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C0-RIGIDITY OF CHARACTERISTICS
IN SYMPLECTIC GEOMETRY

 E OPSHTEIN

A. – The paper concerns a C0-rigidity result for the characteristic foliations in symplec-
tic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a
smooth hypersurface also preserves its characteristic foliation.

R. – Cet article porte sur un résultat de rigidité C0 du feuilletage caractéristique en géomé-
trie symplectique. Un homéomorphisme symplectique (au sens d’Eliashberg-Gromov) qui préserve une
hypersurface lisse préserve également son feuilletage caractéristique.

Introduction

Gromov and Eliashberg showed that a C0-limit of symplectic diffeomorphisms which is it-
self a diffeomorphism is symplectic ([3, 8], see also [9]). This rigidity result leads to the defini-
tion of symplectic homeomorphisms (the C0-limits of symplectic diffeomorphisms which are
homeomorphisms), and shows that they define a proper subset of volume preserving homeo-
morphisms in dimension at least 4. It also raises the question of the survival of the symplec-
tic invariants to this limit process. Which classical invariants of symplectic geometry remain
invariants of this maybe softer C0-symplectic geometry? This paper shows that the charac-
teristic foliation is one of them.

T 1. – LetS andS′ be smooth hypersurfaces of some symplectic manifolds (M,ω),
(M ′, ω′). Any symplectic homeomorphism between M and M ′ which sends S to S′ transports
the characteristic foliation of S to that of S′.

The characteristic foliation is a symplectic invariant of a given hypersurface S, which can
be defined as the integral foliation of the (one dimensional) null space of the restriction of
the symplectic form to S. This definition is intrinsically smooth since it involves the tangent
spaces of S. But the roles of this foliation in symplectic geometry are many. In particular,
one of its rather folkloric properties concerns non-removable intersection: if two smoothly
bounded open sets intersect exactly on their boundaries, and if no symplectic perturbation
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can separate them, then the boundaries share a common closed invariant subset of the char-
acteristic foliation [10, 11, 13, 14]. This paper proceeds from the remark that this property
has a meaning also in the continuous category, so defining this foliation in continuous terms
is conceivable.

An application of this theorem is a weak answer to a question by Eliashberg and Hofer
about the symplectic characterization of a hypersurface by the open set it bounds: Under
which conditions does the existence of a symplectomorphism between two smoothly bounded
open sets in symplectic manifolds imply that their boundaries are symplectomorphic also [6] ?
Previous works show that the only realistic constraints on the domains and their boundaries
alone must be very restrictive [1, 2, 5]. In contrast, Theorem 1 can allow to get rid of these
conditions on the expense of only considering a special class of symplectomorphisms.

T 2. – Let U be a smoothly bounded open set in R4. Assume that there is a sym-
plectomorphism between B4(1) and U which extends continuously to a homeomorphism be-
tween S3 and ∂U . Then ∂U is symplectomorphic to S3.

The paper is organized as follows. We first define symplectic hammers and explain their
roles: Theorem 1 proceeds from a localization of their actions along characteristics (Sec-
tion 1). This localization is proved in section 2. We then present the application in the last
section.

Acknowledgments. I wish to thank Leonid Polterovich for making me aware of a serious mis-
take in the first version of the proof.

1. Symplectic hammers

Let S be a hypersurface in a symplectic manifoldM . We say thatB is a small ball centered
on S if it is a symplectic embedding of an euclidean ball centered at the origin into M which
sends R2n−1 := R×Cn−1 ⊂ Cn to S. Such a ball is disconnected by S into two components
denoted by S+ and S−. By a classical result, any point of S is the center of such a ball. Fix
also a metric on M in order to refer to small sets.

D 1.1. – Given two points x, y on S ∩ B and a (small) positive real ε, an
ε-symplectic hammer between x and y with support in B is a continuous path of symplectic
homeomorphisms Φt (t ∈ [0, 1]) with common supports in B, and for which there exist two
open sets Uε(x) and Uε(y) contained in the ε-balls around x and y respectively such that:

1. Φ0 = Id,
2. Φt(z) ∈ S+ for all t ∈]0, 1] and z ∈ S ∩ Uε(x),
3. Φt(z) ∈ S− for all t ∈]0, 1] and z ∈ S ∩ Uε(y),
4. Φt(z) ∈ S for all t ∈ [0, 1] and z ∈ S\

(
Uε(x) ∪ Uε(y)

)
.

A smooth hammer will refer to a smooth isotopy of smooth symplectomorphisms verifying the
four conditions above.

In other terms, Φt preserves the hypersurface S except for two bumps in opposite sides (a
symmetry is necessary in view of the volume preservation).
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One can easily construct examples of symplectic hammers.

P 1.2. – If x, y ∈ B∩S lie in the same characteristic, there exist ε-symplectic
hammers between x and y for all ε > 0.

Proof. – Since all hypersurfaces are locally symplectically the same, it is enough to pro-
duce a symplectic hammer for R2n−1 = {Im z1 = 0} ⊂ Cn between the points p = 0 and
q = (1/2, 0, . . . , 0). Putting x1 = Re z1, y1 = Im z1 and ri = |zi|, consider a Hamiltonian
of the following type.

H(z1, . . . , zn) := χ(y1)ρ(x1)Πn
i=2f(ri).

If χ, ρ and f are the bell functions represented in Figure 2, and maybe multiplying H by
a small constant in order to slow the flow down produces a symplectic hammer between x
and y.

χ(y1)

f(ri)

ρ(x1)

T
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ε
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x y
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F 2. The Hamiltonian flow of H in the proof of Proposition 1.2.

Proposition 1.2 can easily be reversed in the smooth category: two points lie in the same
characteristic leaf of S ∩ B if and only if there exist smooth symplectic hammers between
them. It is less obvious, but still true that all the symplectic hammers also meet this con-
straint. Theorem 1 obviously follows because the class of symplectic hammers is preserved
by symplectic homeomorphisms.

P 1.3. – A hypersurface S and a small ball B centered on S being given, there
exists an ε-hammer between x, y ∈ B ∩ S with support in B for all small ε if and only if x and
y are on the same characteristic leaf.
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Proof of Theorem 1 (assuming Proposition 1.3). – Let M,M ′, S, S′ and Φ be as in The-
orem 1, and put any metric on M and M ′. Consider two points x, y ∈ S which lie in the
same characteristic. Consider a covering B = {Bα} of S by small balls (in the above sense)
whose images by Φ are contained in small balls B′α centered on S′. Let (xi)i≤N be a chain
between x and y (that is x0 = x, xN = y) such that xi and xi+1 are always in a same ballBi.
Then there exist ε-hammers Φ

(ε)
t with supports in Bi between xi and xi+1 for all ε. The iso-

topies Φ◦Φ(ε)
t ◦Φ−1 define continuous δ(ε)-symplectic hammers with support inB′i between

Φ(xi) and Φ(xi+1), where δ(ε) goes to zero with ε. Therefore by Proposition 1.3, Φ(xi) and
Φ(xi+1) are on the same characteristic, so Φ(x) and Φ(y) are also on the same characteris-
tic.

2. Proof of Proposition 1.3

The idea is the following. Since preserving a foliation is a local property, and since all
hypersurfaces are locally the same in the symplectic world, we could translate the non-
preservation of one characteristic by a symplectic homeomorphism to the existence of a
local, hence universal object (a hammer between points on distinct characteristics) which
would exist on all hypersurfaces. These continuous hammers would allow to break intersec-
tions between open sets as long as these intersections only consist of one characteristic. But
some such intersections are known to be non-removable: the most famous one being the
intersection between the complement of the cylinder Z(1) and the closed ball B2n(1).

L 2.1. – If Proposition 1.3 does not hold, then for any point x of the euclidean sphere
S2n−1 ⊂ Cn and for any positive (small) ε, there exists a continuous ε-symplectic hammer
between x and a point y which does not lie in the characteristic circle passing through x.

Proof. – Assume that Proposition 1.3 does not hold. Then there exists a small ball cen-
tered on a hypersurface S, two points p, q ∈ S∩B which are not in the same characteristic of
S∩B and a family Φ(ε) := (Φ

(ε)
t )t∈[0,1] of ε-symplectic hammers with supports inB between

p and q. By definition of a small ball, there is a symplectic diffeomorphism Ψ1 between B
and an euclidean ball B1 ⊂ Cn around the origin with Ψ(S ∩ B) = R2n−1 ∩ B1. Then Ψ1

takes Φ(ε) to an ε-hammer between Ψ1(p) and Ψ1(q) which are not on the same character-
istic. By use of translation and rescaling, we can assume that Ψ1(p) is the origin andB1 is as
small a neighbourhood of 0 as wished.

Now given the point x ∈ S2n−1, and if B1 is small enough, there exists a symplectic dif-
feomorphism Ψ2 : B1 −→ Cn with Ψ2(B1 ∩ R2n−1) ⊂ S2n−1, Ψ2(0) = x and such that
different characteristics of R2n−1 ∩B1 are sent by Ψ2 not only to different characteristics of
S2n−1 ∩Ψ2(B1) but even of S2n−1 (this means that we do not allow Ψ2 to “bend” B1 so as
to take two different characteristics to two different segments of a same characteristic circle
of S2n−1). The continuous symplectic isotopies obtained by transporting Φ(ε) by Ψ2 ◦ Ψ1

are ε-hammers between x and the point y := Ψ2(Ψ1(q)) which is not on the characteristic
through x.
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