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BRUHAT-TITS THEORY FROM BERKOVICH’S
POINT OF VIEW. I. REALIZATIONS AND
COMPACTIFICATIONS OF BUILDINGS

 B RÉMY, A THUILLIER
 A WERNER

A. – We investigate Bruhat-Tits buildings and their compactifications by means of
Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group G

over a suitable non-Archimedean field k we define a map from the Bruhat-Tits building B(G, k) to
the Berkovich analytic space Gan associated with G. Composing this map with the projection of Gan

to its flag varieties, we define a family of compactifications of B(G, k). This generalizes results by
Berkovich in the case of split groups.

Moreover, we show that the boundary strata of the compactified buildings are precisely the Bruhat-
Tits buildings associated with a certain class of parabolics. We also investigate the stabilizers of
boundary points and prove a mixed Bruhat decomposition theorem for them.

R. – Nous étudions les immeubles de Bruhat-Tits et leurs compactifications au moyen de
la géométrie analytique sur les corps complets non archimédiens au sens de Berkovich. Pour tout
groupe réductif G sur un corps non archimédien convenable k, nous définissons une application
de l’immeuble de Bruhat-Tits B(G, k) vers l’espace analytique de Berkovich Gan associé à G. En
composant cette application avec la projection sur les variétés de drapeaux, nous obtenons une famille
de compactifications de B(G, k). Ceci généralise des résultats de Berkovich sur le cas déployé.

En outre, nous démontrons que les strates au bord des immeubles compactifiés sont précisément
les immeubles de Bruhat-Tits associés à certaines classes de sous-groupes paraboliques. Nous étudions
également les stabilisateurs des points au bord et démontrons un théorème de décomposition de Bruhat
mixte pour ces groupes.

Introduction

1. – In the mid sixties, F. Bruhat and J. Tits initiated a theory which led to a deep under-
standing of reductive algebraic groups over valued fields [19], [20]. The main tool (and a con-
cise way to express the achievements) of this long-standing work is the notion of a building.
Generally speaking, a building is a gluing of (poly)simplicial subcomplexes, all isomorphic
to a given tiling naturally acted upon by a Coxeter group [2]. The copies of this tiling in
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the building are called apartments and must satisfy, by definition, strong incidence proper-
ties which make the whole space very symmetric. The buildings considered by F. Bruhat and
J. Tits are Euclidean ones, meaning that their apartments are Euclidean tilings (in fact, to
cover the case of non-discretely valued fields, one has to replace Euclidean tilings by affine
spaces acted upon by a Euclidean reflection group with a non-discrete, finite index, trans-
lation subgroup [47]). A Euclidean building carries a natural non-positively curved metric,
which allows one to classify in a geometric way maximal bounded subgroups in the rational
points of a given non-Archimedean semisimple algebraic group. This is only an instance of
the strong analogy between the Riemannian symmetric spaces associated with semisimple
real Lie groups and Bruhat-Tits buildings [45]. This analogy is our guideline here.

Indeed, in this paper we investigate Bruhat-Tits buildings and their compactification
by means of analytic geometry over non-Archimedean valued fields, as developed by
V. Berkovich—see [8] for a survey. Compactifications of symmetric spaces is now a very
classical topic, with well-known applications to group theory (e.g., group cohomology [11])
and to number theory (via the study of some relevant moduli spaces modeled on Hermitian
symmetric spaces [23]). For deeper motivation and a broader scope on compactifications of
symmetric spaces, we refer to the recent book [10], in which the case of locally symmetric
varieties is also covered. One of our main results is to construct for each semisimple group
G over a suitable non-Archimedean valued field k, a family of compactifications of the
Bruhat-Tits building B(G, k) of G over k. This family is finite, actually indexed by the con-
jugacy classes of proper parabolic k-subgroups in G. Such a family is of course the analogue
of the family of Satake [42] or Furstenberg [27] compactifications of a given Riemannian
non-compact symmetric space—see [32] for a general exposition.

In fact, the third author had previously associated, with each Bruhat-Tits building, a fam-
ily of compactifications also indexed by the conjugacy classes of proper parabolic k-sub-
groups [50] and generalizing the “maximal” version constructed before by E. Landvogt [35].
The Bruhat-Tits building B(G, k) of G over k is defined as the quotient for a suitable equiv-
alence relation, say ∼, of the product of the rational points G(k) by a natural model, say Λ,
of the apartment; we will refer to this kind of construction as a gluing procedure. The family
of compactifications of [50] was obtained by suitably compactifying Λ to obtain a compact
space Λ and extending ∼ to an equivalence relation on G(k) × Λ. As expected, for a given
group G we eventually identify the latter family of compactifications with the one we con-
struct here, see [39].

Our compactification procedure makes use of embeddings of Bruhat-Tits buildings in the
analytic versions of some well-known homogeneous varieties (in the context of algebraic
transformation groups), namely flag manifolds. The idea goes back to V. Berkovich in the
case when G splits over its ground field k [4, §5]. One aesthetic advantage of the embedding
procedure is that it is similar to the historical ways to compactify symmetric spaces, e.g., by
seeing them as topological subspaces of some projective spaces of Hermitian matrices or
inside spaces of probability measures on a flag manifold. More usefully (as we hope), the
fact that we specifically embed buildings into compact spaces from Berkovich’s theory may
make these compactifications useful for a better understanding of non-Archimedean spaces
relevant to number theory (in the case of Hermitian symmetric spaces). For instance, the

4 e SÉRIE – TOME 43 – 2010 – No 3



BRUHAT-TITS THEORY FROM BERKOVICH’S POINT OF VIEW I 463

building of GLn over a valued field k is the “combinatorial skeleton” of the Drinfel’d half-
space Ωn−1 over k [18], and it would be interesting to know whether the precise combinatorial
description we obtain for our compactifications might be useful to describe other moduli
spaces for suitable choices of groups and parabolic subgroups. One other question about
these compactifications was raised by V. Berkovich himself [4, 5.5.2] and deals with the
potential generalization of Drinfel’d half-spaces to non-Archimedean semisimple algebraic
groups of arbitrary type.

2. – Let us now turn to the definition of the embedding maps that allow us to compactify
Bruhat-Tits buildings. Let G be a k-isotropic semisimple algebraic group defined over the
non-Archimedean valued field k and let B(G, k) denote the Euclidean building provided by
Bruhat-Tits theory [46]. We prove the following statement (see 2.4 and Prop. 3.34): assume
that the valued field k is a local field (i.e., is locally compact) and (for simplicity) that G is
almost k-simple; then for any conjugacy class of proper parabolic k-subgroup, say t, there exists
a continuous, G(k)-equivariant map ϑt : B(G, k) → Part(G)an which is a homeomorphism
onto its image. Here Part(G) denotes the connected component of type t in the proper variety
Par(G) of all parabolic subgroups in G (on which G acts by conjugation) [1, Exposé XXVI,
Sect. 3]. The superscript an means that we pass from the k-variety Part(G) to the Berkovich
k-analytic space associated with it [4, 3.4.1-2]; the space Par(G)an is compact since Par(G)

is projective. We denote by Bt(G, k) the closure of the image of ϑt and call it the Berkovich
compactification of type t of the Bruhat-Tits building B(G, k).

Roughly speaking, the definition of the maps ϑt takes up the first half of this paper, so
let us provide some further information about it. As a preliminary, we recall some basic but
helpful analogies between (scheme-theoretic) algebraic geometry and k-analytic geometry
(in the sense of Berkovich). Firstly, the elementary blocks of k-analytic spaces in the latter
theory are the so-called affinoid spaces; they, by and large, correspond to affine schemes
in algebraic geometry. Affinoid spaces can be glued together to define k-analytic spaces,
examples of which are provided by analytifications of affine schemes: if X = Spec(A) is given
by a finitely generated k-algebra A, then the set underlying the analytic space Xan consists of
multiplicative seminorms on A extending the given absolute value on k. Let us simply add
that it follows from the “spectral analytic side” of Berkovich theory that each affinoid space
X admits a Shilov boundary, namely a (finite) subset on which any element of the Banach
k-algebra defining X achieves its maximum. We have enough now to give a construction of
the maps ϑt in three steps:

Step 1: we attach to any point x ∈ B(G, k) an affinoid subgroup Gx whose k-rational
points coincide with the parahoric subgroup Gx(k) associated with x by Bruhat-Tits
theory (Th. 2.1).

Step 2: we attach to any so-obtained analytic subgroup Gx a point ϑ(x) in Gan

(in fact the unique point in the Shilov boundary of Gx), which defines a map
ϑ : B(G, k)→ Gan (Prop 2.4).

Step 3: we finally compose the map ϑ with an “orbit map” to the flag variety Part(G)an

of type t (Def. 2.15).
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Forgetting provisionally that we wish to compactify the building B(G, k) (in which case
we have to assume that B(G, k) is locally compact, or equivalently, that k is local), this three-
step construction of the map ϑt : B(G, k) → Part(G)an works whenever the ground field k
allows the functorial existence of B(G, k) (see 1.3 for a reminder of these conditions). We
note that in Step 2, the uniqueness of the pointϑ(x) in the Shilov boundary of Gx comes from
the use of a field extension splitting G and allowing to see x as a special point (see below)
and from the fact that integral structures attached to special points in Bruhat-Tits theory
are explicitly described by means of Chevalley bases. At last, the point ϑ(x) determines Gx

because the latter analytic subgroup is the holomorphic envelop of ϑ(x) in Gan. Here is a
precise statement for Step 1 (Th. 2.1).

T 1. – For any point x in B(G, k), there is a unique affinoid subgroup Gx of
Gan satisfying the following condition: for any non-Archimedean extension K of k, we have
Gx(K) = StabG(K)(x).

This theorem (hence Step 1) improves an idea used for another compactification proce-
dure, namely the one using the map attaching to each point x ∈ B(G, k) the biggest para-
horic subgroup of G(k) fixing it [33]. The target space of the map x 7→ Gx(k) in [loc. cit.]
is the space of closed subgroups of G(k), which is compact for the Chabauty topology [16,
VIII.5]. This idea does not lead to a compactification of B(G, k) but only of the set of ver-
tices of it: if k is discretely valued and if G is simply connected, any two points in a given
facet of the Bruhat-Tits building B(G, k) have the same stabilizer. Roughly speaking, in the
present paper we use Berkovich analytic geometry, among other things, to overcome these
difficulties thanks to the fact that we can use arbitrarily large non-Archimedean extensions
of the ground field. More precisely, up to taking a suitable non-Archimedean extension K of
k, any point x ∈ B(G, k) can be seen as a special point in the bigger (split) building B(G,K),
in which case we can attach to x an affinoid subgroup of (G ⊗k K)an. As a counterpart, in
order to obtain the affinoid subgroup Gx defined over k as in the above theorem, we have to
apply a Banach module avatar of Grothendieck’s faithfully flat descent formalism [30, VIII]
(Appendix 1).

As an example, consider the case where G = SL(3) and the field k is discretely valued.
The apartments of the building are then tilings of the Euclidean plane by regular trian-
gles (alcoves in the Bruhat-Tits terminology). If the valuation v of k is normalized so that
v(k×) = Z, then in order to define the group Gx when x is the barycenter of a triangle,
we have to (provisionally) use a finite ramified extension K such that v(K×) = 1

3Z (the
apartments in B(G,K) have “three times more walls” and x lies at the intersection of three
of them). The general case, when the barycentric coordinates of the point x (in the closure
of its facet) are not a priori rational, requires an a priori infinite extension.

As already mentioned, when G splits over the ground field k, our compactifications have
already been defined by V. Berkovich [4, §5]. His original procedure relies from the very
beginning on the explicit construction of reductive group schemes over Z by means of
Chevalley bases [21]. If T denotes a maximal split torus (with character group X∗(T)), then
the model for an apartment in B(G, k) is Λ = Hom(X∗(T),R×+) seen as a real affine space.
Choosing a suitable (special) maximal compact subgroup P in Gan, V. Berkovich identifies
Λ with the image of Tan in the quotient variety Gan/P. The building B(G, k) thus appears
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