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MULTI-HARNACK SMOOTHINGS
OF REAL PLANE BRANCHES

 P D GONZÁLEZ PÉREZ
 J-J RISLER

A. – Let ∆ ⊂ R2 be an integral convex polygon. G. Mikhalkin introduced the notion of
Harnack curves, a class of real algebraic curves, defined by polynomials supported on ∆ and contained
in the corresponding toric surface. He proved their existence, via Viro’s patchworking method, and that
the topological type of their real parts is unique (and determined by ∆). This paper is concerned with
the description of the analogous statement in the case of a smoothing of a real plane branch (C, 0).
We introduce the class of multi-Harnack smoothings of (C, 0) by passing through a resolution of sin-
gularities of (C, 0) consisting of g monomial maps (where g is the number of characteristic pairs of
the branch). A multi-Harnack smoothing is a g-parametrical deformation which arises as the result
of a sequence, beginning at the last step of the resolution, consisting of a suitable Harnack smoothing
(in terms of Mikhalkin’s definition) followed by the corresponding monomial blow down. We prove
then the unicity of the topological type of a multi-Harnack smoothing. In addition, the multi-Harnack
smoothings can be seen as multi-semi-quasi-homogeneous in terms of the parameters. Using this prop-
erty we analyze the asymptotic multi-scales of the ovals of a multi-Harnack smoothing. We prove that
these scales characterize and are characterized by the equisingularity class of the branch.

R. – Soit ∆ ⊂ R2 un polygone convexe à sommets entiers ; G. Mikhalkin a défini les
« courbes de Harnack » (définies par un polynôme de support contenu dans ∆ et plongées dans la
surface torique correspondante) et montré leur existence (via la « méthode du patchwork de Viro »)
ainsi que l’unicité de leur type topologique plongé (qui est determiné par ∆). Le but de cet article est
de montrer un résultat analogue pour la lissification (smoothing) d’un germe de branche réelle plane
(C,O) analytique réelle. On définit pour cela une classe de smoothings dite « Multi-Harnack » à l’aide
de la résolution des singularités constituée d’une suite de g éclatements toriques, si g est le nombre
de paires de Puiseux de la branche (C,O). Un smoothing multi-Harnack est réalisé de la manière sui-
vante : à chaque étape de la résolution (en commençant par la dernière) et de manière successive, un
smoothing « De Harnack » (au sens de Mikhalkin) intermédiaire est obtenu par la méthode de Viro.
On montre alors l’unicité du type topologique de tels smoothings. De plus, on peut supposer ces smoo-
things « multi-semi-quasi homogènes » ; on montre alors que des propriétés métriques (« multi-taille »
des ovales) de tels smoothings sont caractérisées en fonction de la classe d’équisingularité de (C,O) et
que réciproquement ces tailles caractérisent la classe d’équisingularité de la branche.
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Introduction

The 16th problem of Hilbert addresses the determination and the understanding of the
possible topological types of smooth real algebraic curves of a given degree in the projec-
tive plane RP 2. This paper is concerned with a local version of this problem: given a germ
(C, 0) of real algebraic plane curve singularity, determine the possible topological types of the
smoothings of C. A smoothing of C is a real analytic family of plane curves Ct for t ∈ [0, 1],
such that C0 = C and for 0 < t� 1 the curve Ct ∩ B is nonsingular and transversal to the
boundary of a Milnor ball B of the singularity (C, 0). In this case the real part RCt of Ct
intersected with the interior of B consists of finitely many ovals and non-compact compo-
nents.

In the algebraic case it was shown by Harnack that a real plane projective curve of de-
gree d has at most 1

2 (d − 1)(d − 2) + 1 connected components. A smooth curve with this
number of components is called a M -curve. In the local case there is a similar bound, which
arises from the application of the classical topological theory of Smith. A smoothing which
reaches this bound on the number of connected components is called a M -smoothing. It
should be noticed that in the local caseM -smoothings do not always exist (see [17]). One rel-
evant open problem in the theory is to determine the actual maximal number of components
of a smoothing of (C, 0), forC running in a suitable form of equisingularity class refining the
classical notion of Zariski of equisingularity class in the complex case (see [19]).

Quite recently Mikhalkin proved a beautiful topological rigidity property of those
M -curves in RP 2 which are embedded in maximal position with respect to the coordinate
lines (see [22] and Section 4). His result, which holds more generally, for those M -curves in
projective toric surfaces which are cyclically in maximal position with respect to the toric
coordinate lines, is proved by analyzing the topological properties of the associated amoebas.
The amoeba of a curve C ⊂ (C∗)2 is the image of it by the map Log : (C∗)2 → R2, given by
(x, y) 7→ (log |x|, log |y|). Conceptually, the amoebas are intermediate objects which lay in
between classical algebraic curves and tropical curves. See [5, 8, 14, 15, 22, 23, 28] for more
on this notion and its applications.

In this paper we study smoothings of a real plane branch singularity (C, 0), i.e., C is a
real algebraic plane curve such that the germ (C, 0) is analytically irreducible in (C2, 0).
Risler proved that any such germ (C, 0) admits an M -smoothing with the maximal number
ovals, namely 1

2µ(C)0, where µ denotes the Milnor number. The technique used, called
nowadays the blow-up method, is a generalization of the classical Harnack construction of
M -curves by small perturbations, which uses the components of the exceptional divisor as
a basis of rank one (see [30], [18] and [19]). One of our motivations was to study to which
extent Mikhalkin’s result holds for smoothings of singular points of real algebraic plane
curves, particularly for Harnack smoothings, those M -smoothings which are in maximal
position with good oscillation with respect to two coordinates lines through the singular
point.

We develop a new construction of smoothings of a real plane branch (C, 0) by using
Viro’s patchworking method (see [16, 35, 36, 37, 38], see also [8, 15, 31] for an exposition and
[3, 32, 33, 34] for some generalizations). Since real plane branches are Newton degenerate in
general, we cannot apply patchworking method directly. Instead we apply the patchworking
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method for certain Newton non-degenerate curve singularities with several branches which
are defined by semi-quasi-homogeneous (sqh) power series. These singularities appear as a
result of iterating deformations of the strict transforms (C(j), oj) of the branch at certain
infinitely near points oj of the embedded resolution of singularities of (C, 0). Our method
yields multi-parametric deformations, which we call multi-semi-quasi-homogeneous (msqh),
and provides simultaneously msqh-smoothings of the strict transforms (C(j), oj). We
exhibit suitable hypotheses which characterize M -smoothings for this class of deformations
in terms of the existence of certainM -curves and Harnack curves in projective toric surfaces
(see Theorem 9.1).

We introduce the notion of multi-Harnack smoothings, those Harnack smoothings such
that the msqh-M -smoothings of the strict transformsC(j) appearing in the process are again
Harnack. We prove that any real plane branch C admits a multi-Harnack smoothing. For
this purpose we prove first the existence of Harnack smoothings of singularities defined by
certain sqh-series (see Proposition 5.8). One of our main results states that multi-Harnack
smoothings of a real plane branch (C, 0) have a unique topological type which depends only
on the complex equisingular class of (C, 0) (see Theorem 9.4). In particular multi-Harnack
smoothings do not have nested ovals. Theorem 9.4 can be understood as a local version of
Mikhalkin’s Theorem (see Theorem 4.1). The proof is based on Theorem 9.1 and on an exten-
sion of Mikhalkin’s result for Harnack smoothings of certain non-degenerate singular points
(Theorem 5.2). We also analyze certain multi-scaled regions containing the ovals (see Theo-
rem 10.1). The phenomena is quite analog to the analysis of the asymptotic concentration of
the curvature of the Milnor fibers in the complex case, due to García Barroso and Teissier [7].

It is a challenge for the future to extend as possible the techniques and results of this paper
to the constructions of smoothings of other singular points of real plane curves.

The paper is organized as follows. In Section 1 we introduce some definitions and nota-
tions; in Sections 2 and 3 we introduce the patchworking method, also in the toric context;
we recall Mikhalkin’s result on Harnack curves in projective toric surfaces in Section 4; in
Section 5 we recall the notion of smoothings of real plane curve singular points and we de-
termine the topological types of Harnack smoothings of singularities defined by certain non-
degenerate semi-quasi-homogeneous polynomials (see Theorem 5.2). In Section 6 we recall
the construction of a toric resolution of a plane branch. In Section 8 we describe some ge-
ometrical features of the patchworking method for the sqh-smoothings. In Sections 9 and
10, after introducing the notion of msqh-smoothing, we prove the main results of the paper:
the characterization ofM -msqh-smoothings and multi-Harnack smoothings in Theorem 9.1
and Corollary 9.2, the characterization of the topological type of multi-Harnack smoothings
in Theorem 9.4 and the description of the asymptotic multi-scales of the ovals in Theorem
10.1. Finally, in the last section we analyse two more examples in detail.

1. Basic notations and definitions

A real algebraic (resp. analytic) variety is a complex algebraic (resp. analytic) variety V
equipped with an anti-holomorphic involution η; we denote by RV its real part i.e., the set
of points of V fixed by η. For instance, a real algebraic plane curve C ⊂ C2 is a complex
plane curve which is invariant under complex conjugation.
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In this paper the term polygon (resp. polyhedron) means a convex polygon (resp. polyhe-
dron) with integral vertices. We use the following notations and definitions.

If F =
∑
α cαx

α ∈ C[x] (resp. F ∈ C{x}) for x = (x1, . . . , xn) the Newton poly-
gon of F (resp. the local Newton polygon) is the convex hull in Rn of the set {α | cα 6= 0}
(resp. of ∪cα 6=0α + Rn

≥0); if the local Newton polyhedron of F meets all the coordinate
axes, the Newton diagram of F is the region bounded by the local Newton polyhedron of
F and the coordinate hyperplanes. If Λ ⊂ Rn we denote by FΛ the symbolic restriction
FΛ :=

∑
α∈Λ∩Zn cαx

α.
If P ∈ C{x, y} and Λ is an edge of the local Newton polygon of P then PΛ is of the form:

(1) PΛ = cxayb
e∏
i=1

(yn − αixm),

where c 6= 0, a, b ∈ Z≥0, and the integers n,m ≥ 0 are coprime. The numbers α1, . . . , αe ∈ C∗

are called peripheral roots of P along the edge Λ or peripheral roots of PΛ.
The polynomial P ∈ R[x, y] is non-degenerate (resp. real non-degenerate) with respect to

its Newton polygon if for any compact face Λ of it we have that PΛ = 0 defines a nonsin-
gular subset of (C∗)2 (resp. of (R∗)2). In particular, if Λ is an edge of the Newton polygon
of P the peripheral roots (resp. the real peripheral roots) of PΛ are distinct. Notice that the
non-degeneracy (resp. real non-degeneracy) of P implies that P = 0 defines a non-singular
subset of (C∗)2 (resp. of (R∗)2). We say that P ∈ R{x, y} is non-degenerate (resp. real non-
degenerate) with respect to its local Newton polygon if for any edge Λ of it the equation
PΛ = 0 defines a nonsingular subset of (C∗)2 (resp. of (R∗)2). The notion of non-degeneracy
with respect to the Newton polyhedra extends for polynomials of more than two variables
(see [20]).

A seriesH ∈ R{x, y}, withH(0) = 0 is semi-quasi-homogeneous (sqh) if its local Newton
polygon has only one compact edge.

If Q ∈ R{t, x, y} we abuse of notation by denoting Qt the series in x, y obtained by spe-
cializing Q at t in a neighborhood of the origin.

2. The real part of a projective toric variety

We introduce basic notations and facts on the geometry of toric varieties. We refer the
reader to [8], [25] and [6] for proofs and more general statements. For simplicity we state the
notations only for surfaces.

To a two dimensional polygon Θ is associated a projective toric variety Z(Θ). The alge-
braic torus (C∗)2 is embedded as an open dense subset of Z(Θ), and acts on Z(Θ) in a way
which extends the group operation on the torus. There is a one to one correspondence be-
tween the faces of Θ and the orbits of the torus action which preserves the dimensions and
the inclusions of the closures. If Λ is a one dimensional face of Θ we denote by Z(Λ) ⊂ Z(Θ)

the associated orbit closure. The set Z(Λ) is a complex projective line embedded in Z(Θ).
These lines are called the coordinate lines of Z(Θ). The intersection of two coordinate lines
Z(Λ1) and Z(Λ2) reduces to a point which is a zero-dimensional orbit (resp. is empty) if and
only if the edges Λ1 and Λ2 intersect (resp. otherwise). The surface Z(Θ) may have singular
points only at the zero-dimensional orbits. The algebraic real torus (R∗)2 is embedded as an
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