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RICCI FLOW COUPLED
WITH HARMONIC MAP FLOW

 R MÜLLER

A. – We investigate a coupled system of the Ricci flow on a closed manifold M with the
harmonic map flow of a map φ from M to some closed target manifold N ,

∂

∂t
g = −2Rc + 2α∇φ⊗∇φ, ∂

∂t
φ = τgφ,

where α is a (possibly time-dependent) positive coupling constant. Surprisingly, the coupled system
may be less singular than the Ricci flow or the harmonic map flow alone. In particular, we can always
rule out energy concentration of φ a-priori by choosing α large enough. Moreover, it suffices to bound
the curvature of (M, g(t)) to also obtain control of φ and all its derivatives if α ≥

¯
α > 0. Besides

these new phenomena, the flow shares many good properties with the Ricci flow. In particular, we can
derive the monotonicity of an energy, an entropy and a reduced volume functional. We then apply these
monotonicity results to rule out non-trivial breathers and geometric collapsing at finite times.

R. – Nous étudions un système d’équations consistant en un couplage entre le flot de Ricci
et le flot harmonique d’une fonction φ allant de M dans une variété cible N ,

∂

∂t
g = −2Rc + 2α∇φ⊗∇φ, ∂

∂t
φ = τgφ,

où α est une constante de couplage strictement positive (et pouvant dépendre du temps). De manière
surprenante, ce système couplé peut être moins singulier que le flot de Ricci ou le flot harmonique si
ceux-ci sont considérés de manière isolée. En particulier, on peut toujours montrer que la fonction φ
ne se concentre pas le long de ce système à condition de prendre α assez grand. De plus, il est suffisant
de borner la courbure de (M, g(t)) le long du flot pour obtenir le contrôle de φ et de toutes ses dérivées
si α ≥

¯
α > 0. À part ces phénomènes nouveaux, ce flot possède certaines propriétés analogues à celles

du flot de Ricci. En particulier, il est possible de montrer la monotonie d’une énergie, d’une entropie et
d’une fonctionnelle volume réduit. On utilise la monotonie de ces quantités pour montrer l’absence de
solutions en « accordéon » et l’absence d’effondrement en temps fini le long du flot.
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1. Introduction and main results

Let (Mm, g) and (Nn, γ) be smooth Riemannian manifolds without boundary. According
to Nash’s embedding theorem [30] we can assume that N is isometrically embedded into
Euclidean space (Nn, γ) ↪→ Rd for a sufficiently large d. If eN : N → Rd denotes this
embedding, we identify maps φ : M → N with eN ◦ φ : M → Rd, such maps may thus
be written as φ = (φλ)1≤λ≤d. Harmonic maps φ : M → N are critical points of the energy
functional

(1.1) E(φ) =

∫
M

|∇φ|2dV.

Here, |∇φ|2 := 2e(φ) = gij∇iφλ∇jφλ denotes the local energy density, where we use the
convention that repeated Latin indices are summed over from 1 to m and repeated Greek
indices are summed over from 1 to d. We often drop the summation indices for φ when
clear from the context. Harmonic maps generalize the concept of harmonic functions and
in particular include closed geodesics and minimal surfaces.

To study the existence of a harmonic map φ homotopic to a given map φ0 : M → N , Eells
and Sampson [13] proposed to study the L2-gradient flow of the energy functional (1.1),

(1.2) ∂
∂tφ = τgφ, φ(0) = φ0,

where τgφ denotes the intrinsic Laplacian ofφ, often called the tension field ofφ. They proved
that if N has non-positive sectional curvature there always exists a unique, global, smooth
solution of (1.2) which converges smoothly to a harmonic map φ∞ : M → N homotopic
to φ0 as t→∞ suitably. On the other hand, without an assumption on the curvature of N ,
the solution might blow up in finite or infinite time. Comprehensive surveys about harmonic
maps and the harmonic map flow are given in Eells-Lemaire [11, 12], Jost [18] and Struwe
[40]. The harmonic map flow was the first appearance of a nonlinear heat flow in Riemannian
geometry. Today, geometric heat flows have become an intensely studied topic in geometric
analysis.

Another fundamental problem in differential geometry is to find canonical metrics on
Riemannian manifolds, for example metrics with constant curvature in some sense. Using the
idea of evolving an object to such an ideal state by a nonlinear heat flow, Richard Hamilton
[15] introduced the Ricci flow in 1982. His idea was to smooth out irregularities of the
curvature by evolving a given Riemannian metric g on a manifold M with respect to the
nonlinear weakly parabolic equation

(1.3) ∂
∂tg = −2Rc, g(0) = g0,

where Rc denotes the Ricci curvature of (M, g). Strictly speaking, the Ricci flow is not the
gradient flow of a functional F (g) =

∫
M
F (∂2g, ∂g, g)dV , but in 2002, Perelman [31] showed

that it is gradient-like nevertheless. He presented a new functional which may be regarded as
an improved version of the Einstein-Hilbert functional E(g) =

∫
M
RdV , namely

(1.4) F (g, f) :=

∫
M

(
R+ |∇f |2

)
e−fdV.
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The Ricci flow can be interpreted as the gradient flow of F modulo a pull-back by a family
of diffeomorphisms. Hamilton’s Ricci flow has a successful history. Most importantly, Perel-
man’s work [31, 33] led to a completion of Hamilton’s program [16] and a complete proof of
Thurston’s geometrization conjecture [42] and (using a finite extinction result from Perelman
[32] or Colding and Minicozzi [8, 9]) of the Poincaré conjecture [34]. Introductory surveys on
the Ricci flow and Perelman’s functionals can be found in the books by Chow and Knopf [6],
Chow, Lu and Ni [7], Müller [27] and Topping [43]. More advanced explanations of Perel-
man’s proof of the two conjectures are given in Cao and Zhu [3] Chow et al. [4, 5], Kleiner
and Lott [19] and Morgan and Tian [25, 26]. A good survey on Perelman’s work is also given
in Tao [41].

The goal of this article is to study a coupled system of the two flows (1.2) and (1.3). Again,
we let (Mm, g) and (Nn, γ) be smooth manifolds without boundary and with (Nn, γ) ↪→ Rd.
Throughout this article, we will assume in addition thatM andN are compact, hence closed.
However, many of our results hold for more general manifolds.

Let g(t) be a family of Riemannian metrics on M and φ(t) a family of smooth maps
from M to N . We call (g(t), φ(t))t∈[0,T ) a solution to the coupled system of Ricci flow and
harmonic map heat flow with coupling constant α(t), the (RH)α flow for short, if it satisfies

(RH)α

{
∂
∂tg = −2Rc + 2α∇φ⊗∇φ,
∂
∂tφ = τgφ.

Here, τgφ denotes the tension field of the map φ with respect to the evolving metric g,
and α(t) ≥ 0 denotes a (time-dependent) coupling constant. Finally, ∇φ ⊗ ∇φ has the
components (∇φ ⊗ ∇φ)ij = ∇iφλ∇jφλ. In particular, |∇φ|2 as defined above is the trace
of∇φ⊗∇φ with respect to g.

The special case where N ⊆ R and α ≡ 2 was studied by List [22], his motivation coming
from general relativity and the study of Einstein vacuum equations. Moreover, List’s flow
also arises as the Ricci flow of a warped product, see [28, Lemma A.3]. After completion of
this work, we learned that another special case of (RH)α withN ⊆ SL(kR)/SO(k) arises in
the study of the long-time behavior of certain Type III Ricci flows, see Lott [23] and a recent
paper of Williams [44] for details and explicit examples.

The paper is organized as follows. In order to get a feeling for the flow, we first study
explicit examples of solutions of (RH)α as well as soliton solutions which are generalized
fixed points modulo diffeomorphisms and scaling. The stationary solutions of (RH)α satisfy
Rc = α∇φ⊗∇φ, where φ is a harmonic map. To prevent (M, g(t)) from shrinking to a point
or blowing up, it is convenient to introduce a volume-preserving version of the flow.

In Section 3, we prove that for constant coupling functions α(t) ≡ α > 0 the (RH)α
flow can be interpreted as a gradient flow for an energy functional F α(g, φ, f) modified
by a family of diffeomorphisms generated by ∇f . If (g(t), φ(t)) solves (RH)α and e−f is a
solution to the adjoint heat equation under the flow, then F α is non-decreasing and constant
if and only if (g(t), φ(t)) is a gradient steady soliton. In the more general case where α(t) is
a positive function, the monotonicity result still holds whenever α(t) is non-increasing. This
section is based on techniques of Perelman [31, Section 1] for the Ricci flow.

In the fourth section, we prove short-time existence for the flow using again a method
from Ricci flow theory known as DeTurck’s trick (cf. [10]), i.e., we transform the weakly
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parabolic system (RH)α into a strictly parabolic one by pushing it forward with a family
of diffeomorphisms. Moreover, we compute the evolution equations for the Ricci and scalar
curvature, the gradient of φ and combinations thereof. In particular, the evolution equations
for the symmetric tensor Sij := Rij − α∇iφ∇jφ and its trace S = R − α|∇φ|2 will be very
useful.

In Section 5, we study first consequences of the evolution equations for the existence or
non-existence of certain types of singularities. Using the maximum principle, we show that
minx∈M S(x, t) is non-decreasing along the flow. This has the rather surprising consequence
that if |∇φ|2(xk, tk) → ∞ for tk ↗ T , then R(xk, tk) blows up as well, i.e., g(tk) must
become singular as tk ↗ T . Conversely, if |Rm| stays bounded along the flow, |∇φ|2 must
stay bounded, too. This leads to the conjecture that a uniform Riemann-bound is enough
to conclude long-time existence. This conjecture is proved in Section 6. To this end, we
first compute estimates for the Riemannian curvature tensor, its derivatives and the higher
derivatives of φ and then follow Bando’s [1] and Shi’s [38] results for the Ricci flow to derive
interior-in-time gradient estimates.

In Section 7, we introduce an entropy functional W α(g, φ, f, τ) which corresponds to
Perelman’s shrinker entropy for the Ricci flow [31, Section 3]. Here τ = T − t denotes a
backwards time. For α(t) ≡ α > 0, the entropy functional is non-decreasing and constant
exactly on shrinking solitons. Again, the entropy is monotone if we allow non-increasing
positive coupling functions α(t) instead of constant ones. Using F α and W α we can exclude
nontrivial breathers, i.e., we show that a breather has to be a gradient soliton. In the case of
a steady or expanding breather the result is even stronger, namely we can show that φ(t) has
to be harmonic in these cases for all t.

Finally in the last section, we state the monotonicity of a backwards reduced volume
quantity for the (RH)α flow with positive non-increasing α(t). This follows from our
more general result from [29]. We apply this monotonicity to deduce a local non-collapsing
theorem.

In the appendix, we collect the commutator identities on bundles likeT ∗M⊗φ∗TN , which
we need for the evolution equations in Sections 4 and 6.

This article originates from the author’s PhD thesis [28] from 2009, where some of the
proofs and computations are carried out in more details. The author likes to thank Klaus
Ecker, Robert Haslhofer, Gerhard Huisken, Tom Ilmanen, Peter Topping and in particular
Michael Struwe for stimulating discussions and valuable remarks and suggestions while
studying this new flow. Moreover, he thanks the Swiss National Science Foundation that
partially supported his research and Zindine Djadli who translated the abstract into flawless
French.

2. Examples and special solutions

In this section, we only consider time-independent coupling constants α(t) ≡ α. First,
we study two very simple homogeneous examples for the (RH)α flow system to illustrate the
different behavior of the flow for different coupling constantsα. In particular, the existence or
non-existence of singularities will depend on the choice ofα. We study the volume-preserving

4 e SÉRIE – TOME 45 – 2012 – No 1


