ 8, a.s. every point in H is visited by the trace. We isolate a boundary
arc in a different way. Let G be the leftmost point on (−∞, 0) visited by the trace before τ1.
We consider the boundary of KτG , the hull of the SLE stopped when it first visits G; this
boundary is an arc between G and a point in (0, 1).

T 2. – Consider a chordal SLEκ in (H, 0,∞), κ ≥ 8. Let G be the leftmost vis-
ited point on (−∞, 0) before τ1. Conditionally on G, the boundary of KτG is distributed as an
SLEκ̂( κ̂2 ,

κ̂
2 − 2,− κ̂2 , κ̂− 4) in (H, G,∞, G−, G+, 0, 1), stopped when it hits (0, 1).

The distributions of D and G are well known and easy to derive.

The article is organized as follows. Section 2 recalls some absolute continuity properties
of chordal SLE. Local commutation is discussed in Section 3. Maximal couplings of com-
muting SLE’s are constructed in Section 4. Geometric consequences (in particular duality)
are drawn in Section 5. Some technical lemmas are postponed to Section 6.
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2. Absolute continuity for chordal SLE

In this section we consider some absolute continuity properties of chordal SLE, mostly
based on [6]. Chordal SLE will also serve as a reference measure for variants we will study
later; some familiarity with chordal SLE is assumed (see, e.g., [7, 12, 16]).

We adopt the following notation: c = (D,x, y) is a configuration where D is a simply
connected domain and x, y are distinct boundary points. Unless there is an ambiguity, the
configuration is simply denoted byD. The chordal SLEκ measure on c = (D,x, y) is denoted
by µc (κ is fixed). It is seen as a measure on Loewner chains up to increasing time change; or
as a configuration-valued continuous process (up to time change); or as a measure on non
self-traversing paths ([12]). This path (the SLE “trace”) is denoted by γ, while the hull it
generates is denoted by K (D \Kt is the connected component of D \ γ[0,t] having y on its
boundary). Let U be a subdomain of D, agreeing with D in a neighborhood of x, and not
containing y on its boundary. Then µUc denotes the measure on paths induced by chordal
SLE starting from x and stopped on exiting U ; this happens at a random time τ , at which
the hull is Kτ , the tip of the trace is γτ , and the configuration cτ is (Dτ = D \ Kτ , γτ , y).
More generally, for τ a stopping time, γτ denotes the trace stopped at τ (i.e. the process up
to time τ ), µτc the measure induced by stopping at τ . We will use γ to denote both the trace
as a process and as a subset of D (the range of the process).
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For some computations, it is convenient to fix a particular time parameterization, typ-
ically half-plane capacity of the hull (mapping conformally the domain to the upper half-
plane). Otherwise we will reason up to bicontinuous (progressive, increasing) change of time.
The class of stopping times is invariant under such time reparameterizations.

Later on, we will use tightness conditions, so we shall review some technical points
now. Let (D,x, y) be a configuration, K a hull such that (D \ K,x′, y) is a configuration
for some x′ ∈ ∂K. By the Riemann mapping theorem, there is a conformal equivalence
φK : D \ K → D; one can specify it uniquely by requiring its 2-jet at y to be trivial
(φK(y) = y, φ′K(y) = 1, φ′′K(y) = 0 if φK extends smoothly at y; this condition is coordi-
nate independent, so one can first “straighten” the boundary at y). One defines a topology
on hulls as follows: (Kn) converges toK if φ−1

Kn
converges to φ−1

K uniformly on compact sets
ofD. This is a version of Carathéodory convergence. A topology on chains (Kt)t≥0 is given
by the condition: (Kn

t )t converges to (Kt)t if (t, w) 7→ φ−1
Kn
t

(w) converges uniformly on
compact sets of [0, T ]×D. Then the Loewner equation maps continuously C(R+,R) (with
the usual topology of uniform convergence on compact sets) to the space of chains endowed
with this topology. Thus the induced measure on chains is a Radon measure. From [12], we
know that the chain is a.s. generated by a continuous non self-traversing path γ. For clarity,
we will think of SLE as a measure on such paths, with the topology on chains described
above.

To express densities, we need to define some conformal invariants. Let (D,x, y) be a con-
figuration, zx, zy analytic local coordinates at the boundary (zx mapping a neighborhood
of x in D to the neighborhood of 0 in the upper semidisk). The Poisson excursion kernel is
defined as

HD(x, y) = lim
X→x,Y→y

GD(X,Y )

=(zx(X))=(zy(Y ))

where GD is the Green function in D (with Dirichlet boundary conditions); this depends
on the choice of zx (or zy) as a 1-form. (If z′x is another local coordinate at x, dz′x/dzx is
positive). IfD andD′ agree in a neighborhood of x, we choose the same local coordinate zx,
so that HD′(x, y

′)/HD(x, y) does not depend on a choice of local coordinate at x. Similarly
for i, j = 1, 2, consider configurations (Dij , xi, yj) such that Dij agrees with Di,3−j in a
neighborhood of xi and with D3−i,j in a neighborhood of yj . Then the ratio:

HD11
(x1, y1)HD22

(x2, y2)

HD12(x1, y2)HD21(x2, y1)

is defined independently of any (coherent) choice of local coordinates at xi, yj . To simplify
the notation, if c = (D,x, y) is a configuration, we set H(c) = HD(x, y).

There is a σ-finite measure µloop on unrooted loops in C, the Brownian loop measure
([6, 9]). As in [5], let us denote

m(D;K,K ′) = µloop{δ : δ ⊂ D, δ ∩K 6= ∅, δ ∩K ′ 6= ∅}.

In accordance with [6], set α = ακ = 6−κ
2κ , λ = λκ = (6−κ)(8−3κ)

2κ .

P 3. – Assume that c = (D,x, y) and c′ = (D′, x, y′) are configurations
agreeing in a neighborhood U of x such that U is compact and at positive distance to the
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