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HYPERBOLIC GEOMETRY AND MODULI
OF REAL CUBIC SURFACES

 D ALLCOCK, J A. CARLSON
 D TOLEDO

A. – Let MR0 be the moduli space of smooth real cubic surfaces. We show that each
of its components admits a real hyperbolic structure. More precisely, one can remove some lower-
dimensional geodesic subspaces from a real hyperbolic space H4 and form the quotient by an arith-
metic group to obtain an orbifold isomorphic to a component of the moduli space. There are five com-
ponents. For each we describe the corresponding lattices in PO(4, 1). We also derive several new and
several old results on the topology of MR0 . Let MRs be the moduli space of real cubic surfaces that are
stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure
whose restriction to MR0 is that just mentioned. The corresponding lattice in PO(4, 1), for which we
find an explicit fundamental domain, is nonarithmetic.

R. – On note MR0 l’espace des modules des surfaces cubiques réelles lisses. Nous montrons
que chacune de ses composantes admet une structure hyperbolique réelle. Plus précisément, en enle-
vant de l’espace hyperbolique réel H4 certaines sous-variétés totalement géodésiques de dimension in-
férieure, puis en prenant le quotient par un groupe arithmétique, on obtient une orbifold isomorphe à
une composante de l’espace des modules. Il y a cinq composantes. Nous décrivons le réseau de PO(4, 1)

qui correspond à chacune d’entre elles. Nous démontrons également quelques résultats sur la topologie
de MR0 , dont certains sont nouveaux. On note MRs l’espace des modules des surfaces cubiques réelles
qui sont stables au sens de la théorie géométrique des invariants. Nous montrons que cet espace ad-
met une structure hyperbolique dont la restriction à MR0 est celle évoquée ci-dessus. Nous décrivons un
domaine fondamental pour le réseau correspondant de PO(4, 1), qui s’avère être non arithmétique.

1. Introduction

The purpose of this paper is to study the geometry and topology of the moduli space of
real cubic surfaces in RP 3. It is a classical fact, going back to Schläfli [31, 33] and Klein
[21], that the moduli space of smooth real cubic surfaces has five connected components.
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We show in this paper that each of these components has a real hyperbolic structure that
we compute explicitly, both in arithmetic and in geometric terms. We use this geometric
structure to compute, to a large extent, the topology of each component. These structures
are not complete. We also prove a more subtle result, that the moduli space of stable
real cubic surfaces has a real hyperbolic structure, which is complete, and that restricts, on
each component of the moduli space of smooth surfaces, to the (incomplete) structures just
mentioned. The most surprising fact to us is that the resulting discrete group of isometries
of hyperbolic space is not arithmetic.

To describe our results, we use the following notation. We write C for the space of non-
zero cubic forms with complex coefficients in 4 variables, ∆ for the discriminant locus (forms
where all partial derivatives have a common zero), C0 for the space C−∆ of forms that define
a smooth hypersurface in CP 3, and C s for the space of forms that are stable in the sense of
geometric invariant theory for the action of GL(4,C) on C . It is classical that these are the
forms that define a cubic surface which is either smooth or has only nodal singularities [18,
§19].

We denote all the corresponding real objects with a superscript R. Thus CR denotes the
space of non-zero cubic forms with real coefficients, and ∆R, CR

0 and CR
s the intersection with

CR of the corresponding subspaces of C . We will also use the prefix P for the corresponding
projective objects, thus P CR ∼= RP 19 is the projective space of cubic forms with real
coefficients, and P∆R, P CR

0 , P CR
s are the images of the objects just defined. The group

GL(4,R) acts properly on CR
0 and CR

s (equivalently, PGL(4,R) acts properly on P CR
0 and

P CR
s ) and we write MR

0 and MR
s for the corresponding quotient spaces, namely the moduli

spaces of smooth and of stable real cubic surfaces.
The spaceP∆R has real codimension one inP CR, its complementP CR

0 has five connected
components, and the topology of a surface in each component is classically known [21, 33,
34]. We label the components P CR

0,j , for j = 0, 1, 2, 3, 4, choosing the indexing so that a

surface in P CR
0,j is topologically a real projective plane with 3 − j handles attached (see

table 1.1; the case of −1 many handles means the disjoint union RP 2 t S2). It follows that
the moduli space MR

0 has five connected components, MR
0,j , for j = 0, 1, 2, 3, 4. We can now

state our first theorem:

T 1.1. – For each j = 0, . . . , 4 there is a union H j of two- and three-dimensional
geodesic subspaces of the four-dimensional real hyperbolic space H4 and an isomorphism of
real analytic orbifolds

MR
0,j
∼= PΓR

j \ (H4 − H j).

Here PΓR
j is the projectivized group of integer matrices which are orthogonal with respect to

the quadratic form obtained from the diagonal form [−1, 1, 1, 1, 1] by replacing the last j of
the 1’s by 3’s.

The real hyperbolic structure on the component MR
0,0 has been studied by Yoshida [41].

The other cases are new.

The space P CR
s is connected, since it is obtained from the manifold P CR by removing a

subspace of codimension two (part of the singular set of P∆R). Thus the moduli space MR
s

is connected. We have the following uniformization theorem for this space:

4 e SÉRIE – TOME 43 – 2010 – No 1



MODULI OF REAL CUBIC SURFACES 71

T 1.2. – There are a nonarithmetic lattice PΓR ⊂ PO(4, 1) and a homeomor-
phism

MR
s
∼= PΓR \H4.

Moreover, there is a PΓR-invariant union of two- and three-dimensional geodesic subspaces H ′

of H4 so that this homeomorphism restricts to an isomorphism of real analytic orbifolds,

MR
0
∼= PΓR \ (H4 − H ′).

To our knowledge this is the first appearance of a non-arithmetic lattice in a moduli
problem for real varieties. Observe that the group PΓR uniformizes a space assembled from
arithmetic pieces much in the spirit of the construction by Gromov and Piatetskii-Shapiro of
non-arithmetic lattices in real hyperbolic space. We thus view this theorem as an appearance
“in nature” of their construction.

W0

W1

W2

W3

W4

F 1.1. Coxeter polyhedra for the reflection subgroups Wj of PΓRj . The
blackened nodes and triple bonds correspond to faces of the polyhedra that
represent singular cubic surfaces. See the text for the explanation of the edges.

We obtain much more information about the groups PΓR
j and PΓR than we have stated

here. Section 5 gives an arithmetic description of each PΓR
j and shows that they are es-

sentially Coxeter groups. (Precisely: they are Coxeter groups for j = 0, 3, 4 and contain a
Coxeter subgroup of index 2 if j = 1, 2.) We use Vinberg’s algorithm to derive their
Coxeter diagrams and consequently their fundamental domains. So we have a very explicit
geometric description of the groups PΓR

j . The results are summarized in Fig. 1.1. In these
diagrams the nodes represent facets of the polyhedron, and two facets meet at an angle of
π/2, π/3, π/4 or π/6, or are parallel (meet at infinity) or are ultraparallel, if the number of
bonds between the two corresponding nodes is respectively 0, 1, 2, 3, or a heavy or dashed
line. See Section 5 for more details.
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j Topology Real Lines Real Tritang. Monodromy on Lines
of Surface Planes

0 RP 2 # 3T 2 27 45 A5

1 RP 2 # 2T 2 15 15 S3 × S3

2 RP 2# T 2 7 5 (Z/2)3 o Z/2
3 RP 2 3 7 S4

4 RP 2 t S2 3 13 S4

T 1.1. The classical results on the components of the moduli space of real
cubic surfaces. The components are indexed by j according to our conventions. The
third item in the last column corrects an error of Segre.

j Euler Volume Fraction πorb
1 ( MR

0,j)

0 1/1920 .00685 2.03% S5

1 1/288 .04569 13.51% (S3 × S3) o Z/2
2 5/576 .11423 33.78% (D∞ ×D∞) o Z/2
3 1/96 .13708 40.54% ™ ∞
4 1/384 .03427 10.14%

T 1.2. The orbifold Euler characteristic, volume, fraction of total volume,
and orbifold fundamental groups of the moduli spaces MR0,j . See Theorem 7.1 for
the notation.

The groupPΓR is not a Coxeter group (even up to finite index) but we find that a subgroup
of index two has a fundamental domain that is a Coxeter polyhedron. We describe this
polyhedron explicitly in Section 12, thus we have a concrete geometric description of PΓR,
and we also find a representation of this group by matrices with coefficients in Z[

√
3].

Much of the classical theory of real cubic surfaces, as well as new results, are encoded
in these Coxeter diagrams. The new results are our computation of the groups πorb

1 ( MR
0,j)

(see table 1.2) and our proof that each MR
0,j has contractible universal cover. These results

appear in Section 7, where we describe the topology of the spaces MR
0,j . As an application

to the classical theory, we re-compute the monodromy representation of π1(P CR
0,j) on the

configuration of lines on a cubic surface, which was first computed by Segre in his treatise
[34]. We confirm four of his computations and correct an error in the remaining one (the
case j = 2). See the last column of table 1.1 and Section 8 for details. We also compute the
hyperbolic volume of each component in Section 9. The results are summarized in table 1.2.

Our methods are based on our previous work on the complex hyperbolic structure of
the moduli space of complex cubic surfaces [1]. We proved that this moduli space Ms is
isomorphic to the quotient PΓ \ CH4 of complex hyperbolic 4-space CH4 by the lattice
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