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LINEAR RESPONSE FOR SMOOTH DEFORMATIONS
OF GENERIC NONUNIFORMLY HYPERBOLIC

UNIMODAL MAPS

 V BALADI  D SMANIA

A. – We considerC2 families t 7→ ft ofC4 unimodal maps ft whose critical point is slowly
recurrent, and we show that the unique absolutely continuous invariant measure µt of ft depends
differentiably on t, as a distribution of order 1. The proof uses transfer operators on towers whose level
boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We
give a new representation of µt for a Benedicks-Carleson map ft, in terms of a single smooth function
and the inverse branches of ft along the postcritical orbit. Along the way, we prove that the twisted
cohomological equation v = α ◦ f − f ′α has a continuous solution α, if f is Benedicks-Carleson and
v is horizontal for f .

R. – Nous considérons des familles t 7→ ft d’applications unimodales C4, de récurrence
postcritique lente, avec une dépendance C2 en fonction du paramètre t. Nous montrons que l’unique
mesure invariante µt de ft est différentiable en fonction de t, en tant que distribution d’ordre 1. La
preuve utilise des opérateurs de transfert sur des tours dont les bords sont mollifiés avec des fonctions
de troncation lisses, pour éviter l’introduction de discontinuités artificielles. Nous donnons de plus une
représentation de µt dépendant d’une unique fonction lisse et des branches inverses de ft le long de
l’orbite postcritique. Nous prouvons enfin que l’équation cohomologique tordue v = α ◦ f − f ′α

admet une solution continue α, si f est Benedicks-Carleson et v est horizontal pour f .

1. Introduction

The linear response problem for discrete-time dynamical systems can be posed in the
following way. Suppose that for each parameter t (or many parameters t) in a smooth family
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of maps t 7→ ft with ft : M → M , (M a compact Riemann manifold, say) there exists
a unique physical (or SRB) measure µt. (See [63] for a discussion of SRB measures.) One
can ask for conditions which ensure the differentiability, possibly in the sense of Whitney, of
the function µt in a weak sense (in the weak ∗-topology, i.e., as a distribution of order 0, or
possibly as a distribution of higher order). Ruelle has discussed this problem in several survey
papers [46], [48], [50], to which we refer for motivation.

The case of smooth hyperbolic dynamics has been settled over a decade ago ([25], [45]),
although recent technical progress in the functional analytic tools (namely, the introduction
of anisotropic Sobolev spaces on which the transfer operator has a spectral gap) has allowed
for a great simplification of the proofs (see, e.g., [19]): For smooth Anosov diffeomorphisms
fs and a C1 observable A, letting

Xs = ∂tft|t=s ◦ f−1
s ,

Ruelle [45], [47] obtained the following explicit linear response formula (the derivative here is
in the usual sense)

∂t

∫
Adµt|t=0 = ΨA(1) ,

where ΨA(z) is the susceptibility function

ΨA(z) =

∞∑
k=0

∫
zk〈X0, grad (A ◦ fk0 )〉 dµ0 ,

and the series ΨA(z) at z = 1 converges exponentially. In fact, in the Anosov case, the
susceptibility function is holomorphic in a disc of radius larger than 1. This is related to the
fact (see [7] for a survey and references) that the transfer operator of each fs has a spectral
gap on a space which contains not only the product of the distribution µs and the smooth
vector field Xs, but also the derivative of that product, that is, 〈Xs, gradµs〉+ (divXs)µs.

One feature of smooth hyperbolic dynamics is structural stability: Each ft, for small
t, is topologically conjugated to f0 via a homeomorphism ht, which turns out to depend
smoothly on the parameter t. With the exception of a deep result of Dolgopyat [21] on rapidly
mixing partially hyperbolic systems (where structural stability may be violated, but where
there are no critical points and shadowing holds for a set of points of large measure, so that
the bifurcation structure is relatively mild), the study of linear response in the absence of
structural stability, or in the presence of critical points, has begun only recently.

However, the easier property of continuity ofµt with respect to t (in other words, statistical
stability) has been established also in the presence of critical points: For piecewise expanding
unimodal interval maps, Keller [26] proved in 1982 that the density φt of µt, viewed as an
element of L1, has a modulus of continuity at least t ln t, so that t 7→ φt is r-Hölder, for any
exponent r ∈ (0, 1). For nonuniformly smooth unimodal maps, in general not all nearby
maps ft admit an SRB measure even if f0 does. Therefore, continuity of t 7→ µt can only be
proved in the sense of Whitney, on a set of “good” parameters. This was done by Tsujii [58]
and Rychlik–Sorets [53] in the 90’s. More recently, Alves et al. [2], [1] proved that for Hénon
maps, t 7→ µt is continuous in the sense of Whitney in the weak ∗-topology. (We refer, e.g.,
to [8] for more references.)

Differentiability of µt, even in the sense of Whitney, is a more delicate issue, even in dimen-
sion one. For nonuniformly hyperbolic smooth unimodal maps ft with a quadratic critical
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point (f ′′t (c) < 0), it is known [61], [30] that the density φt of the absolutely continuous
invariant measure µt of ft has singularities (called spikes) of the form

√
x− ck,t−1, where the

ck,t = fkt (c) are the points along the forward orbit of the critical point c. Thus, the deriva-
tive φ′t of the invariant density has nonintegrable singularities, and the transfer operator can-
not have a spectral gap in general on a space containing (Xtφt)

′. In fact, the radius of con-
vergence of the susceptibility function ΨA(z) is very likely strictly smaller than 1 in general.
Ruelle [49] observed however that, in the case of a subhyperbolic (preperiodic) critical point
for a real analytic unimodal map, ΨA(z) is meromorphic in a disc of radius larger than 1,
and that 1 is not a pole of ΨA(z). He expressed the hope that the value ΨA(1) obtained by
analytic continuation could correspond to the actual derivative of the SRB measure, at least
in the sense of Whitney.

This analytic continuation phenomenon in the subhyperbolic smooth unimodal case
(where a finite Markov partition exists) could well be a red herring, in view of the linear
response theory for the “toy model” of piecewise expanding interval maps that we recently
established in a series of papers [7], [10], [12], [13]: Unimodal piecewise expanding interval
maps ft have a unique SRB measure, whose density φt is a function of bounded variation
(since φ′t is a measure, the situation is much easier than for smooth unimodal maps). In [7],
[10], [14], we showed that Keller’s [26] t ln t modulus of continuity was optimal (see also
[35]): In fact, there exist smooth families ft so that t 7→ µt is not Lipschitz, even when
viewed as a distribution of arbitrarily high order, and even in the sense of Whitney. Such
counter-examples ft are transversal to the topological class of f0. If, on the contrary, the
family ft is tangent at t = 0 to the topological class of f0 (we say that ft is horizontal) then
([10], [12]) we proved that the map t 7→ µt is differentiable for the weak ∗-topology. The series
for ΨA(1) may diverge (for the preperiodic case, see [7, §5]), but can be resumed under the
horizontality condition [7], [10]. This gives an explicit linear response formula. In fact, the
susceptibility function ΨA(z) is holomorphic in the open unit disc, and, under a condition
slightly stronger than horizontality, ∂t

∫
Adµt|t=0 is the Abel limit of ΨA(z) as z → 1.

Worrying about lack of differentiability of the SRB measure is not just a mathematician’s
pedantry: Indeed, this phenomenon can be observed numerically, for example in the guise of
fractal transport coefficients. We refer, e.g., to the work of Keller et al. [28] (see also references
therein), who obtained a t ln(t) modulus of continuity compatible with the results of [26], for
drift and diffusion coefficients of models related to those analyzed in [10] [14].

Let us move on now to the topic of the present work, linear response for smooth unimodal
interval maps: Ruelle recently obtained a linear response formula for real analytic families
of analytic unimodal maps of Misiurewicz type [51], that is, assuming infk |fk(c)− c| > 0,
a nongeneric condition which implies the existence of a hyperbolic Cantor set. (Again, this
linear response formula can be viewed as a resumation of the generally divergent series
ΨA(1).) In [11], we showed that t 7→ µt is real analytic in the weak sense for complex
analytic families of Collet-Eckmann quadratic-like maps (the – very rigid – holomorphicity
assumption allowed us to use tools from complex analysis). Both these recent results are for
families ft in the conjugacy class of a single (analytic) unimodal map, and the assumptions
were somewhat nongeneric.
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The main result of the present work, Theorem 2.13, is a linear response formula for C2

families t 7→ ft ofC4 unimodal maps (1) with quadratic critical points satisfying the so-called
topological slow recurrence (TSR) condition ([54],[57],[32], see (5) below). (We assume that
the maps have negative Schwarzian and are symmetric, to limit technicalities, and we only
consider infinite postcritical orbits, since the preperiodic case is much easier.) The topological
slow recurrence condition is much weaker than Misiurewicz, so that we give a new proof
of Ruelle’s result [51] in the symmetric infinite postcritical case (this may shed light on the
informal study in §17 there). Topological slow recurrence implies the well-known Benedicks-
Carleson and Collet-Eckmann conditions. Furthermore, the work of Tsujii [57] and Avila-
Moreira [6] gives that real-analytic unimodal maps with a quadratic critical point satisfying
the TSR condition are measure-theoretical generic among non regular parameter in non
trivial real-analytic families unimodal maps. (See Remark 2.3.) If all maps in a family of
unimodal maps ft satisfy the topological slow recurrence condition then [55] this family is
a deformation, that is, the family {ft} lies entirely in the topological class of f0 (there exist
homeomorphisms ht such that ht(c) = c and ht ◦ f0 = ft ◦ ht). In particular, horizontality
holds.

We next briefly discuss a few new ingredients of our arguments, as well as a couple of
additional results we obtained along the way. A first remark is that we need uniformity of
the hyperbolicity constants of ft for all small t. We deduce this uniformity from previous
work of Nowicki, making use of the TSR assumption (Section 5).

When one moves the parameter t, the orbit of the critical point also moves, and so do the
spikes. Therefore, in order to understand ∂tµt, we need upper bounds on

∂tck,t|t=0 = ∂tf
k
t (c)|t=0 = ∂tht(f

k
0 (c))|t=0 = ∂tht(ck,0)|t=0 ,

uniformly in k. It is not very difficult to show (Lemma 2.10, see also Proposition 2.15)
that ∂tck,t|t=0 = α(ck,0) if α solves the twisted cohomological equation (2) (TCE) for
v = ∂tft|t=0, given by,

v = α ◦ f0 + f ′0 · α , α(c) = 0 .

(Such a function α is called an infinitesimal conjugacy.) In fact, we prove in Theorem 2.4
that if f0 is Benedicks-Carleson and v satisfies a horizontality condition for f0, then the TCE
above has a unique solution α. In addition, α is continuous.

In the case of piecewise expanding maps on the interval, the invariant density φt is a
fixed point of a Perron-Frobenius type transfer operator Lt in an appropriate space, where
1 is a simple isolated eigenvalue. So if we are able to verify some (weak) smoothness in the
family t→ Lt, then we can show (weak) differentiability of µt by using perturbation theory.
(We may use different norms in the range and the domain, in the spirit of Lasota-Yorke or
Doeblin-Fortet inequalities.) This is, roughly speaking, what was done in [10] and [13] (as
already mentioned, a serious additional difficulty in the presence of critical points, which had
to be overcome even in the toy model, is the absence of a spectral gap on a space containing
the derivative of the invariant density). For Collet-Eckmann unimodal maps ft, however, an

(1) The C4 regularity is only used to get W 2
1 regularity in Proposition 4.11 and Lemma 4.12, and one can perhaps

weaken this to C3+η .
(2) In one-dimensional dynamics, the acronym TCE also stands [44] for “topological Collet-Eckmann,” there should
be no confusion since the topological Collet-Eckmann condition is not used here.
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