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CONVEX BODIES ASSOCIATED TO LINEAR SERIES

 R LAZARSFELD  M MUSTAT, Ă

A. – In his work on log-concavity of multiplicities, Okounkov showed in passing that one
could associate a convex body to a linear series on a projective variety, and then use convex geometry to
study such linear systems. Although Okounkov was essentially working in the classical setting of ample
line bundles, it turns out that the construction goes through for an arbitrary big divisor. Moreover, this
viewpoint renders transparent many basic facts about asymptotic invariants of linear series, and opens
the door to a number of extensions. The purpose of this paper is to initiate a systematic development
of the theory, and to give some applications and examples.

R. – Dans son travail sur la log-concavité des multiplicités, Okounkov montre au passage
que l’on peut associer un corps convexe à un système linéaire sur une variété projective, puis utiliser la
géométrie convexe pour étudier ces systèmes linéaires. Bien qu’Okounkov travaille essentiellement dans
le cadre classique des fibrés en droites amples, il se trouve que sa construction s’étend au cas d’un grand
diviseur arbitraire. De plus, ce point de vue permet de rendre transparentes de nombreuses propriétés de
base des invariants asymptotiques des systèmes linéaires, et ouvre la porte à de nombreuses extensions.
Le but de cet article est d’initier un développement systématique de la théorie et de donner quelques
applications et exemples.

Introduction

In his interesting papers [34] and [36], Okounkov showed in passing that one could asso-
ciate a convex body to a linear series on a projective variety, and then use convex geometry to
study such linear systems. Although Okounkov was essentially working in the classical set-
ting of ample line bundles, it turns out that the construction goes through for an arbitrary big
divisor. Moreover, one can recover and extend from this viewpoint most of the fundamental
results from the asymptotic theory of linear series. The purpose of this paper is to initiate a
systematic development of this theory, and to give a number of applications and examples.
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We start by describing Okounkov’s construction. LetX be a smooth irreducible projective
variety of dimension d defined over an uncountable algebraically closed field K of arbitrary
characteristic. (1) The construction depends upon the choice of a fixed flag

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ . . . ⊇ Yd−1 ⊇ Yd = {pt},

where Yi is a smooth irreducible subvariety of codimension i in X. Given a big divisor (2) D

on X, one defines a valuation-like function

(*) ν = νY• = νY•,D :
(
H0
(
X,OX(D)

)
−{0}

)
−→ Zd , s 7→ ν(s) =

(
ν1(s), . . . , νd(s)

)
as follows. First, set ν1 = ν1(s) = ordY1

(s). Then s determines in the natural way a section

s̃1 ∈ H0
(
X,OX(D − ν1Y1)

)
that does not vanish identically along Y1, and so we get by restricting a non-zero section

s1 ∈ H0
(
Y1,OY1(D − ν1Y1)

)
.

Then take
ν2(s) = ordY2

(s1),

and continue in this manner to define the remaining νi(s). For example, when X = Pd and
Y • is a flag of linear spaces, νY• is essentially the lexicographic valuation on polynomials.

Next, define

vect(|D |) = Im
(

(H0
(
X,OX(D)

)
− {0}) νY−→ Zd

)
to be the set of valuation vectors of non-zero sections ofOX(D). It is not hard to check that

# vect(|D |) = h0(X,OX(D)).

Then finally set

∆(D) = ∆Y•(D) = closed convex hull
( ⋃
m≥1

1
m · vect(|mD |)

)
.

Thus ∆(D) is a convex body in Rd = Zd ⊗R, which we call the Okounkov body of D (with
respect to the fixed flag Y•).

One can view Okounkov’s construction as a generalization of a correspondence familiar
from toric geometry, where a torus-invariant divisor D on a toric variety X determines a
rational polytope PD. In this case, working with respect to a flag of invariant subvarieties
of X, ∆(D) is a translate of PD. An analogous polyhedron on spherical varieties has been
studied in [10], [35], [1], [26]. On the other hand, the convex bodies ∆(D) typically have a
less classical flavor even when D is ample. For instance, let X be an abelian surface having
Picard number ρ(X) ≥ 3, and choose an ample curve C ⊆ X together with a smooth point
x ∈ C, yielding the flag

X ⊇ C ⊇ {x}.
Given an ample divisorD onX, denote by µ = µ(D) ∈ R the smallest root of the quadratic
polynomial p(t) = (D− tC)2: for most choices ofD, µ(D) is irrational. Here the Okounkov

(1) In the body of the paper, we will relax many of the hypotheses appearing here in the introduction.
(2) Recall that by definition a divisor D is big if h0

(
X,OX(mD)

)
grows like md.
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Slope  =  - ( C • C ) 

  μ(D)  

( D • C ) 

F 1. Okounkov body of a divisor on an abelian surface

body ofD is the trapezoidal region in R2 shown in Figure 1. Note that in this case ∆(D), al-
though polyhedral, is usually not rational. We give in §6.3 a four-dimensional example where
∆(D) is not even polyhedral.

As one might suspect, the standard Euclidean volume of ∆(D) in Rd is related to the rate
of growth of the dimensions h0

(
X,OX(mD)

)
. In fact, Okounkov’s arguments in [36, §3] –

which are based on results [27] of Khovanskii – go through without change to prove

T A. – If D is any big divisor on X, then

volRd

(
∆(D)

)
=

1

d!
· volX(D).

The quantity on the right is the volume of D, defined as the limit

volX(D) =def lim
m→∞

h0
(
X,OX(mD)

)
md/d!

.

In the classical case, when D is ample, volX(D) =
∫
c1(OX(D))d is just the top self-

intersection number of D. In general, the volume is an interesting and delicate invariant of
a big divisor, which has lately been the focus of considerable work (cf. [29, Chapt. 2.2], [6],
[15]). It plays a pivotal role in several important recent developments in higher dimensional
geometry, e.g. [8], [41], [23], [40].

We study the variation of these bodies as functions ofD. It is not hard to check that ∆(D)

depends only on the numerical equivalence class of D, and that ∆(pD) = p ·∆(D) for every
positive integer p. It follows that there is a naturally defined Okounkov body ∆(ξ) ⊆ Rd

associated to every big rational numerical equivalence class ξ ∈ N1(X)Q, and as before
volRd(∆(ξ)) = 1

d! · volX(ξ). We prove:

T B. – There exists a closed convex cone

∆(X) ⊆ Rd ×N1(X)R
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Δ(ξ)

ξ
N1(X )R

Δ(X)

0

F 2. Global Okounkov body

characterized by the property that in the diagram

∆(X)

%%JJ
JJJ

JJJ
JJ

⊆ Rd ×N1(X)R

pr2wwooo
ooo
ooo
oo

N1(X)R,

the fibre ∆(X)ξ ⊆ Rd × {ξ} = Rd of ∆(X) over any big class ξ ∈ N1(X)Q is ∆(ξ).

This is illustrated schematically in Figure 2. The image of ∆(X) in N1(X)R is the so-called
pseudo-effective cone Eff(X) of X, i.e. the closure of the cone spanned by all effective divi-
sors: its interior is the big cone Big(X) of X. Thus the theorem yields a natural definition
of ∆(ξ) ⊆ Rd for any big class ξ ∈ N1(X)R, viz. ∆(ξ) = ∆(X)ξ. It is amusing to note
that already in the example of an abelian surface considered above, the cone ∆(X) is non-
polyhedral. (3)

Theorem B renders transparent several basic properties of the volume function volX
established by the first author in [29, 2.2C, 11.4.A]. First, since the volumes of the fibres
∆(ξ) = ∆(X)ξ vary continuously for ξ in the interior of pr2(∆(X)) ⊆ N1(X)R, one
deduces that the volume of a big class is computed by a continuous function

volX : Big(X) −→ R.

Moreover ∆(ξ) + ∆(ξ′) ⊆ ∆(ξ + ξ′) for any two big classes ξ, ξ′ ∈ N1(X)R, and so the
Brunn-Minkowski theorem yields the log-concavity relation

volX(ξ + ξ′)1/d ≥ volX(ξ)1/d + volX(ξ′)1/d

for any two such classes. (4)

(3) This follows for instance from the observation that µ(D) varies non-linearly in D.
(4) In the classical setting, it was this application of Brunn-Minkowski that motivated Okounkov’s construction
in [36]. We remark that it was established in [29] that volX is actually continuous on all of N1(X)R – i.e. that
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