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ON A CONJECTURE OF KOTTWITZ AND RAPOPORT

 Q R. GASHI

To Bob Kottwitz, my dedicated teacher and mentor, with profound gratitude and admiration.

A. – We prove a conjecture of Kottwitz and Rapoport which implies a converse to
Mazur’s Inequality for all (connected) split and quasi-split unramified reductive groups. Our results
are related to the non-emptiness of certain affine Deligne-Lusztig varieties.

R. – On démontre une conjecture de Kottwitz et Rapoport sur une réciproque à l’inégalité
de Mazur pour tout groupe (connexe) réductif, déployé ou quasi-déployé non-ramifié. Nos résultats
sont liés à la non-vacuité de certaines variétés de Deligne-Lusztig affines.

1. Introduction

Mazur’s Inequality ([14], [15]) is related to the study of p-adic estimates of the number
of points of certain algebraic varieties over a finite field of characteristic p. It is most easily
stated using isocrystals. Before stating the precise inequality, we recall the definition of an
isocrystal: it is a pair (V,Φ), where V is a finite-dimensional vector space over the fraction
field K of the ring of Witt vectors W (Fp), and Φ is a σ-linear bijective endomorphism of V ,
where σ is the automorphism ofK induced by the Frobenius automorphism of Fp. Next, we
recall Mazur’s inequality.

Suppose that (V,Φ) is an isocrystal of dimension n. By Dieudonné-Manin theory, we can
associate to V its Newton vector

ν(V,Φ) ∈ (Qn)+ := {(ν1, . . . , νn) ∈ Qn : ν1 ≥ ν2 ≥ · · · ≥ νn},

which classifies isocrystals of dimension n up to isomorphism. If Λ is a W (Fp)-lattice in
V , then we can associate to Λ the Hodge vector µ(Λ) ∈ (Zn)+ := (Qn)+ ∩ Zn, which
measures the relative position of the lattices Λ and Φ(Λ). Let ν(V,Φ) := (ν1, . . . , νn) and
µ(Λ) := (µ1, . . . , µn). Mazur’s Inequality asserts that µ(Λ) ≥ ν(V,Φ), where ≥ is the
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dominance order, i.e., µ1 ≥ ν1, µ1 + µ2 ≥ ν1 + ν2, · · · , µ1 + . . . µn−1 ≥ ν1 + . . . νn−1,
and µ1 + . . . µn = ν1 + . . . νn.

A converse to this inequality is proved by Kottwitz and Rapoport in [11], where they show
that if (V,Φ) is an isocrystal of dimension n and µ ∈ (Zn)+ is such that µ ≥ ν(V,Φ), then
there exists a W (Fp)-lattice Λ in V satisfying µ = µ(Λ).

Both Mazur’s Inequality and its converse can be regarded as statements for the group
GLn, since the dominance order arises naturally in the context of the root system forGLn. In
fact, there is a bijection (see [9]) between isomorphism classes of isocrystals of dimension n
and the set of σ-conjugacy classes in GLn(K). Kottwitz studies in ibid. the set B(G) of
the σ-conjugacy classes in G(K), for a connected reductive group G over Qp, and, as he
notes, there is a bijection between B(G) and the isomorphism classes of isocrystals with
“G-structure” of a certain dimension (for G = GLn these are simply the above isocrystals).
Thus, results on isocrystals, and more generally isocrystals with additional structure, are
related to those on the σ-conjugacy classes of certain reductive groups.

With this viewpoint in mind, we are interested in the group-theoretic generalizations of
Mazur’s Inequality and its converse, especially since they appear naturally in the study of
the non-emptiness of certain affine Deligne-Lusztig varieties. To make these statements more
precise, we introduce some notation.

Let F be a finite extension of Qp, with uniformizing element π, and let oF be the ring
of integers of F . Suppose that G is a split connected reductive group over F (unramified
quasi-split groups are treated in the last section of the paper). Let B be a Borel subgroup
in G and T a maximal torus in B, both defined over oF . Let L be the completion of the
maximal unramified extension of F in some algebraic closure of F , and σ the Frobenius
automorphism of L over F . The valuation ring of L is denoted by oL.

We writeX for the group of co-charactersX∗(T ). Let µ ∈ X be a dominant element and
b ∈ G(L). The affine Deligne-Lusztig variety XG

µ (b) is defined by

XG
µ (b) := {x ∈ G(L)/G(oL) : x−1bσ(x) ∈ G(oL)µ(π)G(oL)}.

These p-adic “counterparts” of the classical Deligne-Lusztig varieties get their name by
virtue of being defined in a similar way as the latter, and have been studied by a number of
authors (see, for example, [8], [7], [23], and references therein). For the relevance of affine
Deligne-Lusztig varieties to Shimura varieties, the reader may wish to consult [18].

We need some more notation to be able to formulate the group-theoretic generalizations
of Mazur’s Inequality and its converse. Let P = MN be a parabolic subgroup of G that
contains B, where M is the unique Levi subgroup of P containing T . The Weyl group of T
in G is denoted by W . We let XG and XM be the quotient of X by the coroot lattice for G
and M , respectively. Also, we let ϕG : X → XG and ϕM : X → XM denote the respective
natural projection maps.

Let B = TU , with U the unipotent radical. If g ∈ G(L), then there is a unique element
of X, denoted by rB(g), so that g ∈ G(oL) rB(g)(π)U(L). We have a well-defined map
wG : G(L)→ XG, the Kottwitz map [9], where for g ∈ G(L), we writewG(g) for the image of
rB(g) under the canonical surjectionX → XG. In a completely analogous way, considering
M instead of G, one defines the map wM : M(L)→ XM .
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We use the partial ordering
P
≤ in XM , where for µ, ν ∈ XM , we write ν

P
≤ µ if and only

if µ − ν is a nonnegative integral linear combination of the images in XM of the coroots
corresponding to the simple roots of T in N .

We will make use of a subset X+
M of XM , which we now define. Let aP := X∗(TP )⊗Z R,

where TP is the identity component of the center of M (and thus TP is a split torus over F ).
Note that there is a canonical isomorphism % : aP ' XM ⊗Z R obtained by tensoring with
R the composition X∗(TP ) ↪→ X∗(T )� XM . Let ξ : XM → XM ⊗Z R be the natural map.
The subset X+

M ⊂ XM is defined as the set of all elements ν ∈ XM such that (%−1 ◦ ξ) (ν)

lies in the subset

{x ∈ aP : 〈α, x〉 > 0, for every root α of TP in N} ⊂ aP .

The pairing 〈 , 〉 appearing in the last line is induced by the usual one between weights and
coweights of TP .

Next, let b ∈ M(L). We recall briefly the notion of b being basic (for further details see
[9]): In loc. cit., §4, Kottwitz defines a map ε : M(L) → HomL(D,M), which he denotes
by ν, and where D is the diagonalizable pro-algebraic group over Qp whose character group
is Q. An element b ∈M(L) is called basic if ε(b) ∈ HomL(D,M) factors through the center
of M . The element ε(b) is linked with the slopes of the isocrystal corresponding to b. Let us
mention that ε(b) is characterized by the existence of an integer n > 0, an element c ∈M(L)

and a uniformizing element π of F such that the following three conditions hold:

nε(b) ∈ HomL(Gm,M),

Int(c) ◦ (nε(b)) is defined over the fixed field of σn on L, and

c(bσ)nc−1 = c · (nε(b))(π) · c−1 · σn,
where Int(c) denotes the inner automorphism x 7→ cxc−1 ofM(L), and where we recall that
σ is the Frobenius of L over F .

We now state the first main result of this paper.

T 1.1. – Let µ ∈ X be dominant and let b ∈ M(L) be a basic element such that
wM (b) lies in X+

M . Then

XG
µ (b) 6= ∅⇐⇒ wM (b)

P
≤ ϕM (µ).

We prove a similar theorem for quasi-split unramified groups. The precise formulation
(Theorem 5.1) and the proof of that result is postponed until the last section of the paper.

We remark that since every σ-conjugacy class in G(L) contains an element that is basic
in some standard Levi subgroup M (see [9]), Theorem 1.1 proves the non-emptiness of the
affine Deligne-Lusztig varieties XG

µ (b), where b ∈ G(L).

One direction in the theorem, namely

XG
µ (b) 6= ∅ =⇒ wM (b)

P
≤ ϕM (µ),

is the group-theoretic generalization of Mazur’s Inequality, and it is proved by Rapoport and
Richartz in [19] (see also [10, Theorem 1.1, part (1)]).
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The other direction, i.e., the group-theoretic generalization of the converse to Mazur’s
Inequality, is a conjecture of Kottwitz and Rapoport [11]. Next, we discuss how their
conjecture is reduced to one formulated only in terms of root systems. Let

Pµ := {ν ∈ X : (i)ϕG(ν) = ϕG(µ); and (ii) ν ∈ Conv (Wµ)} ,

where Conv (Wµ) is the convex hull of the Weyl orbit Wµ := {w(µ) : w ∈W} of
µ in a := X ⊗Z R. Then we have (cf. [10, Theorem 4.3])

XG
µ (b) 6= ∅⇐⇒ wM (b) ∈ ϕM ( Pµ).

Thus the other implication in Theorem 1.1 follows if we show that

wM (b)
P
≤ ϕM (µ) =⇒ wM (b) ∈ ϕM ( Pµ).

For this, it suffices to show that for ν ∈ XM we have

(1) ν
P
≤ ϕM (µ) =⇒ ν ∈ ϕM ( Pµ).

(Note that the condition from Theorem 1.1 that b ∈ M(L) be basic does not appear in the
last implication. Also, we do not require that ν ∈ X+

M , but only that ν ∈ XM .) As can be
seen from [10, Section 4.4], we have

(2) ν
P
≤ ϕM (µ)⇐⇒

{
(i) ν andµ have the same image in XG, and

(ii) the image of ν in aM lies in prM (Conv (Wµ)) .

Taking into account (2), the implication (1) can be reformulated:

(3)
(i) ν andµ have the same image in XG, and

(ii) the image of ν in aM lies in prM (Conv (Wµ))

}
=⇒ ν ∈ ϕM ( Pµ).

The implication (3) follows from

T 1.2 (Kottwitz-Rapoport Conjecture; split case). – We have that

ϕM ( Pµ) = {ν ∈ XM : (i) ν, µ have the same image in XG;

(ii) the image of ν in aM lies in prM (Conv (Wµ))},

where aM := XM ⊗Z R and prM : a→ aM denotes the natural projection induced by ϕM .

For the above theorem, it is easily seen that the set on the left-hand side is contained in
the set on the right-hand side. The point is to prove the converse, which is equivalent to the
implication (3).

A variant of Theorem 1.2, in the case of quasi-split unramified groups, is proved in the
last section (see Theorem 5.2). We remark that Theorem 1.2 is a statement that is purely a
root-theoretic one, so it remains true when we work over other fields of characteristic zero,
not just Qp.

Theorem 1.2 had been previously proved for GLn and GSp2n by Kottwitz and Rapoport
[11] and then for all classical groups by Lucarelli [12]. In addition, Wintenberger, using
different methods, proved this result for µ minuscule (see [24]). A more general version of
this theorem for GLn was proved in [5, Theorem A] using the theory of toric varieties. (For
more details about the precise relation between Theorem 1.2 and cohomology-vanishing on
toric varieties associated with root systems see [5], [4].)
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