quatrième série - tome 45 fascicule 3 mai-juin 2012 ANNALES SCIENTIFIQUES de L'ÉCOLE NORMALE SUPÉRIEURE

Cinzia CASAGRANDE

On the Picard number of divisors in Fano manifolds

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

ON THE PICARD NUMBER OF DIVISORS IN FANO MANIFOLDS

BY CINZIA CASAGRANDE

ABSTRACT. – Let X be a complex Fano manifold of arbitrary dimension, and D a prime divisor in X. We consider the image $\mathcal{N}_1(D, X)$ of $\mathcal{N}_1(D)$ in $\mathcal{N}_1(X)$ under the natural push-forward of 1-cycles. We show that $\rho_X - \rho_D \leq \operatorname{codim} \mathcal{N}_1(D, X) \leq 8$. Moreover if $\operatorname{codim} \mathcal{N}_1(D, X) \geq 3$, then either $X \cong S \times T$ where S is a Del Pezzo surface, or $\operatorname{codim} \mathcal{N}_1(D, X) = 3$ and X has a fibration in Del Pezzo surfaces onto a Fano manifold T such that $\rho_X - \rho_T = 4$.

RÉSUMÉ. – Soient X une variété de Fano lisse et complexe de dimension arbitraire, et D un diviseur premier dans X. Nous considérons l'image $\mathcal{N}_1(D, X)$ de $\mathcal{N}_1(D)$ dans $\mathcal{N}_1(X)$ par l'application naturelle de *push-forward* de 1-cycles. Nous démontrons que $\rho_X - \rho_D \leq \operatorname{codim} \mathcal{N}_1(D, X) \leq 8$. De plus, si codim $\mathcal{N}_1(D, X) \geq 3$, alors soit $X \cong S \times T$ où S est une surface de Del Pezzo, soit codim $\mathcal{N}_1(D, X) = 3$ et X a une fibration en surfaces de Del Pezzo sur une variété de Fano lisse T, telle que $\rho_X - \rho_T = 4$.

1. Introduction

Let X be a complex Fano manifold of arbitrary dimension n, and consider a prime divisor $D \subset X$. We denote by $\mathcal{N}_1(X)$ the \mathbb{R} -vector space of one-cycles in X, with real coefficients, modulo numerical equivalence; its dimension is the *Picard number* ρ_X of X, and similarly for D. The inclusion $i: D \hookrightarrow X$ induces a push-forward of one-cycles $i_*: \mathcal{N}_1(D) \to \mathcal{N}_1(X)$, that does not need to be injective nor surjective. We are interested in the image

$$\mathcal{N}_1(D,X) := i_*(\mathcal{N}_1(D)) \subseteq \mathcal{N}_1(X),$$

which is the linear subspace of $\mathcal{N}_1(X)$ spanned by numerical classes of curves contained in *D*. The codimension of $\mathcal{N}_1(D, X)$ in $\mathcal{N}_1(X)$ is equal to the dimension of the kernel of the restriction $H^2(X, \mathbb{R}) \to H^2(D, \mathbb{R})$.

If X is a surface, then it follows from the classification of Del Pezzo surfaces that $\operatorname{codim} \mathcal{N}_1(D, X) = \rho_X - 1 \leq 8$. Our main result is that the same holds in any dimension.

C. CASAGRANDE

THEOREM 1.1. – Let X be a Fano manifold of dimension n. For every prime divisor $D \subset X$, we have

$$\rho_X - \rho_D \le \operatorname{codim} \mathcal{N}_1(D, X) \le 8.$$

Moreover, suppose that there exists a prime divisor D with $\operatorname{codim} \mathcal{N}_1(D, X) \ge 3$. Then one of the following holds:

- (i) $X \cong S \times T$, where S is a Del Pezzo surface with $\rho_S \ge \operatorname{codim} \mathcal{N}_1(D, X) + 1$, and D dominates T under the projection;
- (ii) $\operatorname{codim} \mathcal{N}_1(D, X) = 3$ and there exists a flat surjective morphism $\varphi \colon X \to T$, with connected fibers, where T is an (n-2)-dimensional Fano manifold, and $\rho_X \rho_T = 4$.

When $n \ge 4$ and D is ample, one has $\mathcal{N}_1(D, X) = \mathcal{N}_1(X)$ and also $\dim \mathcal{N}_1(D, X) = \rho_D$ by Lefschetz Theorems on hyperplane sections, see [17, Example 3.1.25]. However in general $\dim \mathcal{N}_1(D, X)$ can be smaller than ρ_X : for instance, if $D \cong \mathbb{P}^{n-1}$ is the exceptional divisor of the blow-up X of any projective manifold at a point, we have $\rho_D = \dim \mathcal{N}_1(D, X) = 1 < \rho_X$.

In case (ii) of Theorem 1.1 the variety X does not need to be a product of lower dimensional varieties, see Example 3.4.

Theorem 1.1 generalizes an analogous result in [9] for toric Fano varieties, obtained in a completely different way, using combinatorial techniques.

We recall that the pseudo-index of a Fano manifold X is

$$\iota_X = \min\{-K_X \cdot C \,|\, C \text{ is a rational curve in } X\},\$$

and is a multiple of the index of X; one expects that Fano manifolds with large pseudo-index are simpler. When $\iota_X > 1$ (*i.e.*, when X does not contain rational curves of anticanonical degree one), we show a stronger version of Theorem 1.1.

THEOREM 1.2. – Let X be a Fano manifold with pseudo-index $\iota_X > 1$. For every prime divisor $D \subset X$, we have codim $\mathcal{N}_1(D, X) \leq 1$. More precisely, one of the following holds:

- (i) $\iota_X = 2$ and there exists a smooth morphism $\varphi \colon X \to Y$ with fibers isomorphic to \mathbb{P}^1 , where Y is a Fano manifold with $\iota_Y > 1$;
- (ii) for every prime divisor $D \subset X$, we have $\mathcal{N}_1(D, X) = \mathcal{N}_1(X)$, $\rho_X \leq \rho_D$, and the restriction $H^2(X, \mathbb{R}) \to H^2(D, \mathbb{R})$ is injective. Moreover for every pair of prime divisors D_1, D_2 in X, we have $D_1 \cap D_2 \neq \emptyset$.

The author was led to this subject by the study of Fano manifolds with large Picard number (see [10] for an account of this problem). Let us mention two straightforward consequences of Theorem 1.1, which give bounds on ρ_X in some good situations. The first concerns the case dim $X \leq 5$, while the second is about Fano manifolds having a morphism onto a curve.

COROLLARY 1.3. – Let X be a Fano manifold, and suppose that there exists a prime divisor $D \subset X$ such that $\operatorname{codim} \mathcal{N}_1(D, X) \geq 3$.

If dim X = 4 then either $\rho_X \le 6$, or X is a product of Del Pezzo surfaces and $\rho_X \le 18$. If dim X = 5 then either $\rho_X \le 9$, or X is a product and $\rho_X \le 19$.

4° SÉRIE – TOME 45 – 2012 – Nº 3

COROLLARY 1.4. – Let X be a Fano manifold, $\varphi \colon X \to \mathbb{P}^1$ a surjective morphism with connected fibers, and $F \subset X$ a general fiber. Then $\rho_X \leq \rho_F + 8$.

Moreover if $\rho_X \ge \rho_F + 4$, then $X \cong S \times T$ where S is a Del Pezzo surface, φ factors through the projection $X \to S$, and $F \cong \mathbb{P}^1 \times T$.

Finally, we notice that some of the properties given by Theorem 1.1 are inherited by varieties dominated by a Fano manifold. We give two applications, and refer the reader to Lemma 4.1 for a more general statement.

COROLLARY 1.5. – Let X be a Fano manifold and $\varphi: X \to Y$ a surjective morphism. Suppose that there exists a prime divisor $D \subset X$ such that dim $\varphi(D) \leq 1$ (this always holds if dim Y = 2). Then $\rho_Y \leq 9$.

Moreover if $\rho_Y \ge 5$ *then* dim $Y \le 3$ and $X \cong S \times T$, where S is a Del Pezzo surface.

COROLLARY 1.6. – Let X be a Fano manifold and $\varphi: X \to Y$ a surjective morphism with dim Y = 3. Then $\rho_Y \leq 10$.

Moreover if $\rho_Y \ge 6$ then $X \cong S \times T$ where S is a Del Pezzo surface, T has a contraction onto \mathbb{P}^1 , and φ factors through $X \to S \times \mathbb{P}^1$.

Outline of the paper

The idea that a special divisor should affect the geometry of X is classical. In [6] Fano manifolds containing a divisor $D \cong \mathbb{P}^{n-1}$ with normal bundle $\mathcal{N}_{D/X} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-1)$ are classified. This classification has been extended in [20] to the case $\mathcal{N}_{D/X} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-a)$ with a > 0; moreover [20, Proposition 5] shows that if X contains a divisor D with $\rho_D = 1$, then $\rho_X \leq 3$. More generally, divisors $D \subset X$ with dim $\mathcal{N}_1(D, X) = 1$ or 2 play an important role in [10, 11].

In Section 2 we treat the main construction that will be used in the paper, based on the analysis of a Mori program for -D, where $D \subset X$ is a prime divisor; this is a development of a technique used in [11]. Let us give an idea of our approach, referring the reader to Section 2 for more details.

After [5, 13], we know that we can run a Mori program for any divisor in a Fano manifold X. In fact we need to consider *special Mori programs*, where all involved extremal rays have positive intersection with the anticanonical divisor (see Section 2.1).

Then, given a prime divisor $D \subset X$, we consider a special Mori program for -D, which roughly means that we contract or flip extremal rays having positive intersection with D, until we get a fiber type contraction such that (the transform of) D dominates the target.

If $c := \operatorname{codim} \mathcal{N}_1(D, X) > 0$, by studying how the codimension of $\mathcal{N}_1(D, X)$ varies under the birational maps and the related properties of the extremal rays, we obtain c - 1*pairwise disjoint* prime divisors $E_1, \ldots, E_{c-1} \subset X$, all intersecting D, such that each E_i is a smooth \mathbb{P}^1 -bundle with $E_i \cdot f_i = -1$, where $f_i \subset E_i$ is a fiber (see Proposition 2.5 and Lemma 2.7). We call E_1, \ldots, E_{c-1} the \mathbb{P}^1 -bundles determined by the special Mori program for -D that we are considering; they play an essential role throughout the paper.

We conclude Section 2 proving Theorem 1.2 about the case with pseudo-index $\iota_X > 1$. In Section 3 we consider the following invariant of X:

 $c_X := \max\{\operatorname{codim} \mathcal{N}_1(D, X) \mid D \text{ is a prime divisor in } X\}.$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

In terms of this invariant, our main result is that $c_X \leq 8$, and if $c_X \geq 3$, then either X is a product, or $c_X = 3$ and X has a flat fibration onto an (n - 2)-dimensional Fano manifold (see Theorem 3.3 for a precise statement). The proof of this result is quite long: it takes the whole Section 3, and is divided in several steps; see 3.5 for a plan. The strategy is to apply the construction of Section 2 to prime divisors of "minimal Picard number", *i.e.*, with $\operatorname{codim} \mathcal{N}_1(D, X) = c_X$. We show that there exists a prime divisor E_0 with $\operatorname{codim} \mathcal{N}_1(E_0, X) = c_X$, such that E_0 is a smooth \mathbb{P}^1 -bundle with $E_0 \cdot f_0 = -1$, where $f_0 \subset E_0$ is a fiber. Applying the previous results to E_0 , we obtain a bunch of disjoint divisors with a \mathbb{P}^1 -bundle structure, and we use them to show that X is a product, or to construct a fibration in Del Pezzo surfaces.

Finally in Section 4 we use this result (Theorem 3.3) to prove the remaining results stated above: Theorem 1.1 and its Corollaries 1.3 to 1.6.

Acknowledgements

I am grateful to Tommaso de Fernex for an important suggestion concerning Proposition 2.4.

This paper was written mainly during a visit to the Mathematical Sciences Research Institute in Berkeley, for the program in Algebraic Geometry in spring 2009. I would like to thank MSRI for the kind hospitality, and GNSAGA-INdAM and the Research Project "Geometria delle varietà algebriche e dei loro spazi di moduli" (PRIN 2006) for financial support.

Notation and terminology

We work over the field of complex numbers. A *manifold* is a smooth variety. A \mathbb{P}^1 -bundle is a projectivization of a rank 2 vector bundle.

Let *X* be a projective variety.

 $\mathcal{N}_1(X)$ (respectively, $\mathcal{N}^1(X)$) is the \mathbb{R} -vector space of one-cycles (respectively, Cartier divisors) with real coefficients, modulo numerical equivalence.

[C] is the numerical equivalence class in $\mathcal{N}_1(X)$ of a curve $C \subset X$; [D] is the numerical equivalence class in $\mathcal{N}^1(X)$ of a Q-Cartier divisor D in X.

If $E \subset X$ is an irreducible closed subset and $C \subset E$ is a curve, $[C]_E$ is the numerical equivalence class of C in $\mathcal{N}_1(E)$.

The symbol \equiv stands for numerical equivalence (for both 1-cycles and Q-Cartier divisors). For any Q-Cartier divisor D in X, $D^{\perp} := \{\gamma \in \mathcal{N}_1(X) \mid D \cdot \gamma = 0\}.$

 $NE(X) \subset \mathcal{N}_1(X)$ is the convex cone generated by classes of effective curves, and $\overline{NE}(X)$ is its closure.

An *extremal ray* R of X is a one-dimensional face of $\overline{NE}(X)$; $Locus(R) \subseteq X$ is the union of all curves whose class is in R.

If R is an extremal ray of X and D is a Q-Cartier divisor in X, we say that $D \cdot R > 0$, respectively $D \cdot R = 0$, etc. if for $\gamma \in R \setminus \{0\}$ we have $D \cdot \gamma > 0$, respectively $D \cdot \gamma = 0$, etc.

Assume that X is normal.

A contraction of X is a surjective morphism with connected fibers $\varphi \colon X \to Y$, where Y is normal and projective; $NE(\varphi)$ is the face of $\overline{NE}(X)$ generated by classes of curves contracted by φ .