quatrième série - tome 44

fascicule 1 janvier-février 2011

ANNALES SCIENTIFIQUES de L'ÉCOLE NORMALE SUPÉRIEURE

Peng SHAN

Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

CRYSTALS OF FOCK SPACES AND CYCLOTOMIC RATIONAL DOUBLE AFFINE HECKE ALGEBRAS

BY PENG SHAN

ABSTRACT. – We define the *i*-restriction and *i*-induction functors on the category \mathcal{O} of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.

RÉSUMÉ. – On définit les foncteurs de *i*-restriction et *i*-induction sur la catégorie θ des algèbres de Hecke doublement affines rationnelles cyclotomiques. Ceci donne lieu à un cristal sur l'ensemble des classes d'isomorphismes de modules simples, qui est isomorphe au cristal d'un espace de Fock.

Introduction

In [1], S. Ariki defined the *i*-restriction and *i*-induction functors for cyclotomic Hecke algebras. He showed that the Grothendieck group of the category of finitely generated projective modules of these algebras admits a module structure over the affine Lie algebra of type $A^{(1)}$, with the action of Chevalley generators given by the *i*-restriction and *i*-induction functors.

The restriction and induction functors for rational DAHA's (= double affine Hecke algebras) were recently defined by R. Bezrukavnikov and P. Etingof. With these functors, we give an analogue of Ariki's construction for the category θ of cyclotomic rational DAHA's: we show that as a module over the type $A^{(1)}$ affine Lie algebra, the Grothendieck group of this category is isomorphic to a Fock space. We also construct a crystal on the set of isomorphism classes of simple modules in the category θ . It is isomorphic to the crystal of the Fock space. Recall that this Fock space also enters in some conjectural description of the decomposition numbers for the category θ considered here. See [16], [17], [14] for related works.

Notation

For A an algebra, we will write A -mod for the category of finitely generated A-modules. For $f : A \to B$ an algebra homomorphism from A to another algebra B such that B is finitely generated over A, we will write

$$f_*: B\operatorname{-mod} \to A\operatorname{-mod}$$

for the restriction functor and we write

$$f^*: A \operatorname{-mod} \to B \operatorname{-mod}, \quad M \mapsto B \otimes_A M.$$

A \mathbb{C} -linear category \mathcal{C} is called artinian if the Hom sets are finite dimensional \mathbb{C} -vector spaces and every object has a finite length. Given an object M in \mathcal{C} , we denote by $\operatorname{soc}(M)$ (resp. head(M)) the socle (resp. the head) of M, which is the largest semi-simple subobject (quotient) of M.

Let \mathscr{C} be an abelian category. The Grothendieck group of \mathscr{C} is the quotient of the free abelian group generated by objects in \mathscr{C} modulo the relations M = M' + M'' for all objects M, M', M'' in \mathscr{C} such that there is an exact sequence $0 \to M' \to M \to M'' \to 0$. Let $K(\mathscr{C})$ denote the complexified Grothendieck group, a \mathbb{C} -vector space. For each object M in \mathscr{C} , let [M] be its class in $K(\mathscr{C})$. Any exact functor $F : \mathscr{C} \to \mathscr{C}'$ between two abelian categories induces a vector space homomorphism $K(\mathscr{C}) \to K(\mathscr{C}')$, which we will denote by F again. Given an algebra A we will abbreviate $K(A) = K(A \operatorname{-mod})$.

Denote by $\operatorname{Fct}(\mathcal{C}, \mathcal{C}')$ the category of functors from a category \mathcal{C} to a category \mathcal{C}' . For $F \in \operatorname{Fct}(\mathcal{C}, \mathcal{C}')$ write $\operatorname{End}(F)$ for the ring of endomorphisms of the functor F. We denote by $1_F : F \to F$ the identity element in $\operatorname{End}(F)$. Let $G \in \operatorname{Fct}(\mathcal{C}', \mathcal{C}'')$ be a functor from \mathcal{C}' to another category \mathcal{C}'' . For any $X \in \operatorname{End}(F)$ and any $X' \in \operatorname{End}(G)$ we write $X'X : G \circ F \to G \circ F$ for the morphism of functors given by $X'X(M) = X'(F(M)) \circ G(X(M))$ for any $M \in \mathcal{C}$.

Let $e \ge 2$ be an integer and z be a formal parameter. Denote by \mathfrak{sl}_e the Lie algebra of traceless $e \times e$ complex matrices. The type $A^{(1)}$ affine Lie algebra is

$$\mathfrak{sl}_e = \mathfrak{sl}_e \otimes \mathbb{C}[z, z^{-1}] \oplus \mathbb{C}c \oplus \mathbb{C}\partial$$

equipped with the Lie bracket

$$[\xi \otimes z^m + ac + b\partial, \xi' \otimes z^n + a'c + b'\partial] = [\xi, \xi'] \otimes z^{m+n} + m\delta_{m, -n} \operatorname{tr}(\xi\xi')c + nb\xi' \otimes z^n - mb'\xi \otimes z^m,$$

for $\xi, \xi' \in \mathfrak{sl}_e, a, a', b, b' \in \mathbb{C}$. Here $\operatorname{tr}: \mathfrak{sl}_e \to \mathbb{C}$ is the trace map. Let

$$\widehat{\mathfrak{sl}}_e = \mathfrak{sl}_e \otimes \mathbb{C}[z, z^{-1}] \oplus \mathbb{C}c$$

It is the Lie subalgebra of $\widetilde{\mathfrak{sl}}_e$ generated by the Chevalley generators

$$e_i = E_{i,i+1} \otimes 1, \quad f_i = E_{i+1,i} \otimes 1, \quad 1 \leq i \leq e-1$$
$$e_0 = E_{e1} \otimes z, \quad f_0 = E_{1e} \otimes z^{-1}.$$

Here E_{ij} is the elementary matrix with 1 in the position (i, j) and 0 elsewhere. Let $h_i = [e_i, f_i]$ for $0 \le i \le e - 1$. We consider the Cartan subalgebra

$$\mathfrak{t} = \bigoplus_{i \in \mathbb{Z}/e\mathbb{Z}} \mathbb{C}h_i \oplus \mathbb{C}\partial,$$

4° SÉRIE – TOME 44 – 2011 – Nº 1

CRYSTALS AND DAHA

and its dual \mathfrak{t}^* . For $i \in \mathbb{Z}/e\mathbb{Z}$ let $\alpha_i \in \mathfrak{t}^*$ (resp. $\alpha_i^{\vee} \in \mathfrak{t}$) be the simple root (resp. coroot) corresponding to e_i . The fundamental weights are $\{\Lambda_i \in \mathfrak{t}^* : i \in \mathbb{Z}/e\mathbb{Z}\}$ such that $\Lambda_i(\alpha_j^{\vee}) = \delta_{ij}$ and $\Lambda_i(\partial) = 0$ for any $i, j \in \mathbb{Z}/e\mathbb{Z}$. Let $\delta \in \mathfrak{t}^*$ be the element given by $\delta(h_i) = 0$ for all i and $\delta(\partial) = 1$. We will write P for the weight lattice of \mathfrak{sl}_e . It is the free abelian group generated by the fundamental weights and δ .

1. Reminders on Hecke algebras, rational DAHA's and restriction functors

1.1. Hecke algebras

Let \mathfrak{h} be a finite dimensional vector space over \mathbb{C} . Recall that a pseudo-reflection is a non trivial element s of $GL(\mathfrak{h})$ which acts trivially on a hyperplane, called the reflecting hyperplane of s. Let $W \subset GL(\mathfrak{h})$ be a finite subgroup generated by pseudo-reflections. Let \mathscr{A} be the set of pseudo-reflections in W and \mathscr{A} be the set of reflecting hyperplanes. We set $\mathfrak{h}_{reg} = \mathfrak{h} - \bigcup_{H \in \mathscr{A}} H$, it is stable under the action of W. Fix $x_0 \in \mathfrak{h}_{reg}$ and identify it with its image in \mathfrak{h}_{reg}/W . By definition the braid group attached to (W, \mathfrak{h}) , denoted by $B(W, \mathfrak{h})$, is the fundamental group $\pi_1(\mathfrak{h}_{reg}/W, x_0)$.

For any $H \in \mathcal{A}$, let W_H be the pointwise stabilizer of H. This is a cyclic group. Write e_H for the order of W_H . Let s_H be the unique element in W_H whose determinant is $\exp(\frac{2\pi\sqrt{-1}}{e_H})$. Let q be a map from \mathcal{A} to \mathbb{C}^* that is constant on the W-conjugacy classes. Following [6, Definition 4.21] the Hecke algebra $\mathcal{H}_q(W, \mathfrak{h})$ attached to (W, \mathfrak{h}) with parameter q is the quotient of the group algebra $\mathbb{C}B(W, \mathfrak{h})$ by the relations:

(1.1)
$$(T_{s_H} - 1) \prod_{t \in W_H \cap \emptyset} (T_{s_H} - q(t)) = 0, \quad H \in \mathcal{C}.$$

Here T_{s_H} is a generator of the monodromy around H in \mathfrak{h}_{reg}/W such that the lift of T_{s_H} in $\pi_1(W, \mathfrak{h}_{reg})$ via the map $\mathfrak{h}_{reg} \to \mathfrak{h}_{reg}/W$ is represented by a path from x_0 to $s_H(x_0)$. See [6, Section 2B] for a precise definition. When the subspace \mathfrak{h}^W of fixed points of W in \mathfrak{h} is trivial, we abbreviate

$$B_W = B(W, \mathfrak{h}), \quad \mathscr{H}_q(W) = \mathscr{H}_q(W, \mathfrak{h}).$$

1.2. Parabolic restriction and induction for Hecke algebras

In this section we will assume that $\mathfrak{h}^W = 1$. A parabolic subgroup W' of W is by definition the stabilizer of a point $b \in \mathfrak{h}$. By a theorem of Steinberg, the group W' is also generated by pseudo-reflections. Let q' be the restriction of q to $\mathfrak{G}' = W' \cap \mathfrak{G}$. There is an explicit inclusion $\iota_q : \mathscr{H}_{q'}(W') \hookrightarrow \mathscr{H}_q(W)$ given by [6, Section 2D]. The restriction functor

 $\mathscr{H}\operatorname{Res}_{W'}^W:\mathscr{H}_q(W)\operatorname{-mod}\to\mathscr{H}_{q'}(W')\operatorname{-mod}$

is the functor $(\iota_q)_*$. The induction functor

$$\mathscr{H}$$
Ind $_{W'}^{W} = \mathscr{H}_{q}(W) \otimes_{\mathscr{H}_{q'}(W')} -$

is left adjoint to ${}^{\mathscr{H}}\operatorname{Res}_{W'}^W$. The coinduction functor

$$\mathscr{H}$$
coInd $_{W'}^W = \operatorname{Hom}_{\mathscr{H}_{q'}(W')}(\mathscr{H}_{q}(W), -)$

is right adjoint to ${}^{\mathscr{H}}\operatorname{Res}_{W'}^W$. The three functors above are all exact.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Let us recall the definition of i_q . It is induced from an inclusion $i : B_{W'} \hookrightarrow B_W$, which is in turn the composition of three morphisms ℓ , κ , j defined as follows. First, let $\mathscr{C} \subset \mathscr{C}$ be the set of reflecting hyperplanes of W'. Write

$$\overline{\mathfrak{h}}=\mathfrak{h}/\mathfrak{h}^{W'},\quad \overline{\mathscr{A}}=\{\overline{H}=H/\mathfrak{h}^{W'}:\, H\in \mathscr{A}'\},\quad \overline{\mathfrak{h}}_{\mathrm{reg}}=\overline{\mathfrak{h}}-\bigcup_{\overline{H}\in\overline{\mathscr{A}}}\overline{H},\quad \mathfrak{h}'_{\mathrm{reg}}=\mathfrak{h}-\bigcup_{H\in \mathscr{A}'}H.$$

The canonical epimorphism $p: \mathfrak{h} \to \overline{\mathfrak{h}}$ induces a trivial W'-equivariant fibration $p: \mathfrak{h}'_{reg} \to \overline{\mathfrak{h}}_{reg}$, which yields an isomorphism

(1.2)
$$\ell: B_{W'} = \pi_1(\overline{\mathfrak{h}}_{reg}/W', p(x_0)) \xrightarrow{\sim} \pi_1(\mathfrak{h}'_{reg}/W', x_0).$$

Endow \mathfrak{h} with a *W*-invariant hermitian scalar product. Let $|| \cdot ||$ be the associated norm. Set

(1.3)
$$\Omega = \{ x \in \mathfrak{h} : ||x - b|| < \varepsilon \},\$$

where ε is a positive real number such that the closure of Ω does not intersect any hyperplane that is in the complement of \mathscr{A}' in \mathscr{A} . Let $\gamma : [0,1] \to \mathfrak{h}$ be a path such that $\gamma(0) = x_0$, $\gamma(1) = b$ and $\gamma(t) \in \mathfrak{h}_{reg}$ for 0 < t < 1. Let $u \in [0,1[$ such that $x_1 = \gamma(u)$ belongs to Ω , write γ_u for the restriction of γ to [0, u]. Consider the homomorphism

$$\sigma: \pi_1(\Omega \cap \mathfrak{h}_{\mathrm{reg}}, x_1) \to \pi_1(\mathfrak{h}_{\mathrm{reg}}, x_0), \quad \lambda \mapsto \gamma_u^{-1} \cdot \lambda \cdot \gamma_u.$$

The canonical inclusion $\mathfrak{h}_{reg} \hookrightarrow \mathfrak{h}'_{reg}$ induces a homomorphism $\pi_1(\mathfrak{h}_{reg}, x_0) \to \pi_1(\mathfrak{h}'_{reg}, x_0)$. Composing it with σ gives an invertible homomorphism

$$\pi_1(\Omega \cap \mathfrak{h}_{\mathrm{reg}}, x_1) \to \pi_1(\mathfrak{h}'_{\mathrm{reg}}, x_0).$$

Since Ω is W'-invariant, its inverse gives an isomorphism

(1.4)
$$\kappa: \pi_1(\mathfrak{h}'_{\mathrm{reg}}/W', x_0) \xrightarrow{\sim} \pi_1((\Omega \cap \mathfrak{h}_{\mathrm{reg}})/W', x_1).$$

Finally, we see from above that σ is injective. So it induces an inclusion

$$\pi_1((\Omega \cap \mathfrak{h}_{\mathrm{reg}})/W', x_1) \hookrightarrow \pi_1(\mathfrak{h}_{\mathrm{reg}}/W', x_0).$$

Composing it with the canonical inclusion $\pi_1(\mathfrak{h}_{reg}/W', x_0) \hookrightarrow \pi_1(\mathfrak{h}_{reg}/W, x_0)$ gives an injective homomorphism

(1.5)
$$j: \pi_1((\Omega \cap \mathfrak{h}_{\mathrm{reg}})/W', x_1) \hookrightarrow \pi_1(\mathfrak{h}_{\mathrm{reg}}/W, x_0) = B_W$$

By composing ℓ , κ , \jmath we get the inclusion

(1.6)
$$i = j \circ \kappa \circ \ell : B_{W'} \hookrightarrow B_W.$$

It is proved in [6, Section 4C] that i preserves the relations in (1.1). So it induces an inclusion of Hecke algebras which is the desired inclusion

$$n_q: \mathscr{H}_{q'}(W') \hookrightarrow \mathscr{H}_q(W).$$

For $i, i' : B_{W'} \hookrightarrow B_W$ two inclusions defined as above via different choices of the path γ , there exists an element $\rho \in P_W = \pi_1(\mathfrak{h}_{reg}, x_0)$ such that for any $a \in B_{W'}$ we have $i(a) = \rho i'(a)\rho^{-1}$. In particular, the functors i_* and $(i')_*$ from B_W -mod to $B_{W'}$ -mod are isomorphic. Also, we have $(i_q)_* \cong (i'_q)_*$. So there is a unique restriction functor $\mathscr{R}\operatorname{Res}_{W'}^W$ up to isomorphisms.

4° SÉRIE – TOME 44 – 2011 – Nº 1