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ALGEBRAIC HOMOTOPY CLASSES
OF RATIONAL FUNCTIONS

 C CAZANAVE

A. – Let k be a field. We compute the set
[
P1,P1

]N
of naive homotopy classes of pointed

k-scheme endomorphisms of the projective line P1. Our result compares well with Morel’s computa-

tion in [11] of the group
[
P1,P1

]A1

of A1-homotopy classes of pointed endomorphisms of P1: the set[
P1,P1

]N
admits an a priori monoid structure such that the canonical map

[
P1,P1

]N → [
P1,P1

]A1

is a group completion.

R. – Soit k un corps. Nous déterminons l’ensemble
[
P1,P1

]N
des classes d’homotopie naïve

d’endomorphismes pointés de k-schémas de la droite projective P1. Notre résultat se compare bien avec

le calcul de Morel [11] du groupe
[
P1,P1

]A1

des classes d’A1-homotopie d’endomorphismes pointés

de P1: l’ensemble
[
P1,P1

]N
admet a priori une structure de monoïde pour laquelle l’application

canonique
[
P1,P1

]N → [
P1,P1

]A1

est une complétion en groupe.

1. Introduction

The work of Fabien Morel and Vladimir Voevodsky on A1-homotopy theory [9, 12] pro-
vides a convenient framework to do algebraic topology in the setting of algebraic geome-
try. More precisely, for a fixed field k, Morel and Voevodsky defined an appropriate category
of spaces, say Sp, containing the category of smooth algebraic k-varieties as a full subcate-
gory, which they endowed with a suitable model structure, in the sense of Quillen’s homo-
topical algebra [13]. Thus, given two spacesX and Y in Sp (resp. two pointed spaces), the set
{X,Y }A1

(resp. the set [X,Y ]A
1

) of A1-homotopy classes of unpointed morphisms (resp. of
pointed morphisms) fromX to Y is well defined and has all the properties an algebraic topo-
logist can expect. However, for concrete X and Y , these sets are in general hard to compute.

At the starting point of A1-homotopy theory is the notion of naive homotopy(1) between
two morphisms in Sp. First introduced by Karoubi and Villamayor [6], this notion mimics

This research was partially supported by the project ANR blanc BLAN08-2_338236, HGRT.
(1) In [12], the authors use the terminology “elementary homotopy”.
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the usual one of homotopy between topological maps, replacing the unit interval [0, 1] by its
algebraic analogue, the affine line A1.

D 1.1. – Let X and Y be two spaces in Sp. A naive homotopy is a morphism
in Sp

F : X ×A1 −→ Y.

The restriction σ(F ) := F|X×{0} is the source of the homotopy and τ(F ) := F|X×{1} is
its target. When X and Y have base points, say x0 and y0, we say that F is pointed if its
restriction to {x0} ×A1 is constant equal to y0.

With this notion, one defines the set {X,Y }N (resp. the set [X,Y ]N) of unpointed (resp.
of pointed) naive homotopy classes of morphisms from X to Y as the quotient of the set of
unpointed (resp. of pointed) morphisms by the equivalence relation generated by unpointed
(resp. by pointed) naive homotopies. These sets are sometimes easier to compute than their
A1 analogues, but they are not very well behaved. There is a canonical comparison map

[X,Y ]N −→ [X,Y ]A
1

which in general is far from being a bijection. In this article, we study a particular situation
where this map has a noteworthy behavior.

Let k be a base field. We focus on the set of pointed homotopy classes of k-scheme

endomorphisms of the projective line P1 with base point∞ := [1 : 0]. The set
[
P1,P1

]A1

is
computed by Fabien Morel in [11]. Note that, as the source space P1 is homotopy equivalent

in Sp to a suspension (see Lemma 3.20), the set
[
P1,P1

]A1

is endowed with a natural group
structure, whose law is denoted by ⊕A1

.
On the other hand, by interpreting endomorphisms of P1 as rational functions, we define

a monoid law⊕N on
[
P1,P1

]N
. Using this additional structure and a classical construction

due to Bézout, we can give an explicit description of
[
P1,P1

]N
. Morel’s computation com-

bined with ours then leads to the following striking result.

T 1.2. – The canonical map( [
P1,P1

]N
,⊕N

)
−→

( [
P1,P1

]A1

,⊕A1)
is a group completion.

Overview of the paper

Section 2 reviews the classical correspondence between scheme endomorphisms of the
projective line and rational functions. This leads to a description of

[
P1,P1

]N
as a set of

algebraic homotopy classes of rational functions with coefficients in the field k.
Section 3 is the core of the article. In §3.1, we define a monoid structure on the scheme F of

pointed rational functions. Through the correspondence of Section 2, it induces the monoid
law ⊕N which appears in Theorem 1.2. Then §3.2 reviews a classical construction due to
Bézout, which associates to any rational function a non-degenerate symmetric k-bilinear
form. We use it to define a homotopy invariant of rational functions taking values in some set
of equivalence classes of symmetric k-bilinear forms. Our main result, stated in §3.3, shows
that this invariant distinguishes exactly all the homotopy classes of rational functions. The
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proof is given in §3.4. Finally, §3.5 compares our result to the actual A1-homotopy classes
of Morel, as in Theorem 1.2.

Section 4 discusses natural extensions of the previous computation. We first give a similar
description of the set of unpointed naive homotopy classes of endomorphisms of P1 in §4.1.
Next, in §4.2, we study the composition of endomorphisms of P1 in terms of our description
of
[
P1,P1

]N
. Finally, in §4.3, we compute the set

[
P1,Pd

]N
of pointed naive homotopy

classes of morphisms from P1 to Pd for every integer d > 2. Not surprisingly, this case is
easier than the case d = 1. The result still compares well with Morel’s computation of the
actual A1-homotopy classes.

The article ends on an appendix proving the compatibility of the law ⊕N on
[
P1,P1

]N
with that⊕A1

on
[
P1,P1

]A1

. This is a crucial part of the comparison of our results to those
of Morel.
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2. Rational functions and naive homotopies

We review the classical correspondence between pointed k-scheme endomorphisms of the
projective line (P1,∞) and pointed rational functions with coefficients in k. Similarly, naive
homotopies have a description in terms of pointed rational functions with coefficients in the
ring k[T ].

D 2.1. – For an integer n > 1, the scheme F n of pointed degree n rational
functions is the open subscheme of the affine space A2n = Spec k[a0, . . . , an−1, b0, . . . , bn−1]

complementary to the hypersurface of equation(2)

resn,n(Xn + an−1X
n−1 + · · ·+ a0, bn−1X

n−1 + · · ·+ b0) = 0.

By convention, F 0 := Spec k.

R 2.2. – LetR be a k-algebra and n a non-negative integer. By the very definition,
an R-point of F n is a pair of polynomials (A,B) ∈ R[X]2, where

– A is monic of degree n,
– B is of degree strictly less than n,
– the scalar resn,n(A,B) is invertible in R.

Such an element is denoted by A
B and is called a pointed degree n rational function with

coefficients in R. In the sequel, it is useful to remark that given A and B as above, the

(2) The notation resn,n(A,B) stands for the resultant of the polynomials A and B with conventions as in
[1, §6, no 6, IV].
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condition resn,n(A,B) ∈ R× is equivalent to the existence of a (necessarily unique) Bézout
relation

AU +BV = 1

with U and V polynomials in R[X] such that deg V 6 n− 1 (and degU 6 n− 2 if n 6= 0).
Pointed k-scheme morphisms P1 → P1 and pointed naive homotopies F : P1 ×A1 =

P1
k[T ] → P1 are then described in terms of rational functions as follows.

P 2.3. – LetR = k orR = k[T ]. The datum of a pointed k-scheme morphism
f : P1

R −→ P1 is equivalent to the datum of a non-negative integer n and of an element
A
B ∈ F n(R). The integer n is called the degree of f and is denoted deg(f); the scalar
resn,n(A,B) ∈ R× = k× is called the resultant of f and is denoted res(f).

Proof. – This follows from the usual description of morphisms to a projective space
(using the fact that the ring R is a UFD).

E 2.4. – Let n be a positive integer and b0 be a unit in k×.

1. A polynomial X
n+an−1X

n−1+···+a0

b0
is homotopic to its leading term Xn

b0
.

2. Let B be a polynomial of degree 6 n− 1 such that B(0) = b0. Then Xn

B

p∼ Xn

b0
.

In general, given a random rational function, it is not a priori easy to find non-trivial
homotopies. In Remark 3.2(2), we will indicate a way of producing some such homotopies.

D 2.5. – Let f and g be two pointed rational functions over k. We say that f
and g are in the same pointed naive homotopy class, and we write f

p∼ g, if there exists a
finite sequence of pointed homotopies, say (Fi) with 0 6 i 6 N , such that

– σ(F0) = f and τ(FN ) = g;
– for every 0 6 i 6 N − 1, we have τ(Fi) = σ(Fi+1).

The set of pointed naive homotopy classes
[
P1,P1

]N
is thus the quotient set

∐
n>0

F n(k)�p∼.

Note that Proposition 2.3 implies that two pointed rational functions which are in the
same pointed naive homotopy class have same degree (and also same resultant). In particular,
the set

[
P1,P1

]N
splits into the disjoint union of its degreewise components[

P1,P1
]N

=
∐
n>0

[
P1,P1

]N
n
.

R 2.6. – It is convenient to reformulate the preceding discussion in terms of the
“naive connected components” of the scheme of pointed rational functions.

For G : Algk −→ Set a functor from the category of k-algebras to that of sets, recall
that πN

0 G : Algk −→ Set is the functor which assigns to a k-algebra R the coequalizer of
the double-arrow G(R[T ]) ⇒ G(R) given by evaluation at T = 0 and T = 1. For every
non-negative integer n, Proposition 2.3 gives a bijection[

P1,P1
]N
n
' (πN

0 F n)(k).

Note that by functoriality a k-scheme morphism φ : F n −→ X induces a homotopy inva-
riant πN

0 (φ)(k) : (πN
0 F n)(k) −→ (πN

0 X)(k).
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