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WEAK SYMPLECTIC FILLINGS AND
HOLOMORPHIC CURVES

 K NIEDERKRÜGER  C WENDL

A. – We prove several results on weak symplectic fillings of contact 3-manifolds,
including: (1) Every weak filling of any planar contact manifold can be deformed to a blow up of
a Stein filling. (2) Contact manifolds that have fully separating planar torsion are not weakly fillable—
this gives many new examples of contact manifolds without Giroux torsion that have no weak fillings.
(3) Weak fillability is preserved under splicing of contact manifolds along symplectic pre-Lagrangian
tori—this gives many new examples of contact manifolds without Giroux torsion that are weakly but
not strongly fillable.

We establish the obstructions to weak fillings via two parallel approaches using holomorphic curves.
In the first approach, we generalize the original Gromov-Eliashberg “Bishop disk” argument to study
the special case of Giroux torsion via a Bishop family of holomorphic annuli with boundary on an
“anchored overtwisted annulus”. The second approach uses punctured holomorphic curves, and is
based on the observation that every weak filling can be deformed in a collar neighborhood so as
to induce a stable Hamiltonian structure on the boundary. This also makes it possible to apply the
techniques of Symplectic Field Theory, which we demonstrate in a test case by showing that the
distinction between weakly and strongly fillable translates into contact homology as the distinction
between twisted and untwisted coefficients.

R. – On montre plusieurs résultats concernant les remplissages faibles de variétés de contact
de dimension 3, notamment : (1) Les remplissages faibles des variétés de contact planaires sont à
déformation près des éclatements de remplissages de Stein. (2) Les variétés de contact ayant de la
torsion planaire et satisfaisant une certaine condition homologique n’admettent pas de remplissages
faibles – de cette manière on obtient des nouveaux exemples de variétés de contact qui ne sont pas
faiblement remplissables. (3) La remplissabilité faible est préservée par l’opération de somme connexe
le long de tores pré-lagrangiens — ce qui nous donne beaucoup de nouveaux exemples de variétés de
contact sans torsion de Giroux qui sont faiblement, mais pas fortement, remplissables.

On établit une obstruction à la remplissabilité faible avec deux approches qui utilisent des courbes
holomorphes. La première méthode se base sur l’argument original de Gromov-Eliashberg des
« disques de Bishop ». On utilise une famille d’anneaux holomorphes s’appuyant sur un « anneau
vrillé ancré » pour étudier le cas spécial de la torsion de Giroux. La deuxième méthode utilise des
courbes holomorphes à pointes, et elle se base sur l’observation que, dans un remplissage faible, la
structure symplectique peut être déformée au voisinage du bord, en une structure hamiltonienne
stable. Cette observation permet aussi d’appliquer les méthodes à la théorie symplectique de champs,
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et on montre dans un cas simple que la distinction entre les remplissabilités faible et forte se traduit en
homologie de contact par une distinction entre coefficients tordus et non tordus.

0. Introduction

The study of symplectic fillings via J-holomorphic curves goes back to the foundational
result of Gromov [25] and Eliashberg [9], which states that a closed contact 3-manifold that is
overtwisted cannot admit a weak symplectic filling. Let us recall some important definitions:
in the following, we always assume that (W,ω) is a symplectic 4-manifold, and (M, ξ) is an
oriented 3-manifold with a positive and cooriented contact structure. Whenever a contact
form for ξ is mentioned, we assume it is compatible with the given coorientation.

D 1. – A contact 3-manifold (M, ξ) embedded in a symplectic 4-manifold
(W,ω) is called a contact hypersurface if there is a contact form α for ξ such that dα = ω|TM .
In the case where M = ∂W and its orientation matches the natural boundary orientation,
we say that (W,ω) has contact type boundary (M, ξ), and ifW is also compact, we call (W,ω)

a strong symplectic filling of (M, ξ).

D 2. – A contact 3-manifold (M, ξ) embedded in a symplectic 4-manifold
(W,ω) is called a weakly contact hypersurface if ω|ξ > 0, and in the special case where
M = ∂W with the natural boundary orientation, we say that (W,ω) has weakly contact
boundary (M, ξ). If W is also compact, we call (W,ω) a weak symplectic filling of (M, ξ).

It is easy to see that a strong filling is also a weak filling. In general, a strong filling can also
be characterized by the existence in a neighborhood of ∂W of a transverse, outward pointing
Liouville vector field, i.e., a vector field Y such that LY ω = ω. The latter condition makes it
possible to identify a neighborhood of ∂W with a piece of the symplectization of (M, ξ); in
particular, one can then enlarge (W,ω) by symplectically attaching to ∂W a cylindrical end.

The Gromov-Eliashberg result was proved using a so-called Bishop family of pseudoholo-
morphic disks: the idea was to show that in any weak filling (W,ω) whose boundary con-
tains an overtwisted disk, a certain noncompact 1-parameter family of J-holomorphic disks
with boundary on ∂W must exist, but yields a contradiction to Gromov compactness. In [9],
Eliashberg also used these techniques to show that all weak fillings of the tight 3-sphere are
diffeomorphic to blow-ups of a ball. More recently, the Bishop family argument has been
generalized by the first author [36] to define the plastikstufe, the first known obstruction to
symplectic filling in higher dimensions.

In the meantime, several finer obstructions to symplectic filling in dimension three have
been discovered, including some which obstruct strong filling but not weak filling. Eliashberg
[12] used some of Gromov’s classification results for symplectic 4-manifolds [25] to show that
on the 3-torus, the standard contact structure is the only one that is strongly fillable, though
Giroux had shown [22] that it has infinitely many distinct weakly fillable contact structures.
The first examples of tight contact structures without weak fillings were later constructed by
Etnyre and Honda [18], using an obstruction due to Paolo Lisca [30] based on Seiberg-Witten
theory.
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F 1. The region between the grey planes on either side represents half a
Giroux torsion domain. The grey planes are pre-Lagrangian tori with their charac-
teristic foliations, which show the contact structure turning along the z-axis as we
move from left to right. Domains with higher Giroux torsion can be constructed by
gluing together several half-torsion domains.

The simplest filling obstruction beyond overtwisted disks is the following. Define for each
n ∈ N the following contact 3-manifolds with boundary:

Tn :=
(
T2 × [0, n], sin(2πz) dϕ+ cos(2πz) dϑ

)
,

where (ϕ, ϑ) are the coordinates on T2 = S1 × S1, and z is the coordinate on [0, n]. We will
refer to Tn as a Giroux torsion domain.

D 3. – Let (M, ξ) be a 3-dimensional contact manifold. The Giroux torsion
Tor(M, ξ) ∈ Z∪{∞} is the largest number n ≥ 0 for which we can find a contact embedding
of the Giroux torsion domain Tn ↪→M . If this is true for arbitrarily large n, then we define
Tor(M, ξ) =∞.

R. – Due to the classification result of Eliashberg [8], overtwisted contact man-
ifolds have infinite Giroux torsion, and moreover, one can assume in this case that the tor-
sion domain Tn ⊂M separates M . It is not known whether a contact manifold with infinite
Giroux torsion must be overtwisted in general.

The present paper was motivated partly by the following fairly recent result.

T (Gay [19] and Ghiggini-Honda [21]). – A closed contact 3-manifold (M, ξ)

with positive Giroux torsion does not have a strong symplectic filling. Moreover, if it
contains a Giroux torsion domain Tn that splits M into separate path components, then (M, ξ)

does not even admit a weak filling.

The first part of this statement was proved originally by David Gay with a gauge theoretic
argument, and the refinement for the separating case follows from a computation of the
Ozsváth-Szabó contact invariant due to Paolo Ghiggini and Ko Honda. Observe that due to
the remark above on overtwistedness and Giroux torsion, the result implies the Eliashberg-
Gromov theorem.

As this brief sampling of history indicates, holomorphic curves have not been one of the
favorite tools for defining filling obstructions in recent years. One might argue that this is
unfortunate, because holomorphic curve arguments have a tendency to seem more geomet-
rically natural and intuitive than those involving the substantial machinery of Seiberg-Witten
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theory or Heegaard Floer homology—and in higher dimensions, of course, they are still the
only tool available. A recent exception was the paper [42], where the second author used fam-
ilies of holomorphic cylinders to provide a new proof of Gay’s result on Giroux torsion and
strong fillings. By similar methods, the second author has recently defined a more general
obstruction to strong fillings [44], called planar torsion, which provides many new examples of
contact manifolds (M, ξ) with Tor(M, ξ) = 0 that are nevertheless not strongly fillable. The
reason these results apply primarily to strong fillings is that they depend on moduli spaces
of punctured holomorphic curves, which live naturally in the noncompact symplectic mani-
fold obtained by attaching a cylindrical end to a strong filling. By contrast, the Eliashberg-
Gromov argument works also for weak fillings because it uses compact holomorphic curves
with boundary, which live naturally in a compact almost complex manifold with boundary
that is pseudoconvex, but not necessarily convex in the symplectic sense. The Bishop family
argument however has never been extended for any compact holomorphic curves more gen-
eral than disks, because these tend to live in moduli spaces of nonpositive virtual dimension.

In this paper, we will demonstrate that both approaches, via compact holomorphic curves
with boundary as well as punctured holomorphic curves, can be used to prove much more
general results involving weak symplectic fillings. As an illustrative example of the compact
approach, we shall begin in §1 by presenting a new proof of the above result on Giroux
torsion, as a consequence of the following.

T 1. – Let (M, ξ) be a closed 3-dimensional contact manifold embedded into a
closed symplectic 4-manifold (W,ω) as a weakly contact hypersurface. If (M, ξ) contains a
Giroux torsion domain Tn ⊂M , then the restriction of the symplectic form ω to Tn cannot be
exact.

By a theorem of Eliashberg [14] and Etnyre [16], every weak filling can be capped to pro-
duce a closed symplectic 4-manifold. The above statement thus implies a criterion for (M, ξ)

to be not weakly fillable—our proof will in fact demonstrate this directly, without any need
for the capping result. We will use the fact that every Giroux torsion domain contains an
object that we call an anchored overtwisted annulus, which we will show serves as a filling
obstruction analogous to an overtwisted disk. Note that for a torsion domain Tn ⊂ M , the
condition that ω is exact on Tn is equivalent to the vanishing of the integral∫

T2×{c}
ω

on any slice T2 ×{c} ⊂ Tn. For a strong filling this is always satisfied since ω is exact on the
boundary, and it is also always satisfied if Tn separates M .

The proof of Theorem 1 is of some interest in itself for being comparatively low-tech,
which is to say that it relies only on technology that was already available as of 1985. As such,
it demonstrates new potential for well established techniques, in particular the Gromov-
Eliashberg Bishop family argument, which we shall generalize by considering a “Bishop
family of holomorphic annuli” with boundaries lying on a 1-parameter family of so-called
half-twisted annuli. Unlike overtwisted disks, a single overtwisted annulus does not suffice to
prove anything: the boundaries of the Bishop annuli must be allowed to vary in a nontrivial
family, called an anchor, so as to produce a moduli space with positive dimension. One
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