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KINETIC EQUATIONS
WITH MAXWELL BOUNDARY CONDITIONS

 S MISCHLER

A. – We prove global stability results of DiPerna-Lions renormalized solutions for the
initial boundary value problem associated to some kinetic equations, from which existence results
classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse,
which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not
only a boundary inequality condition as it has been established in previous works). We are able to deal
with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems
of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-
weak convergence (the renormalized convergence and the biting L1-weak convergence), as well as the
Darrozès-Guiraud information in a crucial way.

R. – Nous montrons la stabilité des solutions renormalisées au sens de DiPerna-Lions
pour des équations cinétiques avec conditions initiale et aux limites. La condition aux limites (qui
peut être non linéaire) est partiellement diffuse et est réalisée (c’est-à-dire qu’elle n’est pas relaxée).
Les techniques que nous introduisons sont illustrées sur l’équation de Fokker-Planck-Boltzmann et
le système de Vlasov-Poisson-Fokker-Planck ainsi que pour des conditions aux limites linéaires sur
l’équation de Boltzmann et le système de Vlasov-Poisson. Les démonstrations utilisent des théorèmes
de trace du type de ceux introduits par l’auteur pour les équations de Vlasov, des résultats d’analyse
fonctionnelle sur les convergences faible-faible (la convergence renormalisée et la convergence au sens
du biting lemma), ainsi que l’information de Darrozès-Guiraud d’une manière essentielle.

1. Introduction and main results

Let Ω be an open and bounded subset of RN and set O = Ω × RN . We consider a
gas confined in Ω ⊂ RN . The state of the gas is given by the distribution function f =

f(t, x, v) ≥ 0 of particles, which at time t ≥ 0 and at position x ∈ Ω, move with the
velocity v ∈ RN . The evolution of f is governed by a kinetic equation written in the domain
(0,∞)× O and it is complemented with a boundary condition that we describe now.

We assume that the boundary ∂Ω is sufficiently smooth. The regularity that we need is
that there exists a vector field n ∈ W 2,∞(Ω; RN ) such that n(x) coincides with the outward
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unit normal vector at x ∈ ∂Ω. We then define Σx± := {v ∈ RN ;± v · n(x) > 0} the sets of
outgoing (Σx+) and incoming (Σx−) velocities at point x ∈ ∂Ω as well as Σ = ∂Ω× RN and

Σ± = {(x, v) ∈ Σ;±n(x) · v > 0} = {(x, v); x ∈ ∂Ω, v ∈ Σx±}.

We also denote by dσx the Lebesgue surface measure on ∂Ω and by dλk the measure on
(0,∞)× Σ defined by dλk = |n(x) · v|k dtdσxdv, k = 1 or 2.

The boundary condition takes into account how the particles are reflected by the wall and
thus takes the form of a balance between the values of the trace γf of f on the outgoing and
incoming velocities subsets of the boundary:

(1.1) (γ−f)(t, x, v) = Rx(γ+f(t, x, .))(v) on (0,∞)× Σ−,

where γ±f := 1(0,∞)×Σ± γf . The reflection operator is time independent, local in position
but can be local or nonlocal in the velocity variable. In order to describe the interaction
between particles and wall by means of the reflection operator R, J. C. Maxwell [54] proposed
in 1879 the following phenomenological law by splitting the reflection operator into a local
reflection operator and a diffuse (also denominated as Maxwell) reflection operator (which
is nonlocal in the velocity variable):

(1.2) R = (1− α)L+ αD.

Here α ∈ (0, 1] is a constant, called the accommodation coefficient. The local reflection
operator L is defined by

(Lx φ) (v) = φ(Rx v),

with Rx v = −v (inverse reflection) or Rx v = v − 2 (v · n(x))n(x) (specular reflection).
The diffuse reflection operator D = (Dx)x∈∂Ω according to the Maxwellian profile M with
temperature (of the wall) Θ > 0 is defined at the boundary point x ∈ ∂Ω for any measurable
function φ on Σx+ by

(Dx φ)(v) = M(v) φ̃(x),

where the normalized Maxwellian M is

(1.3) M(v) = (2π)
1−N

2 Θ−
N+1

2 e−
|v|2
2 Θ ,

and the outcoming flux of mass of particles φ̃(x) is

(1.4) φ̃(x) =

∫
v′·n(x)>0

φ(v′) v′ · n(x) dv′ =

∫
Σx

+

φ

M
dµx.

It is worth emphasizing that the normalization condition (1.3) is made in order that the
measure dµx(v) := M(v) |n(x) · v| dv is a probability measure on Σx± for any x ∈ ∂Ω.
Moreover, for any measurable function φ on Σx+ there holds
(1.5) ∫

Σx−

Rxφ |n(x) ·v| dv =

∫
Σx−

Lxφ |n(x) ·v| dv =

∫
Σx−

Dxφ |n(x) ·v| dv =

∫
Σx

+

φn(x) ·v dv,

which means that all the particles which reach the boundary are reflected (no particle goes
out of the domain nor enters in the domain).

The reflection law (1.2) was the only model for the gas/surface interaction that appeared
in the literature before the late 1960s. In order to describe with more accuracy the interaction
between molecules and wall, other models have been proposed in [25, 26, 51] where the
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reflection operator R is a general integral operator satisfying the so-called non-negative,
normalization and reciprocity conditions, see [29] and Remark 6.4. We do not know whether
our analysis can be adapted to such a general kernel. However, the boundary condition
can be generalized in another direction, see [12, 30], and we will sometimes assume that the
following nonlinear boundary condition holds

(1.6) R φ = (1− α̃)Lφ+ α̃D φ, α̃ = α(φ̃),

where α : R+ → R+ is a continuous function which satisfies 0 < ᾱ ≤ α(s) ≤ 1 for any
s ∈ R+.

In the domain, the evolution of f is governed by a kinetic equation

(1.7)
∂f

∂t
+ v · ∇xf = I (f) in (0,∞)× O,

where I (f) models the interactions of particles each one with each other and with the en-
vironment. Typically, it may be a combination of the quadratic Boltzmann collision oper-
ator (describing the collision interactions of particles by binary elastic shocks), the Vlasov-
Poisson operator (describing the fact that particles interact by the way of the two-body long
range Coulomb force) or the Fokker-Planck operator (which takes into account the fact that
particles are submitted to a heat bath). More precisely, for the nonlinear boundary condi-
tion (1.6) we are able to deal with Fokker-Planck type equations, in particular the Fokker-
Planck-Boltzmann equation (FPB in short) and the Vlasov-Poisson-Fokker-Planck system
(VPFP in short), while for a constant accommodation coefficient we are able to deal with
Vlasov type equations such as the Boltzmann equation and the Vlasov-Poisson system (VP
in short). We refer to Section 6 where these models are presented. It is worth mentioning
that the method presented in this paper seems to fail for the Vlasov-Maxwell system.

Finally, we complement these equations with a given initial condition

(1.8) f(0, .) = fin ≥ 0 on O,

which satisfies the natural physical bounds of finite mass, energy and entropy

(1.9)
∫∫

O
fin (1 + |v|2 + | log fin|) dxdv =: C0 <∞.

We begin with a general existence result that we state deliberately in an imprecise way and
we refer to Section 6 (and Theorem 6.2) for a more precise statement.

T 1.1. – Consider the initial boundary value problem (1.1)-(1.7)-(1.8) associated
to the FPB equation or the VPFP system with possibly mass flux depending accommodation
coefficient (1.6) or the boundary value problem associated to the Boltzmann equation or the
VP system with constant accommodation coefficient (1.2). For any non-negative initial datum
fin with finite mass, energy and entropy ((1.9) holds) there exists at least one (renormalized)
solution f ∈ C([0,∞);L1( O)) with finite mass, energy and entropy to the kinetic Equation (1.7)
associated to the initial datum fin and such that the trace function γf fulfills the boundary
condition (1.1).
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The Boltzmann equation and the FPB equation for initial data satisfying the natural
bound (1.9) was first studied by R. DiPerna and P.-L. Lions [35, 37, 39] who proved stability
and existence results for global renormalized solutions in the case of the whole space (Ω =

RN ). Afterwards, the corresponding boundary value problem with reflection boundary
conditions (1.1) and constant accommodation coefficient has been extensively studied in the
case of the Boltzmann model [5, 6, 7, 8, 47], [27, 28, 44, 48, 55]. It has been proved, in the
partial absorption case γ−f = θ Rγ

+
f with θ ∈ [0, 1) and in the completely local reflection

case (i.e. (1.1) holds with α ≡ 0), that there exists a global renormalized solution. But in the
most interesting physical case (when θ ≡ 1 and α ∈ (0, 1]), it has only been proved in [7] that
the following boundary inequality condition

(1.10) γ−f ≥ R(γ+f) on (0,∞)× Σ−

holds, instead of the boundary equality condition (1.1). However, it is worth mentioning that
if the renormalized solution built in [7] is in fact a solution to the Boltzmann equation in the
sense of distributions, then that solution satisfies the boundary equality condition (1.1) (a
result that one deduces thanks to the Green formula by gathering the fact that the solution
is mass preserving and the fact that the solution already satisfies the boundary inequality
condition (1.10)). Also, the Boltzmann equation with nonlinear boundary conditions has
been treated in the setting of a strong but non global solution framework in [43].

With regard to existence results for the initial value problem for the VPFP system set in the
whole space, we refer to [14, 15, 16, 20, 21, 22, 23, 36, 59, 61, 65] as well as [32] for physical
motivations. The initial boundary value problem has been addressed in [13, 19]. We also
refer to [1, 4, 46, 58, 68] for the initial boundary value problem for the VP system and to [58]
for the corresponding stationary problem. We emphasize that in all these works only local
reflection or prescribed incoming data are treated, and to our knowledge, there is no result
concerning the diffuse boundary condition for the VP system or for the VPFP system.

We also mention that there is a great deal of information for the boundary value problem
in an abstract setting in [45, 67] with possibly nonlinear boundary conditions [11, 57].

In short, the present work improves the already known existence results for kinetic equa-
tions with diffusive boundary reflection into three directions.

• On the one hand, we prove that (1.1) is fulfilled, while only the boundary inequality
condition (1.10) was previously established.

• On the other hand, we are able to consider a large class of kinetic models (including
Vlasov-Poisson term) while only the Boltzmann equation (or linear equations) could be
handled with earlier techniques.

•Finally, we are able to handle some nonlinear boundary condition in the case of Fokker-
Planck type equation.

We do not present the proof of Theorem 1.1 (nor the proof of its accurate version Theo-
rem 6.2) because it classically follows from a sequential stability or sequential compactness
result that we present below and a standard (but tedious) approximation procedure, see for
instance [55] or the above quoted references. We deliberately state again the sequential sta-
bility result in an imprecise way, referring to Section 6 for a more accurate version.
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