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SECOND ORDER ELLIPTIC OPERATORS WITH
COMPLEX BOUNDED MEASURABLE COEFFICIENTS

IN Lp, SOBOLEV AND HARDY SPACES

 S HOFMANN, S MAYBORODA
 A MCINTOSH

A. – Let L be a second order divergence form elliptic operator with complex bounded
measurable coefficients. The operators arising in connection with L, such as the heat semigroup and
Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from
their counterparts built upon the Laplacian. The current paper aims at a thorough description of the
properties of such operators in Lp, Sobolev, and some new Hardy spaces naturally associated to L.

First, we show that the known ranges of boundedness in Lp for the heat semigroup and Riesz
transform of L, are sharp. In particular, the heat semigroup e−tL need not be bounded in Lp if
p 6∈ [2n/(n + 2), 2n/(n− 2)]. Then we provide a complete description of all Sobolev spaces in which
L admits a bounded functional calculus, in particular, where e−tL is bounded.

Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to L, that
serves the range of p beyond [2n/(n + 2), 2n/(n− 2)]. It includes, in particular, characterizations by
the sharp maximal function and the Riesz transform (for certain ranges of p), as well as the molecular
decomposition and duality and interpolation theorems.

R. – Soit L un opérateur elliptique du second ordre de formes de divergence, à coefficients
complexes bornés et mesurables. Les opérateurs associés à L tels que le semi-groupe de la chaleur
ou la transformée de Riesz ne sont en général pas de type Calderón-Zygmund et présentent des
comportements différents de leurs analogues construits à partir du laplacien. Cet article a pour objectif
de décrire de manière exhaustive les propriétés de ces opérateurs dans Lp, dans les espaces de Sobolev
ainsi que dans certains nouveaux espaces de Hardy naturellement associés à L.

Tout d’abord, nous montrons que les plages de valeurs connues pour lesquelles ces opérateurs sont
bornés en norme Lp sont strictes. En particulier, le semi-groupe de la chaleur et la transformée de Riesz
ne sont pas obligatoirement bornés si p 6∈ [2n/(n + 2), 2n/(n − 2)]. Nous fournissons ensuite une
description complète de tous les espaces de Sobolev pour lesquels L admet un calcul fonctionnel borné,
en particulier, pour lesquels e−tL est borné.

Puis, nous développons une théorie extensive des espaces de Hardy et de Lipschitz associés à L,
pour les valeurs de p hors de [2n/(n + 2), 2n/(n − 2)]. Cette théorie comprend, en particulier, des
caractérisations par la fonction maximale « dièse » et par la transformée de Riesz (pour certaines plages
de p), ainsi que leur décomposition moléculaire, leur dualité et les théorèmes d’interpolation.
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1. Introduction

Let A be an n× n matrix with entries

(1.1) ajk : Rn −→ C, j = 1, . . . , n, k = 1, . . . , n,

satisfying the ellipticity condition

(1.2) λ|ξ|2 ≤ <eAξ · ξ̄ and |Aξ · ζ̄| ≤ Λ|ξ||ζ|, ∀ ξ, ζ ∈ Cn,

for some constants 0 < λ ≤ Λ < ∞. For such matrices A, our aim in this paper is to
present a detailed investigation of Hardy spaces and their duals associated to the second
order divergence form operator

(1.3) Lf := −div(A∇f),

which we interpret in the usual weak sense via a sesquilinear form.

In the case that A is the n × n identity matrix (i.e., so that L is the usual Laplacian
∆ := −div·∇), this theory reduces to the classical Hardy space theory of Stein-Weiss [55] and
Fefferman-Stein [32]. For more general operators L whose heat kernel satisfies a pointwise
Gaussian upper bound, an adapted Hardy space theory has been introduced by Auscher,
Duong and McIntosh [9], and by Duong and Yan, [27], [28]. In the absence of such pointwise
kernel bounds, the theory has been developed more recently in [11] by Auscher, McIntosh
and Russ (when L is the Hodge-Laplace operator on a manifold with doubling measure),
and in [40] by the first two authors of the present paper, for the complex divergence form
elliptic operators considered here. In [11, 40], the pointwise Gaussian bounds are replaced
by the weaker “Gaffney estimates” (cf. (2.21) and (2.24) below), whoseL2 version is a refined
parabolic “Caccioppoli” inequality which may also be proved via integration by parts using
only ellipticity and the divergence form structure of L. The present paper may be viewed in
part as a sequel to [40], in which we extend results for the case p = 1 given there, to the case
of general p (although we also obtain here some results, pertaining to the characterization
of adapted Hardy spaces via Riesz transforms, that are new even in the case p = 1). In
particular, it is in the nature of our present setting, in which pointwise kernel bounds may
fail, that the Hardy space theory for p > 1 becomes non-trivial (i.e., theL-adaptedHp spaces
may not coincide with Lp, even when p > 1). We shall return to this point momentarily. We
note also that general non-negative self-adjoint operators satisfying an L2 Gaffney estimate
have recently been treated in [38].

We now proceed to discuss some relevant history, and to present a more detailed overview
of the paper. In [10], the authors solved a long-standing conjecture, known as the Kato
problem, by identifying the domain of the square root of L. More precisely, they showed
that the domain of

√
L is the Sobolev space W 1,2(Rn) = {f ∈ L2 : ∇f ∈ L2} with

(1.4) ‖
√
Lf‖L2(Rn) ≈ ‖∇f‖L2(Rn).

In particular, the Riesz transform∇L−1/2 is bounded in L2(Rn).

Since then, substantial progress has been made in the development of the Lp theory of
elliptic operators of the type described above. Let us define

p−(L) := inf{p : ∇L−1/2 : Lp(Rn) −→ Lp(Rn)}.
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It is now known that 1 ≤ p−(L) < 2n/(n+ 2) (with 1 < p−(L) for some L; we shall return
to the latter point momentarily), and that there exists ε(L) > 0 such that

(1.5) ∇L−1/2 : Lp(Rn) −→ Lp(Rn) ⇐⇒ p−(L) < p < 2 + ε(L),

(given (1.4) as a starting point, (1.5) with p−(L) < 2n/(n+2) is established by combining the
results and methods of [39] or [18] with those of [6]; see also [5], [13], Chapter 4 of [14], and
[17] for related theory). Moreover, again given (1.4) as a starting point, one has the reverse
inequality

(1.6) ‖
√
Lf‖Lp(Rn) . ‖∇f‖Lp(Rn), for (p−(L))∗ < p < (p−(L∗))′,

where in general p∗ := pn/(p + n) denotes the “lower” Sobolev exponent, and as usual
p′ := p/(p − 1) is the exponent dual to p. The case p < 2 of (1.6) is due to Auscher [6],
while the case p > 2 is simply dual to the adjoint version of (1.5). Combining (1.5) and (1.6),
we have that

(1.7) ‖
√
Lf‖Lp(Rn) ≈ ‖∇f‖Lp(Rn) ⇐⇒ p−(L) < p < 2 + ε.

One of the main goals of the present paper is to understand the sense in which (1.7) extends
to the range p ≤ p−(L). This extension may be viewed as solving the Kato problem below
the critical exponent p−(L). We discuss this question in more detail in Subsection 1.2 below;
the proofs are given in Section 5 (cf. Theorem 5.2).

Let us now discuss optimality of the range of p in (1.5) (hence also that in (1.7)), for the
entire class of L under consideration. Even in the case of real symmetric coefficients, the
upper bound cannot be improved, in general: for each p > 2, Kenig(1) has constructed an
operator L whose Riesz transform is not bounded in Lp. In addition, the counterexamples
in [50], [8], [25] showed that for some elliptic operator L satisfying (1.1)–(1.3) there is a
p ∈ (1, 2) such that the Riesz transform is not bounded in Lp; i.e., for such L, one has
p−(L) > 1. Moreover, the latter fact permeates all the Lp results in the theory: as shown
in [6], p−(L) is also the lower bound for the respective intervals of p for which the heat
semigroup and the L-adapted square function (cf. (1.10) below) are Lp bounded, and for
which the semigroup enjoys Lp → L2 off diagonal estimates. However, identification of the
sharp lower bound p−(L) remained an open problem (posed, along with related questions,
in [6], Conjecture 3.14, and in [4], Problem 1.4, Problem 1.5, Problem 1.13).

In Section 2 of the present paper, we observe that the example constructed by Frehse in [34]
may be used to resolve these remaining sharpness issues, i.e., to show that
p±(L) = 2n/(n ∓ 2) ± ε±(L), where (p−(L), p+(L)) is the interior of the interval of Lp

boundedness of the heat semigroup e−tL, t > 0. More precisely, we have

∀ p 6∈ [2n/(n+ 2), 2], ∃L with ∇L−1/2 : Lp(Rn) 6−→ Lp(Rn),(1.8)

∀ p 6∈ [2n/(n+ 2), 2n/(n− 2)], ∃L with e−tL : Lp(Rn) 6−→ Lp(Rn).(1.9)

It follows, in particular, that in dimensions n ≥ 3, the kernel of the heat semigroup may
fail to satisfy the pointwise Gaussian estimate

|Kt(x, y)| ≤ Ct−n/2 e−c|x−y|
2/t, t > 0 and x, y ∈ Rn.

(1) Kenig’s Example is described in [14], Section 4.2.2.
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This solves an open problem in [14], p. 33.

Thus, in dimensions n > 2, the Riesz transform may fail to be bounded in Lp for some
p ∈ (1, 2), as may the heat semigroup e−tL, t > 0, as well as the other natural operators asso-
ciated with such L (e.g., square function, non-tangential maximal function). Consequently,
in the case that the endpoint p−(L) > 1, the L-adapted Riesz transforms, semigroup and
square function cannot be bounded from the classical Hardy space H1 into L1, since inter-
polation with the known L2 bound would then produce a contradiction with (1.8), (1.9) (or
with the analogous statement for the square function). These operators therefore lie beyond
the scope of the Calderón-Zygmund theory and exhibit behavior different to their counter-
parts built upon the Laplacian.

By analogy to the classical theory then, this motivates the introduction of a family
of L-adapted Hardy spaces Hp

L for all 0 < p < ∞, not equal to Lp in the range p ≤ p−(L),
on which the L-adapted semigroup, Riesz transforms and square function are well behaved,
and which comprise a complex interpolation scale including Lp for p−(L) < p < p+(L).

We note that the endpoint p−(L) plays a similar role to the exponent p = 1 in the classical
theory.

In particular, in Section 5 we give a suitable Hardy space extension of (1.5) to the case
p ≤ p−(L) (the case p = 1 already appeared in [40]), and, in one of the main results of this
paper, we present an appropriate converse, thus obtaining a Riesz transform characterization
of L-adapted Hp spaces, for some range of p depending on n. As observed above, this
characterization may be viewed as a sharp extension of the Kato square root estimate (1.4),
and of its Lp version (1.7), to the endpoint p−(L) and below. In order to make these notions
precise, we should first define our adapted Hp

L spaces.

1.1. Definition of Hp
L

The first step in the development of an L-adapted Hardy space theory, in the case that
pointwise kernel bounds may fail(2), was taken in [40] (and independently in [11]), in which
the authors considered the model case of H1

L(Rn) and, on the dual side, the appropriate
analogue of the space BMO. The definition ofH1

L given in [40](3) (by means of an L-adapted
square function) can be extended immediately to 0 < p ≤ 2 and with some additional care
to 2 ≤ p < ∞ as well. To this end, consider the square function associated with the heat
semigroup generated by L

(1.10) Sf(x) =

Ç∫∫
Γ(x)

|t2Le−t
2Lf(y)|2 dydt

tn+1

å1/2

, x ∈ Rn,

where, as usual, Γ(x) = {(y, t) ∈ Rn × (0,∞) : |x − y| < t} is a non-tangential cone with
vertex at x ∈ Rn. Analogously to [40], we define the space Hp

L(Rn) for 0 < p ≤ 2 as the
completion of {f ∈ L2(Rn) : Sf ∈ Lp(Rn)} in the norm

(1.11) ‖f‖Hp
L

(Rn) := ‖Sf‖Lp(Rn).

(2) In the presence of pointwise Gaussian heat kernel bounds, an L-adapted H1 and BMO theory was previously
introduced by Duong and Yan [27], [28].
(3) And in [11] for Hp

L, p ≥ 1.
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