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ON THE ASYMPTOTIC GEOMETRY OF
GRAVITATIONAL INSTANTONS

 V MINERBE

A. – We investigate the geometry at infinity of the so-called “gravitational instantons”,
i.e. asymptotically flat hyperkähler four-manifolds, in relation with their volume growth. In particular,
we prove that gravitational instantons with cubic volume growth are ALF, namely asymptotic to a circle
fibration over a Euclidean three-space, with fibers of asymptotically constant length.

R. – Nous étudions la géométrie à l’infini des instantons gravitationnels, i.e. des variétés
hyperkählériennes, asymptotiquement plates et de dimension quatre. En particulier, nous prouvons
que les instantons gravitationnels dont la croissance de volume est cubique sont asymptotiques à une
fibration en cercles au-dessus d’un espace euclidien à trois dimensions, avec des fibres de longueur asym-
ptotiquement constante ; autrement dit, ils sont ALF (asymptotically locally flat).

Introduction

Gravitational instantons are non-compact hyperkähler four-manifolds with decaying cur-
vature at infinity. “Hyperkähler” means the manifold carries three complex structures I, J ,
K that are parallel with respect to a single Riemannian metric and satisfy the quaternionic
relations (IJ = −JI = K, etc.). In other words, the holonomy group of the metric reduces
to Sp(1) = SU(2). As a consequence, hyperkähler four-manifolds are Ricci flat and anti-
self-dual [3]; the converse is true for simply connected manifolds.

Gravitational instantons were introduced in the late seventies by Stephen Hawking [19],
as building blocks for his Euclidean quantum gravity theory. Very roughly, the idea consists
in modeling gravitation by drawing an analogy with gauge theories, which are so efficient for
the other fundamental interactions. The Universe is represented by a Riemannian manifold
(equivalent in gauge theory: a connection on a principal bundle) which is assumed to be
Ricci flat, as a counterpart of the vacuum Einstein equation in Relativity (in gauge theory:
the Yang-Mills equation). Curvature decay is a “finite action” assumption: the curvature
tensor, which measures the strength of the gravitational field, should typically be in L2 (we
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will further discuss this decay issue below). Finally, the jump to “hyperkähler” is explained
by the analogy with gauge theory: it can be thought of as an anti-self-duality assumption.

More recently, gravitational instantons also appeared in string theory and it triggered
some interest from both mathematicians and physicists (cf. [8, 9, 10, 11, 13, 14, 18, 20]...).
For instance, their L2 cohomology was computed ([18], [20]) so as to test Sen’s S-duality
conjecture in string theory. New examples were built ([8, 9, 11]) and, from string theory
arguments, S. Cherkis and A. Kapustin conjectured a classification scheme [14], with four
families.

– The first one consists of Asymptotically Locally Euclidean (ALE for short) gravita-
tional instantons. ALE means that, outside a compact set, they are diffeomorphic to
the quotient of R4 (minus a ball) by a finite subgroup ofO(4) and the metric is asymp-
totic to the Euclidean metric gR4 . Indeed, this family is very well understood, since
P. Kronheimer ([23, 24]) classified ALE gravitational instanton in 1989. In particular,
he proved the underlying manifold is the minimal resolution of the quotient of C2 by a
finite subgroup of SU(2) (i.e. cyclic, binary dihedral, tetrahedral, octahedral or icosa-
hedral group).

– The second family consists of the so called ALF (“Asymptotically Locally Flat”)
gravitational instantons: outside a compact set, they are diffeomorphic to the total
space of a circle fibration π over R3 or R3/ {± id} (minus a ball); moreover, the fibers
have asymptotically constant length and the metric is asymptotic to π∗gR3 +η2, where
η is a (local) connection one-form on the circle fibration. Some examples are discussed
below (Section 1.2). A Kronheimer-like classification is conjectured, but involving only
cyclic or dihedral groups in SU(2) (see Section 1.2 for concrete examples).

– The third and fourth families, called ALG and ALH (by induction !) have a similar
fibration structure at infinity. In the ALG case, the fibers are tori and the base is R2. For
ALH gravitational instantons, the fibers are compact orientable flat three-manifolds
(there are six possibilities) and the base is R.

A striking feature of this conjectured classification is the quantification it imposes on the
volume growth: the volume of a ball of large radius t is of order t4 in the ALE case, t3 in
the ALF case, etc. Why not t3.5? And then, how can one explain this fibration structure at
infinity? The aim of this paper is to answer these questions.

Basically, the volume growth of asymptotically flat manifolds is at most Euclidean: on a
complete noncompact Riemannian manifold (Mn, g) whose curvature tensor Rmg obeys

(1) |Rm|g = O(r−2−ε) with ε > 0

(r is the distance function to some point), there is a constant B such that

∀x ∈M, ∀ t ≥ 1, volB(x, t) ≤ Btn.

Note the “faster-than-quadratic” decay rate is not anecdotic. U. Abresh proved such mani-
folds have finite topological type [1]: there is a compact subset K of M such that M\K has
the topology of ∂K×R∗+. In contrast, M. Gromov observed any (connected) manifold carries
a complete metric with quadratic curvature decay (|Rm|g = O(r−2), see [27]).
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A fundamental geometric result was proved by S. Bando, A. Kasue and H. Nakajima [2]
in 1989: if (Mn, g) satisfies (1) and has maximal volume growth, i.e.

∀x ∈M, ∀ t ≥ 1, volB(x, t) ≥ Atn,

thenM is indeed ALE: there is a compact setK inM , a ballB in Rn, a finite subgroupG of
O(n) and a diffeomorphism φ between Rn\B andM\K such that φ∗g tends to the standard
metric gRn at infinity. It is also proved in [2] that a complete Ricci flat manifold with maximal
volume growth and curvature in L

n
2 (dvol) is ALE. In particular, gravitational instantons

with maximal volume growth are ALE and thus belong to Kronheimer’s list. The authors
of the paper [2] raise the following natural question: can one understand the geometry at
infinity of asymptotically flat manifolds whose volume growth is not maximal? No answer
has been given since then.

Let us state our main theorem. Here and in the sequel, we will denote by r the distance to
some fixed point o, without mentioning it. We will also use the measure dµ = rn

volB(o,r)dvol. It
was shown in [28] that this measure has interesting properties on manifolds with nonnegative
Ricci curvature. Note that in maximal volume growth, it is equivalent to the Riemannian
measure dvol.

T 0.1. – Let (M4, g) be a connected complete hyperkähler manifold with curvature
in L2(dµ). Suppose there are positive constants A and B such that

∀x ∈M, ∀ t ≥ 1, Atν ≤ volB(x, t) ≤ Btν

with 3 ≤ ν < 4. Then ν = 3 and M is ALF: there is a compact set K in M such that M\K is
the total space of a circle fibration π over R3 or R3/{± id} minus a ball and the metric g can
be written

g = π∗gR3 + η2 + O(r−τ ) for any τ < 1,

where η is a (local) connection one-form for π; moreover, the length of the fibers goes to a
finite positive limit at infinity.

Up to a finite covering, the topology at infinity (i.e. modulo a compact set) is therefore
either that of R3 × S1 (trivial fibration over R3) or that of R4 (Hopf fibration).

Our integral assumption on the curvature might be surprising at first sight. Its relevance
follows from [28]. Indeed, it turns out to imply Rm = O(r−2−ε) and even more: a little
analysis (cf. Appendix A) provides∇k Rm = O(r−3−k), for any k in N!

Our volume growth assumption is uniform: the constants A and B are assumed to hold
at any point x. This is not anecdotic. By looking at flat examples, we will see the importance
of this uniformity. This feature is not present in the maximal volume growth case, where the
uniform estimate

∃A, B ∈ R∗+, ∀x ∈M, ∀ t ≥ 1, Atn ≤ volB(x, t) ≤ Btn

is equivalent to

∃A, B ∈ R∗+,∃x ∈M, ∀ t ≥ 1, Atn ≤ volB(x, t) ≤ Btn.

The idea of the proof is purely Riemannian. The point is the geometry at infinity collapses,
the injectivity radius remains bounded while the curvature gets very small, so Cheeger-
Fukaya-Gromov theory [6], [5] applies. The fibers of the circle fibration will come from
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suitable regularizations of short loops based at each point. The hyperkähler assumption will
be used to control the holonomy of these short loops, which is crucial in the proof.

The structure of this paper is the following.
In a first section, we will consider examples, with three goals: first, we want to explain our

volume growth assumption through the study of flat manifolds; second, these flat examples
will also provide some ideas about the techniques we will develop later; third, we will describe
the Taub-NUT metric, so as to provide the reader with a concrete example to think of.

In a second section, we will try to analyze some relations between three Riemannian
notions: curvature, injectivity radius, volume growth. We will introduce the “fundamental
pseudo-group”. This object, due to M. Gromov [16], encodes the Riemannian geometry at
a fixed scale. It is our basic tool and its study will explain for instance the volume growth
self-improvement phenomenon in our theorem (from 3 ≤ ν < 4 to ν = 3).

In the third section, we completely describe the fundamental pseudo-group at a conve-
nient scale, for gravitational instantons. This enables us to build the fibration at infinity, first
locally, and then globally. Then we make a number of estimates to obtain the description of
the geometry at infinity that we announced in the theorem. This part requires a good con-
trol on the covariant derivatives of the curvature tensor and the distance functions. This is
provided by the appendices.
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1. Examples

1.1. Flat plane bundles over the circle

To have a clear picture in mind, it is useful to understand flat manifolds obtained as
quotients of the Euclidean space R3 by the action of a screw operation ρ. Let us suppose this
rigid motion is the composition of a rotation of angle θ and of a unit translation along the
rotation axis. The quotient manifold is always diffeomorphic to R2×S1, but its Riemannian
structure depends on θ: one obtains a flat plane bundle over the circle whose holonomy is the
rotation of angle θ. These very simple examples conceal interesting features, which shed light
on the link between injectivity radius, volume growth and holonomy. In this paragraph, we
stick to dimension 3 for the sake of simplicity, but what we will observe remains relevant in
higher dimension.

When the holonomy is trivial, i.e. θ = 0, the Riemannian manifold is nothing but the
standard R2 × S1. The volume growth is uniformly comparable to that of the Euclidean R2:

∃A, B ∈ R∗+, ∀x ∈M, ∀ t ≥ 1, At2 ≤ volB(x, t) ≤ Bt2.

The injectivity radius is 1/2 at each point, because of the lift of the base circle, which is even
a closed geodesic; the iterates of these loops yield closed geodesics whose lengths describe all
the natural integers, at each point.
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