
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 44 fascicule 2 mars-avril 2011

Christopher DAVIS & Andreas LANGER & Thomas ZINK

Overconvergent de Rham-Witt Cohomology



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 44, 2011, p. 197 à 262

OVERCONVERGENT
DE RHAM-WITT COHOMOLOGY

 C DAVIS, A LANGER  T ZINK

A. – The goal of this work is to construct, for a smooth variety X over a perfect field k
of finite characteristic p > 0, an overconvergent de Rham-Witt complex W †ΩX/k as a suitable sub-
complex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in X, is
a complex of étale sheaves and a differential graded algebra over the ring W †( OX) of overconvergent
Witt-vectors. If X is affine one proves that there is an isomorphism between Monsky-Washnitzer coho-
mology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojec-
tive X an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid
cohomology.

R. – Le but de ce travail est de construire, pour X une variété lisse sur un corps parfait k de
caractéristique finie, un complexe de de Rham-Witt surconvergent W †ΩX/k comme un sous-complexe
convenable du complexe de de Rham-Witt de Deligne-Illusie. Ce complexe qui est fonctoriel en X est
un complexe de faisceaux étales et une algèbre différentielle graduée sur l’anneau W †( OX) des vec-
teurs de Witt surconvergents. Lorsque X est affine, on démontre qu’il existe un isomorphisme cano-
nique entre la cohomologie de Monsky-Washnitzer et la cohomologie (rationnelle) de de Rham-Witt
surconvergente. Finalement on définit pour X quasi-projectif un isomorphisme entre la cohomologie
rigide de X et la cohomologie de de Rham-Witt surconvergente rationnelle.

Introduction

LetX be a smooth variety over a perfect field k of finite characteristic. The purpose of this
work is to define an overconvergent de Rham-Witt complex W †Ω·X/k of sheaves on X. This
complex is a differential graded algebra contained in the de Rham-Witt complex WΩ·X/k of
Illusie and Deligne.

If X is quasiprojective we define a canonical isomorphism from rigid cohomology of X
in the sense of Berthelot:

Hi
rig(X/W (k)⊗Q)→ Hi(X,W †Ω·X/k)⊗Q.
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In particular these are finite dimensional vector spaces overW (k)⊗Q by [2]. We conjecture
that the image of the morphism

Hi(X,W †Ω·X/k)→ Hi(X,W †Ω·X/k)⊗Q

is a finitely generated W (k)-module. If X is projective we expect that the image of
Hi(X,W †Ω·X/k) under the comparison isomorphism between rigid cohomology and crys-
talline cohomology coincides with the image of crystalline cohomology.

In the case where X = SpecA is affine we obtain more precise results. The cohomology
groups of the individual sheaves W †ΩjX/k are zero for i > 0. The complex H0(X,W †Ω·X/k)

will be denoted by W †Ω·A/k. Let Ã be a lifting of A to a smooth algebra Ã over W (k). We

denote by Ã† the weak completion of Ã in the sense of Monsky-Washnitzer. The absolute
Frobenius endomorphism onA lifts (non canonically) to Ã†. This defines a homomorphism
Ã† →W (A). We show that the image of this map lies in W †(A). This defines morphisms

(1) Hi(Ω·
Ã†/W (k)

)→ Hi(W †Ω·A/k), for i ≥ 0.

We show that the kernel and cokernel of this map is annihilated by p2κ, where
κ = blogp dimAc. If we tensor the morphism (1) by Q it becomes independent of the
lift of the absolute Frobenius chosen.

We note that Lubkin [12] used another growth condition on Witt vectors. His bounded
Witt vectors are different from our overconvergent Witt vectors.

Let A = k[T1, . . . , Td] be the polynomial ring. For each real ε > 0 we defined ([5])
the Gauss norm γε on W (A). We extend them to the de Rham-Witt complex WΩ·A/k.
A Witt differential from WΩ·A/k is called overconvergent if its Gauss norm is finite for some
ε > 0. We denote the subcomplex of all overconvergent Witt differentials by W †Ω·A/k.
Following the description in [10], WΩ·A/k decomposes canonically into an integral part
and an acyclic fractional part and this decomposition continues to hold for the complex of
overconvergent Witt differentials. The integral part is easily identified with the de Rham
complex associated to the weak completion of the polynomial algebra W (k)[T1, . . . , Td]

in the sense of Monsky and Washnitzer. This explains the terminology “overconvergent”
for Witt differentials. For an arbitrary smooth k-algebra B we choose a presentation
A → B. We define the complex of overconvergent Witt differentials W †Ω·B/k as the image
of W †Ω·A/k. This is independent of the presentation. It is a central result that the functor
which associates to a smooth affine scheme SpecB the groupW †ΩmB/k is a sheaf for the étale
topology, and that Hi

Zar(SpecB,W †ΩmB/k) = 0 for i ≥ 1. For this we generalize ideas of
Meredith [13]. One also uses that the ring of overconvergent Witt vectors is weakly complete
in the sense of Monsky-Washnitzer [5] and the complex of overconvergent Witt differentials
satisfies a similar property of weak completeness. The étale sheaf property depends on an
explicit description - for a finite étale extension C/B - of W †Ω·C/k in terms of W †Ω·B/k.
The result is as nice as one can hope for. By a result of Kedlaya [9] any smooth variety
can be covered by affines which are finite étale over a localized polynomial algebra. It then
remains to show a localization property of overconvergence; namely a Witt differential of
a localized polynomial algebra which becomes overconvergent after further localization is
already overconvergent. This requires a detailed study of suitable Gauss norms (that are all
equivalent) on the truncated de Rham-Witt complex of a localized polynomial algebra.
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In the final section we globalize the comparison with rigid cohomology from the affine
case. In our approach it is essential to use Grosse-Klönne’s dagger spaces [6]. Let Z be an
affine smooth scheme over k. Let Z → F be a closed embedding in a smooth affine scheme
over W (k). We call (Z,F ) a special frame. To a special frame we associate canonically a
dagger space ]Z[†

F̂
. Its de Rham cohomology coincides with the rigid cohomology of Z:

RΓ(]Z[†
F̂
,Ω·

]Z[†
F̂

) = RΓrig(Z).

IfF×SpecW (k)Spec k = Z the dagger space ]Z[†
F̂

is affinoid. Therefore the hypercohomology
is not needed

Γ(]Z[†
F̂
,Ω·

]Z[†
F̂

) = RΓ(]Z[†
F̂
,Ω·

]Z[†
F̂

).

We show that the latter is true for a big enough class of special frames. Then simplicial
methods allow a globalization to the quasiprojective case.

0. Definition of the overconvergent de Rham-Witt complex

Let R be an Fp-algebra which is an integral domain. We consider the polynomial algebra
A = R[T1, . . . , Td]. Before we recall the de Rham-Witt complex, we review a few properties
of the de Rham complex ΩA/R.

There is a natural morphism of graded rings

F : ΩA/R → ΩA/R,

which is the absolute Frobenius on Ω0
A/R and such that F dTi = T p−1

i dTi. As shown in
[10], ΩA/R has anR-basis of so called basic differentials. Their definition depends on certain
choices which we will fix now in a more special way than in loc. cit.

We consider functions k : [1, d]→ Z≥0 called weights. On the support Supp k =

{i1, . . . , ir} we fix an order i1, . . . , ir with the following properties:

(i) ordp ki1 ≤ ordp ki2 ≤ · · · ≤ ordp kir .
(ii) If ordp kin = ordp kin+1 , then in ≤ in+1.

Let P = {I0, I1, . . . , Il} be a partition of Supp k as in [10]. A basic differential is a differential
of the form:

(0.1) e(k, P) = T kI0

Ç
dT kI1

pordp kI1

å
· · ·

Ç
dT kIl

pordp kIl

å
.

It is shown in [10] Proposition 2.1 that the elements (0.1) form a basis of the de Rham com-
plex ΩA/R as an R-module. The de Rham-Witt complex WΩA/R has a similar description,
but now fractional weight functions are involved. More precisely, an element ω ∈ WΩrA/R
has a unique decomposition as a sum of basic Witt differentials [10]

(0.2) ω =
∑
k, P

e
(
ξk, P , k, P

)
,

where k : [1, d]→ Z≥0[ 1
p ] is any weight ([10], 2.2) and P = {I0, I1, . . . , Ir} runs through all

partitions of Supp k. Moreover, the coefficients ξk, P ∈ W (R) satisfy a certain convergence
condition ([10], Theorem 2.8).
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For each real number ε > 0 we define the Gauss norm of ω:

(0.3) γε(ω) = inf
k, P
{ordV ξk, P − ε|k|}.

We will also use the truncated Gauss norms for a natural number n ≥ 0:

γε[n](ω) = inf
k, P
{ordV ξk, P − ε|k| | ordV ξk, P ≤ n}.

The truncated Gauss norms factor over Wn+1ΩA/R. We note that in the truncated case the
inf is over a finite set.

If γε(ω) > −∞, we say that ω has radius of convergence ε.
We call ω overconvergent, if there is an ε > 0 such that ω has radius of convergence ε. It

follows from the definitions that

(0.4) γε(ω1 + ω2) ≥ min (γε(ω1), γε(ω2)) .

This inequality shows that the overconvergent Witt differentials form a subgroup ofWΩA/R
which is denoted by W †ΩA/R. We have W †ΩA/R =

⋃
ε
W εΩA/R where W εΩA/R are the

overconvergent Witt differentials with radius of convergence ε.
If R = R ∪ {∞} ∪ {−∞}, then an R-valued function c on an abelian group M which

satisfies (0.4), so that c(a+ b) ≥ min{c(a), c(b)}, is called an order function.

D 0.5. – We say that ω is homogeneous of weight k if in the sum
ω =

∑
e
(
ξk, P , k, P

)
the weight k is fixed. We write weight(ω) = k.

If g ∈ Q, then we can consider sums which are homogeneous of degree g, i.e.

ω =
∑
|k|=g, P

e
(
ξk, P , k, P

)
.

Then we define deg(ω) = g. If ω is homogeneous of a fixed degree, we define

ordV ω = min ordV ξk, P .

It is easy to see that γε(ω) > −∞ if and only if there are real constantsC1, C2, withC1 > 0

such that for all weights k occurring in ω we have

(0.6) |k| ≤ C1ordV ξk, P + C2.

One can take C1 = 1
ε .

Using this equivalent definition one can show that the product of two overconvergent Witt
differentials is again overconvergent, as follows: For two homogeneous forms ω1, ω2 one has
ordV (ω1 ∧ω2) ≥ max (ordV ω1, ordV ω2). This follows from a (rather tedious) case by case
calculation with basic Witt differentials.

We have deg(ω1 ∧ ω2) = degω1 + degω2.
Assume now that

degω ≤ C1ordV ω + C2

and
degω′ ≤ C ′1ordV ω

′ + C ′2

for two homogeneous forms ω, ω′ of fixed degrees. Then

deg(ω ∧ ω′) = degω + degω′ ≤ (C1 + C ′1) ordV (ω1 ∧ ω2) + C2 + C ′2.
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