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THE CUBIC SZEGŐ EQUATION

 P GÉRARD  S GRELLIER

A. – We consider the following Hamiltonian equation on the L2 Hardy space on the
circle,

i∂tu = Π(|u|2u) ,

where Π is the Szegő projector. This equation can be seen as a toy model for totally non dispersive evo-
lution equations. We display a Lax pair structure for this equation. We prove that it admits an infinite
sequence of conservation laws in involution, and that it can be approximated by a sequence of finite
dimensional completely integrable Hamiltonian systems. We establish several instability phenomena
illustrating the degeneracy of this completely integrable structure. We also classify the traveling waves
for this system.

R. – On considère l’équation hamiltonienne suivante sur l’espace de Hardy du cercle

i∂tu = Π(|u|2u) ,

où Π désigne le projecteur de Szegő. Cette équation est un cas modèle d’équation sans aucune pro-
priété dispersive. On établit qu’elle admet une paire de Lax et une infinité de lois de conservation en
involution, et qu’elle peut être approchée par une suite de systèmes hamiltoniens de dimension finie
complètement intégrables. Néanmoins, on met en évidence des phénomènes d’instabilité illustrant la
dégénérescence de cette structure complètement intégrable. Enfin, on caractérise les ondes progressives
de ce système.
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1. Introduction

1.1. Motivation

This work can be seen as a continuation of a series of papers due to N. Burq, N. Tzvetkov
and the first author [4, 5, 6, 7] — see also [10] for a survey— , devoted to the influence of the
geometry of a Riemannian manifold M onto the qualitative properties of solutions to the
nonlinear Schrödinger equation

(1) i∂tu+ ∆u = |u|2u , (t, x) ∈ R×M .

The usual strategy for finding global solutions to the Cauchy problem for (1) is to solve it lo-
cally in time in the energy space H1 ∩L4 using a fixed point argument and then to globalize
in time, by means of conservation of energy and of L2 norm. In most of the cases, the fixed
point strategy leads to define a smooth local in time flow map, in the sense of regular well-
posedness defined in [10], Definition 2.3, and recalled in Appendix 1 (Section 10). As a corol-
lary of the work of Burq, Gérard, Tzvetkov — see [6], Remark 2.12, p. 205, or [10], sketch
of the proof of Theorem 5.2— one obtains, whatever the geometry is, the following general
result. If there exists a smooth local in time flow map on the Sobolev spaceHs(M), then the
following Strichartz–type estimate must hold

(2) ‖eit∆f‖L4([0,1]×M) . ‖f‖Hs/2(M) .

Inequality (2) is valid for instance ifM = Rd, d = 1, 2, 3, 4 and ∆ is the Euclidean Laplacian,
where s is given by the scaling formula

s = max

(
0,
d

2
− 1

)
.

In [4, 6], it is observed that, on the two-dimensional sphere, the infimum of the numbers s
such that (2) holds is 1/4, hence is larger than the regularity given by the latter formula.
This can be interpreted as a lack of dispersion properties for the spherical geometry. It
is therefore natural to ask whether there exist some geometries for which these dispersion
properties totally disappear. Such an example arises in sub-Riemannian geometry, more
precisely for radial solutions of the Schrödinger equation associated to the sub-Laplacian
on the Heisenberg group, as observed in [11], where part of the results of this paper are
announced. Here we present a more elementary example of such a situation. Let us choose
M = R2

x,y and replace the Laplacian by the Grushin operator G := ∂2
x + x2∂2

y , so that our
equation is

(3) i∂tu+ ∂2
xu+ x2∂2

yu = |u|2u .

Notice that this equation enjoys the following scaling invariance: if u(t, x, y) is a solution,
then

λu(λ2t, λx, λ2y)

is also a solution. In this context, it is natural to replace the standard Sobolev space Hs(M)

by the Grushin Sobolev spaceHs
G(M), defined as the domain of

√
(−G)s .Observe that the

above scaling transformation leaves invariant the homogeneous norm of H1/2
G (M), which
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suggests that Equation (3) is subcritical with respect to the energy regularity H1
G(M). How-

ever, we are going to see that the corresponding version of (2),

(4) ‖eitGf‖L4([0,1]×M) ≤ C‖f‖Hs/2G (M)
,

cannot hold if s < 3
2 , which means, in view of Proposition 10 proved in Appendix 1, that

no smooth flow can exist on the energy space, hence Equation (3) should rather be regarded
as supercritical with respect to the energy regularity. In fact, the critical regularity sc = 3

2 is
the regularity which corresponds to the Sobolev embedding inM , since x has homogeneity 1

and y has homogeneity 2. This is an illustration of a total lack of dispersion for Equation (3).

The justification is as follows. Notice that u = eitGf can be explicitly described by using the
Fourier transform in the y variable, and by making an expansion along the Hermite functions
hm in the x variable, leading to the representation

u(t, x, y) = (2π)−1/2
∞∑
m=0

∫
R

e−it(2m+1)|η|+iyη f̂m(η)hm(
√
|η|x) dη ,

with

‖f‖2
H
s/2
G

=

∞∑
m=0

∫
R

(1 + (2m+ 1)|η|)s/2|f̂m(η)|2 dη√
|η|
.

Let us focus onto data concentrated on modes m = 0, η ∼ N2, specifically

f(x, y) =
1√
N

∫ ∞
0

eiyη−η
x2

2 −
η

N2 dη = N
3
2F (Nx,N2y)

with

F (x, y) :=
1

1 + x2

2 − iy
.

Then the above formula for u gives

u(t, x, y) = f(x, y − t) ,

so that
‖u‖L4([0,1]×R2

x,y) = N3/4‖F‖L4 .

Since ‖f‖
H
s/2
G

' Ns/2 as N →∞, this proves the claim.

Notice that a total lack of dispersion also occurs for the — trivial— equation with G = 0,

(5) i∂tu = |u|2u , u(0, x) = u0(x) ,

for which Hs
G = L2 for every s ≥ 0, hence inequality (4) cannot hold. However, the explicit

formula
u(t, x) = e−it|u0(x)|2u0(x)

solves explicitly (5), defining a —nonsmooth— flow map on L2!

These observations invite us to study the structure of the nonlinear evolution problem (3) in
more detail. Denote by V ±m the space of functions of the form

v±m(x, y) =

∫ ∞
0

e±iηyg(η)hm(
√
ηx) dη ,

∫ ∞
0

η−1/2|g(η)|2 dη <∞ ,
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so that we have the orthogonal decomposition

L2(M) = ⊕± ⊕∞m=0 V
±
m , G|V ±m = ±i(2m+ 1)∂y .

Denote by Π±m : L2(M)→ V ±m the orthogonal projection. Expanding the solution as

u =
∑
±

∞∑
m=0

u±m , u±m = Π±mu ,

the equation reads as a system of coupled transport equations,

(6) i(∂t ± (2m+ 1)∂y)um = Π±m(|u|2u) .

Therefore a better understanding of Equation (3) requires to study the interaction between
the nonlinearity |u|2u and the projectors Π±m. Notice that similar interactions arise in the
literature, see for instance [18] in the study of the Lowest Landau Level for Bose-Einstein
condensates, or [8] in the study of critical high frequency regimes of NLS on the sphere.
Other examples can be found in the introduction of [11]. The present paper is devoted to
a toy model for this kind of interaction.

1.2. A toy model: the cubic Szegő equation

Let

S1 = {z ∈ C, |z| = 1}
be the unit circle in the complex plane. If u is a distribution on S1, u ∈ D′(S1), then u admits
a Fourier expansion in the distributional sense

u =
∑
k∈Z

û(k)eikθ .

For every subspace E of D′(S1), we denote by E+ the subspace

E+ = {u ∈ E ; ∀k < 0, û(k) = 0} .

In particular, L2
+ is the Hardy space of L2 functions which extend to the unit disc {|z| < 1}

as holomorphic functions,

u(z) =

∞∑
k=0

û(k)zk ,

∞∑
k=0

|û(k)|2 < +∞ .

Let us endow L2(S1) with the scalar product

(u|v) :=

∫
S1

uv
dθ

2π
,

and denote by Π : L2(S1) → L2
+(S1) the orthogonal projector on L2

+(S1), the so-called
Szegő projector,

Π

(∑
k∈Z

û(k)eikθ

)
=
∑
k≥0

û(k)eikθ.

We consider the following evolution equation on L2
+(S1),

(7) i∂tu = Π(|u|2u) .
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